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1 Introduction

In the paper [8] by Gorenflo and Hofmann the nonlinear ill-posed autoconvolution equa-

tion
s
∫

0

x(s − t)x(t) dt = y(s), 0 ≤ s ≤ 1, (1.1)

on the finite interval [0, 1] has been analyzed. This autoconvolution problem can be written

as an operator equation

F (x) = y (1.2)

with the continuous nonlinear operator F : D(F ) ⊂ X → Y defined by

[F (x)](s) := [x ∗ x](s) :=

s
∫

0

x(s − t)x(t)dt, 0 ≤ s ≤ 1, (1.3)

and mapping between Banach spaces X and Y with norms ‖.‖X and ‖.‖Y , respectively,

containing real functions on the interval [0, 1]. In [8] there have been discussed intrinsic

properties of the autoconvolution operator F from (1.3) and conditions for its compactness,

injectivity and weak closedness, in particular for the Hilbert space X = Y = L2(0, 1). As

a consequence the general theory of Tikhonov regularization became applicable to equation

(1.1). The character of ill-posedness in this equation strongly depends on the solution point

x and its local degree of ill-posedness. Applications of the autoconvolution equation arising

in physics and in stochastics are also mentioned in [8].

On the other hand, we discussed in a recent paper (cf. [5]) including numerical results

the case that x is considered as a function of the space L2(−∞,∞) possessing a support

supp x ⊂ [0, 1], where the complete data function [x ∗ x](s) (0 ≤ s ≤ 2) is observable. In

such a case Fourier transform techniques are applicable and yield some more insight into the

behaviour of the autoconvolution equation. However, the knowledge of [x ∗ x](s) for s > 1

is not always realistic. Therefore, in the present paper we are going to investigate stable

approximate discretized solutions to (1.1), where both the function x to be determined and

the data function y that can be measured are restricted to arguments from the interval [0, 1].

The approximate solution of the autoconvolution equation (1.1) will be based for Y :=

L2(0, 1) on the restriction of admissible solutions x to compact subsets of the domain D(F )

with prescribed properties. Provided that F is injective the inverse operator F−1 becomes

continuous. We will show in Section 2 that a compactification of the autoconvolution equation

in X := Lp(0, 1) can be based on a prescribed upper bound c for the total variation T (x) of
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solutions x, which are in addition uniformly bounded below and above by positive constants

a and b, respectively. This allows us to construct convergent discretized solutions also in the

case of non-smooth solutions possessing jumps. In this context, we generalize the well-known

descriptive regularization approach using the set of monotone functions uniformly bounded

below and above as a compact subset in Lp(0, 1), 1 ≤ p < ∞ (cf. Section 4, [13] and [4]). The

total variation bound c plays in our consideration the role of a regularization parameter. In

Section 3, the ideas of Section 2 are extended to the Sobolev space case X := H1(0, 1). A

brief reference to the case of monotone functions is given in Section 4. The paper is completed

by a case study presented in Section 5 that illustrates the theoretical assertions of Section 2.

In this case study the behaviour of discretized least-squares solutions to the autoconvolution

equation subject to uniform bounds of the total variation is investigated, where both the case

of a smooth and of a non-smooth solution are reflected.

2 Discretizing the Autoconvolution Equation under Total Vari-

ation Constraints

Let us consider the autoconvolution operator (1.3) between the Banach spaces X := Lp(0, 1)

for fixed 2 ≤ p < ∞ with norm ‖x‖Lp(0,1) =
(

∫ 1
0 |x(t)|p dt

)1/p
and Y := L2(0, 1). In this

context, we define the sets

D+
ε := {x ∈ Lp(0, 1) : x(t) ≥ 0 a.e. in [0, 1], ε = sup{τ : x(t) = 0 a.e. in [0, τ ]}} (2.1)

and

R+
ε := {y ∈ L2(0, 1) : y(s) ≥ 0 a.e in [0, 1], ε = sup{χ : y(s) = 0 a.e. in [0, χ]}}. (2.2)

Then we have the following proposition which, because of Lp(0, 1) being densely embedded

in L2(0, 1), follows from [8, Theorem 1 and Lemma 6] and [5, Proposition 2.5]:

Proposition 2.1 The autoconvolution operator F : Lp(0, 1) → L2(0, 1) from (1.3) is a con-

tinuous nonlinear operator for all 2 ≤ p < ∞. In the restricted case F : D+
0 ⊂ Lp(0, 1) →

R+
0 ⊂ L2(0, 1) the operator is injective, but the autoconvolution equation (1.2) is locally ill-

posed in the sense of Definition 2.2 in all points x ∈ D+
0 .
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Definition 2.2 We call the equation (1.2) locally ill-posed in x ∈ D(F ) if, for arbitrarily

small r > 0 and balls Br := {x̃ ∈ X : ‖x̃ − x‖X ≤ r}, there is an infinite sequence {xk} ⊂

D(F ) ∩ Br(x) with

‖F (xk) − F (x)‖Y → 0, but ‖xk − x‖X 6→ 0 as k → ∞. (2.3)

Otherwise the equation is called locally well-posed in x ∈ D(F ).

