On the Autoconvolution Equation and Total Variation Constraints *

Gunter Fleischer[†]

Rudolf Gorenflo[‡]

Bernd Hofmann§

1991 Mathematics Subject Classifications:

65 J20, 45 G10, 65 R30

Keywords:

autoconvolution, ill-posed problem, discretization, constrained least-squares approach, bounded total variation

Abstract

This paper is concerned with the numerical analysis of the autoconvolution equation x*x=y restricted to the interval [0,1]. We present a discrete constrained least squares approach and prove its convergence in $L^p(0,1)$, $1 \le p < \infty$, where the regularization is based on a prescribed bound for the total variation of admissible solutions. This approach includes the case of non-smooth solutions possessing jumps. Moreover, an adaption to the Sobolev space $H^1(0,1)$ and some remarks on monotone functions are added. The paper is completed by a numerical case study concerning the determination of non-monotone smooth and non-smooth functions x from the autoconvolution equation with noisy data y.

 $^{^*}$ The research was supported by the Deutsche Forschungsgemeinschaft (DFG) Grant Ho 1454/3-2 and by the Alexander von Humboldt Foundation, Bonn.

 $^{^\}dagger$ Faculty of Mathematics, Technische Universität Chemnitz-Zwickau, D-09107 Chemnitz, Germany, email: fleische@mathematik.tu-chemnitz.de

[‡]Department of Mathematics and Computer Science, Free University of Berlin, Arnimallee 2-6, D-14195 Berlin, Germany, email: gorenflo@math.fu-berlin.de

[§]Faculty of Mathematics, Technische Universität Chemnitz-Zwickau, D-09107 Chemnitz, Germany, email: hofmannb@mathematik.tu-chemnitz.de

1 Introduction

In the paper [8] by Gorenflo and Hofmann the nonlinear ill-posed autoconvolution equation

$$\int_{0}^{s} x(s-t) x(t) dt = y(s), \quad 0 \le s \le 1, \tag{1.1}$$

on the finite interval [0,1] has been analyzed. This autoconvolution problem can be written as an operator equation

$$F(x) = y (1.2)$$

with the *continuous* nonlinear operator $F:D(F)\subset X\to Y$ defined by

$$[F(x)](s) := [x * x](s) := \int_{0}^{s} x(s-t) x(t) dt, \quad 0 \le s \le 1, \tag{1.3}$$

and mapping between Banach spaces X and Y with norms $\|.\|_X$ and $\|.\|_Y$, respectively, containing real functions on the interval [0,1]. In [8] there have been discussed intrinsic properties of the autoconvolution operator F from (1.3) and conditions for its compactness, injectivity and weak closedness, in particular for the Hilbert space $X = Y = L^2(0,1)$. As a consequence the general theory of Tikhonov regularization became applicable to equation (1.1). The character of ill-posedness in this equation strongly depends on the solution point x and its local degree of ill-posedness. Applications of the autoconvolution equation arising in physics and in stochastics are also mentioned in [8].

On the other hand, we discussed in a recent paper (cf. [5]) including numerical results the case that x is considered as a function of the space $L^2(-\infty,\infty)$ possessing a support $\operatorname{supp} x \subset [0,1]$, where the complete data function [x*x](s) ($0 \le s \le 2$) is observable. In such a case Fourier transform techniques are applicable and yield some more insight into the behaviour of the autoconvolution equation. However, the knowledge of [x*x](s) for s > 1 is not always realistic. Therefore, in the present paper we are going to investigate stable approximate discretized solutions to (1.1), where both the function x to be determined and the data function y that can be measured are restricted to arguments from the interval [0,1].

The approximate solution of the autoconvolution equation (1.1) will be based for $Y := L^2(0,1)$ on the restriction of admissible solutions x to compact subsets of the domain D(F) with prescribed properties. Provided that F is injective the inverse operator F^{-1} becomes continuous. We will show in Section 2 that a compactification of the autoconvolution equation in $X := L^p(0,1)$ can be based on a prescribed upper bound c for the total variation T(x) of

solutions x, which are in addition uniformly bounded below and above by positive constants a and b, respectively. This allows us to construct convergent discretized solutions also in the case of non-smooth solutions possessing jumps. In this context, we generalize the well-known descriptive regularization approach using the set of monotone functions uniformly bounded below and above as a compact subset in $L^p(0,1)$, $1 \le p < \infty$ (cf. Section 4, [13] and [4]). The total variation bound c plays in our consideration the role of a regularization parameter. In Section 3, the ideas of Section 2 are extended to the Sobolev space case $X := H^1(0,1)$. A brief reference to the case of monotone functions is given in Section 4. The paper is completed by a case study presented in Section 5 that illustrates the theoretical assertions of Section 2. In this case study the behaviour of discretized least-squares solutions to the autoconvolution equation subject to uniform bounds of the total variation is investigated, where both the case of a smooth and of a non-smooth solution are reflected.

2 Discretizing the Autoconvolution Equation under Total Variation Constraints

Let us consider the autoconvolution operator (1.3) between the Banach spaces $X := L^p(0,1)$ for fixed $2 \le p < \infty$ with norm $||x||_{L^p(0,1)} = \left(\int_0^1 |x(t)|^p dt\right)^{1/p}$ and $Y := L^2(0,1)$. In this context, we define the sets

$$D_{\varepsilon}^{+} := \{x \in L^{p}(0,1) : x(t) \geq 0 \text{ a.e. in } [0,1], \ \varepsilon = \sup\{\tau : x(t) = 0 \text{ a.e. in } [0,\tau]\}\}$$

and

$$R_{\varepsilon}^{+} := \{ y \in L^{2}(0,1) : y(s) \ge 0 \text{ a.e in } [0,1], \ \varepsilon = \sup\{ \chi : y(s) = 0 \text{ a.e. in } [0,\chi] \} \}.$$
 (2.2)

Then we have the following proposition which, because of $L^p(0,1)$ being densely embedded in $L^2(0,1)$, follows from [8, Theorem 1 and Lemma 6] and [5, Proposition 2.5]:

Proposition 2.1 The autoconvolution operator $F: L^p(0,1) \to L^2(0,1)$ from (1.3) is a continuous nonlinear operator for all $2 \le p < \infty$. In the restricted case $F: D_0^+ \subset L^p(0,1) \to R_0^+ \subset L^2(0,1)$ the operator is injective, but the autoconvolution equation (1.2) is locally illposed in the sense of Definition 2.2 in all points $x \in D_0^+$.

