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Abstract

Automata provide an effective mechanization of decision
procedures for Presburger arithmetic. However, only crude
lower and upper bounds are known on the sizes of the au-
tomata produced by this approach. In this paper, we prove
that the number of states of the minimal deterministic au-
tomaton for a Presburger arithmetic formula is triple expo-
nentially bounded in the length of the formula. This upper
bound is established by comparing the automata for Pres-
burger arithmetic formulaswith the formulas produced by a
quantifier elimination method. e also show that thistriple
exponential bound is tight (even for nondeterministic au-
tomata). Moreover, we provide optimal automata construc-
tions for linear equations and inequations.

1. Introduction

Presburger arithmetic (PA) is the first-order theory with
addition and the ordering relation over the integers. Rele-
vant decision problems can be expressed in it, such as solv-
ability of (parametric) systems of linear Diophantine equa-
tions, integer programming, and various problems in sys-
tem verification. The decidability of PA was established
around 1930 independently by Presburger [23, 24, 34] and
Skolem [32, 33] using the method of quantifier elimination.
Due to the applicability of PA in various domains, its com-
plexity and the complexity of decision problems for frag-
ments of it have been investigated intensively. For example,
Fischer and Rabin [14,15] gave a lower bound on any deci-
sion procedure for PA, namely double exponential in non-
deterministic time. Later, Berman [2] showed that the de-
cision problem for PA is complete in the complexity class
LATIME(22°(")), i.e., the class of problems solvable by

alternating Turing machines in time 22°" with a linear
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number of alternations. The upper bound for PA is estab-
lished with a result from Ferrante and Rackoff [13] show-
ing that quantified variables need only to range over a re-
stricted domain of integers. Grddel [19] and Schoning [29]
investigated the complexity of decision problems of frag-
ments of PA.

Oppen [22] showed that Cooper’s quantifier elimination
decision procedure for PA [10] has a triple exponential
worst case complexity in deterministic time. Another ap-
proach for deciding PA or fragments of it that has recently
become popular is to use automata; a point that was already
made by Biichi [9]. The idea of the automata-theoretic ap-
proach is simple: Integers are represented as words, e.g.,
using the 2’s complement representation, and the word au-
tomaton (WA) for a formula accepts precisely the words
that represent the integers making the formula true. The
WA can be recursively constructed from the formula, where
automata constructions handle the logical connectives and
quantifiers. Specific algorithms for constructing WAs for
linear (in)equations have been developed in [1,4,7,18,37].

A crude complexity analysis of automata-based decision
procedures leads to a non-elementary worst case complex-
ity. Namely, for every quantifier alternation there is an ex-
ponential blow-up in the worst case. However, experimen-
tal comparisons [1,18,31] illustrate that automata-based de-
cision procedures for PA often have good and competitive
performance in comparison to other methods. In [7], the au-
thors claimed that the minimal deterministic WA for an ar-
bitrary formula has at most a triple exponential number of
states in the length of the formula. Unfortunately, as ex-
plained in [37], the argument used in [7] to substantiate this
claim is incorrect. Wolper and Boigelot [37] gave an argu-
ment why there must be an elementary upper bound on the
size of the minimal deterministic WA for a formula. How-
ever, their argumentation is rather sketchy and they only in-
dicate that there has to be such an elementary upper bound. *

In this paper, we rigorously prove that there is a triple ex-
ponential upper bound on the size of the minimal determin-
istic WA for a formula. This bound on the automata size for

1 Appendix B contains a detailed discussion of Wolper and Boigelot’s
argumentation.



PA contrasts with the upper bound on the automata size for
the monadic second-order logic WS1S, or even WS1S with
the ordering relation “<” as a primitive but without quan-
tification over monadic second-order variables. There, the
number of states of the minimal WA for a formula can be
non-elementary larger than the formula’s length [26, 35]. In
order to establish the upper bound on the automata size for
PA, we give a detailed analysis of the deterministic WASs
for formulas by comparing the constructed WAs with the
quantifier-free formulas produced by the quantifier elimina-
tion method in [25], which is an improvement of Cooper’s
quantifier elimination method [10]. From this analysis, we
obtain that the minimal deterministic WA for an arbitrary

formula of length n has at most 2220(") states.

Furthermore, we show that the triple exponential upper
bound on the size of deterministic WAs for formulas is tight.
In fact, we show a stronger result. Namely, we give a fam-
ily of Presburger arithmetic formulas for which even a non-
deterministic WA must have at least triple exponentially
many states. We also improve the automata constructions
in [4,18, 37] for linear (in)equations. We prove that our au-
tomata constructions are optimal in the sense that the con-
structed deterministic WAs are minimal.

We proceed as follows. Preliminaries are given in §2.
In §3, we investigate the WAs for quantifier-free formulas.
In §4, we prove the upper bound on the size of the min-
imal deterministic WA for formulas, and in §5, we give a
worst case example. Finally, in §6, we draw conclusions.
Appendix A contains additional proof details.

2. Preliminaries

Presburger arithmetic (PA) is the first-order logic over

the structure 3 := (Z, <, +). We use standard notation.
For instance, we write 3 = ¢[as,...,q,] for a formula
o(z1,...,zr) and ay,...,a, € Z if p is true in 3 when
the variable z; is interpreted as the integer a;, for 1 <
i < r. And analogously, ¢[as, ..., a,] denotes the integer
of the term ¢(z1,...,z,) when the z;s are interpreted as
the a;s. For a formula ¢(z1,...,z,), we define o] :=
{(a1,...,ar) €Z" : 3 = pla1,...,ar]}.
Extended Logical Language. We extend the logical lan-
guage of PA by (i) constants for the integers 0 and 1, (ii) the
unary operation “—" for integer negation, and (iii) for all
d > 2, we extend the language by predicates “d|” for the
divisibility relation. These constructs are definable in PA,
e.g., the formula 3z(x + --- + = = t) defines d|t, where
x i repeated d times in the term = + --- 4+ z and = does
not appear in the term ¢. The reason for the extended logi-
cal language, where (i), (ii), and (iii) are handled as primi-
tives, is that it admits quantifier elimination (ge), i.e., for a
formula 3z (z, 7), where ¢ is quantifier-free, we can con-
struct a logically equivalent quantifier-free formula ¢ (7).

Additionally, we allow the relation symbols <, >, >, and
# with their obvious meanings. In the following, we assume
that terms and formulas are defined in terms of the extended
logical language for PA. We denote the set of quantifier-free
formulas by QF.

For convenience, we allow the usage of standard symbols
when writing terms. For instance, ¢ stands for 1+ - -+1 (re-
peated c times) if ¢ > 0, and ¢ stands for —(1 + --- + 1) if
¢ < 0. We say that the term c is a constant. We identify the
term ¢ with the integer that it represents. Analogously, we
write k - z for z + - - - + x (repeated k times) if £ > 0, and
—(z +---+z) if E < 0. Moreover, if k = 0 then k - z ab-
breviates z + (—x). We say that % is the coefficient of . For
atermtand k € Z, k - t denotes the term where the con-
stant and the coefficients in ¢ are multiplied by &.

A term ¢t is homogeneous if it is either 0 or of the form
ki-z1+---+ k, -z, for some » > 1, where the vari-
ables z4,...,z, are pairwise distinct and &1,..., k. € Z.
Throughout the text, we assume that terms are of the form ¢
or t + ¢, where t is homogeneous and ¢ € Z \ {0}. The nor-
mal formof an (in)equation ¢; % ¢ with & € {=,#, <, <
, >, >} is the logically equivalent (in)equation ¢ 35 ¢, where
summands of the form &k - z in ¢; and ¢y are collected on
the left-hand side ¢ and constants in ¢; and ¢ are collected
on the right-hand side ¢ according to standard calculation
rules.

Length of a Formula. The length of a formula is the num-
ber of letters used in writing the formula. Note that the
length of a formula depends significantly on how we de-
fine the length of coefficients and constants. For instance,
x=10-y contains 6 letters, namely, z, =, 1,0, -, and y. The
“expanded version” has 2+ 19 letters since 10-y abbreviates
thetermy+y+y+y+y+y+y+y+y+y. We use the same
definition of the length of a formula as in [14,22,25]. In par-
ticular, the length of a coefficient or constant is the number
of letters of the expanded version. However, it is possible to
express k- ¢ by a formula of length O(lg |%|). The idea is il-
lustrated by z =10 - y: the formula is logically equivalent to
Az(z=z2+2 A Jz(2=z+z+y A z=y+vy)). Note that we
only need a fixed number of variables for any &, see [14].
For the sake of uniformity, we define the length of the for-
mula d|¢ as the length of the term ¢ plus d + 1. Again, there
is a logically equivalent formula of length O(1g d) plus the
length of ¢. For the results in this paper it does not mat-
ter if we define the length of an integer k£ as O(lg |&]|) or as
O([E])-

3. Automata Constructions

In this section, we investigate the automata for
quantifier-free PA formulas. We assume that the reader is
familiar with the basic notions of automata theory. Re-
call that a deterministic word automata (DWA) is a tu-



ple A =(Q,%,6,q,F), where @ is a finite set of states, &
is a finite alphabet, § : Q x ¥ — @ is the transition func-
tion, g1 € @ is the initial state, and F' C @ is the set of ac-
cepting states. The sizeof A is the cardinality of Q. The lan-

guageof A is L(A) := {w € * : g(ql,w) € F}, where

8(q,A) == q and (g, wb) := 5(3(q,w),b), for q € Q,
b e X, and w € ¥*. Note that A denotes the empty word.

