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Abstract. Although there exist informal design guidelines and formal
development support, security protocol development is time-consuming
because design is error-prone. In this paper, we introduce Shrimp, a
mechanism that aims to speed up the development cycle by adding au-
tomated aid for protocol diagnosis and repair. Shrimp relies on existing
verification tools both to analyse an intermediate protocol and to com-
pute attacks if the protocol is flawed. Then it analyses such attacks to pin-
point the source of the failure and synthesises appropriate patches, using
Abadi and Needham’s principles for protocol design. We have translated
some of these principles into formal requirements on (sets of) protocol
steps. For each requirement, there is a collection of rules that transform
a set of protocol steps violating the requirement into a set conforming
it. We have successfully tested our mechanism on 36 faulty protocols,
getting a repair rate of 90%.

1 Introduction

Although there exists formal development support, as well as informal design
guidelines, a lot of protocols, whether recent or not, are faulty. Further aid
for protocol development is thus required. In this paper, we introduce Shrimp,
a Smart metHod for Repairing IMperfect security Protocols. Shrimp aims at
speeding up the formal software development cycle, bridging the gap between
design and analysis by means of diagnosis and repair. It offers benefits to practis-
ing security engineers, including getting a better insight into a protocol flaw and
enabling incremental protocol design. These features are all of interest because
nowadays protocols are more complicated than just 3—5 steps (e.g. the SET
protocol) and their various parts are intertwined, making it hard for a human
to cope with all the subtle dependencies.
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Shrimp relies on existing state-of-the-art tools both to analyse an (interme-
diate) protocol and, if the protocol is flawed, to find one or more of protocol
runs violating a given security requirement, called an attack. It then analyses
the protocol and the attack1 to pinpoint the faulty steps of the protocol and
synthesises appropriate changes to fix them. This yields an improved version
of the protocol that should be analysed and potentially patched again until no
further flaws can be detected.

To identify and patch a protocol flaw, we have translated some of the informal
principles for the design of security protocols of Abadi and Needham [1] into
formal requirements on sets of protocol steps. For each requirement, there is a
collection of rules that transform a set of protocol steps violating the requirement
into a set conforming it. The correction of security protocols incorporates the
use of several of these rules. However, the patches are not independent and the
application of a rule requires preconditions to be applicable and should guarantee
postconditions once it has been applied. As a general framework to organise the
application of such rules, we have adopted the proof planning methodology [4],
developed to automate inductive theorem proving.

We have hitherto focused on automatically fixing protocols subject to a replay
attack,2 since many known faulty protocols fail to resist it.3 This paper intro-
duces two patching methods which, together with a generalisation of that pre-
sented in [10], almost deal with the full class of replay attacks proposed by Syver-
son [14] (the only exception being the type flaw subclass.4) We have successfully
tested Shrimp on 36 protocols, 21 out of which were borrowed from the Clark
and Jacob library, obtaining a repair rate of 90%. Since our approach to protocol
repair requires an attack to reason about, to analyse a protocol and to get an at-
tack whenever it was faulty, we used AVISPA, http://www.avispa-project.org/.
So throughout this paper we shall refer to AVISPA’s hierarchy of authentication.

The rest of this paper is organised as follows: §2 describes the types of flaws we
want to automatically patch and describes the theoretical framework underlying
our approach to protocol repair. Shrimp is presented in §3. We recapitulate the
experimental results found throughout our investigation in §4 and discuss related
work in §5. Conclusions and indications for further work appear in §6.

2 Fixing Faulty Security Protocols

2.1 Abadi and Needham’s Principles

Abadi and Needham postulated 11 principles for the prudent design of security
protocols [1] after noticing common features amongst protocols they found hard
1 Our experiments show that it is not necessary to explicitly consider the property the

protocol fails to satisfy; this might be attributable to that such a property is already
implicit in the attack.

2 A replay attack is a form of attack where a data transmission is repeated or delayed.
3 Most of the attacks reported in the Clark-Jacob library [7] are of type replay.
4 A type flaw attack is an attack where a participant confuses a (field of a) message

containing data of one type with a message data of another.

http://www.avispa-project.org/
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to analyse. We use some of these principles to diagnose the cause of an attack. In
particular, Shrimp takes care of replay attacks where the message being reused
is a cypher-text, dealing with the following protocol flaws:

1. Two or more different cypher-texts of the same protocol cannot be distin-
guished from one another. This flaw violates principle 10, recognising mes-
sages and encodings, which prescribes being careful about the format of a
message: principals should be able to associate which step or which run a
message corresponds to, regardless of whatever protocol they are running;

2. The originator/recipients of a cypher-text in one message of the protocol
cannot be distinguished. This flaw violates principle 3, agent naming, which
prescribes that the agent names relevant for a message should all be derivable
either from the format of a message or from its content; and

3. Two or more different runs of the same protocol cannot be distinguished from
one another. Upon reception, a participant cannot separate which run the
message belongs to. This flaw violates principle 10, since the message cannot
be bound to a particular run of the protocol. It also violates principles 6—8,
since the protocol does not guarantee association or temporal succession.