Definition 2.2 We call the equation (1.2) locally ill-posed in $x \in D(F)$ if, for arbitrarily small r > 0 and balls $B_r := \{\tilde{x} \in X : ||\tilde{x} - x||_X \le r\}$, there is an infinite sequence $\{x_k\} \subset D(F) \cap B_r(x)$ with

$$||F(x_k) - F(x)||_Y \to 0$$
, but $||x_k - x||_X \neq 0$ as $k \to \infty$. (2.3)

Otherwise the equation is called locally well-posed in $x \in D(F)$.

To overcome the difficulties of ill-posedness of a problem under consideration one can restrict the domain D(F) to a subset, which is *compact* in the Banach space X.

For a real function x(t) $(0 \le t \le 1)$ we denote by

$$T(x) := \sup_{0 \le t_0 < t_1 < \dots < t_{k-1} < t_k \le 1} \sum_{i=1}^{k} |x(t_i) - x(t_{i-1})|$$
(2.4)

the total variation of the function x on [0,1] and by $T_S(x)$ the analogously defined total variation of x on a closed subinterval $S \subset [0,1]$. Note that the supremum in formula (2.4) is to be taken over all possible finite grids of the form $0 \le t_0 < t_1 < ... < t_{k-1} < t_k \le 1$ with an arbitrarily chosen integer k. We consider, for given positive constants a, b and c, where

$$0 < a < b, \tag{2.5}$$

the domain

$$D := \left\{ x : [0,1] \to [a,b], \quad T(x) \le c, \quad \begin{array}{l} \text{x left-continuous for } t \in (0,1], \\ \text{x right-continuous for } t = 0 \end{array} \right\}. \tag{2.6}$$

For technical reasons we assume that the lower bound a is strictly positive (see the remark after formula (2.21)). Obviously we have $D \subset L^p(0,1)$ for all $1 \leq p < \infty$. The requirement of the left- and right-continuity for the functions $x \in D$ is reasonable, since a function of bounded variation has due to [12, Corollary 2, Chap. VIII, § 3] only a countable set of discontinuity points, namely jumps. Therefore, the left limit $\lim_{t\to t_0-0} x(t)$ exists in all points of the interval (0,1]. In the continuity points t_0 this limit coincides with the value $x(t_0)$. In all other points let be the values of x defined by $x(t_0) := \lim_{t\to t_0-0} x(t)$. That means, with respect to $L^p(0,1)$ -elements we consider the representative, which is left-continuous in every point $t \in (0,1]$. Moreover let $x(0) := \lim_{t\to 0+0} x(t)$, i.e. we consider no jumps at t=0.

Lemma 2.3 The domain D from (2.5) – (2.6) is a compact subset of $L^p(0,1)$, $1 \le p < \infty$, and we have $D \subset D_0^+$.

The proof of compactness of D is based on Helly's theorem (cf. e.g. [12, Chap. VIII, §4]). For the proof ideas we refer to [4, Lemma 4.2]. On the other hand, note that Lemma 2.3 is a corollary of Theorem 2.5 in the paper [1] of ACAR and VOGEL. Namely, the set D from (2.5) - (2.6) is bounded with respect to the BV-norm

$$||x||_{BV[0,1]} := ||x||_{L^{1}[0,1]} + T(x). \tag{2.7}$$

Based on Lemma 2.3 providing compactness the following well-known Lemma of TIKHONOV will allow us to prove stability results.

Lemma 2.4 Let $F: D(F) \subset X \to Y$ be a continuous and injective operator between the Banach spaces X and Y with a compact domain D(F). We denote by x^* , for given right-hand side $y^* \in F(D(F))$, the unique solution of the operator equation (1.2). Then for a family of approximate solutions $x_{\eta} \in D(F)$ the convergence of residual norms

$$||F(x_{\eta}) - F(x^*)||_Y \to 0 \quad as \quad \eta \to 0$$
 (2.8)

implies the convergence of the approximate solutions

$$||x_{\eta} - x^*||_X \to 0 \quad as \quad \eta \to 0.$$
 (2.9)

A slightly modified version of this theorem and its proof can be found in BAUMEISTER's book [2, p. 18].

In order to obtain numerical approximate solutions, in the sequel we are going to discretize the autoconvolution equation (1.1) - (1.3), where the restriction of F to the compact subset D from (2.5) - (2.6),

$$F: D \subset L^p(0,1) \to L^2(0,1),$$
 (2.10)

is used. Similar to the discretization methods in [7] and [11], where also a total variation constraint is essential, we subdivide the interval [0,1] into n subintervals I_i of the uniform length h := 1/n, where

$$I_i := ((i-1)h, ih)$$
 $(i = 1, ..., n).$

For simplicity we set $T_i(x) := T_{[(i-1)h,ih]}(x)$ for $x \in D$. Moreover, let

$$t_j := \frac{h}{2} + (j-1)h$$
 $(j = 1, ..., n)$

denote the midpoints and

$$s_i := ih \quad (i = 1, ..., n)$$

the right endpoints of such intervals.

To discretize the nonlinear integral equation (1.1), for all i, j = 1, 2, ..., n the values $x(t_j)$ and $y(s_i)$ will be approximated by some x_j and y_i , respectively. A discrete autoconvolution operator

$$\underline{F}: \mathbb{R}^n \to \mathbb{R}^n \tag{2.11}$$

can be defined by

$$\underline{F}(\underline{x}) := \left(\sum_{j=1}^{i} h x_{i-j+1} x_j\right)_{i=1}^{n}, \quad \underline{x} = (x_1, ..., x_n)^T.$$
(2.12)

In its discrete form the autoconvolution equation then reads as

$$\underline{F}(\underline{x}) = \underline{y}, \quad \underline{y} = (y_1, ..., y_n)^T, \tag{2.13}$$

or as

$$\sum_{i=1}^{i} hx_{i-j+1}x_j = y_i, \quad (i = 1, ..., n).$$
(2.14)