In §3.1, we define how DWAS recognize sets of integers.
In §3.2, we provide optimal automata constructions for lin-
ear (in)equations and in §3.3, we give an automata construc-
tion for the divisibility relation. Finally, in §3.4, we give an
upper bound on the size of the minimal deterministic DWA
for a quantifier-free formula.

3.1. Representing Setsof Integerswith Automata

We use an idea that goes at least back to Biichi [9] in or-
der to use automata to recognize tuples of numbers by map-
ping words to tuples of humbers. Our encoding is based on
the 2’s complement representation of integers, where the
most significant bit is the first digit. For b,b,_1...by €
{0,1}*, we define

(bubn_1...bo) := =by2" + Y b2’
0<i<n

and (\) := 0 for the empty word. Note that the encod-
ing of an integer is not unique since (A\) = (0) = 0 and
(bpbr—1...b0) = (bbnbp—_1 ...bo). We extend this encod-
ing to tuples of integers as follows: Aword w := b,,...by €
({0,1}")* represents the tuple z := (z1,...,2,) € Z" of
integers, where the ith “track” of the word w encodes the
integer z;. That is, forall 1 < 7 < r we have that z; =
<bn,i N b07i>, where B]' = (bj71, ey bjﬂ-) for 0 < j < n.
The first letter b,, of w is the sign letter since it determines
the signs of the integers z1, .. ., z,. We abuse notation and
write (w) to denote the tuple z of integers. Moreover, we
write ((Z)) for the shortest word in ({0, 1}7)* that represents
Z € Z". Note that (z)) is well-defined since (1) there is a
word w € ({0,1}")* with (w) = z, and (2) if (v) = (v")
for v,v" € ({0,1}")*, then v and v’ have a common suf-
fix u € ({0,1}")* with (u) = (v).

A natural choice for representing sets of tuples of in-
tegers as languages is the following: The set U C Z" is
represented by the language L C ({0,1}")* if for every
Z € Z7 it holds that z € U iff all words that represent z
are in L. The reason for the requirement that all encodings
of the elements in U have to be in the set L is that the rep-
resentation of Z" \ U is then the complement of L, i.e.,
({0,1}")* \ L. A DWA A represents the set U C Z" if
L(A) represents U. Note that under this definition not ev-
ery language over {0, 1}" encodes a set of tuples of integers,
and not every DWA with alphabet {0, 1} " represents a sub-
setof Z". The language L C ({0, 1}")* encodes a subset of

7" iff L satisfies the two properties A € L < 0 € L, and
bu € L < bbu € L, forall u € ({0,1}")* and b € {0,1}".

In the following subsections, we give and analyze the au-
tomata constructions for atomic formulas and for Boolean
combinations of atomic formulas. For the analysis, we in-
troduce the following notation: We define (\) := 0 and
<bn .. bg)N = Zogign b,2l with b,,...bg € ({0, 1}T)+.
Similar to (z)) for z € Z", we define (@), fora € N", as
the shortest word w € ({0,1}")* with@a = (w)y.

3.2. Linear Equationsand I nequations

In this subsection, we first recall the automata construc-
tions given in [4, 6, 18, 37] for linear (in)equations. Then,
we improve these constructions such that they are optimal,
i.e., the constructed DWAs are minimal. Assume that the
(in)equation ¢ 25 ¢ is in normal form, where ¢(z 1, ..., z,) is
a homogeneous term, & € {=,#,<,<,>,>},and c € Z.

First, we make the following observation for a word w €
({0,1}")* and b € {0,1}". If w # X then (wb) = 2(w) +b,
and for w = ), we have that (b) = —b, since we are us-
ing 2’s complement representation. Given this, it is rela-
tively straightforward to obtain an analog of a DWA with
infinitely many states for ¢ & c. The set of states is {qg1} UZ
where ¢p is the initial state. Note that we identify integers
with states. The idea is to keep track of the value of ¢ as
successive bits are read. Thus, except for the special ini-
tial state, a state in Z represents the current value of ¢.
Lemma 1 below justifies this intuition. The transition func-
tionn : ({a1} UZ) x {0,1}" — ({a1} U Z) is defined
as follows for a letter b € {0,1}". For ¢ € Z, we define
n(g,b) := 2q + t[b] and n(gr,b) := —t[b], for the initial
state.

Lemmal. Forw € ({0,1}")* of lengthn > 0,
(@) 7(g,w) = 2" + t[(w)n], whereq € Z, and

(b) Alar, w) = t[(w)] ifn > 1.

Proof. (a) is easily proved by induction over n, and (b) fol-
lows from (a) and the definition of ». O

Later we make use of the following lemma, which trans-
lates the question whether ¢ € Z is reachable from p € 7Z
via 7] to a number theoretic problem.

Lemma 2. For p,q € Z, there are N,aq,...,a, > 0
such that N > [lg(1 + max{ay,...,a,})] and p2VV +
tlai, ..., ar] = q iff §(p,w) = q, for somew € ({0,1}")*.

Proof. (=) Assume that (a1, ...,a,)) has length £. Note
that £ < N. By Lemma 1(a), we have that

1(,0" “(a1,...,a:)y) = p2N + tlas,...,a.] =q.



(<) Assume that 7(p,w) = g, for some w € ({0,1}7)*.
We have that N > [lg(1 + a)], where « is the largest num-
ber in the tuple {(w)y and N is the length of w. It follows
from Lemma 1(a) that 7(p, w) = p2& + t[{(w)y]. O

The automata constructions in [18, 37] are based on the
observation that the states q, ¢’ € Z can be merged if, intu-
itively speaking, g and ¢’ are both small or both large. Here,
the meaning of “small” and “large” depends on the coef-
ficients of ¢ and on the constant c. More precisely, we say
that ¢ € Z is small if ¢ < min{c, —||¢||+}, and large if
q > max{c, ||t||-}, where

=== 3 Ikl and

1<j<r
and k; <0

= D> &

1<j<r
and k; >0

assuming that ¢ is of the form £y - 1 + - -+ + k; - z.. Note
that from a small value we can only obtain smaller values
and from a large value we can only obtain larger values by
n, i.e, forall b € {0,1}", if ¢ > ||t||_ then n(q,d) =
2q+t[b] > ¢,andif ¢ < —||t]|5 thenn(q,b) = 2¢+t[b] < q.
A difference between the constructions in [37] and [18]
are the bounds that determine the meaning of “small” and
“large”.

For m < n, we define Afifn) = (Q,{0,1}",6,q1, F),
where @ := {g:i}U{g€Z: m<g<n}and

5(a,):=qn  ifn(gb) >n,
n(g,b) otherwise,

forg € Q and b € {0,1}". Moreover, let F := {qg € Q :
g3sc}, where gp is interpreted as 0.

Fact 3. The DWA A(;%, ) represents [t % ] if m is small

(m,n
and n islarge. Moreover, Afifn) has2 + n — m states.

In the following, we optimize the constructions such
that the produced DWA for an (in)equation is minimal.
Moreover, we give a lower bound on the minimal DWA
for an (in)equation. However, these results are not needed
for the upper bound on the minimal DWA for a PA for-
mula. In the remainder of this subsection, let Afifn) =
(Q,{0,1}",6, g1, F') for the (in)equation ¢ & ¢ with m =
max{qg € Z gissmall} and n = min{q € Z
q is large}. We restrict ourselves to the cases where & € {=
,<,>}. The cases with & € {#, <, >} reduce to the cases
for =, <, > and complementation of DWAs, since ¢ # ¢
is logically equivalent to -t = ¢, t < c is logically equiva-
lentto =t >¢, and t >c s logically equivalent to —¢ < c. Note
that complementation of a DWA can be done by flipping ac-
cepting and non-accepting states. The complemented DWA
is minimal iff the original DWA is minimal.

Eliminating Unreachable States. An obvious optimiza-
tion is to eliminate the states in @ NZ that are not a multiple
of the greatest common divisor of the absolute values of the
coefficients in the term ¢, since they are not reachable from
the initial state gr. We define the greatest common divisor
of the term ¢(z1, ..., 2,) as gcd(t) := ged(|k1], . - ., &),
where k; is the coefficient of the variable z;, for1 < i <.
Lemma4. Thestateq € Q NZ isreachablefromtheinitial
state g; iff ¢ isa multiple of gcd(¢).