2.2 Strand Spaces

In order to reason about non-trivial messages and their intended role in a pro-
tocol, Shrimp uses a formalisation of individual message notations. Most this
formalisation has already been developed for protocol verification (e.g. strand
spaces [15] or Paulson’s logic [12]). Shrimp’s constructs might be accommodated
within any logic. Here we choose strand spaces, because the method for fixing a
protocol without a proper message encoding can be theoretically justified using
authentication tests [9]. In the sequel, we assume knowledge of strands spaces,
though notation and authentication tests are recalled below.

Messages, ranged over by M1, M2, . . ., are also called terms. The set of terms,
A, is freely generated from two disjoint sets, the set of texts (T) and the set of
keys (K), by means of concatenation, M1; M2, and encryption, {|M |}K (K ∈ K).
T contains nonces, Na, Nb, . . ., timestamps, Ta, Tb, . . ., agent names, A, B, . . .,
and tags, �a, �b, . . .. There are two functions, one maps principals, A, B, . . ., to
their public keys, K+

a , K+
b , . . ., and the other a pair of principals, 〈A, B〉, to their

symmetric shared key, Kab. K comes with an inverse operator mapping each
member of a key pair for an asymmetric cryptosystem to the other, (K+

a )−1 =
K−

a , and each symmetric key to itself, (Kab)−1 = Kab. Let Safe denote the
set of keys that are safe and Safea denote the set of keys known by a regular,
non-compromised agent A.

The subterm relation, �, is the least relation such that M � M , M � {|M1|}K

if M � M1, and M � M1; M2 if M � M1 or M � M2. Notice that, for any
K ∈ K, K � {|M |}K only if K � M . A message is atomic if it is not an encrypted
term or a concatenated one. A message M0 is a component of M if M0 � M , M0
is not a concatenated term, and for every M1 �= M0 such that M0 � M1 � M
implies that M1 is a concatenated term.
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A strand is a sequence of nodes, each denotes a communicating event, where
transmission (respectively reception) of a term M is denoted as +M (respectively
−M). So a node is either positive or negative. Let s be a strand and let 〈s, i〉 and
〈s, i+1〉 denote the i-th and the i+1-th nodes of s. Then 〈s, i〉 ⇒ 〈s, i+1〉. ⇒+

and ⇒∗ are used to respectively denote the transitive and the transitive-reflexive
closure of ⇒. n → n′ denotes inter-strand communication; it requires the nodes
to be complementary one another, in terms of polarity, sign(n) = + �= sign(n′),
and matching, in terms of the message being exchanged, msg(n) = msg(n′). A
strand space Σ is a set of strands, where ⇒ and → impose a graph structure on
the nodes of Σ. Each strand represents a protocol run from the local perspective
of a participant. If the participant is honest, the strand, as well as the strand
nodes, is said to be regular and penetrator otherwise. A term M originates at
a node n if sign(n) = +; M � msg(n); and M �� msg(n′), for every n′ ⇒+ n. M
is said to be uniquely originating if it originates on only one node in the strand
space. uniques is the set of terms uniquely generated at strand s.

A finite, acyclic graph, B = 〈N , (→ ∪ ⇒)〉, is a bundle if for every n2 ∈ N , i)
if sign(n2) = −, then there is a unique n1 ∈ N with n1 → n2; and ii) if n1 ⇒ n2
then n1 ∈ N and n1 = 〈s, i〉 and n2 = 〈s, i + 1〉. Let B be a bundle, then ≺B
and �B denote respectively the transitive and the transitive-reflexive closure of
(→ ∪ ⇒).

For brevity, protocols will be specified by a sequence of steps, each of the
form q. A → B : M , meaning that, at step q, agent A sends message M to
agent B, which B receives. Similarly, an attack will be given as a sequence of
steps, each affixed with their session: s : q. A → B stands for the q-th step of
the s-th run of a protocol. We find it convenient to respectively use S and Spy
to refer to the server and the penetrator. So A → Spy(B) : M and Spy(A) → B
respectively denote interception of M and impersonation of A. We will use Ka

as an abbreviation for Kas.
Suppose that A is a participant in a protocol. Suppose that at node n0 A

creates a new term N , builds M = {|M ′|}K , such that N � M and M is a
component of msg(n0), and then transmits msg(n0). Suppose that N is uniquely
generated, that M is not a subterm of a component of any regular node in the
protocol and that the decryption key is safe, K−1 ∈ Safe. If N is later received,
at node n1, outside the form {|M ′|}K , then only a honest participant, not the
penetrator, must have been responsible for N to have gone out of this form. The
edge n0 ⇒+ n1 is an outgoing test for N in M . If, instead, N is sent possibly in
clear and it later is received in encrypted form {|. . . ; N ; . . .|}K′ , where K ′ ∈ safe,
then only a honest participant, not the penetrator, must have been responsible
for N to have entered to this form. The edge n0 ⇒+ n1 is an incoming test for
N in {|. . . ; N ; . . .|}K′ .

2.3 Shrimp’s Meta-logic

Shrimp analyses the encoding of a message to determine when a cypher-text
may be used to arm a replay and how it should be changed to prevent a replay.
In the following we introduce a notion of similarity of messages and how messages
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can be modified to break a given similarity. Let � be a special symbol that is
not an atomic message and S be a set of keys. The pattern [2] p of a message M
visible wrt. S is given by:

pS(M) = {|pS(M)|}K if M = {|M |}K ∧ K−1 ∈ S pS(M) = M if M is atomic
pS(M) = pS(M1, S); pS(M2) if M = M1; M2 pS(M) = � otherwise

Definition 1 (Similarity). Two messages M and M ′ are similar wrt. S, writ-
ten M ∼S M ′, iff there is a bijective replacement α on patterns (with �α = �),
mapping symbols from M to M ′, such that pS(M)α = pSα(M ′) holds.

