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Abs t r ac t  

Delta Prolog is a concurrent logic programming language, which extends Prolog with 

AND-parallelism. Communication and synchronization between parallel processes is 

established by using special control structures: event goals. 

To relieve the programmer from inserting these structures at the correct program 

points, we propose a method for automatically generating them, departing from a 

Prolog program together with the top-level call pattern and indications of which goal- 

expressions should be executed in parallel. This method is based on the technique of 

abstract interpretation. The gathered abstract information allows to decide at which 

program points an event goal has to be generated and how it is composed. 

However, it turns out that only a limited class of programs can be transformed 

automatically. Problems impeding general automatic transformation are discussed. 

Keywords" Delta Prolog, distributed Prolog, abstract interpretation. 

1. Introduction 

Delta Prolog [6,11,12,13] is a concurrent logic programming language, which extends 

Prolog to include AND-parallelism and interprocess communication and 

synchronization. The latter concepts are expressed by means of special language 

constructs, namely (synchronous) event goals. 

This paper presents a method to derive these constructs automatically for programs 

that are executable under the Prolog computation rule. Given such a program, its top- 

level call pattern, and annotations concerning the desired AND-parallelism, the method 

derives the event goals to be inserted. The technique of abstract interpretation 

[4,5,7,8,9,10] is used to gather the necessary information upon which the generation of 

event goals can be based. The kind of abstract interpretation applied here is an 

extension of the application developed by Bruynooghe and Janssens [3]; this is itself an 

instance of the general framework described in [4]. 
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However, automatic program transformation is only applicable in a limited number of 

cases. We mention several problems and identify a class of treatable programs. 

The paper s tar ts  wi th  a brief  overv iew of the Delta Prolog language and concepts. 

Af terwards ,  the method for  automat ic  generation of event  goals is presented. The core 

of the method is the abst ract  interpretat ion application. The complets  procedure is 

obtained by  augmenting this core wi th  the procedure for  event-generat ion analysis.  In 

the last  section we evaluate  the method and discuss its applicability. 

2. Delta Prolog: overview of the language 

2.1 Delta Prolog control constructs 

Delta Prolog contains some special language constructs: split goals and event goals. 

• Spl i t  goals  are used to express AND-paral lel ism. They  are of  the f o r m  S l / / S 2 ,  

where  S1 and $2 are a rb i t ra ry  Delta Prolog goal expressions. Logically, $1 / / $ 2  is 

t r u e  iff $1 and $2 are both true.  Operationally,  $1 and $2 are solved in parallel.  

• E v e n t  goals  are of  the fo rm X ! E : C or X ? E : C. Their  components  are: 

- -  X: the event  t e rm or the message (a Prolog term).  

- -  ! or ?: the communicat ion mode (infix binary predicate symbol) .  

- -  E: the event  name (a Prolog constant  or variable).  

- -  C: the event  condition (a conjunction of goals whose evaluat ion invokes no Delta 

Prolog goals) 

Two  event  goals X11E:C1 and X2?E:C2 wi th  the same event  name and different 

communicat ion modes are called c o m p l e m e n t a r y  event  goals. 

Event  goals deal wi th  interprocess communicat ion as wel l  as synchronization.  

- -  C o m m u n i c a t i o n  is realized through two  event  goals by  uni fy ing their  event  t e rms  

under  the restrictions given by  the event  conditions, e.g. X ? e: X > 0. 

- -  S y n c h r o n i z a t i o n  is accomplished by  the fact  tha t  an event  goal can only  be solved 

if its complementa ry  one is available in a parallel  derivation; otherwise, resolution 

of the goal suspends. Event  goals thus  establish a rendez-vous between two  

processes. I f  a complementa ry  event  goal is never  derived, a deadlock occurs. 

Remarks:  

- -  To be able to run  programs on a parallel  machine wi thou t  common memory ,  the 

implementors  add some restrictions which we adopt in the sequel. 

1. In a spli t  goal S 1 / / $ 2 ,  S1 and $2 should not share free variables.  I f  they  do 

have  variables in common, these are unified at completion of the spli t  goal. 

2. The event  t e rms  are required to be ground af ter  solving complementa ry  event  

goals. 

- -  An event  name m a y  be shared only  by  two active parallel  processes, to be able to 

define a complete t raversa l  of the search space. I f  mul t ip le  consumers or producers  

are desired, asynchronous  events or a communicat ions manager m a y  be used. 
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2.2 Distributed backtracking 

In contrast to committed-choice languages, Delta Prolog incorporates don't-know non- 

determinism. Executing a program means searching for a//answers to a given query. 

The search rule involves sequential clause search and backtracking. Backtracking 

occurs at two levels. As long as no interaction point (i.e. a split or event goal) is 

involved, /oca/ backtracldng within one process occurs. Distributed backtracking is 

triggered to undo a joint derivation step. It is a kind of inte111gent backtracking that 

affects only the processes (directly or indirectly) related to a failure. Insight into the 

rules for distributed backtracking allows one to place events so that the 

communication overhead is reduced and the overall efficiency is increased. 