The realistic situation that the given data are noisy can be included. Instead of the exact data y_i for the right-hand side we will use perturbed data \hat{y}_i , where

$$\|\underline{\hat{y}} - \underline{y}\|_2 \le \delta \tag{2.15}$$

and δ is a fixed upper bound for the noise of the data vector $\underline{\hat{y}} = (\hat{y}_1, ..., \hat{y}_n)^T$. Here we have used the scaled Euclidean norm

$$\|\underline{z}\|_2 := \left(\sum_{i=1}^n hz_i^2\right)^{\frac{1}{2}}$$

for $\underline{z} \in \mathbb{R}^n$. For our further investigations we introduce the restriction operators

$$R: D \subset L^p(0,1) \to \mathbb{R}^n$$
 and $Q: F(D) \subset L^2(0,1) \to \mathbb{R}^n$

by

$$(R(x))_j := x(t_j) \quad (j = 1, ..., n)$$
 (2.16)

and

$$(Q(y))_i := y(s_i) \quad (i = 1, ..., n),$$
 (2.17)

as well as the extension operators $E_1: \mathbb{R}^n \to L^p(0,1)$ and $E_2: \mathbb{R}^n \to L^2(0,1)$ by

$$(E_1(\underline{x}))(t) := x_j \quad (t \in I_j, \ j = 1, ..., n), \quad (E_1(\underline{x}))(0) := x_1$$
 (2.18)

and

$$(E_2(y))(s) := y_i \quad (s \in I_i, \ i = 1, ..., n), \quad (E_2(y))(0) := y_1.$$
 (2.19)

We are searching now for an optimal solution vector

$$\underline{x}^{opt} = (x_1^{opt}, ..., x_n^{opt})^T$$

solving the discrete least-squares problem

$$\|\underline{F}(\underline{x}) - \hat{y}\|_2 \to \min$$
, subject to $\underline{x} \in M$, (2.20)

where M is defined as

$$M := \left\{ \underline{x} \in \mathbb{R}^n : 0 < a \le x_i \le b \ (i = 1, ..., n), \ \sum_{i=1}^{n-1} |x_{i+1} - x_i| \le c \right\}.$$
 (2.21)

There exist solutions of (2.20), since M is compact in \mathbb{R}^n and $\|\underline{F}(\underline{x}) - \underline{\hat{y}}\|_2 : \mathbb{R}^n \to \mathbb{R}^1$ is a continuous functional possessing a minimum over M. The condition $0 < a \le x_i \le b$ is more restrictive than the discretized version of $x \in D_0^+$. We require this stronger condition, because we want M to be a compact subset of \mathbb{R}^n .

For the vectors $\eta := (\delta, h)^T$, $\underline{x}^{opt} \in M$ and $\underline{\hat{y}}$ we define the piecewise constant function $x_{\eta} \in D$ by

$$x_n(t) := E_1(\underline{x}^{opt})(t) \quad (0 \le t \le 1).$$
 (2.22)

and the piecewise constant function y_{δ} by

$$y_{\delta}(s) := E_2(\underline{\hat{y}})(s) \quad (0 \le s \le 1).$$

Lemma 2.5 If we define the operator $F_{\eta}: L^{p}(0,1) \to L^{2}(0,1)$ by the formula

$$[F_{\eta}(x)](s) := \sum_{j=1}^{i} \int_{I_j} x(s_i - t)x(t)dt \quad (s \in I_i),$$
(2.23)

then we have the equation

$$||F_{\eta}(\xi) - \zeta||_{L^{2}(0,1)}^{2} = ||\underline{F}(\underline{\xi}) - \underline{\zeta}||_{2}^{2}$$
 (2.24)

for all $\xi := E_1(\underline{\xi})$, where $\underline{\xi} := (\xi_1, ..., \xi_n)^T \in \mathbb{R}^n$ and all $\zeta := E_2(\underline{\zeta}) \in L^2(0, 1)$, where $\zeta := (\zeta_1, ..., \zeta_n)^T \in \mathbb{R}^n$.

Proof:

$$\begin{split} \|F_{\eta}(\xi) - \zeta\|_{L^{2}(0,1)}^{2} &= \int_{0}^{1} ([F_{\eta}(\xi)](s) - \zeta(s))^{2} ds \\ &= \sum_{i=1}^{n} \int_{I_{i}} \left(\sum_{j=1}^{i} \int_{I_{j}} \xi(s_{i} - t) \xi(t) dt - \zeta(s) \right)^{2} ds \\ &= \sum_{i=1}^{n} h \left(\sum_{j=1}^{i} h \xi_{i-j+1} \xi_{j} - \zeta_{i} \right)^{2} \\ &= \|\underline{F}(\xi) - \zeta\|_{2}^{2}. \end{split}$$

This proves the lemma

Lemma 2.6 Let $x \in D$ from (2.5) – (2.6). Then we have the estimation

$$||F(x) - F_{\eta}(x)||_{L^{2}(0,1)} \le 2hb^{2} + 2hbc.$$

Proof: We write

$$||F(x) - F_{\eta}(x)||_{L^{2}(0,1)} = \left(\sum_{i=1}^{n} \int_{I_{i}} \left(\int_{0}^{s} x(s-t)x(t)dt - \int_{0}^{s_{i}} x(s_{i}-t)x(t)dt\right)^{2} ds\right)^{\frac{1}{2}}.$$
 (2.25)

Then we can estimate the expression in the inner parentheses by

$$\left| \int_{0}^{s} x(s-t)x(t)dt - \int_{0}^{s_{i}} x(s_{i}-t)x(t)dt \right|$$

$$\leq \left| \int_{s_{i-1}}^{s} x(s-t)x(t)dt \right| + \left| \int_{0}^{s_{i-1}} x(s-t)x(t)dt - x(s_{i}-t)x(t)dt \right| + \left| \int_{s_{i-1}}^{s_{i}} x(s_{i}-t)x(t)dt \right|$$

$$\leq hb^{2} + \sum_{j=1}^{i-1} \int_{I_{j}} |x(s-t) - x(s_{i}-t)||x(t)|dt + hb^{2}$$

$$\leq b \sum_{j=1}^{i-1} \int_{I_{j}} |x(s-t) - x(s_{i}-t)||dt + 2hb^{2}. \tag{2.26}$$

Now we substitute $u := s_i - t$, du := -dt. For a fixed point $t \in (s_{j-1}, s_j] = I_j$ we obtain $u \in (s_{i-j}, s_{i-j+1}] = I_{i-j+1}$ and in view of $-h \le s - s_i \le 0$

$$s - s_i + u \in (s_{i-j-1}, s_{i-j+1}] = I_{i-j} \cup I_{i-j+1}.$$

Moreover, we can estimate (2.26) by

$$b\sum_{j=1}^{i-1} \int_{I_j} |x(s-t) - x(s_i - t)| dt + 2hb^2$$

$$= b \sum_{j=1}^{i-1} \int_{I_{i-j+1}} |x(s-s_i+u) - x(u)| du + 2hb^2$$

$$\leq hb \sum_{j=1}^{i-1} (T_{i-j}(x) + T_{i-j+1}(x)) + 2hb^2$$

$$\leq hbT(x) + hbT(x) + 2hb^2$$

$$\leq 2hbc + 2hb^2.$$

Finally we substitute this estimation into equation (2.25). This yields the assertion of the lemma \blacksquare