Definition 2 (Visible Content). The visible content ctS(M) of a message M
wrt. a set of keys S is given by:

ctS(M) = {M} if M is atomic ctS(M1; M2) = ctS(M1) ∪ ctS(M2)
ctS({|M |}K) = ctS(M) if K−1 ∈ S ctS(M) = ∅ if K−1 /∈ S

Two messages M and M ′ are equivalent under rearrangement, M ≡ M ′ for
short, iff ctS(M) = ctS(M ′) for all sets of keys S.

Shrimp also includes symbols that allow us to compute the name of the agents
involved in the exchange of a message and to reason about the name of the
agents that can be inferred from the encoding of a message. Given a bundle B,
A is the originator (respectively recipient) of a term M , A �B M , (respectively
A �B M) iff there is a positive (respectively negative) node n in a strand played
by A of B such that M originates at n (respectively M ∈ ctS(msg(n)), S being
the keys known to A.)

Definition 3 (Correspondents). Let B be a bundle. The participants involved
in the exchange of M in B, called the correspondents of M , Partners([M ])B, is
given by {A : A �B M ∨ A �B M}.

Definition 4. The names of the agents that can be (safely) deduced from the
encoding of a message is given by:

Agents({|M |}K) = {A} ∪ Agents(M) if K = K+
a ∨ K = K−

a

Agents({|M |}Kab
) = Agents(M)

Agents(M1; M2) = Agents(M1) ∪ Agents(M2)
Agents(M) = {M} if M is a name
Agents(M) = { } otherwise

Notice that we do not infer names from symmetric encryption, because the flow
of the message cannot be determined.

Shrimp finds bugs in protocols by analysing a bundle containing a penetrator
strand. Often this analysis suggests a change in the structure of a message and
in that case Shrimp identifies the node originating such message considering a
bundle denoting an intended protocol run. With this, we compute the changes to
be done in one such a regular bundle, which we then propagate to the protocol
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description. The following definitions aim at a meta-theory to allow for tracing
the consequences of changing all the nodes in the set of strands depending on
changes to a particular node.

Let Pos(M) be the set of all positions π in M . Elements in Pos are sequences
and · denotes sequence concatenation. Two positions π, π′ are independent if
there is no π′′ that either π = π′ ·π′′ or π′ = π ·π′′ holds. M|π is the submessage
of M at position π and M [π ← M ′] is the message obtained by replacing M|π
in M by M ′.

Definition 5 (Explicit Replacement). A set ζ = {(π1, M1), . . . , (πn, Mn)}
is an explicit replacement iff for all 1 ≤ i ≤ n : πi ∈ Pos and Mi are messages
and for all i �= j: πi and πj are independent. ER denotes the set of all explicit
replacements.

ζ = {(π1, M1), . . . , (πn, Mn)} ∈ ER is an explicit replacement for a message
M iff πi ∈ Pos(M) for all 1 ≤ i ≤ n. The application of ζ on a message M is
given by ζ(M) = M [π1 ← M1, . . . , πn ← Mn].

Changing a message that is sent from A to B changes the knowledge of B
and thus its abilities to construct consecutive messages. If B should forward an
encrypted messages coming from A and this latter message is changed in the
protocol, then we also have to change the message forwarded by B. Hence we
need a mapping between an old encrypted (sub-)message and the corresponding
new message:

Definition 6 (P-Assignment). A position π of a message M is protected
wrt. a set of keys S iff M|π has the form {|M ′|}K and K−1 �∈ S. A protected
position is minimal iff all smaller positions are not protected wrt. S. ProtS(M)
denotes the set of all submessages of M at minimal protected positions of M
wrt. S.

Two messages M and M ′ are p-assigned wrt. S iff for each {|N |}K ∈ ProtS(M)
there is a unique message N ′ with {|N ′|}K ∈ ProtS(M ′). The p-assignment
ΔM,M ′,S of M and M ′ is the set of pairs ({|N |}K , {|N ′|}K) of corresponding
terms at minimal protected positions of M and M ′.

In many cases, a protocol change will simply enrich the messages exchanged by
the principals with additional information. We capture this property as follows:

Definition 7 (Monotonicity). Let M, M ′ be messages and let A0 ⊆ A. M ≤A0

M ′ iff ctS(M) ⊆ ctS(M ′) and ctS(M ′) ⊆ ctS(M) ∪ ctS(A0) for all S ⊆ K.
An explicit replacement ζ is monotone for M wrt. A0 iff M ≤A0 ζ(M) holds.

ζ is strongly monotone iff for all S ⊆ K and all ({|N |}K , {|N ′|}K) ∈ ΔM,M ′,S:
N ≤A0 N ′ holds.

Definition 8 (Collision Freeness). Let S be a set of keys, M a message
and let A0 ⊆ A be a set of messages. M is collision free to A0 iff ∀M ′ ∈
ctS(M). ∀M ′′ ∈ A0. (M ′ �∼S M ′′).