To overcome the difficulties of ill-posedness of a problem under consideration one can restrict

the domain D(F ) to a subset, which is compact in the Banach space X.

For a real function x(t) (0 ≤ t ≤ 1) we denote by

T (x) := sup
0≤t0<t1<...<tk−1<tk≤1

k
∑

i=1

|x(ti) − x(ti−1)| (2.4)

the total variation of the function x on [0, 1] and by TS(x) the analogously defined total

variation of x on a closed subinterval S ⊂ [0, 1]. Note that the supremum in formula (2.4) is

to be taken over all possible finite grids of the form 0 ≤ t0 < t1 < ... < tk−1 < tk ≤ 1 with an

arbitrarily chosen integer k. We consider, for given positive constants a, b and c, where

0 < a < b, (2.5)

the domain

D :=

{

x : [0, 1] → [a, b], T (x) ≤ c,
x left-continuous for t ∈ (0, 1],

x right-continuous for t=0

}

. (2.6)

For technical reasons we assume that the lower bound a is strictly positive (see the remark

after formula (2.21)). Obviously we have D ⊂ Lp(0, 1) for all 1 ≤ p < ∞. The requirement

of the left- and right-continuity for the functions x ∈ D is reasonable, since a function

of bounded variation has due to [12, Corollary 2, Chap. VIII, § 3] only a countable set of

discontinuity points, namely jumps. Therefore, the left limit limt→t0−0 x(t) exists in all points

of the interval (0, 1]. In the continuity points t0 this limit coincides with the value x(t0). In

all other points let be the values of x defined by x(t0) := limt→t0−0 x(t). That means, with

respect to Lp(0, 1)-elements we consider the representative, which is left-continuous in every

point t ∈ (0, 1]. Moreover let x(0) := limt→0+0 x(t), i.e. we consider no jumps at t = 0.

Lemma 2.3 The domain D from (2.5) – (2.6) is a compact subset of Lp(0, 1), 1 ≤ p < ∞,

and we have D ⊂ D+
0 .
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The proof of compactness of D is based on Helly’s theorem (cf. e.g. [12, Chap. VIII, §4]).

For the proof ideas we refer to [4, Lemma 4.2]. On the other hand, note that Lemma 2.3 is

a corollary of Theorem 2.5 in the paper [1] of Acar and Vogel. Namely, the set D from

(2.5) – (2.6) is bounded with respect to the bv-norm

‖x‖BV [0,1] := ‖x‖L1[0,1] + T (x). (2.7)

Based on Lemma 2.3 providing compactness the following well-known Lemma of Tikhonov

will allow us to prove stability results.

Lemma 2.4 Let F : D(F ) ⊂ X → Y be a continuous and injective operator between the

Banach spaces X and Y with a compact domain D(F ). We denote by x∗, for given right-

hand side y∗ ∈ F (D(F )), the unique solution of the operator equation (1.2). Then for a

family of approximate solutions xη ∈ D(F ) the convergence of residual norms

‖F (xη) − F (x∗)‖Y → 0 as η → 0 (2.8)

implies the convergence of the approximate solutions

‖xη − x∗‖X → 0 as η → 0. (2.9)

A slightly modified version of this theorem and its proof can be found in Baumeister’s book

[2, p. 18].

In order to obtain numerical approximate solutions, in the sequel we are going to dis-

cretize the autoconvolution equation (1.1) – (1.3), where the restriction of F to the compact

subset D from (2.5) – (2.6),

F : D ⊂ Lp(0, 1) → L2(0, 1), (2.10)

is used. Similar to the discretization methods in [7] and [11], where also a total variation

constraint is essential, we subdivide the interval [0, 1] into n subintervals Ii of the uniform

length h := 1/n, where

Ii := ((i − 1)h, ih] (i = 1, ..., n).

For simplicity we set Ti(x) := T[(i−1)h,ih](x) for x ∈ D. Moreover, let

tj :=
h

2
+ (j − 1)h (j = 1, ..., n)
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denote the midpoints and

si := ih (i = 1, ..., n)

the right endpoints of such intervals.

To discretize the nonlinear integral equation (1.1), for all i, j = 1, 2, ..., n the values x(tj)

and y(si) will be approximated by some xj and yi, respectively. A discrete autoconvolution

operator

F : IRn → IRn (2.11)

can be defined by

F (x) :=





i
∑

j=1

hxi−j+1xj





n

i=1

, x = (x1, ..., xn)T . (2.12)

In its discrete form the autoconvolution equation then reads as

F (x) = y, y = (y1, ..., yn)T , (2.13)

or as
i
∑

j=1

hxi−j+1xj = yi, (i = 1, ..., n). (2.14)

The realistic situation that the given data are noisy can be included. Instead of the exact

data yi for the right-hand side we will use perturbed data ŷi, where

‖ŷ − y‖2 ≤ δ (2.15)

and δ is a fixed upper bound for the noise of the data vector ŷ = (ŷ1, ..., ŷn)T . Here we have

used the scaled Euclidean norm

‖z‖2 :=

(

n
∑

i=1

hz2
i

) 1
2

for z ∈ IRn. For our further investigations we introduce the restriction operators