Proof. (=) This direction is easy to prove by induction: for
allb € {0,1}", it holds that (i) —¢[b] is a multiple of ged(t),
and (i) if p € Z is a multiple of gcd(t) then 2p + ¢[b] is a
multiple of gcd(t).

(<) Assume that ¢ is a multiple of ged(¢). There are
Viy...,Vp € ZWith t[vy,...,v,] = ¢. From Lemma 1(b) it

follows that 3 (g1, (v1, - - -, v,)) = t[vr, ..., v,]. O

Alternatively, instead of filtering out the states g € Z that
are not a multiple of gcd(¢) we can rewrite the (in)equation
t & c to the logically equivalent atomic formula « and then
construct the DWA for a, where « is defined as

if 3is <,
if = is >,

t' = {gcg(t)—l
' L—gcg(t)J
t' %

1<0 otherwise,

where the coefficients in ¢’ are the coefficients of ¢ divided
by ged(¢). In the remainder of this subsection we assume
that gcd(t) = 1.

Optimization for Inequations. In the following we as-
sume that the inequation is of the form ¢ > ¢ with ¢ > 0.
The cases where s is < or ¢ > 0 are analogous. The fol-

lowing example illustrates that many states of Afifn) can

be merged if ¢ is significantly larger than |¢|| —.

Example5. The construction for x — y > 32 yields a DWA
with the set of states @ = {q1,-2,-1,0,...,32,33}; but
the minimal DWA for z — y > 32 has only 13 states. The
reason for this gap is that several states can be merged.
First, we merge the states —2 and —1 since from both states
only non-accepting states are reachable. Second, we can
merge the statesin Q' := {g € QNZ : 2¢+a—b >
c, foralla,b € {0,1}} = {17,...,32} to a single state
since all states in Q' are non-accepting and all their transi-
tions go to 33. The state 16 cannot be merged with any other
state since if we read the letter (1, 0), we end up in the ac-
cepting state 33, and if we read the letters (0, 0), (1,1), or
(0,1) we end up in the non-accepting states 32 or 31, re-
spectively. The states in {9, . .., 15} can again be merged to
a single state since with every transition we reach a state in
Q'. Analogously, we can merge the states in {5, 6, 7}.

if 2 is = and c is a multiple of gcd(¢),



We determine the states in A’E;fn) that are equivalent.
Recall that p,q € @ are equivalent, p ~ ¢ for short,
if it holds that é(p,w) € F iff 6(q,w) € F, for all
w € ({0,1}7)*. Note that ~ C @ x @ is an equivalence re-
lation. We denote the equivalence class of ¢ € @ by g. Since
all states are reachable from g, the states p, ¢ € @ can be
merged iff p ~ ¢. This means, the DWA B := ({q q €

Q}?{(]? 1} ,51,[1},{(] q € F}) Wlth 5l(q7 ) = 5(q7 )
minimal and L(B) = L(A{;,))-

It holds that —||¢||+ ~ —||¢||+ — 1, since both states are
non-accepting and all transitions from these states either go
to —||¢||+ or to —||t||+ — 1. In order to identify the other
equivalent states in Af” ) we define the followmg strictly
monotonically decreasing sequence dg > d; > - > dp,
forsome ¢ > 1. Letdy := coand d; := max{c+ 1, £ -}
Assume that dy > dy > --- > d; are already defined, for
some i > 1.

e If d; = ||t||— then we are done, i.e., £ = 1.

e If d; > ||t]|- then let d;1; < d; be the smallest inte-
ger greater than ||¢|| - — 1 such that forall b € {0,1}",
there is an index j with 1 < j <4 and

2diy1 +t[b], 2(d; — 1) +¢[b] € [dj,dj—1), (1)
where [d,d') denotes the interval {d,...,d" — 1} if

d,d € Z,and [d,d")is{z € Z : z > d}ifd € Zand

d' = oo. Note thatd;; is well-defined since d; — 1 sat-

isfies (1), for all b € {0,1}".

Fact6. Forall1 <i </, ifp,q¢€ [diadi—l) thenp ~ gq.
The following lemma shows that there are no more equiva-

lent states in Afifn).

Lemma?7. Forall p,q € Q,ifp~qgthenp =gqorp,q €
{=lltl+, =lltll+ — 1} or p,q € [di, di—1), for 1 < < £.

Proof. Let R := {—||t||+, —||t||l+ — 1}. We prove the claim
by contraposition, i.e., p # gandp € R = ¢ ¢ R and
forall1 < i < ¢, p € [didi—1) = q & [di,di—1 implies
p # q. Assume p # q. It suffices to distinguish the follow-
ing three cases.

(I) Assume that p € R and ¢ ¢ R. Since we can reach
an accepting state from ¢, we have that p ¢ g.

(1) Assume that p € [d;,d;—1) and ¢ & [d;,d;—1), for
some 1 < ¢ < /. Itis straightforward to prove by induction
over i that p £ g.

(111) Assume that p & R U (J; -, ,[ds, di—1). We have
that either p = gt orp € S,where S :== {s € QNZ :
il < s < [Jtl]-}. )

Assume that p = gy and ¢ ¢ R. Letb € {0,1}" be the
letter that has a 1 in its ith coordinate iff the ith coeff|0|ent
of tis posmve It holds that g1 +# ¢, since 5(q1, ) ¢ F and
5(q,b") € F, forsome n > 1. Note that 6(q1, ) = —t[b] =

— ¢l and (g, B) = 2q + t[B] = 2¢ + |[tl|+ > ¢. Ifg € R
then we conclude similar to (I) that p  q.

Assume that p € S. Note that for every s € S there
isab € {0,1}" such that §(s,b) € S. It follows that for
every n > 0 there is a word v € ({0,1}")* of length n
such that g(p, u) € S. We conclude that there is a word

({0,1}7)* such that 6(p,u) € S and 6(q,u) €
RUU;<;cpldiydi—1), since (s, b) — 8(s',b) = 2(s — s'),
for all s,s' € Sandall b € {0,1}". Analogously to (I)
and (I1) we conclude that p +£ q. O

From Lemma 7, it follows that the minimal DWA repre-
senting [t > c] has at least ||¢||— + |||+ States. Note that
this is in contrast to the number of symbols we need to
write the inequation ¢ > c if coefficients are represented as
binary numbers. For instance, we need 22 + 7 letters for
1025 -  — 1024 - y > 0, since each of the two coefficients
can be represented with 11 digits. The same lower bound on
the minimal DWA size holds for ¢ < ¢. In the following, we
show that a similar lower bound holds for equations.

Optimization for Equations. For an equation ¢ =c we can
collapse the states in Af c n) from which we cannot reach
the accepting state ¢ € Q to a single non-accepting state.
Additionally, if t=c is one of the equations ; =0, —z; =0,
x1 —x2 =0, Or —z1 + 22 =0 we can merge the states ¢; and
0. These optimizations produce the minimal DWA for ¢t =c.
For instance, the case for p € Q N Z is proved as follows.
Assume that we can reach fromp € Q N Z the state ¢, i. €.,
thereisaw € ({0,1}")*, with §(p, u) = c. Any other states
q € QN Z with ¢ # p from which we can reach ¢ cannot be
merged with p, since

+ ()] # 2" + ¢ [(w)n] "= O5(q, ),

where n is the length of w. The other cases are similar.

A lower bound for the minimal DWA representing [¢t=c]
is based on the following lemma about the states of the
DWA A(ZS ) = (Q,{0,1}",6,q1, F), where = € {=,#
» <, Sa >, Z} LetsS := {5 € QﬂZ : _||t||+ <s< ||t||*}
and [n] :={0,...,n —1},forn > 0.

Lemma8. Everyq € QNZ isreachablefromeveryp € S.

c Lemnéa 1(a) p2n

Proof. We need a result from number theory. Let v > 0
and let ¢y, ...,cy be integers with 0 < ¢; < --- < ¢, and
ged(ea, ..., cy) = 1. The Frobenius number G(cq,...,cy)
is the greatest integer z for which the linear equation ¢, -
z1 + -+ + ¢y - &, = 2z has no solution in the natural num-
bers. For v = 1, it trivially holds that G(c;) = —1. For

v > 1, the upper bound G(c1,...,¢y) < CT”I was proved
by Dixmier [11]. It is straightforward to show that for all
v >0,

G(CryeveyCy) <2977 F —(e1 4+ -4 ¢y). (2)



The cases for » = 0 and » = 1 are trivial since S = 0.
Assume that » > 2. By Lemma 2, it suffices to show that
there are a1, ..., a, > 0 with p2% + t[ay,...,a,] = g, for
some N > [lg(1 4+ max{ay,...,a})].

Casel: p = 0. There are positive and negative coef-
ficients in ¢, since p € S. It follows that the equa-

tion ¢(z1,...,z-) = ¢ has infinitely many solutions
in the natural numbers. Recall that we assume that
ged(t) = 1. In particular, there are a1,...,a, > 0 with
2Np+tlay, ..., a,] = g, for some appropriate large enough
N.