Given a set of keys S, a set ΔM,M ′,S = {(M1, N1), . . . (Mn, Nn)} denotes also a
term replacement function which maps messages to messages. Given a message
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N , we obtain ΔM,M ′,S(N) by replacing each occurrence of Mi in a minimal
protected position of N by Ni.

Definition 9 (Admissibility). An explicit replacement ζ for M is admissible
for M wrt. a set of keys S iff M and ζ(M) are p-assigned. Let ζ be admissible for
M then ΔM,ζ(M),S is the corresponding term replacement function of ζ wrt. M
and S.

Given a term replacement function Δ, a set of keys S and a node n with
M = msg(n) then Δn,S = {(π1, Δ(M|π1)), . . . , (πn, Δ(M|πn

))} with {π1, . . . πn}
being all minimal protected positions π of M wrt. S with Δ(M|π) �= M|π.

Definition 10 (Representativeness). A bundle B = 〈NB, (→B ∪ ⇒B)〉 over
a protocol is representative iff it is regular and for every node 〈s, i〉 ∈ B and
s = rαs the replacement application operator αs is injective and rα ⊆ NB.

Definition 11 (Adaption). Let B = 〈NB, (→B ∪ ⇒B)〉 be a representive bun-
dle over a protocol. The adaption ζ of B for an explicit replacement ζ0 in a
positive node n0 ∈ NB maps each node of the bundle to an explicit replacement
and is defined as follows:

ζ[n] = ∅ if n �B n0 and n �= n0 ζ[n] = ζ0 if n = n0
ζ[n] = ζ[n′] if n′ → n ζ[n] = Δn,S if n0 ≺B n and n is positive

where Δ =
⋃

n′∈N Δmsg(n′),ζ[n′](msg(n′)),S with N being the set of all negative
nodes n′ with n′ ⇒ n and S is the set of keys known by the principal playing the
role associated with the strand where n lies, at the moment of sending msg(n).
ζ is admissible on B iff, for all n ∈ B, ζ[n] is admissible on msg(n).

Given a representative bundle and an injective function αs mapping a strand s
of the protocol to nodes of the bundle we can easily use the adaption of these
nodes in order to change the strand s itself by applying ζ[〈s, i〉]α−1

s to each node
〈s, i〉 of s. Given an adaption ζ on a representive bundle for P we write ζ(P ) to
denote the protocol that resuls after the application of ζ[〈s, i〉]α−1

s .
Using this procedure, Shrimp is able to modify a protocol description, starting

from the node originating the message that suggested the enhancement to all
the successor nodes where the changes endure. This yields a path, we call a
change enduring path. A change enduring path is guaranteed to be finite and
acyclic both because bundles are also finite and acyclic and because changes are
propagated considering only inter-strand transitions.

Proposition 1 (Monotonicity of Bundles). Let B = 〈NB, (→B ∪ ⇒B)〉
be a representive bundle over a protocol and ζ be an adaption for an explicit
replacement ζ0 in a positive node n0 ∈ NB. If ζ0 is strongly monotone for msg(n0)
wrt. a set of messages A0 then ζ[n] is strongly monotone for msg(n) wrt. A0 for
all n ∈ NB.

Proof (Outline). The proof is done by induction on the length of ≺B. As one
base case we assume n ≺B n0. Thus ζ[n] = ∅ and the proposition holds trivially.
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As another base case consider n0 = n then again the proposition holds triv-
ially due to the given assumptions on ζ0. Suppose n is negative and ∃n′. n′ →
n. As an induction hypothesis we assume that ζ[n′] is strongly monotone for
msg(n′) and S wrt. A. Since msg(n′) = msg(n) we conclude that ζ[n] = ζ[n′]
is strongly monotone for msg(n) and S wrt. A. Now suppose n is positive
and different from n0. As an induction hypothesis we assume that ζ[n′] is
strongly monotone for all negative nodes n′ with n′ ⇒+ n. Thus, N ≤A0 N ′

for all ({|N |}K , {|N ′|}K) ∈ Δmsg(n′),ζ[n′](msg(n′)),S and arbitrary S ∈ K. Hence,
N ≤A0 N ′ for all ({|N |}K , {|N ′|}K) ∈ Δ holds and ζ[n] = Δn,S is strongly
monotone wrt. A0. ��

2.4 Patch Planning Faulty Security Protocols

A patch method is a 5-tuple (name, input, preconditions, patch, effect). The first
component is the name of the method. The second component is the input, which
is often the description of a faulty protocol P , a bundle BA describing the attack,
and a representive bundle BR describing the intended run of the protocol. The
third component is the preconditions, a formula written in a meta-logic that the
input objects must satisfy. Shrimp uses these preconditions to predict whether
the associated patch will make the protocol no longer susceptible to the attack.
The fourth component is the patch, a procedure specifying how to mend the
input protocol. Finally, the fifth component is the effects, a formula specifying
required properties of the newer version of the protocol.

Methods can be compound by invoking other methods using methodicals
(functions that link methods together to control search). A compound method
is a 4-tuple (name, input, preconditions, method). It involves the name of the
compound method, the input, the preconditions, and then the method build
from methodicals, mostly in our case orelse meth. orelse meth meth1 meth2 tries
meth1 and if that fails tries meth2.