R : D ⊂ Lp(0, 1) → IRn and Q : F (D) ⊂ L2(0, 1) → IRn

by

(R(x))j := x(tj) (j = 1, ..., n) (2.16)

and

(Q(y))i := y(si) (i = 1, ..., n), (2.17)
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as well as the extension operators E1 : IRn → Lp(0, 1) and E2 : IRn → L2(0, 1) by

(E1(x))(t) := xj (t ∈ Ij, j = 1, ..., n), (E1(x))(0) := x1 (2.18)

and

(E2(y))(s) := yi (s ∈ Ii, i = 1, ..., n), (E2(y))(0) := y1. (2.19)

We are searching now for an optimal solution vector

xopt = (xopt
1 , ..., xopt

n )T

solving the discrete least-squares problem

‖F (x) − ŷ‖2 → min, subject to x ∈ M, (2.20)

where M is defined as

M :=

{

x ∈ IRn : 0 < a ≤ xi ≤ b (i = 1, ..., n),
n−1
∑

i=1

|xi+1 − xi| ≤ c

}

. (2.21)

There exist solutions of (2.20), since M is compact in IRn and ‖F (x) − ŷ‖2 : IRn → IR1 is

a continuous functional possessing a minimum over M. The condition 0 < a ≤ xi ≤ b is

more restrictive than the discretized version of x ∈ D+
0 . We require this stronger condition,

because we want M to be a compact subset of IRn.

For the vectors η := (δ, h)T , xopt ∈ M and ŷ we define the piecewise constant function

xη ∈ D by

xη(t) := E1(x
opt)(t) (0 ≤ t ≤ 1). (2.22)

and the piecewise constant function yδ by

yδ(s) := E2(ŷ)(s) (0 ≤ s ≤ 1).

Lemma 2.5 If we define the operator Fη : Lp(0, 1) → L2(0, 1) by the formula

[Fη(x)](s) :=
i
∑

j=1

∫

Ij

x(si − t)x(t)dt (s ∈ Ii), (2.23)

then we have the equation

‖Fη(ξ) − ζ‖2
L2(0,1) = ‖F (ξ) − ζ‖2

2 (2.24)

for all ξ := E1(ξ), where ξ := (ξ1, .., ξn)T ∈ IRn and all ζ := E2(ζ) ∈ L2(0, 1), where

ζ := (ζ1, .., ζn)T ∈ IRn.
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Proof:

‖Fη(ξ) − ζ‖2
L2(0,1) =

∫ 1

0
([Fη(ξ)](s) − ζ(s))2ds

=
n
∑

i=1

∫

Ii





i
∑

j=1

∫

Ij

ξ(si − t)ξ(t)dt − ζ(s)





2

ds

=
n
∑

i=1

h





i
∑

j=1

hξi−j+1ξj − ζi





2

= ‖F (ξ) − ζ‖2
2.

This proves the lemma

Lemma 2.6 Let x ∈ D from (2.5) – (2.6). Then we have the estimation

‖F (x) − Fη(x)‖L2(0,1) ≤ 2hb2 + 2hbc.

Proof: We write

‖F (x) − Fη(x)‖L2(0,1) =

(

n
∑

i=1

∫

Ii

(∫ s

0
x(s − t)x(t)dt −

∫ si

0
x(si − t)x(t)dt

)2

ds

)
1
2

. (2.25)

Then we can estimate the expression in the inner parentheses by

∣

∣

∣

∣

∫ s

0
x(s − t)x(t)dt −

∫ si

0
x(si − t)x(t)dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ s

si−1

x(s − t)x(t)dt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ si−1

0
x(s − t)x(t)dt − x(si − t)x(t)dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ si

si−1

x(si − t)x(t)dt

∣

∣

∣

∣

∣

≤ hb2 +
i−1
∑

j=1

∫

Ij

|x(s − t) − x(si − t)||x(t)|dt + hb2

≤ b
i−1
∑

j=1

∫

Ij

|x(s − t) − x(si − t)|dt + 2hb2. (2.26)

Now we substitute u := si − t, du := −dt. For a fixed point t ∈ (sj−1, sj] = Ij we obtain

u ∈ (si−j , si−j+1] = Ii−j+1 and in view of −h ≤ s − si ≤ 0

s − si + u ∈ (si−j−1, si−j+1] = Ii−j ∪ Ii−j+1.

Moreover, we can estimate (2.26) by

b
i−1
∑

j=1

∫

Ij

|x(s − t) − x(si − t)|dt + 2hb2
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= b
i−1
∑

j=1

∫

Ii−j+1

|x(s − si + u) − x(u)|du + 2hb2

≤ hb
i−1
∑

j=1

(Ti−j(x) + Ti−j+1(x)) + 2hb2

≤ hbT (x) + hbT (x) + 2hb2

≤ 2hbc + 2hb2.