Lemma 2.7 Under the assumptions stated above we have

$$||F(x_{\eta}) - F(x^*)||_{L^2(0,1)} \le 4hb^2 + 6hbc + 2\delta \to 0 \quad as \quad \eta \to 0.$$
 (2.27)

Proof (for similar ideas see also [6]): From the triangle inequality we obtain

$$||F(x_n) - F(x^*)||_{L^2(0,1)} \le ||F(x_n) - F_n(x_n)||_{L^2(0,1)} + ||F_n(x_n) - y_\delta||_{L^2(0,1)} + ||y_\delta - y||_{L^2(0,1)}. \tag{2.28}$$

The right-hand side of (2.28) consists of three terms which we want to estimate one by one: Due to Lemma 2.6 for the first term it holds

$$||F(x_{\eta}) - F_{\eta}(x_{\eta})||_{L^{2}(0,1)} \le 2hb^{2} + 2hbc \quad (x_{\eta} \in D).$$

To estimate the second term of (2.28) we define $\underline{x}^* := R(x^*)$ as the vector of the function values of the exact solution x^* of the autoconvolution equation (1.1) in the midpoints of the intervals I_i . Since we have \underline{x}^{opt} as the least-squares solution of (2.20), the residual norm of \underline{x}^* cannot be smaller than the residual norm of \underline{x}^{opt} . Furthermore, we can apply Lemma 2.5 with $\xi := x_{\eta}$ and $\zeta := y_{\delta}$. This yields

$$||F_{\eta}(x_{\eta}) - y_{\delta}||_{L^{2}(0,1)} = ||\underline{F}(\underline{x}^{opt}) - \underline{\hat{y}}||_{2} \le ||\underline{F}(\underline{x}^{*}) - \underline{\hat{y}}||_{2}.$$

Using the identity

$$F_n(x) = E_2(Q(F(x))) \quad (x \in D),$$

this allows us to estimate further as follows:

$$\begin{aligned} & \|\underline{F}(\underline{x}^*) - \underline{\hat{y}}\|_2 \le \|\underline{F}(\underline{x}^*) - Q(F(x^*))\|_2 + \|Q(F(x^*)) - \underline{\hat{y}}\|_2 \\ &= \|F_{\eta}(E_1(R(x^*))) - E_2(Q(F(x^*)))\|_{L^2(0,1)} + \|\underline{y} - \underline{\hat{y}}\|_2 \end{aligned}$$

$$= \left(\sum_{i=1}^{n} \int_{I_{i}} \left(\sum_{j=1}^{i} \int_{I_{j}} (\tilde{x}(s_{i}-t)\tilde{x}(t) - x^{*}(s_{i}-t)x^{*}(t))dt\right)^{2} ds\right)^{\frac{1}{2}} + \delta$$

$$\leq \left(\sum_{i=1}^{n} \int_{I_{i}} \left(\sum_{j=1}^{i} \int_{I_{j}} |\tilde{x}(s_{i}-t)| |\tilde{x}(t) - x^{*}(t)| + |x^{*}(s_{i}-t) - \tilde{x}(s_{i}-t)| |x^{*}(t)| dt\right)^{2} ds\right)^{\frac{1}{2}} + \delta$$

$$\leq \left(\sum_{i=1}^{n} \int_{I_{i}} \left(\sum_{j=1}^{i} \int_{I_{j}} 2bT_{j}(x^{*})dt\right)^{2} ds\right)^{\frac{1}{2}} + \delta \leq 2hbc + \delta,$$

where $\tilde{x} := E_1(R(x^*))$. The last inequalities essentially used Lemma 2.5 with $\xi = E_1(R(x^*)) = \tilde{x}$ and $\zeta = E_2(Q(F(x^*)))$, respectively. Note that we have $\tilde{x}(t) = x^*(t_j)$ for $t \in I_j$ and thereby $|\tilde{x}(t) - x^*(t)| \le T_j(x^*)$. Taking into account $|y_i - \hat{y}_i| \le \delta$ and the identity

$$||E_2(\underline{y})||_{L^2(0,1)} = ||\underline{y}||_2,$$

which can easily be proved, we hence can estimate the third term of (2.28) as follows (cf. Lemma 2.6):

$$||y_{\delta} - y||_{L^{2}(0,1)} \le ||y - E_{2}(Q(y))||_{L^{2}(0,1)} + ||E_{2}(Q(y)) - y_{\delta}||_{L^{2}(0,1)}$$

$$= ||F(x^{*}) - E_{2}(Q(F(x^{*})))||_{L^{2}(0,1)} + ||E_{2}(Q(y)) - E_{2}(Q(y_{\delta}))||_{L^{2}(0,1)}$$

$$= ||F(x^{*}) - F_{\eta}(x^{*})||_{L^{2}(0,1)} + ||Q(y) - Q(y_{\delta})||_{2} \le 2hb^{2} + 2hbc + \delta.$$

Finally we can add the three terms and obtain by (2.28) the inequality (2.27). Evidently, the right-hand side of (2.27) tends to zero as h and δ both tend to zero. This proves the lemma

By the result of Lemma 2.7 we can apply Lemma 2.4 to prove in L^p -spaces the convergence of approximate solutions to the autoconvolution equation under total variation constraints.

Theorem 2.8 Consider the autoconvolution problem (1.1) – (1.3) with D(F) := D from (2.5)-(2.6) and denote by $x^* \in D$, for given right-hand side $y^* \in F(D(F))$, the unique solution of the autoconvolution equation. Then the family of approximate solutions x_{η} according to (2.22) converges to the solution x^* of (1.2):

$$||x_{\eta} - x^*||_{L^p(0,1)} \to 0 \quad as \quad \eta \to 0 \quad for \ all \quad 1 \le p < \infty.$$
 (2.29)

Proof: In the case $p \ge 2$ based on Lemma 2.7 the Lemma 2.4 immediately yields the convergence property (2.29), since the autoconvolution operator $F: D \subset L^p(0,1) \to L^2(0,1)$

is continuous and injective. Furthermore, D is a compact subset in $L^p(0,1)$ because of Lemma 2.3. For $1 \le p < 2$ the norm $\|\cdot\|_{L^p(0,1)}$ is 'weaker' than the norm $\|\cdot\|_{L^2(0,1)}$. This ensures the convergence condition (2.29) also in this case