3 Fixing Faulty Protocols Subject to a Replay Attack

The chief method of Shrimp is the replay compound method, see Fig. 1. It in-
vokes three sub-methods: message encoding, agent naming and session binding.
The order in which methods are attempted is important as it imposes a hierar-
chy in terms of the complexity of implementing the patch. message encoding is
more viable because when modifying a protocol message it may not introduce
additional components. agent naming is more viable than session binding be-
cause it only modifies protocol messages. By contrast, session binding involves
the insertion of protocol steps.

3.1 Patching Protocols Violating Principle 10

The message encoding method, see Fig. 2, repairs a faulty protocol that portrays
two or more cypher-texts that are different one another but have similar structure
and so violates principle 10. The adversary may exploit this vulnerability by



602 J.C. Lopez P., R. Monroy, and D. Hutter

Name: replay
Input: P ∈ Σ, BA, BR

Preconditions:
% Spy reuses cypher-text {|M |}K:
∃i, j, k, M, K.

〈sr, i〉 �B 〈sp, j〉 ≺B 〈sq, k〉 ∧ {|M |}K 	 msg(〈sr, i〉) ∧ {|M |}K 	 msg(〈sp, j〉)

% sp is the penetrator while sq the principal being deceived
∧〈sr, i〉 and 〈sq, k〉 are regular but 〈sp, j〉 is not
∧sign(〈sr, i〉) = + = sign(〈sp, j〉) but sign(〈sq, k〉) = −

Method:
orelse meth message encoding(P, BA, BR, M, K, 〈sq, k〉)
orelse meth agent naming(P, BA, BR, M, K, 〈sq, k〉)

session binding(P, BA, BR, M, K, 〈sq, k〉)

Fig. 1. The replay compound method

making one cypher-text play the role of the other. An example faulty protocol
with this vulnerability is Wide-Mouth Frog (WMF): (part of) the initiator’s
first message can be reused to mimic the result of another request the server has
acted upon. AVISPA proves WMF fails to guarantee weak authentication of B
to A, yielding:

WMF Attack
1. A → S : A; {|B; Ta; Kab|}Ka

1:1. A → Spy(S) : A; {|B; Ta; Kab|}Ka

2. S → B : {|A; Ta+d; Kab|}Kb
2:2. Spy(S) → A : {|B; Ta; Kab|}Ka

To remove the protocol flaw, it suffices to break this similarity. When input
WMF and the attack above, message encoding successfully repairs it returning:5

1. A → S : A; {| Ta; B ; Kab|}Ka 2. S → B : {|A; Ta + d; Kab|}Kb
(1)

Proposition 2. Let ζ be the adaption of the representive bundle BR as given
in Fig. 2. and P ′ = ζ(P ) be the corresponding revised protocol. Then ζ({|M |}K)
cannot be used to arm a message encoding replay attack on P ′.

Proof (outline). ζ({|M |}K) is not similar to any other component. Then, only the
execution of a specific step in P ′ may cause ζ({|M |}K) to appear on the traffic,
if ever. If P satisfies security property φ then so will P ′, because extra elements
in ζ({|M |}K), if any, are all innocuous tags. �

3.2 Patching Protocols Violating Principles 6—10

The session binding method deals with faulty protocols that contain a message
which cannot be associated with a particular protocol run. An attack exploiting
this flaw, called replay protection, causes an agent to consider that another is
5 Protocol changes are enclosed within a solid box to ease reference.
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Name: message encoding
Input: P ∈ Σ, BA, BR, n ∈ BA ∩ BR, π ∈ Pos(msg(n))

% n lies on strand of deceived agent where msg(n)|π = {|M |}K is the
% message used to elaborate replay

Preconditions:
% different cypher-texts cannot be distinguished:
Let S = Safer

∃n′ ∈ BA, ∃M ′, K′.
({|M ′|}K′ ∈ msg(n′) ∧ {|M ′|}K′ ∼S {|M |}K ∧ {|M ′|}K′ �= {|M |}K)

Patch:
% Break similarity of {|M |}K:
select M ′′ such that M ≤A0 M ′′, A0 is a minimal set of tags, and
{|M ′′|}K is collision free with L = {{|M ′|}K′ : {|M ′|}K′ 	 msg(n), n ∈ BR}
With ζ0 = {(π, {|M ′′|}K)} and ζ be the adaption of B for ζ0 in n
let P ′ = ζ(P ).

Fig. 2. The message encoding method

trying to set up a simultaneous session, when he is not [11]. Two example pro-
tocols subject to this type of attack, because none satisfies strong authentication
of B to A, are (1) and the Denning-Sacco Shared Key (DSSK) protocol. The
DSSK protocol and the attack that AVISPA finds are as follows:

DSSK Attack
1. A → S : A; B 1:1. A → S : A; B
2. S → A : {|B; Kab; Ts; 1:2. S → A : {|B; Kab; Ts;

{|B; Kab; A; Ts|}Kb
|
}

Ka
{|B; Kab; A; Ts|}Kb

|
}

Ka

3. A → B : {|B; Kab; A; Ts|}Kb
1:3. A → B : {|B; Kab; A; Ts|}Kb

2:3. Spy(A) → B : {|B; Kab; A; Ts|}Kb

Notice that both the DSSK and the WMF protocol prescribe the responder, B,
to react upon an unsolicited test [9].