Finally we substitute this estimation into equation (2.25). This yields the assertion of the

lemma

Lemma 2.7 Under the assumptions stated above we have

‖F (xη) − F (x∗)‖L2(0,1) ≤ 4hb2 + 6hbc + 2δ → 0 as η → 0. (2.27)

Proof (for similar ideas see also [6]): From the triangle inequality we obtain

‖F (xη)−F (x∗)‖L2(0,1) ≤ ‖F (xη)−Fη(xη)‖L2(0,1)+‖Fη(xη)−yδ‖L2(0,1)+‖yδ−y‖L2(0,1). (2.28)

The right-hand side of (2.28) consists of three terms which we want to estimate one by one:

Due to Lemma 2.6 for the first term it holds

‖F (xη) − Fη(xη)‖L2(0,1) ≤ 2hb2 + 2hbc (xη ∈ D).

To estimate the second term of (2.28) we define x∗ := R(x∗) as the vector of the function

values of the exact solution x∗ of the autoconvolution equation (1.1) in the midpoints of the

intervals Ii. Since we have xopt as the least-squares solution of (2.20), the residual norm of

x∗ cannot be smaller than the residual norm of xopt. Furthermore, we can apply Lemma 2.5

with ξ := xη and ζ := yδ. This yields

‖Fη(xη) − yδ‖L2(0,1) = ‖F (xopt) − ŷ‖2 ≤ ‖F (x∗) − ŷ‖2.

Using the identity

Fη(x) = E2(Q(F (x))) (x ∈ D),

this allows us to estimate further as follows:

‖F (x∗) − ŷ‖2 ≤ ‖F (x∗) − Q(F (x∗))‖2 + ‖Q(F (x∗)) − ŷ‖2

= ‖Fη(E1(R(x∗))) − E2(Q(F (x∗)))‖L2(0,1) + ‖y − ŷ‖2
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=







n
∑

i=1

∫

Ii





i
∑

j=1

∫

Ij

(x̃(si − t)x̃(t) − x∗(si − t)x∗(t))dt





2

ds







1
2

+ δ

≤







n
∑

i=1

∫

Ii





i
∑

j=1

∫

Ij

|x̃(si − t)||x̃(t) − x∗(t)| + |x∗(si − t) − x̃(si − t)||x∗(t)|dt





2

ds







1
2

+ δ

≤







n
∑

i=1

∫

Ii





i
∑

j=1

∫

Ij

2bTj(x
∗)dt





2

ds







1
2

+ δ ≤ 2hbc + δ,

where x̃ := E1(R(x∗)). The last inequalities essentially used Lemma 2.5 with

ξ = E1(R(x∗)) = x̃ and ζ = E2(Q(F (x∗))), respectively. Note that we have x̃(t) = x∗(tj) for

t ∈ Ij and thereby |x̃(t)− x∗(t)| ≤ Tj(x
∗). Taking into account |yi − ŷi| ≤ δ and the identity

‖E2(y)‖L2(0,1) = ‖y‖2,

which can easily be proved, we hence can estimate the third term of (2.28) as follows

(cf. Lemma 2.6):

‖yδ − y‖L2(0,1) ≤ ‖y − E2(Q(y))‖L2(0,1) + ‖E2(Q(y)) − yδ‖L2(0,1)

= ‖F (x∗) − E2(Q(F (x∗)))‖L2(0,1) + ‖E2(Q(y)) − E2(Q(yδ))‖L2(0,1)

= ‖F (x∗) − Fη(x
∗)‖L2(0,1) + ‖Q(y) − Q(yδ)‖2 ≤ 2hb2 + 2hbc + δ.

Finally we can add the three terms and obtain by (2.28) the inequality (2.27). Evidently, the

right-hand side of (2.27) tends to zero as h and δ both tend to zero. This proves the lemma

By the result of Lemma 2.7 we can apply Lemma 2.4 to prove in Lp-spaces the conver-

gence of approximate solutions to the autoconvolution equation under total variation con-

straints.

Theorem 2.8 Consider the autoconvolution problem (1.1) – (1.3) with D(F ) := D from

(2.5)-(2.6) and denote by x∗ ∈ D, for given right-hand side y∗ ∈ F (D(F )), the unique solution

of the autoconvolution equation. Then the family of approximate solutions xη according to

(2.22) converges to the solution x∗ of (1.2):

‖xη − x∗‖Lp(0,1) → 0 as η → 0 for all 1 ≤ p < ∞. (2.29)

Proof: In the case p ≥ 2 based on Lemma 2.7 the Lemma 2.4 immediately yields the

convergence property (2.29), since the autoconvolution operator F : D ⊂ Lp(0, 1) → L2(0, 1)
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is continuous and injective. Furthermore, D is a compact subset in Lp(0, 1) because of

Lemma 2.3. For 1 ≤ p < 2 the norm ‖ · ‖Lp(0,1) is ’weaker’ than the norm ‖ · ‖L2(0,1). This

ensures the convergence condition (2.29) also in this case

By using the method of Tikhonov regularization in Hilbert spaces X and Y the mini-

mizers xα of the auxiliary extremal problems

‖F (x) − y‖2
Y + α‖x‖2

X → min, subject to D(F ) (2.30)

with the regularization parameter α > 0 are exploited to find stable approximate solutions of

an ill-posed operator equation (1.2). The smaller the regularization parameter α is chosen,

the ’closer’ the original and the auxiliary problem are related, but the more instable and

highly oscillating the solution of the auxiliary problem will become. In general, α has to be

selected such that an appropriate trade-off between stability and approximation is realized.