3. Automatic generation of events 

3.1 Analysing t h e  problem 

Suppose we are given a Prolog program whose execution does not fail under the 

standard Prolog computation rule. The program's efficiency may be increased if some 

of its goal expressions are solved concurrently. The user of our system indicates this 

parallellsm by incorporating the spllt operator//into the program, as i11ustrated here. 

sumofsquares(L,S):- squares(L,SqL)//sum(SqL,0,S). 

(sl) squares([],[]). (rl) sum([],S,S). 

(s2) squares([XIL],[SXISL]):- (r2) sum([XIL],AccS,S):- 
SX is X'X, NewAccS is AccS + X, 

squares(L,SL), sum(L,NewAccS,S). 

This program computes the relation sumofsquares(L,S) where S is the sum of the 

squares of the elements of L. We use this example throughout the rest of this text. 

The goal is to derive an executable and efficient Delta Prolog program which is 

ecluivalent to the original one. This mostly requires the addition of event goals: 

sumofsquares(L,S):- squares(L,SclL) H sum(SqL,0,S). 

(sl) squares([],[]):- [ ]  ! ev. 

(s2) squares([XIL],[SXISL]):- 

SX is X'X, 
SX t ev, 

squares(L,SL). 

(rl) sum([],S,S):- [] ? ev. 

(r2) sum([XIL],AccS,S):- 

X ? ev: integer(X), 

NewAccS is AccS+ X, 

sum(L,NewAccS,S). 

Event goals need to be added only within parallel processes sharing a variable which is 

non-ground upon initialisation of the processes. For the moment we consider only the 

case in which a variable is common to two processes (extensions will be discussed in 

section 3.4). One of the processes (the receiver or conzuraer) uses (part of) the value of 

the common variable to 

1. be able to continue its execution, as occurs in the example where the builtin +12 in 
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sum/2 causes an error  when the value of X is not  available, or to 

2. avoid was tefu l  computations because of non-determinism in one of the processes, 

as would  be the case in the above example wi th  + defined by  an infinite set of 

ground facts. 

The effect of event  goals is to suspend the receiver unt i l  the sender or producer 

provides the information needed to proceed. Although this restricts the parallelism, it  

can have a beneficial effect. In case 1, the event  is necessary to avoid failure. In case 2, 

the event  increases e~ciency: with  non-determinism in the receiver, it  avoids local 

backtracking; wi th  non-determinism in the sender, it avoids the expensive distr ibuted 

backtracking. The lat ter  is typical  for  generate-and-test programs where the generate 

part  is the sender. 

Although b id i rec t iona l  communication between paraUel processes is possible in Delta 

Prolog, it  is never called for  in programs wri t ten  wi th  the s tandard Prolog computation 

rule in mind. Consequently,  we wil l  a lways be able to distinguish a real sender and a 

real recetw~.r process. 

Having motivated the use of event  goals, we now discuss some conditions on their  

generation. 

First, the derived program should be equiva/ent to the original Prolog program: exported 

predicates should retain their  input -output  behaviour. The main problem to preserve 

the set of solutions is to avoid deadlock. This implies that,  for  each event  goal, a 

complementary event  goal mus t  exist at run-t ime. 

Second, complementary event  goals should satisfy certain properties: 

- - A n  event  wi thin  a receiver clause often contains an event  condition that  tests the 

type of the value to be received. This test is necessary ff some receiver goal, 

following the event, would  cause a run- t ime error in case a value of a wrong type  

was accepted. For example, in the above program, the condition integer(X) wi thin  

the event  of (r2)  guarantees that  +/2 will  have integer operands. 

The use of the type  test  may  also prevent  fu r the r  useless execution of an incorrect 

combination of a sender and receiver clause. For example, when combining ( s l )  and 

(r2), s imply unifying the event  terms would  succeed; due to the explicit type  test, 

the combination wil l  fail  when t rying to solve the event  goals. 

- - In  correct clause combinations, each pair of complementary event  goals should 

contain event  terms having not  on ly  the same type, but  also the same enclosing 

structure:  the event  terms should each refer  to the original common variable itself or 

to components at the same position within the value of the common variable, wi th  

that  value s t ruc ture  being the same in sender and receiver. For example, the type  of 

common variable values treated by (s2) and (r2)  is a non-empty  list of integers and 

both event  terms refer  to the first component of the list. 

The correspondence of event  terms has to be established when generating the event  

goals (i.e. at compile-time). It  is not - -and even cannot be-- checked at run-t ime,  

since, when reaching complementary events during execution, no information is 

available about the way  in which the event  terms were selected wi thin  the other 
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parallel process. This is due to an implicit assumption in Delta Prolog, which states 

that no information is passed from sender to receiver about the upper functors of the 

common variable value. The reason for this restriction is twofold. Adding events to 

pass the information would increase the communication overhead. Also, the event 

terms would still contain free variables after solving the event goals, e.g. this would 

be the case if (s2) and (r2) contained [SXISL] ! ev and [XIL] ? ev respectively. 