Shrimp is equipped with a repair method that introduces a nonce-flow re-
quirement to fix this flaw [1,13,11,9] (c.f. principle 7.) This requirement is realised

by transforming the unsolicited test into an authentication one. Let A
M

−−→ B

denote the step at which the replay is realised and let A
M1−−→ B

M2−−→ C abbre-
viate two consecutive protocol steps: q. A → B : M1 and q + 1. B → C : M2.
Then, the nonce-flow requirement is introduced via the following transformation
rules, called nonce flow and tried to be applied in the order of appearance:

A
M1−−→ B

M2
−−−→ C � A

M1−−→ C

M1 ; {|C; Nc, h(M1)|}
K

+
b

−−−−−−−−−−−−−−−→ B

M2 ; {|C; Nc; h(M2)|}
K

−
b

−−−−−−−−−−−−−−−→ C

B
M1

−−−→ C � B
M1−−→ C

{|C; Nc; h(M1)|}
K

+
b

−−−−−−−−−−−−→ B

{|C; Nc|}
K

−
b

−−−−−−−−→ C

where h(M) denotes a one-way, collision-resistant hash function, which is used
to tie each test component to the current run. Notice that if A = C then the first
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two steps of the right-hand side of the first rule merge. Also notice that if A
M−→

B � A
M ′
−−→ C

M ′′
−−→ B, the strands ought to be modified as follows: i) for A and

B, ∃na ∈ sa, nb ∈ sb. msg(na) = msg(nb) = M , so we shall have msg(na) = M ′

and msg(nb) = M ′′; and ii) for C, two nodes, nc1 and nc2 , are inserted such that
msg(nc1) = M ′ and msg(nc2) = M ′′ with sign(nc1) = − �= sign(nc2). The rule
identifies where these nodes are to be inserted: c.f. C’s participation, previous
to the attack. Any other transformation is handled similarly.

We now introduce two refinements to this transformation. First, notice that
applying nonce flow without considering the structure of M1 or M2 may add un-
necessary components. We shrink the message M1; {|C; Nc; h(M1)|}K+

b
(respec-

tively M2; {|C; Nc; h(M2)|}K−
b

) as follows:

shrnk(M, M ′) = shrnk0(M, M ′) if shrnk0(M, M ′) �= M
shrnk(M, M ′) = M ; M ′ otherwise

where

shrnk0(A, M) = A if A is atomic
shrnk0(M1; M2, M

′) = shrnk0(M1, M
′); shrnk0(M2, M

′)
shrnk0({|M |}K , {|C; Nc; M ′|}K) = {|C; Nc; M |}K

shrnk0({|M |}K−
c

, {|C; Nc; M ′|}K+
b
) = {|shrnk0(M, {|C; Nc; h(M)|}K+

b
)}K−

c

shrnk0({|M |}K+
c

, {|C; Nc; M ′|}K−
b

) = {|shrnk0(M, {|C; Nc; h(M)|}K−
b

)}K+
c

where we assume that C originates the message M1; {|C; Nc; h(M1)|}K+
b

(respec-
tively M2; {|C; Nc; h(M2)|}K−

b
), the challenger, and B is the recipient, the cham-

pion. Second, notice that applying nonce flow when the server is involved in the
replay may yield a clumsy protocol. This is because the protocol would involve
too many server participations and provide guarantees to the server rather than
to the participants. We get around this situation by applying a very specific
patching strategy, due to Lowe [11], which consists of making the participants
handshake. The handshake messages are cyphered using the session key, similar
to a key confirmation step. nonce flow is thus attempted only if the following
rules, called handshake, are not applicable:

S
M(K)

−−−−→ Xi � S
M(K) ; T

−−−−−−→ Xi

����Xi; Xj ; Nj

���
�

K

−−−−−−−−−−→ Xj

����Xj ; Nj

���
�

K

−−−−−−−→ Xi

Xk

M′

−−−→ S
M(K)−−−−→ Xi � Xk

M ′
−−→ S

M(K) ; T

−−−−−−→ Xi

����Xi; Xj ; Nj

���
�

K

−−−−−−−−−−→ Xj

����Xj ; Nj

���
�

K

−−−−−−−→ Xi

where T = {|T ′; h(M(K))|}Ki
and where the last two steps of the protocol struc-

ture on the right-hand side are applied for all j �= i and so are actually rounds of
messages. Notice that for handshake to be applicable the message M should carry
a session key. This patching strategy is known to be susceptible to a known-key
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Name: session binding
Input: P ∈ Σ, B, BR, M, K, n = 〈s, k〉
Preconditions:

% The deceived participant, associated to strand s,
% receives an unsolicited test :
∀n0 ∈ B if n0 ≺B n then ∀M ′ 	 msg(n0). (M ′ �	 M ∨ M ′ /∈ uniques)

Method:
% Introduce nonce-flow requirement, transforming unsolicited test
% into an authentication one:
orelse meth handshake nonce flow

Fig. 3. The session binding method

attack,6 but the insertion of the timestamp, T ′, makes it very difficult for an
adversary to timely realise the replay.