Casell:p>0andg > 0. Let k;,,...,k;, be the positive
coefficients in ¢, and let &;,,. .., k;, be the negative coef-
ficients in ¢. Let V be the size of the DWA Afifn), i.e.,
N = 3+ max{|c|, ||t]|+} + max{e, ||t]| - }. We rewrite the
equation t(zy,...,z,) + p2V = qto

C+t1(mi17"'7miu):tz(mj17"'7mju)7 (3)

where ¢ := p2N —q, t, istheterm k;, -z;, +- -+ ki, -z,
andt istheterm |k;, |-z, +---+|k;, |-z;, . Notethat > 0
sincep > 0and 2V > ¢. Let D := ged(|kj, |, - - -, | k5, ])- I
order to show the existence of a solution a1, ..., a, € [2V]
of the equation (3), we proceed in two steps:

Step 1: There are a;, , . ..,a;, € [D]such that

D| C—l—tl[ail,...,ai”].

Step 2: Thereare ajy, . .., a;, € [2V] such that

C-{—tl[ail,...,aiu] = t2[aj1,...,ajy].

Proof of Step 1. If u = 0 then there is nothing to
prove. Assume that x > 0. There are K, R > 0 such
that ( = DK + R with R < D. It suffices to show
that there are 0 < aj,,...,a;, < D and K' > 0 with
DK' = R + t1[a;,,...,a;,], since then

C+t1[ai17'"70'2'“]:DK+R+tl[a'i17"'7aiH]
=DK + DK' = D(K + K'),

and thus, D|C + t1[ai,, ..., a;,].

First, assume the existence of a;,,...,a;, > 0 with
D|R + t1[ai,, .. .,a;,], where a;, > D, forsome1 < ¢ <
w. To simplify matters, we assume without loss of generality
that ¢ = 1. Thereisan a > O with a;, = D + a. Further, as-
sume that there isno b < a;, with D|R+t1[b, as,, - - ., a;,].
For some K’ > 0, we have that

DK' :R+t1[ai1, ey aiH] :R—l-Dkil-f-tl [a, Qi y e ves aiH] .
Therefore, D(K' — k;;) = R + ti[a,a;,,- ..

D|R + ti[a, a4y, - - -
of D +a.

) aiu]a i. e,
,ai, . This contradicts the minimality

It remains to show the existence of a;,, ..., a;, > 0with
D|R + ti[ai,, ..., a;,]. The existence reduces to the prob-
lem of whether the equation

D'y_kil * Liq —"'—k‘i” 'ZEi” :R
has a solution in the natural numbers. This is the case since
ged(D, ki, s - -, ki, ) = 1, by assumption.

Proof of Step 2: Assume that there are v > 1 distinct
coefficients in ¢o of the equation (3). Without loss of gen-
erality, assume that 0 < |kj,| < --- < |k;, | Let W :=

Chtalosmaiy] g IE1= and ¢ := |gl,for 1<é<w.

D ’
Note that ¢, < --- < £, and that ged(44,...,¢,) = 1. The
equation (3) simplifies with the a;s from Step 1 to

W=t 2+ 40z, (4)
An upper bound on W is
2N _q+(D—-1) ||t
W< P2 a (D MIEN -+ (5)

and a lower bound on W is

2N ¢ 2N —max{c,||t]|-} 2Pt ) _pgy4.44,)
W B > Zomaeli) 5

>t — (0 4 L)

From the lower bound on W and the upper bound on
Frobenius numbers (2), it follows that the equation (4) has a
solution in the natural numbers. Let x > 0 be maximal such

that there are a1, ..., a, > 0 with
W =/lia1+---+Llyay+ kL. (6)
We show that a4, ...,a, < L. To achieve a contradiction,

assume that thereisa &, 1 < ¢ < y with ag = L + a, for
some a > 0. Without loss of generality, assume that £ = 1.
This contradicts the assumption that x is maximal:

W =kL+{(L+a)+ laz+ -+ Lya,
=(k+bL)L+ba+Llra+ -+ Lyay.

From x and a1,...,ay, We obtain a solution for the
equation (4) in the natural numbers, namely

W=cL+lia1+---+ {ya,
=kl +---+0) +lias + -+ Lya,
=l(k+a)+-+l(k+ay) + 16+ + k.

It suffices to show that k < 2V — max{ai,...,a,}. An
upper bound on k is

(:) W—(tia14++4yay) < W —max{a1,...,ay}
L = L

© p2¥ gt (D-1)ells _
DL

max{ai,...,ay}
L

t||-—1)2V _
< (Il DL) + Ll))Ll ||t||+ _ max{ai ay}

N 2NV |[t]|l+ —max{ai,...,a, }
<2 5zt 7 .




It remains to check whether the inequality

il t)l+—
oN _ % + el + ma)z{(n, ,ay} < 9N

—max{ai,...,ay}

is valid. The previous inequality rewrites to

£l + +max{a1,...,ay }(L=1) 2V
1 + + 2 ol S 5L -
Multiplying with the common denominator DL, the in-
equality rewrites further to

DL + D||t||+ + Dmax{ay,...,a,}(L — 1) <2V,

Since max{as,...,ay} < L—1and N > ||t||—- + ||t]+ =
DL +||t|]+, it suffices to show the validity of the inequality

DL+ D||t||s + D(L —1)% < 2PEFltl+ - (7)

It is straightforward to show that the inequality (7) is true
forall D,L > 1and ||¢||+ > 0.

Caselll: p < 0and g < 0. Itsuffices to show the existence
of a solution ay, ..., a, € [2V] for

tl(xilv""xiu) = |p|2N - |q| +t2($j17"'7xju)'

where t; and ¢, are defined as in Case Il. This equation is
symmetric to the equation (3) in Case II.

CaselV: p > 0andg < 0. This case can be solved with
Case | and Case Il. Since p > 0 and ¢ < 0, we have that
0 € S. By Case I, the state 0 is reachable from p, and by
Case I, g is reachable from state 0.

CaseV: p < 0andq > 0. Analogously, this case can be
solved by Case Il and Case I. O

With Lemma 8 at hand it is straightforward to prove for
Afifn) that p ~ ¢ iff p = g, for all p, g € S. Therefore, we
have that the minimal automaton representing [[¢ = c]] has
at least | S| states. Note that Lemma 8 also reveals the in-
teresting fact that .S is a strongly connected component in
Atéc .

(m,n)

3.3. Divisibility Relation

In this subsection, we give an upper bound of the size
of the minimal DWA for a formula d|t 4 ¢, where d > 2,
t(z1,-..,2-) isahomogeneoustermand ¢ € Z.

Let A%t+c pe the DWA with the set of states Q :=
{q1,0,1,...,d—1}. Astate ¢ € QNZ has the intuitive inter-
pretation: if we reach the state g withaword w € ({0,1}")*
then the remainder of the division of ¢[(w)] by d equals gq.
We denote by rem(g, d) the remainder of ¢ € Z divided by
d. Let A%ltte .= (Q,{0,1}", 6, g1, F') with

5(¢.F) = rem (—t[b], d) if ¢ = qr,
o= rem (2q + t[b],d) otherwise,

forg € Qandb € {0,1}",and F := {qg € Q : d|q + c},
where ¢p is interpreted as 0. Note that there is exactly one
q € QNZwith d|q + c.

The correctness of our construction follows from the two
facts which are straightforward to prove.

(@) Forn € Z,d|n + ciff d|rem(n, d) + c.
(b) Forw € ({0,1}")*, §(qr, w) = rem (¢[(w)], d).

The proof of (a) is straightforward. There are p, ¢ € Z such
that pd + ¢ = nand 0 < g < d. Note that ¢ = rem(n, d).
By definition, d|n +ciffthereisak € Z withdk = n+c =
pd+q+-c. The equality can be rewritten to d(k—p) = g+c,
i.e., d|rem(n,d) + c.

We prove (b) by induction over the length of w. For the
base case, let w = b € {0,1}". Since we represent inte-
gers using 2’s complement, we have that ¢[(b)] = —¢[b]. By
definition, &(gr, b) = rem (¢[(b)],d). For the step case, as-
sume 8(qr, w) = rem (¢[(w)],d) and letb € {0, 1}". There
are p,q € Z with t[{w)] = pd+¢gand 0 < g < d. Note
that ¢ = rem(t[(w)],d) and t[(wb)] = 2t[(w)] + t[b] =
2pd + 2q + t[b]. We have that

rem(t[(wg)], d) =rem(2pd + 2q + t[b], d)
=rem(2q + t[b], d) = 5(q,b)
B 5(5(qr,w),b) = 6(qr, wh).

Fact 9. The DWA A4lt+e represents[d|t 4 c] andhasd + 1
dtates.

An optimization of the construction is to filter out the
states that are not a multiple of ged(gcd(t), d). These states
are not reachable from the initial state since rem(t[a], d) is
a multiple of gcd(ged(t), d), for every @ € Z". Addition-
ally, we can merge states from which we cannot reach an
accepting state.