3.2 Core  o f  t h e  m e t h o d  f o r  a u t o m a t i c  e v e n t  g e n e r a t i o n  

The heart of the method consists of gathering information to examine the instantiation 

of the common variables. This is achieved by using the technique of abstract 

interpretation [4,5,7,8,9,10]. Guided by the observations made in the previous section, 

we derive what kind of abstract information is needed. 

• mode informat ion :  

This enables us to decide whether events should be generated at all, and, if so, when 

to generate them within the sender. According to the implementation restriction 

stated in section 2.1, event terms must be ground after solving complementary 

events. The event term of the receiver process usually is a free variable, which is 

used afterwards in a goal requiring it to be ground. So, the sender should only be 

allowed to send ground data. 

• t ype  in format ion :  

Type information enables us to incorporate in the receiver event goals that are 

complementary to those in the sender, ensuring that their event terms correspond. 

Type information is also used to derive the type test that is part of the event 

condition. 

An application of abstract interpretation that integrates type- and mode-inferencing 

and supplies sutficiently detailed information for our purpose has already been 

developed in [3]. To start the abstract interpretation process, the user has to specify 

the top-level call-pattern (or abstract query). While resolving this query, the abstract 

interpretation procedure builds an abstract AND/OR graph. This graph represents a set 

of concrete proof trees for any concrete call satisfying the abstract query. The solved 

goals appear as (OR)nodes in the graph. We obtain a graph rather than a tree because 

of the way in which recursive calls are treated: ff a recursive call together with its 

abstract call substitution already occurs within the abstract tree, a back reference is 

introduced to that previous call. Otherwise, the call is elaborated; it leads to a new 

version of the procedure defining the predicate. 

Each of the goal nodes is annotated with an abstract call- and success-substitution 

containing a normalized type graph for each argument of the goal The call (resp. 

success) type graph represents the set of all terms which can appear at that argument 

position before (resp. after) that goal is executed. A type graph can contain three kinds 

of nodes: functor nodes, nodes representing predefined types (such as integer, atom, 

variable) and OR-nodes, which unite several type variants. The type of each argument 

of a functor appears as a subgraph of that functor node. Type graphs are normalized, 

which essentially means that, pairwise, the sons of an OR-node must have non- 
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overlapping principal functor sets. The set of principal functors of a node is the set of 

all functors that can be reached directly of Indirectly through a sequence of OR-nodes. 

Normalization not only allows unambiguous selection within type graphs, but it also 

eases the development of algorithms to manipulate them. 

3.3 Basic m e t h o d  

The basic method for automatic generation of event goals consists of three major steps, 

which will be elaborated below: 

--normalization of the input program 

--abstract interpretation, with a subprocedure for analysing where and when an event 

should be generated and, ff necessary, for performing event generation 

--derivation of a full  Delta Prolog program from the abstract interpretation graph 

3.3.1 P r o g r a m  n o r m a l i z a t i o n  

Program normalization consists of reducing all predicates (except builtins) to flat 

structures of the form p(X1 ..... Xn) where all Xi are distinct variables. This is done by 

introducing explicit unifications of the form X = Y or X = f(Y1 ..... Yn) or X = t, where 

X, Y and Y1 ..... Yn are distinct variables and t is a ground term. The third kind of 

unification prevents splitting up ground terms. 

The sumofsquares program is normalized as: 

sumofsquares(Y1,Y2):- 

Y1 = L, Y2 = SqL, squares(L,SqL)//(Y3 = 0, sum(SqL,Y3,S)). 

(sl) squares(X1,X2):- 

x~ = [1, x 2  = [1. 
(s2) squares(X1,X2):- 

Xl = [XIL], X2 = [SXISL], 

SX is X'X, 

squares(L,SL). 

( r l )  sum(X1,X2,X3):- 

X l  = [1, x 2  = s ,  x 3  - -  s .  

(r2) sum(X1,X2,X3):- 

X1 = [XIL], X2 =AccS, X3 = S, 

NewAccS is AccS + X, 

sum(L,NewAccS,S), 

Normalization simplifies the abstract interpretation procedure and the subprocedure for 

generating event goals. It allows us to deal with unification just once, by ruling out 

full  call-head unification and reducing it to a simple renaming of variables. To prevent 

the need for triggering the event generation procedure at procedure entry, it is 

important that aU arguments in the head of a clause are replaced by fresh variables 

(cfr. following section about the receiver analysts). 

3.3~, A l ~ t r a c t  i n t e r p r e t a t i o n  a n d  e v e n t  g e n e r a t i o n  

3.3.2.1 Ove ra l l  de sc r ip t i on  

This step of the method is an extension of the abstract interpretation application for 

type and mode inferencing. The event-generation analysis will be carried out as a 

subprocess during abstract interpretation, since it is based only upon the abstract 

information gathered up to the point where the event is introduced. A generated event 

will be saved as a node in the abstract graph, just like an ordinary goal node. 
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The abstract interpretation procedure starts off from a top-level call-pattern, e.g. 

sumofsquares(rl,V) where 71= [] [ ~.TI. ('[' is used to separate several type alternatives 

(or OR-branches); '.' is the list constructor. Greek letters are used to represent type 

denotations; ¢ represents the integer type and v represents the type of variables.) 