In our compactification approach using upper bounds c of the total variation the inverse

value 1
c plays a comparable role. In fact, if we consider small values 1

c , then highly oscillating

functions with large total variation values are admissible. On the other hand, for small

values c the solutions obtained cannot oscillate very much, and the approximate solutions

will be computed in a more stable way. However, if c is selected too small, then it may

occur that the (unknown) exact solution is not an element of the set D. In such a case

we would ’overregularize’ the autoconvolution equation. By controlling the upper bound

c of total variation we are able to suppress oscillations. Compared to the frequently used

compactification in Lp by using monotonicity constraints and lower and upper bounds for

the function values (see Section 4) the approach of this section allows us to handle a more

comprehensive class of (also non-monotone) functions. A numerical case study presented in

Section 5 will illustrate the theoretical results of this section and some specific effects of the

discretized solution of the autoconvolution equation under total variation constraints.

In the case p = ∞ we cannot assert convergence under our assumption of bounded total

variation. If the solution x∗ has a jump point, then ‖xη − x∗‖L∞(0,1) → 0 as η → 0 is not

true in general.

3 The Sobolev Space Case

In [8] it was already mentioned that the operator F of autoconvolution according to (1.3)

mapping from X := L2(0, 1) into the space Y := L2(0, 1) is non-compact, but it becomes a
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compact operator if we change the problem to the Sobolev space X := H1(0, 1) ∼= W 1
2 (0, 1)

of functions x with a quadratically integrable generalized derivative x′ and norm

‖x‖H1(0,1) =

(∫ 1

0
|x(t)|2 dt +

∫ 1

0
|x′(t)|2 dt

)1/2

. (3.1)

In both cases the autoconvolution equation is locally ill-posed everywhere. But for compact

operators F , we have in general a stronger form of ill-posedness. If our pairs of spaces X and

Y are Hilbert spaces, following the concept of [8] (see also [9, Sect. 2.2.2]) we can express

the local degree of ill-posedness µ (0 ≤ µ ≤ ∞) of the autoconvolution equation in a solution

point x∗ by the decay rate of the singular value sequence σ1 ≥ σ2 ≥ ... ≥ σi ≥ ... > 0 tending

to zero as i → ∞ of the Fréchet derivative F ′(x∗) in the form

µ := sup{ν : σi = O(i−ν) as i → ∞}, (3.2)

where this linear operator given by F ′(x∗)h = 2h ∗ x∗ is compact. Since the compact em-

bedding operator from H1(0, 1) into L2(0, 1) has a sequence of singular values κ1 ≥ κ2 ≥

... ≥ κi ≥ ... > 0 tending to zero with a rate κi ∼ 1/i as i → ∞, for the Sobolev space

X := H1(0, 1) under consideration in this section the ill-posedness degree grows at least by

one (cf. Hofmann and Tautenhahn [10]) compared to the L2(0, 1) case of Section 2. Thus,

for a compactification in H1(0, 1) ’stronger’ restrictions on the admissible solutions x are

necessary. However, our aim in this section is also stronger, namely to obtain convergence of

approximate solutions xη to x∗ in the H1(0, 1)-norm (3.1).

Here we consider, for given constants a1, a2, b1, b2 and c with

0 < a1 < b1, a2 < b2, (3.3)

the domain

D :=

{

x : [0, 1] → [a1, b1],
∃x′ : [0, 1] → [a2, b2],

T (x′) ≤ c,

x′ left-continuous for t ∈ (0, 1],

x′ right-continuous for t=0

}

, (3.4)

where the function x′(t) (0 ≤ t ≤ 1) a.e. in [0, 1] coincides with a derivative of x(t) in the

classical sense. Obviously we get D ⊂ H1(0, 1) and hence every function x ∈ D with D from

(3.3) – (3.4) is continuous. In analogy to Lemma 2.3 we have in the Sobolev space case:

Lemma 3.1 The domain D from (3.3) – (3.4) is a compact subset of H1(0, 1) with D ⊂ D+
0 .

In contrast to the Lp-case the restriction of the total variation, here T (x′) ≤ c, is only

needed to show the compactness of the domain D. It has no relevance for the convergence of

the images F (xη) of approximate solutions xη to F (x∗) in L2(0, 1) as η tends to zero.
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The discretization of the autoconvolution problem (1.1) – (1.3), where the operator F

from (1.3) maps in the form

F : D ⊂ H1(0, 1) → L2(0, 1) (3.5)

and where the domain D is defined by (3.3) – (3.4) will be performed similar to the Lp(0, 1)

case. However, piecewise constant functions are not in H1(0, 1). Therefore, we use continuous

piecewise linear approximate functions. Here, let (in contrast to Section 2)

tj := jh (j = 0, ..., n)

denote the n + 1 nodes subdividing the interval [0, 1], and again Ij = ((j − 1)h, jh]. Fur-

thermore, the xj again denote approximate values of x(tj). As the discrete autoconvolution

operator we introduce here:

F : IRn+1 → IRn, (3.6)

where F (x) = (z1, ..., zn)T and for i = 1, 2, ..., n :

zi =

∫ ih

0
(E1(x)) (ih−t) (E1(x)) (t) dt =

i
∑

j=1

h

6
(2xi−jxj + xi−j+1xj + xi−jxj−1 + 2xi−j+1xj−1) .