By using the method of TIKHONOV regularization in Hilbert spaces X and Y the minimizers x_{α} of the auxiliary extremal problems

$$||F(x) - y||_Y^2 + \alpha ||x||_X^2 \to \min$$
, subject to $D(F)$ (2.30)

with the regularization parameter $\alpha > 0$ are exploited to find stable approximate solutions of an ill-posed operator equation (1.2). The smaller the regularization parameter α is chosen, the 'closer' the original and the auxiliary problem are related, but the more instable and highly oscillating the solution of the auxiliary problem will become. In general, α has to be selected such that an appropriate trade-off between stability and approximation is realized. In our compactification approach using upper bounds c of the total variation the inverse value $\frac{1}{c}$ plays a comparable role. In fact, if we consider small values $\frac{1}{c}$, then highly oscillating functions with large total variation values are admissible. On the other hand, for small values c the solutions obtained cannot oscillate very much, and the approximate solutions will be computed in a more stable way. However, if c is selected too small, then it may occur that the (unknown) exact solution is not an element of the set D. In such a case we would 'overregularize' the autoconvolution equation. By controlling the upper bound c of total variation we are able to suppress oscillations. Compared to the frequently used compactification in L^p by using monotonicity constraints and lower and upper bounds for the function values (see Section 4) the approach of this section allows us to handle a more comprehensive class of (also non-monotone) functions. A numerical case study presented in Section 5 will illustrate the theoretical results of this section and some specific effects of the discretized solution of the autoconvolution equation under total variation constraints.

In the case $p = \infty$ we cannot assert convergence under our assumption of bounded total variation. If the solution x^* has a jump point, then $||x_{\eta} - x^*||_{L^{\infty}(0,1)} \to 0$ as $\eta \to 0$ is not true in general.

3 The Sobolev Space Case

In [8] it was already mentioned that the operator F of autoconvolution according to (1.3) mapping from $X := L^2(0,1)$ into the space $Y := L^2(0,1)$ is non-compact, but it becomes a

compact operator if we change the problem to the Sobolev space $X := H^1(0,1) \cong W_2^1(0,1)$ of functions x with a quadratically integrable generalized derivative x' and norm

$$||x||_{H^{1}(0,1)} = \left(\int_{0}^{1} |x(t)|^{2} dt + \int_{0}^{1} |x'(t)|^{2} dt\right)^{1/2}.$$
 (3.1)

In both cases the autoconvolution equation is locally ill-posed everywhere. But for compact operators F, we have in general a stronger form of ill-posedness. If our pairs of spaces X and Y are Hilbert spaces, following the concept of [8] (see also [9, Sect. 2.2.2]) we can express the local degree of ill-posedness μ ($0 \le \mu \le \infty$) of the autoconvolution equation in a solution point x^* by the decay rate of the singular value sequence $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_i \ge ... > 0$ tending to zero as $i \to \infty$ of the Fréchet derivative $F'(x^*)$ in the form

$$\mu := \sup\{\nu : \sigma_i = O(i^{-\nu}) \text{ as } i \to \infty\},\tag{3.2}$$

where this linear operator given by $F'(x^*)h = 2h * x^*$ is compact. Since the compact embedding operator from $H^1(0,1)$ into $L^2(0,1)$ has a sequence of singular values $\kappa_1 \geq \kappa_2 \geq \ldots \geq \kappa_i \geq \ldots > 0$ tending to zero with a rate $\kappa_i \sim 1/i$ as $i \to \infty$, for the Sobolev space $X := H^1(0,1)$ under consideration in this section the ill-posedness degree grows at least by one (cf. Hofmann and Tautenhahn [10]) compared to the $L^2(0,1)$ case of Section 2. Thus, for a compactification in $H^1(0,1)$ 'stronger' restrictions on the admissible solutions x are necessary. However, our aim in this section is also stronger, namely to obtain convergence of approximate solutions x_{η} to x^* in the $H^1(0,1)$ -norm (3.1).

Here we consider, for given constants a_1, a_2, b_1, b_2 and c with

$$0 < a_1 < b_1, \ a_2 < b_2, \tag{3.3}$$

the domain

$$D := \left\{ x : [0,1] \to [a_1,b_1], \begin{array}{ccc} \exists x' : [0,1] \to [a_2,b_2], & x' \text{ left-continuous for } t \in (0,1], \\ T(x') \le c, & x' \text{ right-continuous for } t = 0 \end{array} \right\}, \quad (3.4)$$

where the function x'(t) $(0 \le t \le 1)$ a.e. in [0,1] coincides with a derivative of x(t) in the classical sense. Obviously we get $D \subset H^1(0,1)$ and hence every function $x \in D$ with D from (3.3) - (3.4) is continuous. In analogy to Lemma 2.3 we have in the Sobolev space case:

Lemma 3.1 The domain D from (3.3) – (3.4) is a compact subset of $H^1(0,1)$ with $D \subset D_0^+$.

In contrast to the L^p -case the restriction of the total variation, here $T(x') \leq c$, is only needed to show the compactness of the domain D. It has no relevance for the convergence of the images $F(x_{\eta})$ of approximate solutions x_{η} to $F(x^*)$ in $L^2(0,1)$ as η tends to zero.

The discretization of the autoconvolution problem (1.1) – (1.3), where the operator F from (1.3) maps in the form

$$F: D \subset H^1(0,1) \to L^2(0,1)$$
 (3.5)

and where the domain D is defined by (3.3) - (3.4) will be performed similar to the $L^p(0,1)$ case. However, piecewise constant functions are not in $H^1(0,1)$. Therefore, we use continuous piecewise linear approximate functions. Here, let (in contrast to Section 2)

$$t_j := jh \quad (j = 0, ..., n)$$

denote the n + 1 nodes subdividing the interval [0, 1], and again $I_j = ((j - 1)h, jh]$. Furthermore, the x_j again denote approximate values of $x(t_j)$. As the discrete autoconvolution operator we introduce here:

$$F: \mathbb{R}^{n+1} \to \mathbb{R}^n, \tag{3.6}$$

where $\underline{F}(\underline{x}) = (z_1, ..., z_n)^T$ and for i = 1, 2, ..., n:

$$z_{i} = \int_{0}^{ih} (E_{1}(\underline{x})) (ih-t) (E_{1}(\underline{x})) (t) dt = \sum_{j=1}^{i} \frac{h}{6} (2x_{i-j}x_{j} + x_{i-j+1}x_{j} + x_{i-j}x_{j-1} + 2x_{i-j+1}x_{j-1}).$$
(3.7)