Abstract interpretation before and after a split goal proceeds as in [3]. To deal with 

split goals, the abstract AND/OR-graph is replaced by an abstract AND~OR~SPLIT- 

graph: a SPLIT-node is created whenever a split goal is reached. 

If the goal expressions of a split goal contain non-ground common variables, event 

generation analysis must be carried out during abstract interpretation of the split 

branches. A special label is attached to the common variables to distinguish them from 

non-common ones. The label consists of the indication C(ommon), followed by a 

unique number. In the sumofsquares example, SqL gets the label Cl.  This identifier is 

us¢~ to generate the correct event name within all event goals concerning (parts of) 

that specific variable. So, variables that get bound to (part of) the original common 

variable during execution of the sender or receiver process inherit its label. 

A split goal initiates two subprocesses: a sender and a receiver. The leftmost process, L, 

can always be considered as the sender. It does not need information from the 

rightmost process, R, to proceed with its execution, since we assumed the given 

program to be executable under the standard Prolog computation rule. This 

determination of the dataflow will be justified in a following section concerning 

efficiency. 

Another general aspect concerns the order in which sender and receiver are treated. 

Abstract interpretation in the existing application [3] is purely sequential and proceeds 

from left to right. So, the sender will be treated first. Then, the sender's success 

substitution will become the call substitution of the receiver. 

For the purpose of event generation, this purely sequential interpretation and analysis 

is convenient. Analysing the sender before the receiver respects the natural relation 

between those processes. A receiver goal may depend on the sender to obtain the type 

of a common variable during abstract interpretation, just as it expects the value of this 

variable to be supplied by the sender during a concrete execution. 

Passing the results of analysing the sender on to the receiver provides a way to ensure 

that correct complementary event goals will be generated. During the construction of 

the common variable type graph within the sender, we will put an event mar/cer at the 

root of a subgraph when a component having the type of that subgraph is sent over. A 

complementary event goal will be generated as soon as a component with an event 

marker at the root of its "type graph is reached during the analysis of the receiver. So, 

event terms will automatically correspond. We will also add a complmnm~ary event 

m a r ~ r  to the root of the type graph of the event term. 

At each stage of abstract execution, the current abstract substitution will contain two 

components for each accessible variable: 

--a variable label, Ci, or _ (i.e. empty) ff the variable is not a common variable. 

--a normalized type graph, where functor and predefined nodes contain a node label, a 

field to contain an event marker, and one to contain a complementary event marker. 
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We now discuss in detail the event-generation analysis within the sender and the 

receiver. For the moment we will  ignore whether the sender and receiver are part of a 

larger system of parallel processes; we return to. this briefly in section 3.4. 

3.3.2.2 S e n d e r  a n a l y s i s  

The aim of the analysis within the sender is to detect when (part of) a common 

variable becomes ground. At  that  point, an event goal has to be generated. Since the 

input program has been normalized, the analysis can be focussed on treating builtins 

and explicit unifications: these are the only goals which may  cause a change of type. 

The analysis procedure is triggered as soon as their success substitution is computed. 

The analysis wil l  be i l lustrated on the sumofsquares example. We wil l  show what  

abstract ~uformation is derived at  each program point (Pi), i.e. immediately after call- 

head unification and af ter  each body goal, and how it is used. 

In our example, the top-level call pattern is 'sumofsquares(r,v) '  wi th  r = [] I t . r .  So, 

the abstract call substitution of the sender call 'squares(L,SqL)' is: { L: (_ , r ) ,  SqL: 

(CI,v) }. The first component of the tuple attached to a variable may  contain a 

common variable label; the second one indicates the type of the variable. 

The first clause defining squares/2 is (in normalized form): 

squares(X1,X2):- (P1) X1 = [], (P2) X2 = [] (P3) .  

(P1): { XI: (._,r), X2: (Cl,v) I. 

(P2): { XI: (__,[]), X2: (Cl,v) }. 

Since there is no change of the mode of the common variable X2 from (P1) to (P2), no 

event goal has to be generated. 

(P3): { XI: (_.~[]), X2: (C1,[1) }. 

Comparing (P2) and (P3) reveals that  X2 has become completely ground. An event 

X2 ! ev l  is generated and stored in the abstract AND/OR/SPLIT graph. We choose '!' as 

the communication mode of an event within the sender; the event name is derived f rom 

the common variable label and there is no event condition. Consequently, there is a 

program point (P4), which is the success substitution of the event. An event marker is 

put  at  the root of the type graph of X2 to indicate the generation of the event: 

(P4): { XI: (._,[]), X2: (Cl,[]#e) }. 

The above clause is t ransformed into its desired form: 

squares(XI,X2):- (PI)  XI = [], (P2) X2 = [], (P3) X2 1 evl  (P4).  

We now consider the second clause defining squares/2. 

squares(X1,X2):- 

(PI)  Xl  = [XlL], (P2) X2 = [SXISL], 

(P3) SX - X * X, (P4) squares(L,SL) (P5). 