(3.7)

By E1 : IRn+1 → H1(0, 1) we denote in contrast to Section 2 the operator of piecewise linear

interpolation according to

(E1(x))(t) :=
t − jh

h
(xj − xj−1) + xj (t ∈ Ij , j = 1, ..., n). (3.8)

For noisy data (see (2.15)) we search for a minimizer

xopt = (xopt
0 , xopt

1 , ..., xopt
n )T

of the least-squares problem (2.20) with M from

M :=

{

x ∈ IRn+1 :
0 < a1 ≤ xi ≤ b1 (i = 0, ..., n),

ha2 ≤ xi − xi−1 ≤ hb2 (i = 1, ..., n),

n−1
∑

i=1

|xi+1 − 2xi + xi−1| ≤ hc

}

.

(3.9)

With the same arguments as before it follows that (2.20) is solvable. The choice of F is due

to the fact that we have to guarantee the validity of formula (2.24) with Fη from (2.23).

By setting for the approximate solution

xη := E1(x
opt), (3.10)
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where η = (δ, h)T , we also have xη ∈ D with D according to (3.3)-(3.4). Moreover, it can

be shown that as in Lemma 2.7 we have ‖F (xη) − F (x∗)‖L2(0,1) → 0 for η → 0. The proof

dealing with the H1(0, 1) approximation of functions by linear splines is omitted here. Using

again Lemma 2.4 with X := H1(0, 1) and Y := L2(0, 1) we obtain:

Theorem 3.2 Consider the autoconvolution problem (1.1) – (1.3) with D(F ) := D from

(3.3) – (3.4) and denote by x∗ ∈ D, for given right-hand side y∗ ∈ F (D(F )), the unique solu-

tion of the autoconvolution equation. Then the family of approximate solutions xη converges

to the solution x∗ of (1.2):

‖xη − x∗‖H1(0,1) → 0 as η → 0. (3.11)

4 Monotonicity Constraints

In this section we deal with solutions of the autoconvolution equation subject to the set of

monotone and uniformly bounded functions considered as a particular subset of the functions

possessing a bounded total variation.

First we consider the domain

D := {x : 0 ≤ x(t) ≤ b, t ∈ [0, 1], x non-increasing} (4.1)

forming a compact subset in Lp(0, 1), 1 ≤ p < ∞. Then the operator F from (2.10) is also

injective, since D ⊂ D+
0 ∪ {0} and x(t) = 0 (0 ≤ t ≤ 1) is the only function of D according

to (4.1) with x(0) = 0. The discretization of this monotonicity case is completely the same

as given in Section 2 for the total variation case with the exception of the fact that we have

to introduce

M := {x ∈ IRn : 0 ≤ xn ≤ ... ≤ x1 ≤ b}. (4.2)

replacing (2.21). Since each monotone function is of bounded variation, we obtain the con-

vergence results of Section 2 with c = b and a = 0.

Now we change to the case of non-decreasing solutions, where

D := {x : 0 ≤ x(t) ≤ b, t ∈ [0, 1], x non-decreasing} (4.3)

and

M := {x ∈ IRn : 0 ≤ x1 ≤ ... ≤ xn ≤ b}. (4.4)
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The set D from (4.3) is also compact in Lp(0, 1), but the injectivity of F fails (cf. [8]). Because

of that we have to distinguish two cases:

On the one hand let y ∈ R+
0 , i.e. y(s) > 0 if s > 0. Then the corresponding solution

x∗(t) is uniquely determined from y a.e. in [0, 1] and ‖F (xη) − F (x∗)‖L2(0,1) → 0 for η → 0

also implies ‖xη −x∗‖Lp(0,1) → 0, since Tikhonov’s lemma (see Lemma 2.4) in fact only needs

the local injectivity condition F (x) = F (x∗) (x ∈ D) =⇒ x = x∗.

On the other hand, let y ∈ R+
ε for ε > 0, i.e. y(s) = 0 if s ∈ [0, ε]. As shown in [8], in

such a case the autoconvolution operator F is non-injective and it holds:

x∗(t) =















0 a.e. in [0, ε
2 ]

uniquely determined a.e. in [ ε
2 , 1 − ε

2 ]

arbitrarily non-negative in [1 − ε
2 , 1]

.

Consequently, we have x∗ ∈ D+
ε
2
. Since the values x∗(t) do not depend on y for t ∈ [1− ε

2 , 1],

we cannot expect any information about the solution in this subinterval from the data.