By $E_1: \mathbb{R}^{n+1} \to H^1(0,1)$ we denote in contrast to Section 2 the operator of piecewise linear interpolation according to

$$(E_1(\underline{x}))(t) := \frac{t - jh}{h}(x_j - x_{j-1}) + x_j \quad (t \in I_j, \ j = 1, ..., n).$$
(3.8)

For noisy data (see (2.15)) we search for a minimizer

$$\underline{x}^{opt} = (x_0^{opt}, x_1^{opt}, ..., x_n^{opt})^T$$

of the least-squares problem (2.20) with M from

$$M := \left\{ \underline{x} \in \mathbb{R}^{n+1} : \begin{array}{l} 0 < a_1 \le x_i \le b_1 \ (i = 0, ..., n), \\ ha_2 \le x_i - x_{i-1} \le hb_2 \ (i = 1, ..., n), \end{array} \right. \sum_{i=1}^{n-1} |x_{i+1} - 2x_i + x_{i-1}| \le hc \right\}.$$

$$(3.9)$$

With the same arguments as before it follows that (2.20) is solvable. The choice of \underline{F} is due to the fact that we have to guarantee the validity of formula (2.24) with F_{η} from (2.23).

By setting for the approximate solution

$$x_{\eta} := E_1(\underline{x}^{opt}), \tag{3.10}$$

where $\eta = (\delta, h)^T$, we also have $x_{\eta} \in D$ with D according to (3.3)-(3.4). Moreover, it can be shown that as in Lemma 2.7 we have $||F(x_{\eta}) - F(x^*)||_{L^2(0,1)} \to 0$ for $\eta \to 0$. The proof dealing with the $H^1(0,1)$ approximation of functions by linear splines is omitted here. Using again Lemma 2.4 with $X := H^1(0,1)$ and $Y := L^2(0,1)$ we obtain:

Theorem 3.2 Consider the autoconvolution problem (1.1) – (1.3) with D(F) := D from (3.3) – (3.4) and denote by $x^* \in D$, for given right-hand side $y^* \in F(D(F))$, the unique solution of the autoconvolution equation. Then the family of approximate solutions x_{η} converges to the solution x^* of (1.2):

$$||x_{\eta} - x^*||_{H^1(0,1)} \to 0 \quad as \quad \eta \to 0.$$
 (3.11)

4 Monotonicity Constraints

In this section we deal with solutions of the autoconvolution equation subject to the set of monotone and uniformly bounded functions considered as a particular subset of the functions possessing a bounded total variation.

First we consider the domain

$$D := \{x : 0 \le x(t) \le b, \ t \in [0, 1], \ x \text{ non-increasing}\}$$
(4.1)

forming a compact subset in $L^p(0,1)$, $1 \le p < \infty$. Then the operator F from (2.10) is also injective, since $D \subset D_0^+ \cup \{0\}$ and x(t) = 0 ($0 \le t \le 1$) is the only function of D according to (4.1) with x(0) = 0. The discretization of this monotonicity case is completely the same as given in Section 2 for the total variation case with the exception of the fact that we have to introduce

$$M := \{ \underline{x} \in \mathbb{R}^n : 0 \le x_n \le \dots \le x_1 \le b \}. \tag{4.2}$$

replacing (2.21). Since each monotone function is of bounded variation, we obtain the convergence results of Section 2 with c = b and a = 0.

Now we change to the case of non-decreasing solutions, where

$$D := \{x : 0 \le x(t) \le b, \ t \in [0, 1], \ x \text{ non-decreasing} \}$$
(4.3)

and

$$M := \{ x \in \mathbb{R}^n : 0 \le x_1 \le \dots \le x_n \le b \}. \tag{4.4}$$

The set D from (4.3) is also compact in $L^p(0,1)$, but the injectivity of F fails (cf. [8]). Because of that we have to distinguish two cases:

On the one hand let $y \in R_0^+$, i.e. y(s) > 0 if s > 0. Then the corresponding solution $x^*(t)$ is uniquely determined from y a.e. in [0,1] and $||F(x_\eta) - F(x^*)||_{L^2(0,1)} \to 0$ for $\eta \to 0$ also implies $||x_\eta - x^*||_{L^p(0,1)} \to 0$, since Tikhonov's lemma (see Lemma 2.4) in fact only needs the local injectivity condition $F(x) = F(x^*)$ $(x \in D) \Longrightarrow x = x^*$.

On the other hand, let $y \in R_{\varepsilon}^+$ for $\varepsilon > 0$, i.e. y(s) = 0 if $s \in [0, \varepsilon]$. As shown in [8], in such a case the autoconvolution operator F is non-injective and it holds:

$$x^*(t) = \begin{cases} 0 & \text{a.e. in } [0, \frac{\varepsilon}{2}] \\ \text{uniquely determined} & \text{a.e. in } [\frac{\varepsilon}{2}, 1 - \frac{\varepsilon}{2}] \\ \text{arbitrarily non-negative} & \text{in } [1 - \frac{\varepsilon}{2}, 1] \end{cases}$$

Consequently, we have $x^* \in D^+_{\frac{\varepsilon}{2}}$. Since the values $x^*(t)$ do not depend on y for $t \in [1 - \frac{\varepsilon}{2}, 1]$, we cannot expect any information about the solution in this subinterval from the data. Therefore, it makes sense to solve the equation (1.1) only on the interval $[\frac{\varepsilon}{2}, 1 - \frac{\varepsilon}{2}]$. We will show that this case is reducible to the already treated case $y \in R_0^+$. Because of this we define the operator $F_{\varepsilon}: L^p(\frac{\varepsilon}{2}, 1 - \frac{\varepsilon}{2}) \to L^2(\varepsilon, 1)$ as

$$[F_{\varepsilon}(x)](s) := \int_{\frac{\varepsilon}{2}}^{s-\frac{\varepsilon}{2}} x(s-t)x(t)dt.$$

Then we have $[F(x)](s) = [F_{\varepsilon}(x)](s)$ for $\frac{\varepsilon}{2} \le s \le 1 - \frac{\varepsilon}{2}$. By using the transformations

$$\tilde{t} := \frac{t - \frac{\varepsilon}{2}}{1 - \varepsilon}, \quad \tilde{s} := \frac{s - \varepsilon}{1 - \varepsilon},$$

and

$$\tilde{x}(\tilde{t}) := x((1-\varepsilon)\tilde{t} + \frac{\varepsilon}{2}) = x(t), \quad \tilde{y}(\tilde{s}) := y((1-\varepsilon)\tilde{s} + \varepsilon) = y(s), \quad \tilde{F}_{\varepsilon}(\tilde{x}) := F_{\varepsilon}(x),$$

we obtain an operator $\tilde{F}_{\varepsilon}: L^p(0,1) \to L^2(0,1)$ defined by

$$[\tilde{F}_{\varepsilon}(\tilde{x})](\tilde{s}) := (1 - \varepsilon) \int_{0}^{\tilde{s}} \tilde{x}(\tilde{s} - \tilde{t})\tilde{x}(\tilde{t})d\tilde{t}.$$