(P1): { Xl:  (_ , r ) ,  X2: (Cl,v), X: (_.~v), L: (_.,v), SX: (_ ,v) ,  SL: (__,v) } 

(P2): { Xl:  (._,t.r), X2: (Cl,v),  X: (_,t) ,  L: (..~r), SX: (..~v), SL: (__~v)} 

No event goal has to be generated, since no common variable has become ground. 

(P3): { XI: (._~t.r), X2: (Cl,v.v), X: (._~), L: (._~r), SX: (Cl,v), SL: (CI,v) }. 
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The common variable label of X2 is passed on to its components SX and SL. None of 

the common variables has become completely ground; so, no event goal has to be 

generated yet.  

(P4): { Xl:  (_,~.r), X2: (Cl,~.v), X: (_,~), L: (_.~r), SX: (Cl,~), SL: (Cl,v) }. 

A change in the type of SX also affects X2, because of the binding between SX and X2. 

We just generate the event goal SX t evl, since SX is the only common variable that  has 

become completely ground. The success substitution of the event goal contains an event 

marker to reflect this generation; so, for the extra program point (P4') we have: 

(P4'): { XI: (._~e.r), X2: (Cl,e#e.v), X: (_,e), L: (_,r) ,  SX: (C1,¢#e), SL: (Cl,v) }. 

The recursive call 'squares(L,SL)' has the same call pattern as the original call in the 

split goal, i.e. { (._~r), (Cl,v) }. Subsequent interpretation of the call can thus  be 

avoided; a back reference is introduced to the previous, identical call. The success 

substitution (P5) will  be: 

(P5): { XI: (_,e.r), X2: (Cl , r ' ) ,  X: (..~e), L: (_,T), SX: (Cl , t#e) ,  SL: (Cl , r ' )  } 

wi th  r '  - []#e I ~#e.r' 

The trzn.~formed version of the second clause is: 

squares(X1,X2):- 

(Pl)  Xl  = [XlL], (P2) X2 = [SXISL], 

(P3) SX = X * X, (P4) SX ! evl, 

(P4') squares(L,SL) (P5). 

Finally, we obtain the success substitution of the original sender call in the split goal: 

{ L: (_ , r ) ,  SqL: (Cl , r ' )  } wi th  r - [] I ~.r and r '  - []#e I e#e.r' 

3.3,2.3 R e c e i v e r  a n a l y s i s  

One can distinguish two situations that  should lead to the generation of an event goal 

within the receiver. The first one is that  an event goal should be generated in f ront  of 

each goal which makes use of (part of) the common variable value ( thus requiring it to 

be ground). The second requirement is that  event goals have to be generated 

complementary to the ones in the sender. Therefore, we can use the type graphs, 

constructed during interpretation of the sender and passed on to the receiver. 

We first focus on fulfilling the second requirement. The analysis wil l  be based on 

finding common variables wi th  an event marker at the root of their type graph. We 

only need to consider explicit unifications and bull!ins, since these are the only goals 

which can select common variable components and their associated type graphs. Even 

original common variables that  only  appeared within the head of a clause now appear 

within an explicit unification, due to the introduction of fresh head variables during 

program normalization. 

We will  use the sumofsquares example to il lustrate the receiver analysis. The call 

substitution of the receiver call 'sum(SqL,Y3,S)' is derived from the success 

substitution of the sender call, giving { SqL: (C1,T'), Y3: (__,0, S: (__,v) } wi th  r '  = []#e 

I ~#e . r '  
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The first clause defining sum/3 is: 

sum(X1,X2,X3):- (PI) XI = [], (P2) X2 = S, (P3) X3 = S (P4). 

(P1): { Xl: (Cl,r ') ,  X2: (__~), X3: (_~v) } 

(P2): { XI: (Cl,[]#e), X2: (_ ,0 ,  X3: (_,v) } 

The common variable XI contains an event marker at its root. So, an event X I  ? ev l  is 

generated. We already noticed that an event goal within the receiver should contain an 

explicit type test as event condition. The test can be derived from the type of X1 in 

(P2), yielding 'X1 = []'. Since this is identical to the interpreted unification, we can 

simply take the unification itself as event condition (which will always be the case for 

a unification X = t, where t is a ground term). 

To prevent the generation of another event for X1, a complementary event marker is 

put at the root of its success type graph: 

(P2'): { XI: (Cl,[]#ec), X2: (_,t), X3: (_,v) } 

The subsequent unifications in the clause body do not contain or affect common 

variables. The first clause is thus transformed into: 

sum(X1,X2,X3):- (P1) X1 ? ev: X I  = [],  (P2') X2 = S, (P3) X3 = S (P4). 

The second clause of the sum/3 procedure is: 

sum(X1,X2,X3):- 

(Vl) X1 = [XIL], (P2) X2 =- AccS, (P3) X3 = S, 

(P4) NewAccS is AccS+ X, 

(PS) sum(L,NewAccS,S) (P6). 