Two consecutive applications of session binding, Fig. 3, on input DSSK yield:

1. A → B : A; B
2. B → S : A; B; {|Nb; A|}Kb

3. S → A : {|B; Kab; Ts ; {| Nb ; B; Kab; A; Ts |}Kb
|}Ka

4. A → B : {| Nb ; B; Kab; A; Ts |}Kb
; {|A; B; Na|}Kab

5. B → A : {|B; Na|}Kab

Step 2., together with Nb, is inserted in the first application, preventing a replay
protection attack on B, while the handshake à la Lowe is inserted in the second
one, preventing a replay protection attack on S.

Proposition 3. Let P ′ be the revised version of the protocol and let N be the
nonce introduced by an application of nonce flow on the replay of M . If N ∈
uniques then M cannot be used to elaborate a replay.

Proof (outline). Take the first rule, so M = M2 . Let node+
a (M ′) (respectively

node−a (M ′)) denote the positive (respectively negative) node of strand A at
which message M ′ is sent (respectively received), then if K−

b is safe:

node+
c (M1 ; {|C; Nc; h(M1)|}K+

b
) ⇒+ node−c (M2 ; {|C; Nc; h(M2)|}K−

b
)

is an outgoing test for Nc in {|C; Nc, h(M1)|}K+
b
. Then by proposition 19 of [9]

only a regular participant must have been responsible for N to exit the cypher-
text {|C; Nc; h(M1)|}K+

b
and then enter to {|C; Nc; h(M2)|}K−

b
. Any occurrence

of Mi (i = 1, 2) is thus tied via h(Mi) to a unique test and so the result follows.
The proof for the other rule is similar. �

6 A known-key attack is an attack whereby, once getting knowledge of a session key,
the adversary is able, if passive, to compromise keys of other sessions or, if active,
to impersonate one of the (honest) protocol parties.
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3.3 Patching Protocols Violating Principle 3

In this section, we generalise the method introduced in [10], designed to fix a
faulty protocol containing a message without proper naming. Our generalisation
consists of introducing the names of the correspondents of the reused message,
rather than the names of the initiator or the responder in the protocol.

When input the NSPK protocol, agent naming, Fig. 4, will add the name of
the agent originating message 2, B in this case, arriving at Lowe’s fix:

1. A → B : {|Na, A|}K+
b

2. B → A : {| B , Na, Nb|}K+
a

3. A → B : {|Nb|}K+
b

Name: agent naming
Input: P, BA, BR, n ∈ BA ∩ BR with msg(n)|π = {|M |}K

Preconditions:

A∈Partners([{|M|}K ])

A /∈ Agents({|M |}K)

Patch:
Select M ′′ such that:
M ≤I M ′′ with I = Partners([{|M |}K ]) \ Agents({|M |}K)
{|M ′′|}K is collision free with {{|M ′|}K′ : {|M ′|}K′ 	 msg(n), n ∈ BR} wrt. Safer

With ζ0 = {(π, {|M ′′|}K)} and ζ be the adaption of B for ζ0 in n, let P ′ = ζ(P ).
Effects:

Partners([ζ({|M |}K)]) = Agents(ζ({|M |}K))

Fig. 4. The agent naming method

Proposition 4. Let P ′ and ζ({|M |}K) be the revised protocol and cypher-text.
Then, ζ({|M |}K) may not be used to arm a naming replay attack.

Proof (outline). Let P (R, x−→) denote the set of strands of role R in P instantiated
with parameters x−→. Effects guarantee that ∀R ∈ Partners([ζ({|M |}K)]).P ′(R, x−→) ⊆
P (R, x−→), because the parameters agree at least on the associated names of the
correspondents of ζ({|M |}K). It follows that the cypher-text cannot be used to
arm a naming replay. �

4 Results

Table 1 summarises our results. We considered 36 experiments, of which 20 in-
volve protocols borrowed from the Clark-Jacob library;7 4 are variants of some
of these protocols (annotated with 	); and 12 are protocols output by Shrimp,
a next-generation of an input protocol. Next-generation protocols are shown in
a separate row within the associated entry.
7 The Clark-Jacob library comprehends 50 protocols, 26 out of which are known to be

faulty. So our validation test set contains all but 6 of these security protocols. The
faulty protocols that were left out are not susceptible to a replay attack.
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Table 1. Experimental results

before after
Protocol s wai sai war sar M s wai sai war sar

ASRPC T T T T F B1 T T T T T
BAN ASRPC T F X X X N T T T T T
CCITTX.509(1) T F X X X N T T X X X

T T F X X B1 T T T T T
CCITTX.509(3) T F X T T N T T T T T
DSSK T T F X X B1 T T T T X

T T T T F B2 T T T T T
NSSK T T X T F B1 T T X T T

T T F† T T B2 T T T T T
DSPK T F X X X N T T X X X

T T F X X B2 T T T X X
Kao Chow A. v1 T T F† T T B2 T T T T T
KSL T F X X X E T T T T T
NSPK F X X T T N T T T T T
BAN OR T F X X X N T T X X X
Splice/AS T X X F X N T T X T X

T T F T X B2 T T T T T
CJ Splice T F X T T B2 T T T T T
HC Splice T X X F X N T X X T X
WMF T F X X X E T T X X X

T T F X X B2 T T T T T
WMF++ � T T F X X B2 T T T T T
ASRPC prune � T F X X X N T T X X X

T T X F X N T T X T X
T T X T F B1 T T X T T
T T F T T B1 T T T T T

WLM T F X X X E T T T T T
BAN Yahalom T T T F X E T T T T T
A. DH � T X X F X N T X X T X

T X X T F B1 T X X T T
2steps SK � T X X F X N T X X T X

T X X T F B1 T T X T T
T T F T T B1 T T T T T

Each row displays the result
of testing a protocol against
a (hierarchical) collection of
properties: secrecy, s, weak
authentication of the initia-
tor, wai (respectively respon-
der, war) and strong authen-
tication of the initiator, sai