3.4. Quantifier-free Formulas

In this subsection, we give an upper bound on the size of
the minimal DWA for a quantifier-free formula. This upper
bound depends on the maximal absolute value of the con-
stants occurring in the (in)equations of the formula, the ho-
mogeneous terms, and the divisibility relations. The upper
bound does not depend on the Boolean combination of the
atomic formulas. This is not obvious since Boolean connec-
tives are handled by the product construction if we construct
the DWA recursively over the structure of the quantifier-free
formula. The size of the resultant DWA using the product
construction is in the worst case the product of the num-
ber of states of the two DWAs. Note that we allow the con-
nective «++. Eliminating <+ can lead to exponentially larger
formulas.



Let T be a finite nonempty set of homogeneous terms
and let D be a finite set of integers greater than 1. More-
over, let £ > max{||t||+ : t e TFU{||t|]|- : t € T}.
Theorem 10. Let ¢ be a Boolean combination of atomic
formulast s candd|t+c',witht € T,d € D, —{ < ¢ < ¢,
c eZ,andx € {=,#,<,<,>,>}. The size of the mini-
mal DWA for ¢ isat most (2 + 2¢)!T! - (1 + max D)ITI'PI,

Proof. Without loss of generality, we assume that the vari-
ables occurring in terms in T are yl, ..,yr. Let C be
the product automaton of all the Af 2.0)S and A%lts, for
t € Tand d € D. To simplify notatlon we omit the
subscripts (—¢,¢) and we assume that T = {t1,...,tm}
and D = {d,,...,d,}. Note that the states of C are tu-
ples (¢t*,...,qtm, g%t ... g% tm), where g% is a state
of A%=0 and g%t is a state of A%t By Fact 3, A%=0 has
2 + 2¢ states, and by Fact 9, A% % has 1 + d; states. It fol-
lows that the size of C is at most

[Te+20-T] J[J+a) <

teT teT deD

(24+20)™- (1+ maxD)™"

It remains to customize the set of accepting states of
€ according to ¢. We identify an initial state of A%=° or
A%t with the integer 0. We define the DWA D as @, ex-
cept the set E of accepting states is defined as follows. A
state ¢ = (q¢*,...,¢tm,¢t% ... gtmd) of Disin E iff
3 |= g4, Where ¢, is the formula obtained by substituting

o the integer ¢* for the term ¢; in the atomic formulas of
the form ¢; & ¢, and

o the integer ¢*-% for the term ¢; in the atomic formulas
of the form d |¢; + c.

Note that 1), is either true or not in 3 since it is a sentence.

It remains to prove that D represents [¢]. Let w €
({0,1}")* be aword representinga € Z". Foraterm¢ € T,
the value ¢[a] can be replaced by ¢ if t[a] > ¢ and by —¢ if
t[a] < —2inevery atomic formula of the form ¢ & ¢ without
changing its truth value since —¢ < ¢ < £. This modified
value corresponds to the state reached by A =0 after reading
the word w. In an atomic formula of the form d|t + ¢, with
t € Tand d € D, we can replace t[a] + c by rem(¢[a] +c, d)
without changing the truth value. This adjusted value corre-
sponds to the state reached by A%l after reading the word
w. From the definition of E, it follows that w € L(D) iff
3 ylal. O

4. Upper Bound on the Automata Size

In this section, we give an upper bound on the size of
the minimal DWA for an arbitrary formula. We obtain this
bound by examining the quantifier-free formula constructed
by Reddy and Loveland’s ge method [25], which improves
Cooper’s ge method [10]. We use Reddy and Loveland’s

ge method since the produced formulas are “small” with re-
spect to the following parameters on which the upper bound
of the minimal DWA in Theorem 10 depends.

Definition 11. For aformula ¢, let

Hrerms () = |{t 1 £ = c € A() or d]t € A()}
(p):=|{k : kisacoefficientina € A(p)}|
Haivs(p) :={d : d|t € A(p)}|
() :=max{1}U{|c| : t 2 ceAlp)}
(p) :=max{1} U {|k| : kisacoefficient
ina € A(e)}
maxaiv (@) :=max{1} U {d : d|t € A(p)}

where A(y) isthe set of atomic formulas of the formd|¢ and
the normal forms of the (in)eguationsoccurring in .

4.1. Eliminating Quantifiers

For the sake of completeness, we briefly recall Reddy

and Loveland’s ge method. Consider the formula 3z with
»(z,7y) € QF. The construction of ¢/(y) € QF proceeds in
2 steps.
Step 1: First, eliminate the connectives — and « in ¢ us-
ing standard rules, e.g., a subformula x — ' is replaced
by =x V x'. Second, push all negation symbols in ¢ in-
wards (using De Morgan’s laws, etc.) until they only occur
directly in front of the atomic formulas. Third, rewrite all
atomic formulas and negated atomic formulas in which z
occurs such that they are all of one of the forms

E-z<t(yiy---,Yn) (A)
tY1y.eyYn) <k-z (B)
d| t(xvylv"'ayn) (C)

with & > 0. For instance, the negated inequation =2 -z +9-
y < 5isrewrittento —9-y +5— 1 <2z, and the negated
equation =2 - x + 9 - y = 5 is replaced by the disjunction
—9-y+5<2-2V2-2<-9-y+5. Let ' (z,7) be the re-
sulting formula.

Step 2: Let ¢, be the formula where all the atomic for-
mulas of type (A) in ¢’ are replaced by “true”, i.e., 0 < 1,
and all atomic formulas of type (B) are replaced by “false”,
i.e., 1 <0. Let B be the set of the atomic formulas in ¢’ of
type (B), and let D be the least common multiple of the ds
in the atomic formulas of type (C) and of the coefficients of
the variable z in the atomic formulas of type (B). Let ¢ be
the formula

\/ Y-ooli/7]
v \V \V (k[t+c+ingt+c+i/k-a]),

t+e<k-zeB 1<j<D

where ¢'[t 4+ ¢ + j/k - ] means that every atomic formula
a in ¢’ in which z occurs is first multiplied by & and then



k -z issubstituted by t + c+ 5, i.e., foraterm¢tand k € Z,

Eot<k-t ifa=Fk z<t,

alt/k - 2] = k-t <k -t ifa=t <k -z
kdk' -t +k-t' ifa=dk -z+1t,
a otherwise.

Fact 12. Theformula islogically equivalent to 3z .

4.2. Analysis

In [22], Oppen analyzed the length of the formulas pro-
duced by Cooper’s ge method by relating the growth in
the number of atomic formulas, the maximum of the abso-
lute values of constants and coefficients appearing in these
atomic formulas, and the number of distinct coefficients and
divisibility predicates that may appear. Similar analysis of
improved versions of Cooper’s ge method are in [19, 25].
We refine the analysis [25] of Reddy and Loveland’s ge
method. Such analyses are technical and subtle. For the sake
of readability, we have put the proofs of this subsection in
the appendix. For a single application of the ge method, we
have the following upper bounds.

Lemma 13. For every formula Qzp withp € QF and Q €
{3,V} thereisalogically equivalent ) € QF with

#terms ('(/]) S 4 #terms ((p)2
#coefs(¢) <16 #coefs( )4 +2 #coefs(‘P)
#leS (¢) < #leS( ) . (#terms (‘P) + ]-) + #terms (QD)
maXconst (¢) <2 maxcoef(‘P) . (ma'xconst((P) + ]-) +
maxcoef((p)#coefs (p)+1 ., maxdiv((p)#divs(W)
maXcoef (%) < 2 maxXcoer ()

maxdiv(¥) < maxcoet () - maxaiv(p) .

Using Lemma 13 and applying the ge method iteratively,
we obtain the following bounds on the parameters.

Theorem 14. For every formula ¢ containingm > 0 quan-
tifiersthereisalogically equivalent ¢ € QF such that

#terms( ) #leS(
#coefs

(¢
maXcoef (%), maxgiy (¥
(

23m

23m 23m

) < @
)<c?
)Ssm“
maXconst ¢) < 2 ta +27)

with ¢ > max{2,|A(p)|}, ¢ > max{3, #coets(¢)}, and
s > max{2, maxconst (¢), MaXcoer(¢), maxaiy (@) }-
Remark 15. Using the ge method naively to eliminate all
quantifiers in a formula is insufficient to prove the up-
per bounds in Theorem 14. A common way to extend ge
methods to arbitrary formulas is (a) to transform the for-
mula into prenex normal form, and (b) to successively iter-
ate the ge method from the innermost quantifier. The for-
mula (Vze) < ¢ illustrates that (a) is not a good idea.

Quantifiers do not distribute in general over — and <.
Therefore, we eliminate the connective < first. We ob-
tain ((Vzp) — ¥) A (¢ — Vay). Eliminating — yields
((=Vzp) Vi) A(—p VVzp). To move the quantifiers to the
front, we have to push the first negation inwards. Finally, we
obtain JzVz' ((—pVY)A(—pVe[z' /z])). We have not only
doubled the length of the formula but we have also dou-
bled the number of quantifiers. We want to eliminate quan-
tifiers and have ended up doubling the work that we have
to do. Fortunately, we can do better by successively (i) ap-
plying the ge method to subformulas of the form Qz¢ with
¢ € QF and Q € {V,3}, and (ii) replacing the subfor-
mula Qzy by the logically equivalent formula produced by
the ge method.