(P1): { XI: (Cl,r ') ,  X2: (_,~), X3: (_,v), X,L,AccS,NewAccS,S: (_,v) } 

(P2): { XI: (Cl,~#e.r'), X2:(_,t), X3: (_,v), X: (Cl,t#e), L: (Cl,r ') ,  

AccS,NewAccS,S: (__,v) } 

The label of X1 is passed on to its components X and L. X contains an event marker at 

the root of its type graph; so, a complementary event has to be generated. 

The predefined predicate integer(X) will be used to check the type of the received 

event-term value. We hereby want to make a remark about the predefined type atom: 

ff this is the expected type of the event term, we will not use the builtin test predicate 

atom/l ,  but real...atom/1 where real__atom(X) is defined as reaL.atom(X):- atom(X), 

X \= []. I1~ is important to make the distinction between [] and another atom, because of 

the special meaning attached to []: [] is the empty list symbol  

The sum/3 clause is so far transformed into: 

sum(X1,X2,X3):- 
(P1) X1 = [XIL], (P2) X ? ev l :  integer(X),  (P2') X2 =AccS, (P3) X3 = S, 
(P4) NewAccS is AccS+ X, 
(PS) sum(L,NewAccS,S) (P6). 

with (P2') containing a complementary event marker at the root of the type graph of X 

and within the type graph of X1 (because of the binding between X and X1): 

(P2'): { XI: (Cl,,#ec.r ') ,  X2: (_,~), X3: (_,v), X: (Cl,,#ec), L: (Cl,r ') ,  

AccA~,NewAccS,S: (_,v) } 
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The subsequent unifications and builtin will not cause the generation of another event. 

(P5): { XI: (Cl,t#ec.r'), X2: (_,~), X3: (__,v), X: (Cl,t#ec), L: (Cl,r '),  

AccS: (._,~), NewAccS: (_,~), S: (_,v) } 

The recursive call sum(L,NewAccS,S) has the same abstract call substitution as the 

original sum call, i.e. { (Cl,r '),  (_,~), (_,v) }. A back reference is thus introduced in 

the abstract AND/OR/SPLIT graph. 

The final success substitution of the original receiver call is: 

{ SqL: (Cl,r"), X2: (_,~), X3: (_,¢) } with r" -- []#ec I ~#ec.r" 

Note that, by generating event goals complementary to the ones in the sender, all 

requirements for some common variable value are automatically satisfied. This is at 

least so in the usual situation, where the amount of information contained in the event 

terms of the sender is exactly the same as the amount required by the receiver. 

3.3.3 P r o g r a m  d e r i v a t i o n  

After the entire input program has been interpreted and analysed, a complete abstract 

AND/OR/SPLIT graph will have been built up. During the interpretation and analysis, 

the generated event goals were inserted at the right places within the program graph. A 

full  Delta Prolog program can thus be derived from the abstract graph. 

3A Extens ions  

Up to now we only examined the case of two parallel processes out of their context. 

The presented method can be extended to deal with nested split goals where each 

common variable is shared by at most two processes. The essential point is that a 

process may now contain some common variables with a sending role and others with a 

receiving role; so, the sender/receiver distinction has to be made on variable level, 

rather than on process level. A common variable has a sending role within the leftmost 

o f  the two processes in which it occurs, and a receiving role within the rightmost one. 

The labels CSi and CRi have to be used instead of Ci to characterize an occurence of a 

common variable. Both parts of the event generation procedure may now be executed 

within the same process, depending on the kind of common variable. 

If a variable is common to more t han  two processes, asynchronous events are needed, 

since synchronous ones may only be shared by two active processes. We will not 

further explore this case. 

A final remark concerns the type of variable sharing between parallel processes. Static 

sharing is the sharing of variables with identical names or what we called common 

variables. Dynam/c sharing is established through variable binding at run time: 

variables with different names in the split parts became bound during execution up to 

the split goal. Our method presented so far uses information about static sharing and 

will thus yield Delta Prolog programs which closely resemble hand-written ones. 

However, information about dynamic sharing is derived during abstract interpretation 

and can be used to generate additional events. This may contribute to the efaciency of 

the final program: in the absence of events, compatibility of variable bindings created 

by each of the parallel processes is not checked until completion of the split goal; by 

adding events, failure can often be derived much sooner. 
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4. D~scussion 

Based on the abstract interpretation application for  type-  and mode-inferencing, we 

developed a method for  automatic event  goal generation that  consists of 3 steps: 

program normalization, abstract interpretation and event-generation analysis, and 

program derivation. The analysis procedure to decide when an event  has to be 

generated and how it is constructed can be split in two parts: 

- -analysis  wi thin  the sender, where event  goals and associated event  markers  are 

generated as soon as a common variable becomes completely ground; and 

- -analysis  wi thin  the receiver, where complementary event  goals and complementary 

event  markers  are generated, for  each common variable having an event  marker  at 

the root of its type  graph. 

4.1 E f f i c i e n c y  c o n s i d e r a t i o n s  

Efficiency of a Delta Prolog program depends largely on how communication between 

parallel processes is established. We cannot assure that  the position of generated events 

will  be optimal. However,  by  applying some obvious principles one can reduce the 

communication and synchronization overhead considerably. 