(respectively responder sar),
where wai < sai (respectively
war < sar.) The table sep-
arates the verification results
for the original protocol, be-
fore, and the mended protocol,
after, as output by Shrimp.
The field value that exists at
the intersection between a pro-
tocol P and a property φ might
be either T, meaning P satis-
fies φ, F, meaning P does not
satisfy φ, or X, meaning this
property was not tested (be-
cause P was not expected to satisfy it.) Column M specifies the method that was
applied to modify each faulty protocol: message (E)ncoding, agent (N)aming or
session (B)inding. For the latter method, B1 refers to rule nonce flow and B2 to
rules handshake. In all our experiments, the application of a patch method yielded
a revised protocol able to satisfy the security property that the original one did
not. Whenever applicable, each mended protocol was then further requested to
satisfy the remaining, stronger properties in the hierarchy, thus explaining why
some entries have several runs. Note that in the discovery of some attacks we had
to specify the possibility of losing a session key (annotated with †.)

Shrimp is thus able to identify a flaw and a successful candidate patch
in 33 faulty protocols out of 36. Of these experiments, it applied 12 times
agent naming, 4 times message encoding, 9 times rules nonce flow and 8 times
handshake. The protocols Shrimp fails to fix, namely: Neumann-Stubblebine,
Otway-Rees and Woo-Lam Pi, are all susceptible to the type flaw subclass of
replay attack. It would be misleading to dismiss message encoding on account of
the few protocols it patched. This is because while applying the other methods
we use it to ensure the patch did not incur in an infringement of principle 10.

We have recently made Shrimp try to patch the IKEv2-DS protocol, which
is part of AVISPA’s library and an abstraction of IKEv2. We found that if we
abstract out the equational issues inherent to the AVISPA attack, Shrimp suc-
cessfully identifies a violation to a good practice for protocol design: the omission
of principal names. While the revised protocol is up to satisfy strong authentica-
tion on the session key, this patch may be subject to a criticism because IKEv2
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was deliberately designed so that no principal should mention the name of its
corresponding one. We then deleted agent naming and re-ran our experiment;
this time Shrimp applied handshake suggesting a protocol similar to IKEv2-DSx,
which also is part of AVISPA’s library and attack-free.

5 Comparison to Related Work

R. Choo [6] has also looked at the problem of automated protocol repair. His de-
velopment framework applies a model checker to perform state-space analysis on
an (indistinguishableness-based) model of a protocol, encoded using asynchro-
nous product automata. If the protocol is faulty, Choo’s approach automatically
repairs it. A fair comparison between Choo’s approach and ours cannot be con-
ducted mainly because so far there is not an archival publication of [6].

When considering an automatic protocol repair mechanism like ours, one won-
ders whether there is an upper bound as to the information that every message
should include to avoid a replay. If there is one, we could simply ensure that
every message conforms it previous to any verification attempt. Carlsen [5] has
looked into this upper bound. He suggested that to avoid replays every message
should include five pieces of information: protocol-id, session-id, step-id, message
subcomponent-id and primitive type of data items. In a similar vein, Aura [3]
suggested one should also use several cryptalgorithms in one protocol and hash
any authentication message and any session key. Protocol designers, however,
find including all these elements cumbersome. By comparison, Shrimp only in-
serts selected pieces of information considering the attack at hand but may add
steps to the protocol if necessary to fulfil a stronger security property.

Complementary to ours is the work of Perrig and Song [13], who have devel-
oped a system, called APG, for the synthesis of security protocols. The synthe-
sis process, though automated, is generate and test: APG generates (extends) a
protocol step by step, taking into account the security requirements, and then
discards those protocols that do not satisfy them. APG is limited to generate
only 3-party protocols (two principals and one server). As a reduction technique,
it uses an impersonation attack and so rules out protocols that (trivially) fail to
provide authenticity. The main problem to this tool is the combinatorial explo-
sion (the search space is of the order 1012 according to the authors).

6 Conclusions and Further Work

In this paper, we have presented Shrimp, a method for automatically repair-
ing faulty security protocols. Shrimp consists of a collection of patch planning
methods. Each patch method is designed to transform a set of protocol steps vi-
olating a design principle into one conforming it, while ruling out the possibility
of violating other principles. We have carried out a large number of experiments
to validate Shrimp, finding that it successfully deals with the class of replay
attacks, except for the subclass type flaw. Ongoing research thus is concerned
with extending Shrimp to cope with this type of attack. Ongoing research also is
concerned with extending Shrimp to account for more cryptographic primitives,
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including the equational properties thereof, and a greater variety of protocols.
Patch methods are independent of the global security requirements required
from the security protocol under investigation and the local change of one or
two protocol steps may cause flaws in combination with other protocol steps
which have been not considered at that point. Therefore, ongoing research in-
volves considering global rules that may change a protocol depending on these
global requirements to be achieved, controlling the local patch process.
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