4.3. Main Result

We now prove the main result of the paper: The size of
the minimal DWA for a formula is at most triple exponen-
tial in the length of the formula.

Let o(y1,--.,y-) be a formula of length n. Note that
n > 3 and that the numbers of quantifiers, atomic formu-
las, and the maximal absolute integer in ¢ are at most n.
From Theorem 14 it follows that there is a logically equiv-

alent ¥ (y1,...,y-) € QF with
#terms (¢)7 #divs (Tﬁ) S n23" = 223" lgn S 224“
n+1 n+1 2n
maXcoef(¢), maxqiy (¥) <n? =92 g < 927

Note that ¥ = 282 for z > 1 and y > 0. Moreover, a
strict upper bound on max ¢onst (%) iS

3n o3n . 3n 3n
maaxconst('(/]) S2n(n2 +n% 42 )S 277{3n2 — 21—&-3n2 Ign

<ot < grnatien £ gon 2 92

37 1g

We have used the fact that 1 + 3z 1gy < 2¥z, for z,y > 2.

Note that ¢ is a Boolean combination of at most
HFrerms(V) - Faivs(¥) atomic formulas of the form
d|t + c and of at most #ierms(?) (in)equations of the
form ¢ & ¢, where ¢ € Z. Since every term in ¢ con-
tains at most the variables y1,...,y,, the sum of the ab-
solute values of the coefficients in a term is bounded by

n n Sn -
r22”" < n22”" < 22”7 With Theorem 10 at hand, we
know that the size of the minimal DWA for ¢ is at most

5n 5247 e (22872
2+2-227)" (14227 )
221+25"+24" ) 224n+1_224"+1
25n+2

24n+2 25n+3

<22 .92 < 22

Theorem 16. The size of the minimal DWA for a formula

o(n)
of length n isat most 22 .

The above theorem does not change if we measure the
length of integers logarithmically and not linearly. The only



change is that the maximal absolute integer in ¢ is not
bounded by n but by 2™. We have to adjust the bounds
0N maXeoef (%), maxgiv (), and max onst (10). FOr instance
maxeoet(10) is Now bounded by (27)2" " = 2n2""" This
is still less than 227, for some ¢ > 1. Analogously for
ma'xdiv(w) and maxXconst (¢)

5. Worst Case Example

We show that the upper bound in Theorem 16 is tight. We
use the formulas Prod,,(z, y, z) defined in [14], for n > 0.
In [14], Fischer and Rabin looked at the structure (N, +)
and not at 3, but it is straightforward to adapt the defini-
tion of Prod,, (z,y, 2) to 3. Forn > 0, Prod,(z,y, z) has
the following properties [14]: its length is in O(n) and for
a, b, c € Z,we have that

3 = Prody,[a,b,c] iff ab=cand0 < a,b,c < H P,

p prime and
p<f(n+2)

where f(n) := 22", It follows from the Prime Number The-

orem that [] , prime and p > 27" = 922" _ of(n+1),
p<f(n+2)

Theorem 17. Letn > 0. Every DWA representing [Prod,, ]

hasat least 272" states.

We first prove the following lemma about the set
MULT,, := {(a,b,c) € Z* : a,b € [2™] and ab = c}, for
m > 0.

Lemma18. Let m > 1. Every DWA representing MULT,,,
has at least 2™ states.

We use the following fact to prove Lemma 18.

Fact 19. Let¢ > 1.For all z € Nwith2¢71 < z < 2¢ — 2,
therearez,y, ' € [2¢] suchthat zy = 22 + 2.

Proof. If £ = 1 then there is nothing to prove since 2¢~1 >
2¢ — 2. In the following, assume that £ > 1 and 2¢~! < z <
2t — 2. Let z,y € [2°] with zy > 2%z and zy — 2%z is min-
imal. Note that it is always possible to find z,y € [2¢] with
zy > 2%z since for z = y = 2¢ — 1, we have that

cy = 2% — 28T 11 > 2% ot —2f(2f —2) > 2%;.

Let 2’ := zy—2%z. We have to show that 2 € [2¢]. Since
xy > 2%z we have that 2z’ > 0. For the sake of absurdity, as-
sume that z’ > 2¢. It follows that

(z—ly=xy—y=22+42 —y>2%

since y < 2% and 2z’ > 2¢. This contradicts the minimality
of zy — 2¢z since zy > (z — 1)y > 2¢2. O

Proof (Lemma 18). Let A = (Q,{0,1}3,8,q, F) be a
DWA representing MULT,,,, and let K be the set of words

10

u € ({0} x {0,1})* with 2 < |u| < m + 1 and u starts
with the letters 0(0, 0, 1), where 0 := (0, 0, 0).

We first show that for every w € K\ {0(0, 0, 1)™} there
isav € ({0,1}%)* with wv € L(A). Let

N w(0,0,0) ifw is of the form 0(0,0,1),
w =
w otherwise,

and let 1 + £ be the length of @. Note that 2 < £ < m. The
third track of @ encodes an integer z € {2¢71,...,2¢ — 2}
since the first letter of @ is 0, the second letter is (0,0, 1),
and @ # 0(0,0,1)%. From Fact 19, it follows that there
are z,y, 2 € [2¢] such that zy = 2%z + 2’. We have that
@((z,y, 2" )y € L(A). Let

. {ﬁ«x,y,z'»N
(9,2 )y

if w is of the form 0(0,0,1)*,
otherwise.

It holds that Wz, y, 2" ) = wo.

Now, let w' € K \ {w}. Because the first and second
track of wv and w'v encode both the pair (z,y), and the
third track of w'v does not encode 2z + z'. It follows that
8(qr,w) # 6(qr,w'), forallw’ € K\ {w}.

Therefore, A must have at least | K| states. Moreover,
since A € L(A) and K N L(A) = 0, these |K| states are
all distinct from g;. It follows that A has at least | K| + 1 =
20 421 ... 4+ 2m~1 4 1 = 2™ states. a

Proof (Theorem 17). Assume that for n > 0, there is a
DWA B with less than 275 states representing the set
[Prod,]. Let m := Z0) 1t holds that MULT,, C
[Prod,] since (2™ — 1) < 2™ = 2f(n+1) |t is straight-
forward to construct from B a DWA representing the set
MULT,, that has as many states as B by making some of
the accepting states in B non-accepting. This contradicts
Lemma 18. |

Note that the proof of Theorem 17 carries over to nonde-
terministic word automata.

6. Conclusion

We analyzed the automata-theoretic approach for de-
ciding Presburger arithmetic and established a tight upper
bound on the automata size. We have used the 2°s comple-
ment representation to represent integers as words, where
the first letter in a word has been interpreted as the most sig-
nificant bit (big Endian). Similar representations have been
used in [4, 18, 37]. Wolper and Boigelot [4, 37] do not re-
strict themselves to the 2’s complement representation of
integers. The automata constructions presented in [4, 37]
are parameterized by p > 2 for the p’s complement inte-
ger representation. The triple exponential upper bound on



the automata size carries over when using the p’s comple-
ment representation. However, the effect on the automata
size of switching from a p’s complement representation to a
q’s complement representation is open.

Another representation for integers as words is to inter-
pret the first letter of a word as the least significant bit (lit-
tle Endian) [1, 7]. We can switch from one representation
to the other by reversing the words and languages. The size
of a DWA representing a PA definable set can be exponen-
tially smaller by interpreting the first letter as the least sig-
nificant bit. There are examples showing that such exponen-
tial reductions occur. (see appendix A.3). However, we have
not found an example that shows the converse, i.e., where
the least significant bit encoding has an exponentially larger
minimal DWA than using the most significant bit encoding.
It is an open problem how the two representations are pre-
cisely related and which representation is superior in prac-
tice. We point out that our results rely on interpreting the
first letter as the most significant bit. For instance, Theo-
rem 10 does not carry over if the first letter is interpreted as
the least significant bit. Using the formulas defined in [14],
which are used to describe Turing machines in PA, and us-
ing lower bounds on the BDD size for m-bit multiplica-
tion [8], it is straightforward to show a similar lower bound
for the least significant bit encoding as in Theorem 17. Note
that we cannot use lower bounds on the sizes of BDDs (or
more generally, branching programs) when using the most
significant bit encoding since the reading of the next dig-
its by a DWA involves a left bit shift.

There are also nonstandard numeration systems for rep-
resenting integers, e.g. [17]. In a nonstandard numeration
system, the base is an infinite sequence of integers that has
certain properties. A standard example is the sequence of
Fibonacci numbers (fib;);>o: a natural number n is repre-
sented asaword by, 1 ...bo € {0, 1}* withn=>%",_._ b;-
fib;. The relationship between nonstandard numeration sys-
tems and formal language theory has been investigated,
e.g., in [16, 20, 30]. It remains as future work to investi-
gate the sizes of DWAs using different nonstandard numer-
ation systems.