Reducing the number  of synchronization points implies that: 

- -one should send as much information as possible within one event  goal, thus 

reducing the number  of events, and 

--one should avoid to trigger distr ibuted backtracking as much as possible, replacing it  

by local backtracking. 

We contributed to meeting the first principle by a careful  normalization of the original 

program. If  we had only  allowed explicit unifications of the fo rm X = Y and X = 

f(Y1,...,Yn) (wi th  X,Y,Y1 ..... Yn all variables), this would have led to a lot of events 

each sending a small  amount  of information, e.g. X = f(1,g(2)) in the sender would  be 

t ransformed into X - f(Y1,Y2), Y1 = 1, Y1 ! evl ,  Y2 ffi g(Y3), Y3 = 2, Y3 { evl ,  

al though all information could be sent at once through X ! ev. This is achieved by  

introducing the th i rd  kind of explicit unification, X = t where t is a ground term. 

Attempts  we made to realize the second principle are as follows. 

mUnifications and their associated events in the sender are put  af ter  tests affecting the 

correct clause selection and thus the val id i ty  of the associated common variable 

instantiation (cfr. next  section on correctness); fai lure of the tests then implies on ly  

local backtracking. 

mWith in  the receiver, the type  test and the built in tha t  caused the generation of an 

event  can be made par t  of the event  condition. Failure of the tests wil l  then be 

covered while still  t ry ing to solve the event  goals, whereas distr ibuted backtracking 

would  be triggered - thus involving a second synchronization of sender and receiver- 

if the 'tests were executed sequentially af ter  solving the events. 

The degree of distr ibuted backtracking also depends on which of both split processes is 

chosen to be the sender. In some cases, efficiency may be increased by  considering the 
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rightmost process R as the sender instead of sticking to a lef t- to-r ight  data flow. This 

occurs when R is more deterministic than the lef tmost  process L wi th  regard to possible 

values of the common variable. Selecting sender and receiver has an influence on the 

position of events: an event  in the sender occurs after the instantiation of the variable, 

whereas in the receiver it  will  be p u t / n  front of the goal which now just  tests the 

variable value. This in tu rn  determines whether  local or distr ibuted backtracking is 

applied in the case of incompatible sender and receiver bindings: first, local 

backtracking is performed to t r y  out  other receiver possibilities; only  when none of 

those turns  out  to be compatible wi th  the sender instantiation, distr ibuted backtracking 

is triggered to explore another sender choice. Having the largest number  of choices 

within the receiver ensures that  distr ibuted backtracking is avoided as much as 

possible. However,  since analysing the degree of non-determinism is difficult and 

expensive, we a lways consider the lef tmost  process to be the sender. 

4~, C o r r e c t n e ~  c o n s i d e r a t i o n s  - a p p l i c a b i l i t y  o f  t h e  m e t h o d  

We first summarize some important  issues which have to be taken care of in order to 

obtain a correct Delta Prolog program - not only during automatic t ransformat ion but  

also when manual ly  developing such a program. All of these criteria eventual ly  serve 

the main goal, namely to preserve the input-output  behaviour of exported goals. 

The pr imary  concern is to avoid deadlock. One always has to ensure that  

comp&,men~ary events are generated. Moreover, generating superfluous events -- in 

particular duplication of events--  must  be avoided. Secondly, complementary events 

can only  establish useful  communication between sender and receiver if their  event  

terms correspond. Thirdly ,  a type  check is often needed as event  condition to avoid 

run- t ime errors. 

We have stated above how those basic issues are approached within our  method, but  

some points still  need to be mentioned. 

A first point concerns the prevention of duplicating events: within the sender, an event  

for  some common variable component is generated only  when the component becomes 

completely ground, which happens at one speci~c point in the program; wi thin  the 

receiver, duplication is prevented by using complementary event  markers.  

Secondly, the generation of complementary events requires precise abstract information 

to be passed f rom sender to receiver. Here, a problem may  occur due to the 

approximate nature  of the abstract interpretation procedure. In order to have a finite 

abstract domain, a depth restriction is introduced: a functor  symbol  may  only  appear a 

limited number  of times on a path starting f rom the root of a type  graph. This 

restriction implies tha t  the sender's final success type graph may  be only  an 

approximation of the real type.  For example, if the depth restriction ts taken to be 1, 

the sender's success type  graph of a matr ix  represented as a list of rows wil l  be r = []#e 

I ( r l t#e) . r  instead of the more precise type r - []#e I r2 . r  wi th  rz = []#e I t #e . r  z. When 

a matr ix  element is selected within the receiver, the root of its type graph wil l  not 

contain an event  marker;  so, no complementary event  wil l  be generated, causing 

deadlock at run-t ime.  We also note tha t  the depth needed to obtain the required 

precision cannot be derived automatical ly f rom the program text. 
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Beyond this lack in the analysis, a major share of problems are related to the s t ruc ture  

of the input  programs. Within  the rest of this section we wil l  i l lustrate some of the 

most impor tant  problems. 