Then we get $\tilde{x} \in L^p(0,1)$ if $x \in L^p(0,1)$, and instead of (1.2) we have to solve the equation $\tilde{F}_{\varepsilon}(\tilde{x}) = \tilde{y}$ now. From $y \in R_{\varepsilon}^+$ and $x \in R_{\frac{\varepsilon}{2}}^+$ it follows that $\tilde{y} \in R_0^+$ and $\tilde{x} \in D_0^+$, respectively. Hence we have $\tilde{F}_{\varepsilon}(\tilde{x}) = (1 - \varepsilon)F(\tilde{x})$ for all $\tilde{x} \in D_0^+$. Therefore, we can proceed as in the injective case and compute converging approximate solutions \tilde{x}_{η} . Then we transform back to the interval $\left[\frac{\varepsilon}{2}, 1 - \frac{\varepsilon}{2}\right]$ and obtain approximate solutions with satisfactory properties on

this interval, where the performed linear transformation retains the monotonicity. Finally we extend the solution by zero on the interval $[0, \frac{\varepsilon}{2})$. On the other remaining subinterval $(1-\frac{\varepsilon}{2},1]$ the solution can be extended arbitrarily provided that the monotonicity requirement is satisfied. Unfortunately, the value of ε is unknown if only discrete noisy data are given. In some situations, however, this value can be estimated and the transformation procedure becomes applicable.

5 Numerical Examples

In the concluding section we present some case studies on the behaviour of approximate discrete least-squares solutions to the autoconvolution equation (1.1) from noisy data, where we follow the approach of Section 2.

The first study is devoted to the case of a *continuous*, but *non-monotone* exact solution. We use the example

$$x^*(t) = -3t^2 + 3t + \frac{1}{4} = 1 - 3\left(t - \frac{1}{2}\right)^2 \qquad (0 \le t \le 1)$$
(5.1)

with the right-hand side

$$y^*(s) = \frac{3}{10}s^5 - \frac{3}{2}s^4 + s^3 + \frac{3}{4}s^2 + \frac{1}{16}s \quad (0 \le s \le 1)$$
 (5.2)

and obtain $a := 0.25 \le x^*(t) \le b := 1$, $T(x^*) = 1.5$ and $x^* \in D$ with D from (2.5) - (2.6). The noisy data \hat{y} were generated by adding normally distributed pseudorandom numbers with zero mean and standard deviation σy_i (σ fixed) to the discrete values y_i of (5.2). We used varying values c as upper bounds for the total variation of the discretized solutions.

The nonlinear optimization problem (2.20) was numerically solved by a Gauss-Newton code. In the case of unacceptable Gauss-Newton steps this code uses the Marquardt method. The theory of this procedure is due to [3, pp. 348-368] (for the algorithm see [3, pp. 369-383]). We used penalty terms to handle the constraints of D. In all figures presented below the solid lines give the exact solution x^* according to (5.1), whereas the lines with small circles express the approximate solutions x_{η} such that every circle corresponds to a grid point of discretization.

In the Figures 1 and 2 we compare approximate solutions x_{η} in the case of unperturbed data ($\sigma = 0$) using n = 50 grid points and different bounds c for the total variation. For an

appropriate choice c = 1.5 associated with the really arising total variation level, the approximate solution is very good in the noiseless case (see Figure 1), whereas an underestimated value $c = 0.8 < T(x^*)$ corresponds to an overregularized solution (see Figure 2), which is much too 'flat' compared to the function x^* to be determined.

Now we turn to the case of noisy data. For all computations in the context of the Figures 3 – 6 a per mille noise level $\sigma = 10^{-3}$ was used. We begin with a situation (see Figure 3), where the total variation bound was omitted $(c = \infty)$. Then the set M of admissible discrete solutions contains strongly oscillating vectors. Especially for t from the right half-interval of [0,1] the quality of the approximate solutions may be very bad in that situation.

The Figure 4 illustrates in a rather convincing manner the utility of the total variation approach presented above in Section 2 for handling noisy data. In particular, the approximation quality of x_{η} in Figure 4 with c=1.5 at the right end of the interval is much better than in Figure 3. We can motivate this right-end effect as follows: By the autoconvolution of a function x(t) ($0 \le t \le 1$) the values x(t) for small t influence the function values y(s) in some sense more than the values x(t) with t close to 1. Namely, x(t) only influences y(s) for s > t. As a consequence, the reconstruction of x(t) from y is more stable for smaller t, since then the function y(s) = [x*x](s) ($0 \le s \le 1$) has collected more information about the value x(t) to be determined. In the case of overregularization (c is selected too small compared to $T(x^*)$), this phenomenon may cause large reconstruction errors specifically at the right end of the interval [0, 1] (see Figure 5 with c = 1.0).

We should mention that the analysis of the problem based on Lemma 2.4 does not provide any rate of convergence for the solution error $\|x_{\eta} - x^*\|_{L^p(0,1)}$ depending on $\|F(x_{\eta}) - F(x^*)\|_{L^2(0,1)}$. On the other hand, Lemma 2.7 shows that the order of magnitude for the discrepancy norm $\|F(x_{\eta}) - F(x^*)\|_{L^2(0,1)}$ corresponds with the maximum $\max(h\bar{b}^2, h\bar{b}\bar{c}, \delta)$, where h := 1/n, $\bar{b} := \sup_{\substack{x \in D \\ t \in [0,1]}} x(t)$ and $\bar{c} := \sup_{\substack{x \in D \\ t \in [0,1]}} T(x)$. For sufficiently large n this discrepancy norm is dominated by the noise level δ , or in our case study by the value σ . So we can see comparing the Figures 4 and 6 that different discretization levels n = 50 and n = 25 yield approximate solutions with nearly the same accuracy provided that the noise level $(\sigma = 10^{-3})$ does not change.