The main technique to prove the triple exponential up-
per bound on the automata size was to relate DWAs with
the formulas constructed by a ge method. This technique
can also be used to prove upper bounds on the sizes of min-
imal automata for other logics that admit ge, and where
the structures are automata representable [3, 21], i. e., these
structures are provided with automata for deciding equal-
ity on the domain and the atomic relations of the struc-
ture. Examples are the mixed first-order theory over the
structure (R, Z, <, +) [5,36] and the first-order theory of
queues [27, 28].
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A. Additional Proof Details
A.1l. Proof Details of Lemma 13

The remainder of this subsection contains the proof of
Lemma 13. For the sake of brevity, we write # .ms instead
of #terms (), and analogously for the other parameters.

If @ = 3 then we apply Reddy and Loveland’s qge
method to the formula 3z in order to eliminate the ex-
istential quantified variable. If Q@ = V then we rewrite the
formula Yz to —Jz—¢p and apply Reddy and Loveland’s
ge method to the formula 3z—¢. Let ¢ be the formula pro-
duced by the ge method.

Maximal Absolute Values. We first prove the up-
per bounds for maxcoes(1), maxconst(¢), and maxaiy ().

Step 1 may increase the maximal absolute value of a con-
stant in an (in)equation by 1; the other two parameters are
not altered in Step 1. The least common multiple D is at
most

maxcoef#coefs . maxdiv#divs .

In order to carry out the substitution for an atomic formula
t+c<k-z € Bin Step 2 we multiply each atomic formula
a of ¢’ in which z occurs by k. Recall that

E-(t+c+g)<k-(t'+)
ifa=kK -z<t' +¢,

k-(+)<k-(t+c+7)
ifa=t'+c <k z,

kEdlk'-(t+c+j)+ k-t +)
ifa=dk - -z+t+c

aft+c+j/k-x] =

\

In the worst case, we have that j D, | = || =
maXconst +1, and d = maxg;,. Moreover, it can be the case
that there are coefficients ¢ and ¢’ of a variable y; in ¢ and
t', respectively, with |¢| = |€'| = maxcpes.

Since k, |k'| < maxgoer, We Obtain the upper bounds

maxcoef(¢) <2 Ina'xcoef2 )
maxdiv(w) <maXcoef - MaXdiy ,

and

maXconst (¢) <2 maxcoef '(ma'xconst "‘]-) + D - maxcoef
<2 maxcoef '(ma'xconst +1)+
coefs 11 . ivs
MaXcoer™ e 71 - maxgj, Faive .

Note that the values of the parameters in the subformula
Vi<j<p ¥-soli/] of 4 cannot get larger than the bounds
given above.

Number of Distinct Objects. For the following, let By :=
{t<k-z:t+c<k-z€B,forsomec e Z}. Note that
|BO| S #terms- It holds that #divs (¢) S #divs ('QDO) with

Yo i=Y-o[0/z]V \/ (k| tAQt/k-2])

t<k-z€Bg



since for an atomic formula of the form d|t + ¢ in %, we
have an atomic formula of the form d|t + ¢’ in 1. Similar
upper bounds hold for # coets () and #erms (¥).

Step 1 does not alter the number of the ds in the atomic
formulas of type (C), i.e., #adivs = Faivs(¢'). It holds that

F#divs (V) < Faivs (Vo) < #divs +|Bo| + |Bo| - #divs
S #divs '(#terms +1) + #terms .

Although the number of atomic formulas in Step 1 can
change, we have that #ierms = Fterms(p'). It is straight-
forward to see that the elimination of the connectives —
and « does not alter the number of distinct terms. More-
over, this number is also not changed, when the negations
are pushed in front of the atomic formulas. Since the atomic
formulas in A(¢) and A(p') are in normal form, the num-
ber #ierms 1S NOt altered in the third rewrite step. We have
that

#terms (Tﬁ) S #terms ('(,DO)
S #terms + #terms +|BO| + |BO| : #terms
S 4 #terms2 .

It remains to give an upper bound on the number of dis-
tinct coefficients occurring in the formula «. Step 1 might
double the number of distinct coefficients since by rewrit-
ing an atomic formula in one of the forms (A), (B), or (C)
a coefficient £ may become its opposite —k. Therefore, the
number of distinct coefficients in ¢’ is at most 2 #¢oefs-

Lett < k-x € Bp. In order to carry out the substitu-
tion, we multiply an atomic formula o of ' in which z oc-
curs by the factor k. « is of one of the forms k' -z < ¢’ + ¢/,
'+ <k -z ordk -z +t + . Let ¢ be a coeffi-
cient in the term ¢ for the variable y;, and let £’ be a coeffi-
cient in the term ¢’ for the variable y;. In the worst case, the
coefficient +k'¢ + k¢’ for the variable y; in the atomic for-
mula a[t/k - z] is different for any possible value of &, k', £,
and ¢'. Here, =+ stands for either + or — depending on the
type of a. We do not have to consider if + is either + or
— since we assume that if k£ € Z is a coefficient in ¢’ then
—k may also occurs as a coefficient in ¢'. Since k, k', ¢, ¢'
are coefficients we get at most (2 #coefs)* distinct coeffi-
cients. Moreover, all these coefficients can be different to
the coefficients in ¢’ which may still occur in the formula
_oo[0/ ], in the atomic formulas without the variable z, or
in the added atomic formulas k|¢. Therefore, we have that

#coefs (Tﬁ) S 16 #Ecoefs4 +2 #coefs .
This completes the proof of Lemma 13.
A.2. Proof Details of Theorem 14

Without loss of generality, we assume that the bound
variablesin ¢(y1,...,yn) &€ T1,..., Ty,
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Remark 15 illustrates that building the prenex normal
form is not a good idea. Fortunately, we can do better by
successively (i) applying the ge method to subformulas of
the form Qz+ where % is quantifier-free and Q € {V¥, 3},
and (ii) replacing the subformula Qz1) by the obtained log-
ically equivalent formula.

We define ¢y := ¢, and for k£ > 0, ¢, is the formula af-

ter the kth iteration of (i) applying the ge method to a sub-
formula of ¢;_1 that is of the form Qrxzr, Where 1y
is quantifier-free, and (ii) replacing @,z by the con-
structed quantifier-free formula. We denote by y ;. the out-
come of the ge method to @z v,. We iterate (i) and (ii)
m times. The sketched algorithm produces a quantifier-free
formula ¢,, that is logically equivalent to . We define
Y= o,
Number of Distinct Objects. We prove by induction over
k > 0 that the number of distinct terms ¢, in ¢y, is at most
22" =142" The base case holds for & = 0 due to the choice
of a. Let £ > 1. We apply the ge method to the subformula
Q. y of the formula 1. The worst case is that all dis-
tinct terms already occur in ¢4, and the terms in x; are all
different from the terms occurring in ¢ 1. Clearly, it holds
that #terms (VY1) < tr—1, and by Lemma 13, it holds that
#terms (Xk) < (2 #terms (1/}16))2 Therefore,

th <tp—1 + (2tp—1)?
E222(k—1)_1a’2k—1 4 (2. 222(k—1)_1a’2k71)2
;8 ) 22.22(k—1)_2a2k _ 222k—1+1a2k

< 222k -1 azk

The last inequality holds since 22¢—1 4+ 1 < 22¥ — 1, for all
k>1.

From ¢,, we obtain the claimed upper bound on the dis-
tinct number of terms in ¢):

2m m 2m . 3
#terms(@b) S tm S 22 10,2 S a2 1+2 S a2 ]

We prove by induction over £ > 0 that the number dy,
of distinct ds in the atomic formula of the form d|t in ¢, is
at most 22 ~142" . The base case for k = 0 is obvious. Let
k > 1. We apply the ge method to the subformula @ .z ¥y,
in the formula ¢ _1. An upper bound on dy, is

di <dk—1 + #aivs(Xr)
S dkfl + #divs (wk) . (#terms (wk) + ]-) + #terxns(¢k)
<dp1+dpa(te—1+ 1)+t

<tp—1+ (dp—1tp—1 + 2dp—1 + 1)
2222(k—1)71a2k—1 n (222(k—1)71a2k—1 n 1)2

2(k—1) _ k—1 2(k—1) _ k-1
§22 la2 _+_(222 la2 )2
2k K
<27 lg?

Analogously to the bound on # erms (%) we get the bound
3m
#aivs(¥) < a®.



Let ¢;, be the number of distinct coefficients in P We
show by induction over & > 0 that ¢, < 3% ~1c%". This
bound obviously holds for k=0 Letk > 0.We apply the
ge method to the subformula @,z in the formula ;.
An upper bound on ¢y, is

cr < Cp—1 + Fcoets (Xk)
<cp—1 +16 #coefs(¢k)4 +2 #coefs(¢k)
< 160%_1 + 2¢c, 1 < 180%_1

218(34’“’1—%4’“’1)4 <1834 -4
< fi‘lk_lc‘llc .