A first problem concerns the position of events within the sender. In some cases, the 

basic sender analysis procedure would  cause event  goals to be generated too soon. An 

example of one such case is the following procedure (which is part  of a larger system): 

proc(N):- f l l t e r (N ,X) / / consumer (X) .  

fllter(N,N):- N > 0, N < 100. consumer(X):- write(X).  

Assume the call substi tut ion of proc(N) is { N: (_,¢) }. Applying the basic sender 

analysis yields: 

proc(N):- f i l t e r (N ,X) / / consumer (X) .  

fllter(X1,X2):- X1 = N, X2 --- N, X2 ! ev, N > 0, N < 100. 

consumer(X1):-  X1 ? ev: integer(X1), X1 = X, write(X). 

Note that  the input -ou tput  behaviour of proc(N) is not  preserved: a value which does 

not lie between the given bounds may  appear on the output  stream ! The reason is 

twofold:  the common variable value is passed to the receiver before it  is tested wi thin  

the sender and the receiver uses this value while performing a side-effect; this side- 

effect cannot be undone upon fai lure of the sender test. To solve this problem, the test 

part  of sender clauses has to be determined such that  the common variable unification 

and associated event  goal can be put  after the sender test, e.g.: filter(X1,X2):- X1 = N, 

N > 0, N < 100, X2 = N, X2 ! ev. This is ent i re ly  analogous to the derivation of 

guards in the context of  committed-choice languages [1,2] and cannot easily be 

automated in general. 

Another  case concerns a non-tail-recursive sender procedure, where the non-tai l -  

recursive clause contains an analogous test  af ter  its recursive call. For example, 

consider the predicate min imum/2  wi th  call pat tern minimum(r ,v)  where r ~ [] ] e.r; 

we immediately present the derived Delta Prolog version: 

minimum(X1,X2):-  

Xl  z IX/L], X2 = Mini., minimum(L,MinL),  X > MinL, g. 

mtnlmum(Xl ,X2) : -  

Xl  = [XlL], X2 = X, X2 ! ev. 

Note that  a value that  is not  the required minimum can be passed on to the receiver. 

One possible solution is to t ransform the non-tail-recursive procedure into a talN 

recursive one (which is again not obvious), e.g.: 

minimum(Y1,Y2):-  Y1 = IX[L], Y2 = Min, minimum tr(L,X,Min). 

minimum t r (X 1,X2,X3):- 

X1 = [], X2 ~ Min, X3 = Min, X3 ! ev. 

minimum t r (X 1 ,X2 ,X3 ):- 

X1 = [XIL], X2 = AccMin, X3 = Min, X > AccMln, !, min imum tr(L,AccMin,Min). 

minimum t r (X 1 ,X2 ,X3 ):- 

X1 = [XIL], X2 = AccMin, X3 -- Min, minimum _tr(L,X,Min). 
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A second possible solution consists of putt ing the event  goal af ter  the original call to 

the non-tail-recursive procedure. 

Another kind of problem occurs when the common variable is not instantiated 

incrementally.  Consider the following program fragment: 

append(Xl,X2,X3):-  

X1 -- [], X2 ~ L, X3 -- L. 

append(X1,X2,X3):- 

X1 ~ [XIL1], X2 ~ L, X3 ~ [XIL3], 

append(L1,L2,L3). 

sum(Xl,X2,X3):-  

X1 ~ [], X2 -- S, X3 ~ S. 

sum(X1,X2,X3):- 

X 1 ~ [XIL], X2 ~ AccS, X3 ~ S, 

NewAccS is AccS+ X, sum(L,NewAccS,S). 

In the first clause of append, the generated event  term would not be a list element but  a 

list, which is not what  is expected by the receiver sum/3.  A correct Delta Prolog 

program can be obtained by  changing the s t ructure  of the sender procedure such that  

all list elements will  be passed one by one. For example, 

append(X1,X2,X3):= 

X1 ~ [], copy(X2,X3). 

copy(X1,X2):- 
X l  - [1, x 2  = [1. 

copy(X1,X2):- 

Xl  - [XIL1], X2 - [XIL2], copy(L1,L2). 

Finally, an even more complex situation concerns the order in which the common 

variables or their  components are instantiated: the sender should send information in 

the same order as it  is expected by the receiver. It  is not  at all obvious how to change 

the s t ructure  of the program automatical ly in order for  this proper ty  to hold. 

All of this shows tha t  it  is ve ry  hard to obtain a general procedure for  automatic 

transformation.  The main ditficulty is that  the program s t ructure  of ten has to be 

changed significantly. At  least, we can characterize a class of programs to which our 

method can safely be applied. These programs have the following properties: they  

define a simple system of two parallel processes, sharing one non-ground common 

variable of the list type whose elements are successively instantiated by  the sender 

(note tha t  the problem of event  order is avoided here). Stream-communication is then 

established between the parallel processes. 

For the subclass of generate-and-test  programs (e.g. permsort,  N-queens), efficiency 

wil l  be increased significantly by  allowing parallel execution of the generate and the 

test part; hereby, the possibility of distr ibuted backtracking is f u l l y  exploited. 
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