Therefore, it makes sense to solve the equation (1.1) only on the interval [ ε
2 , 1 − ε

2 ]. We will

show that this case is reducible to the already treated case y ∈ R+
0 . Because of this we define

the operator Fε : Lp( ε
2 , 1 − ε

2 ) → L2(ε, 1) as

[Fε(x)](s) :=

∫ s− ε
2

ε
2

x(s − t)x(t)dt.

Then we have [F (x)](s) = [Fε(x)](s) for ε
2 ≤ s ≤ 1 − ε

2 . By using the transformations

t̃ :=
t − ε

2

1 − ε
, s̃ :=

s − ε

1 − ε
,

and

x̃(t̃) := x((1 − ε)t̃ +
ε

2
) = x(t), ỹ(s̃) := y((1 − ε)s̃ + ε) = y(s), F̃ε(x̃) := Fε(x),

we obtain an operator F̃ε : Lp(0, 1) → L2(0, 1) defined by

[F̃ε(x̃)](s̃) := (1 − ε)

∫ s̃

0
x̃(s̃ − t̃)x̃(t̃)dt̃.

Then we get x̃ ∈ Lp(0, 1) if x ∈ Lp(0, 1), and instead of (1.2) we have to solve the equation

F̃ε(x̃) = ỹ now. From y ∈ R+
ε and x ∈ R+

ε
2

it follows that ỹ ∈ R+
0 and x̃ ∈ D+

0 , respectively.

Hence we have F̃ε(x̃) = (1 − ε)F (x̃) for all x̃ ∈ D+
0 . Therefore, we can proceed as in the

injective case and compute converging approximate solutions x̃η. Then we transform back

to the interval [ ε
2 , 1 − ε

2 ] and obtain approximate solutions with satisfactory properties on
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this interval, where the performed linear transformation retains the monotonicity. Finally

we extend the solution by zero on the interval [0, ε
2 ). On the other remaining subinterval

(1− ε
2 , 1] the solution can be extended arbitrarily provided that the monotonicity requirement

is satisfied. Unfortunately, the value of ε is unknown if only discrete noisy data are given.

In some situations, however, this value can be estimated and the transformation procedure

becomes applicable.

5 Numerical Examples

In the concluding section we present some case studies on the behaviour of approximate

discrete least-squares solutions to the autoconvolution equation (1.1) from noisy data, where

we follow the approach of Section 2.

The first study is devoted to the case of a continuous, but non-monotone exact solution.

We use the example

x∗(t) = −3t2 + 3t +
1

4
= 1 − 3

(

t −
1

2

)2

(0 ≤ t ≤ 1) (5.1)

with the right-hand side

y∗(s) =
3

10
s5 −

3

2
s4 + s3 +

3

4
s2 +

1

16
s (0 ≤ s ≤ 1) (5.2)

and obtain a := 0.25 ≤ x∗(t) ≤ b := 1, T (x∗) = 1.5 and x∗ ∈ D with D from (2.5) - (2.6).

The noisy data ŷ were generated by adding normally distributed pseudorandom numbers

with zero mean and standard deviation σyi (σ fixed) to the discrete values yi of (5.2). We

used varying values c as upper bounds for the total variation of the discretized solutions.

The nonlinear optimization problem (2.20) was numerically solved by a Gauss-Newton

code. In the case of unacceptable Gauss-Newton steps this code uses the Marquardt method.

The theory of this procedure is due to [3, pp. 348-368] (for the algorithm see [3, pp. 369-383]).

We used penalty terms to handle the constraints of D. In all figures presented below the

solid lines give the exact solution x∗ according to (5.1), whereas the lines with small circles

express the approximate solutions xη such that every circle corresponds to a grid point of

discretization.

In the Figures 1 and 2 we compare approximate solutions xη in the case of unperturbed

data (σ = 0) using n = 50 grid points and different bounds c for the total variation. For an
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appropriate choice c = 1.5 associated with the really arising total variation level, the approx-

imate solution is very good in the noiseless case (see Figure 1), whereas an underestimated

value c = 0.8 < T (x∗) corresponds to an overregularized solution (see Figure 2), which is

much too ’flat’ compared to the function x∗ to be determined.

Now we turn to the case of noisy data. For all computations in the context of the

Figures 3 – 6 a per mille noise level σ = 10−3 was used. We begin with a situation (see

Figure 3), where the total variation bound was omitted (c = ∞). Then the set M of admissible

discrete solutions contains strongly oscillating vectors. Especially for t from the right half-

interval of [0, 1] the quality of the approximate solutions may be very bad in that situation.

The Figure 4 illustrates in a rather convincing manner the utility of the total variation

approach presented above in Section 2 for handling noisy data. In particular, the approxi-

mation quality of xη in Figure 4 with c = 1.5 at the right end of the interval is much better

than in Figure 3. We can motivate this right-end effect as follows: By the autoconvolution

of a function x(t) (0 ≤ t ≤ 1) the values x(t) for small t influence the function values y(s) in

some sense more than the values x(t) with t close to 1. Namely, x(t) only influences y(s) for

s > t. As a consequence, the reconstruction of x(t) from y is more stable for smaller t, since

then the function y(s) = [x∗x](s) (0 ≤ s ≤ 1) has collected more information about the value

x(t) to be determined. In the case of overregularization (c is selected too small compared to

T (x∗)), this phenomenon may cause large reconstruction errors specifically at the right end

of the interval [0, 1] (see Figure 5 with c = 1.0).