The claimed bound on # oefs(¥) holds since

#coefs(¢) S Cm S

3m
<c

m m m m 2m | 52m
34 _104 S C4 —144 :c2 42" —1

Maximal Absolute Values. The maximal absolute coeffi-
cient in the formula ¢y, for every £ > 1, is equal to the
maximum of the maximal absolute coefficient of ¢ ;_; and
the maximal absolute coefficient that occurs in x . Recall
that x, is the constructed formula from the ge method ap-
plied to the subformula @,z of 1. Analogously for
the maximal absolute constant, and the maximal ds in the
atomic formulas of the form d|¢ in of ¢y,.

We prove by induction over k£ > 0 that max coef(¢r) <
22°~152" The base case k = 0 is obvious. For the step case
k > 1, we have that

1 )7 maXcoef(Xk ) }
1), 2 nflalxcoef('(/]k:)2 }

IH k=1 4 ok—142
<2maxeoet(pr—1)? < 2(2% s )
<22k_152k .

= ma,x{maxcoef(gok_
< ma,x{maxcoef(gok_

maXcoef(‘Pk)

Since s > 2 it holds that

=maxcoer(Pm) < 227 71827 < 27712

<2

maxcoef(¢)

8)

We prove by induction over k£ > 0 that maxqiv (¢5) <

22°~142* The base case k = 0 is obvious. For the step case
k > 1, we have that

max{maxdw(@k 1), maxaiv (X }
< max{maxqiv(@r—1), MaXcoe (Vr) -
< maXcoef(QOk—l) : maXdlv(‘Pk—l)
222k—17152k—1 . 22’@—17152]6—1

maXdiy (‘pk)

— 92F-1.2"

Analogously to (8) we obtain the desired upper bound on
maxdiv(z/z).
We prove by induction over k > 0 that max conss (x) <
(Czak +a23k +2k) . .
2s . The base case £k = 0 is obvious. For
the step case, assume & > 1. We first give an upper bound
on N := maxcoef(¢k)#coefs(¢k)+l . maxdiv(z/)k)#divs(d]k)_

Note that for every subformula ¢ of ¢, we have that
maXcoef(§) < maxeoer(r—1). Similar inequalities hold
for the other parameters. Using our yet established upper
bounds, we get that

230 ta 23(k—1)

+1

I/\
IN

( ok \ #ecoets (Yr )+ F#dive(Yr)+1
S

S
( © 23(k 1)+2k 53(k— 1)+2k)
(=

z3k k)

(*)°

S
3(k— 1) 3(k—1)
( k+2 k2 +2k)

IN
IN

S
(9)

An upper bound on 2 max coer (1) IS

2k—ls2k—1 S s2k )

(10)
Using Lemma 13, we obtain the following upper bound on
ma'xconst((/)k):

2 maxeoer (Y1) < 2-2%  “Ls¥T <2

maX{maXconst (‘Pk—l )7 MmaXconst (Xk:) }
< max{maxconst((/)kfl)a
2 maxcoef(¢k)(maxconst (¢k) + ]-) + N}
Sl 2 maxcoef('()bk)(maxconst((/)kfl) + ]-) + N
3k 3k
(9)8%( O)Szk (2 maxconst(gpk*l)) + 5(c2 +a? +2’°)
(623(k—1)+a23(k—1)+2k_1) s(czsk +a2® +2,6)
3k

53(k—1)

iH
< s2"(4s

S
(ng(k_l)-‘ra 23k +2k)

53k

+2k’1+2k+2)+s(c +a

S

2s(c

23k

INIA

+a +2’“) )

For k£ = m, we obtain the claimed bound on max copst ().

A.3. BigEndian VersusLittle Endian

The size of a DWA representing a PA definable set can
be exponentially smaller by interpreting the first letter as the
least significant bit as the following example shows.

For n > 1, we define the formula ¢, (y) as

y>0A

3$0---3xn—1(/\0§i<n($i:vai=2i) A
/\09.<n2“‘1 | Y—To— ... —Ti A
—2ntl | y—mg—...—af:n,l).

ma“Xdiv(z/’k)}’rhe formula ¢, (y) encodes the language of words over

{0, 1}, where the (n + 1)st letter is 1 if we use the encoding
where the least significant bit is the first letter. It is straight-
forward to define a DWA for this language that has O(n)
states. It is well-known that the minimal DWA for the re-
verse language has 2°(") states.

We have not found an example that shows the converse,
i. e., where the most significant bit encoding leads to an ex-
ponentially smaller minimal DWA than using the least sig-
nificant bit encoding.



B. Wolper and Boigelot’s Argument

It has been claimed in [7] that the size of the minimal
deterministic WA for a Presburger arithmetic formula is at
most 3 exponentials in the length of the formula. Wolper
and Boigelot explain in [37] that the proof in [7] is incor-
rect. In the following quoted paragraph from [37], they ar-
gue that there must be an elementary upper bound on the
size of the minimal deterministic WA for a Presburger arith-
metic formula. They write on page 14:2

That the argument used in [7] is false does not
mean that the size of the automaton for a Pres-
burger formula will grow nonelementarily with
respect to the number of quantifier alterna-
tions. Indeed, an analysis of the traditional quan-
tifier elimination procedure for Presburger arith-
metic [12] shows the opposite. Looking at this
procedure, one notices that the number of ba-
sic formulas that are generated stays elemen-
tary in the size of the initial formula. Whatever
the quantifier prefix of the formula, the quan-
tifier elimination procedure only generates a
Boolean combination of this elementary num-
ber of formulas. Hence, the formula obtained by
the quantifier elimination procedure is elemen-
tary and so will be the corresponding automa-
ton.

Our proof of Theorem 16 is based on an idea similar to that
used by Wolper and Boigelot, namely, analyzing the for-
mula produced by a quantifier elimination method. How-
ever, Wolper and Boigelot used the quantifier elimination
method described in [12] and we used the quantifier elim-
ination method by Reddy and Loveland [25]. The analy-
sis suggested in the paragraph quoted above is not actually
spelled out by Wolper and Boigelot. Moreover, their argu-
mentation above is sketchy and unclear, as we explain be-
low.

Reddy and Loveland’s method does not require that
the formula is put into disjunctive normal form whenever
another quantifier is to be eliminated, unlike the method
in [12], where it is assumed that when eliminating a quanti-
fier the formula is given in the form

\/ 3517(0(;’71 VANAWAN Oszi) (11)
1<i<m

or possibly with a negation symbol in front of it (the
a; ;S are atomic formulas or negated atomic formulas® and

2 The bibliographical references within this quotation have been
adapted to correspond to those in the bibliography of this paper.

3 The logical language in [12] contains the modulo relations “=;” for
d > 2 instead of the divisibility predicates “d|”. Note that z =; y iff

dlz —y.
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m,ky,...,k, > 1). Putting a formula 3z, where ¢ is
quantifier-free, in such a disjunctive normal form may cause
an exponential growth in the length of . The number of dis-
tinct atomic formulas remains the same. But since each of
the existential quantifiers in (11) is eliminated separately, in
spite of what is claimed in the above quoted paragraph, it
is unclear why the number of distinct atomic formulas re-
mains elementary bounded when applying this method to
formulas with nested and alternating quantifiers.

The meaning of elementary formula in the last sentence
of the quoted text is also unclear since the length of the
obtained formula can be non-elementarily longer than the
original formula. A possible meaning is that the obtained
formula is logically equivalent to a quantifier-free formula
of elementary length. However, even if the number of dis-
tinct atomic formulas is elementary bounded then it does
not follow that the produced formula is logically equiva-
lent to a quantifier-free formula of elementary length, since
the atomic formulas in the produced formula might contain
constants that are not elementary bounded.

Moreover, the concrete upper bound remains open in
Wolper and Boigelot’s argument. A crucial point in estab-
lishing the triple exponential upper bound is that determin-
istic WAs can optimally share the homogeneous terms in the
(in)equations and the divisibility relations of Boolean com-
binations (see Theorem 10). Only taking into account the
number of distinct atomic formulas in a Boolean combina-
tion will result in a significantly larger upper bound (at least
by one exponent). Another reason for a worse upper bound
is the following: Wolper and Boigelot have neither given au-
tomata constructions for the divisibility predicates nor for
the modulo relations (see footnote 3). A crude upper bound
on the size of the minimal deterministic WA for the atomic
formula d|t can be given by 2™, where n is the size of the
minimal deterministic WA for the equationd - x = ¢, where
the variable = does not occur in the term ¢. Note that d|¢ is
logically equivalent to 3z d - = = ¢. However, as we have
seen in Fact 9, the size of the minimal deterministic WA is
at most d + 1. Using the crude exponential upper bound for
divisibility predicates results in an upper bound that is ex-
ponentially worse than the upper bound in Theorem 16.