To a second study we have been motivated by numerical experiments carried out by Kutsche in her thesis [11]. There it was shown that the constraint of bounded variation is very useful in the L^1 -approximation of piecewise continuous solutions to Abel integral

equations. We now will demonstrate the effects of using the least-squares method under total variation constraints in the case of *non-smooth* functions possessing jumps. Therefore we consider as the exact solution the step function

$$x^*(t) = \begin{cases} 0.5 & \text{if } 0 \le t \le 0.5\\ 0.25 & \text{if } 0.5 < t \le 0.8\\ 0.75 & \text{if } 0.8 < t \le 1 \end{cases}$$
 (5.3)

with the right-hand side

$$y^*(s) = \begin{cases} 0.25t & \text{if } 0 \le t \le 0.5\\ 0.125 & \text{if } 0.5 < t \le 0.8\\ 0.5t - 0.275 & \text{if } 0.8 < t \le 1 \end{cases}$$
 (5.4)

The exact solution x^* is discontinuous, non-monotone but a function of bounded variation. Its total variation can easily computed as $T(x^*) = 0.75$. The function x^* is bounded, positive and left-continuous on the whole interval [0,1]. Therefore the requirements of the set D from (2.5) - (2.6) are fulfilled.

We will now compare the approximate solutions of this example for different choices of the parameter c. Let the number of discretization points n = 50 and the value $\sigma = 10^{-2}$ of noise be constant throughout this study. Then we are able to control the solution by changing the parameter c.

In the Figures 7 – 10 the graphs of both the numerical solution x_{η} and the exact solution x^* (bold line) are drawn as piecewise constant functions. In our first example (Figure 7) we computed the solution without any total variation restriction ($c = \infty$). The solution is – as in the first example – rather bad and highly oscillating. However, it is to mention that the jumps of x^* are reconstructed relatively good in this case. In Figure 8 the situation $c = T(x^*) = 0.75$ is illustrated. Here the solution is much smoother than in the unconstrained case, but the points with maximal approximation errors are now the jumps at t = 0.5 and t = 0.8. In these points the approximate solution is 'oversmoothed'. This depends on the fact that the smoothing effect of regularization acts uniformly on the whole interval [0, 1], but the character of a jump function does not correspond with this property. Therefore the jumps are blurred by that choice of c. Moreover, the 'right-end effect' discussed above is superposed and leads to growing errors near t = 1.

Finally, in Figure 9 with c = 0.5 and Figure 10 with c = 2 we demostrate two more situations. If c underestimates the value $T(x^*)$, then the effect of blurring the jumps is still

more pronounced. On the other hand, the admissible oscillation level grows if c overestimates $T(x^*)$. In that case, however, the location of jumps can be determined rather precise. That means, if one supposes that the exact solution is a step function, then it is recommended to choose c not too small. This allows some oscillations around the exact solution whose amplitudes are small if c is not chosen much too large.

References

- [1] ACAR, R.; VOGEL, C.R.: Analysis of total variation penalty methods. *Inverse Problems* **10** (1994), 1217-1229.
- [2] Baumeister, J.: Stable Solution of Inverse Problems. Vieweg, Braunschweig 1987.
- [3] Dennis, J.E.; Gay, D.M.; Welsch, R.E.: An adaptive nonlinear least–squares algorithm. *ACM Trans. Math. Softw.* **7** (1981), 348-368.
- [4] Engl, H.W.; Hofmann, B.; Zeisel, H.: A decreasing rearrangement approach for a class of ill-posed nonlinear integral equations. *Journal of Integral Equations and Applications* 5 (1993), 443-463.
- [5] FLEISCHER, G; HOFMANN, B.: On inversion rates for the autoconvolution equation.

 Inverse Problems 12 (1996), 419-435.
- [6] Gellrich, C.; Hofmann, B.: A study of regularization by monotonicity. *Computing* **50** (1993), 105-125.
- [7] GORENFLO, R.: Computation of rough solutions of Abel integral equations. In: Inverse and Ill-Posed Problems (Eds.: H.W. Engl, C.W. Groetsch), Academic Press, Boston, 1987, 195-210.
- [8] Gorenflo, R.; Hofmann, B.: On autoconvolution and regularization. *Inverse Problems* **10** (1994), 353-373.
- [9] HOFMANN, B.: Regularization for Applied Inverse and Ill-Posed Problems. B.G. Teubner, Leipzig 1986.
- [10] HOFMANN, B.; TAUTENHAHN, U.: On ill-posedness measures and space change in Sobolev scales. Paper submitted.

- [11] KUTSCHE, C.: Produktquadraturverfahren für nicht-glatte Lösungen Abelscher Integralgleichungen erster und zweiter Art. Dissertation, Freie Universität Berlin, FB Mathematik und Informatik, Berlin 1994.
- [12] NATANSON, I.P.: Theorie der Funktionen einer reellen Veränderlichen. Akademie-Verlag, Berlin, 1969.
- [13] Tikhonov, A.N; Goncharsky, A.V.; Stepanov, V.V.; Yagola, A.G.: Regularizing algorithms and a priori information (in Russian). Nauka, Moscow, 1983.

Figure 1: Least-squares solution of $\underline{F}(\underline{x}) = \underline{\hat{y}}, \, \sigma = 0, \, n = 50, \, c = 1.5$

Figure 2: Least-squares solution of $\underline{F}(\underline{x}) = \underline{\hat{y}}, \, \sigma = 0, \, n = 50, \, c = 0.8$

Figure 3: Least-squares solution of $\underline{F}(\underline{x}) = \underline{\hat{y}}, \, \sigma = 10^{-3}, \, n = 50, \, c = \infty$

Figure 4: Least-squares solution of $\underline{F}(\underline{x}) = \hat{\underline{y}}, \, \sigma = 10^{-3}, \, n = 50, \, c = 1.5$

Figure 5: Least-squares solution of $\underline{F}(\underline{x}) = \hat{\underline{y}}, \ \sigma = 10^{-3}, \ n = 50, \ c = 1.0,$ (inappropriate initial values used in Gauss-Newton-method)

Figure 6: Least-squares solution of $\underline{F}(\underline{x}) = \hat{\underline{y}}, \, \sigma = 10^{-3}, \, n = 25, \, c = 1.5$

Figure 7: Least-squares solution of $\underline{F}(\underline{x}) = \underline{\hat{y}}, \, \sigma = 10^{-2}, \, n = 50, \, c = \infty$

Figure 8: Least-squares solution of $\underline{F}(\underline{x}) = \underline{\hat{y}}, \, \sigma = 10^{-2}, \, n = 50, \, c = 0.75$

Figure 9: Least-squares solution of $\underline{F}(\underline{x}) = \underline{\hat{y}}, \, \sigma = 10^{-2}, \, n = 50, \, c = 0.5$

Figure 10: Least-squares solution of $\underline{F}(\underline{x}) = \underline{\hat{y}}, \, \sigma = 10^{-2}, \, n = 50, \, c = 2.0$