We should mention that the analysis of the problem based on Lemma 2.4 does not provide

any rate of convergence for the solution error ‖xη − x∗‖Lp(0,1) depending on

‖F (xη)−F (x∗)‖L2(0,1). On the other hand, Lemma 2.7 shows that the order of magnitude for

the discrepancy norm ‖F (xη)−F (x∗)‖L2(0,1) corresponds with the maximum max(hb̄2, hb̄c̄, δ),

where h := 1/n, b̄ := sup
x∈D

t∈[0,1]

x(t) and c̄ := sup
x∈D

t∈[0,1]

T (x). For sufficiently large n this discrepancy

norm is dominated by the noise level δ, or in our case study by the value σ. So we can see

comparing the Figures 4 and 6 that different discretization levels n = 50 and n = 25 yield

approximate solutions with nearly the same accuracy provided that the noise level (σ = 10−3)

does not change.

To a second study we have been motivated by numerical experiments carried out by

Kutsche in her thesis [11]. There it was shown that the constraint of bounded variation

is very useful in the L1-approximation of piecewise continuous solutions to Abel integral
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equations. We now will demonstrate the effects of using the least-squares method under total

variation constraints in the case of non-smooth functions possessing jumps. Therefore we

consider as the exact solution the step function

x∗(t) =















0.5 if 0 ≤ t ≤ 0.5

0.25 if 0.5 < t ≤ 0.8

0.75 if 0.8 < t ≤ 1

(5.3)

with the right-hand side

y∗(s) =















0.25t if 0 ≤ t ≤ 0.5

0.125 if 0.5 < t ≤ 0.8

0.5t − 0.275 if 0.8 < t ≤ 1

. (5.4)

The exact solution x∗ is discontinuous, non-monotone but a function of bounded variation.

Its total variation can easily computed as T (x∗) = 0.75. The function x∗ is bounded, positive

and left-continuous on the whole interval [0, 1]. Therefore the requirements of the set D from

(2.5) - (2.6) are fulfilled.

We will now compare the approximate solutions of this example for different choices of

the parameter c. Let the number of discretization points n = 50 and the value σ = 10−2 of

noise be constant throughout this study. Then we are able to control the solution by changing

the parameter c.

In the Figures 7 – 10 the graphs of both the numerical solution xη and the exact solution

x∗ (bold line) are drawn as piecewise constant functions. In our first example (Figure 7)

we computed the solution without any total variation restriction (c = ∞). The solution

is – as in the first example – rather bad and highly oscillating. However, it is to mention

that the jumps of x∗ are reconstructed relatively good in this case. In Figure 8 the situation

c = T (x∗) = 0.75 is illustrated. Here the solution is much smoother than in the unconstrained

case, but the points with maximal approximation errors are now the jumps at t = 0.5 and

t = 0.8. In these points the approximate solution is ’oversmoothed’. This depends on the

fact that the smoothing effect of regularization acts uniformly on the whole interval [0, 1],

but the character of a jump function does not correspond with this property. Therefore the

jumps are blurred by that choice of c. Moreover, the ’right-end effect’ discussed above is

superposed and leads to growing errors near t = 1.

Finally, in Figure 9 with c = 0.5 and Figure 10 with c = 2 we demostrate two more

situations. If c underestimates the value T (x∗), then the effect of blurring the jumps is still
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more pronounced. On the other hand, the admissible oscillation level grows if c overestimates

T (x∗). In that case, however, the location of jumps can be determined rather precise. That

means, if one supposes that the exact solution is a step function, then it is recommended

to choose c not too small. This allows some oscillations around the exact solution whose

amplitudes are small if c is not chosen much too large.
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Figure 1: Least-squares solution of F (x) = ŷ, σ = 0, n = 50, c = 1.5
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Figure 2: Least-squares solution of F (x) = ŷ, σ = 0, n = 50, c = 0.8
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Figure 3: Least-squares solution of F (x) = ŷ, σ = 10−3, n = 50, c = ∞
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Figure 4: Least-squares solution of F (x) = ŷ, σ = 10−3, n = 50, c = 1.5
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Figure 5: Least-squares solution of F (x) = ŷ, σ = 10−3, n = 50, c = 1.0,

(inappropriate initial values used in Gauss-Newton-method)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b

b

b

b

b

b

b

b

b
b

b b b

b

b
b

b

b

b

b

b

b

b

b

b

Figure 6: Least-squares solution of F (x) = ŷ, σ = 10−3, n = 25, c = 1.5
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Figure 7: Least-squares solution of F (x) = ŷ, σ = 10−2, n = 50, c = ∞
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Figure 8: Least-squares solution of F (x) = ŷ, σ = 10−2, n = 50, c = 0.75
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Figure 9: Least-squares solution of F (x) = ŷ, σ = 10−2, n = 50, c = 0.5
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Figure 10: Least-squares solution of F (x) = ŷ, σ = 10−2, n = 50, c = 2.0
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