
On the automatic generation of events
in Delta Prolog

Veroniek Dumortier Maurice Bruynooghe

Department of Computer Science, K.U.Leuven

Celestijnenlaan 200A, B-3030 Heverlee

Abs t r ac t

Delta Prolog is a concurrent logic programming language, which extends Prolog with

AND-parallelism. Communication and synchronization between parallel processes is

established by using special control structures: event goals.

To relieve the programmer from inserting these structures at the correct program

points, we propose a method for automatically generating them, departing from a

Prolog program together with the top-level call pattern and indications of which goal-

expressions should be executed in parallel. This method is based on the technique of

abstract interpretation. The gathered abstract information allows to decide at which

program points an event goal has to be generated and how it is composed.

However, it turns out that only a limited class of programs can be transformed

automatically. Problems impeding general automatic transformation are discussed.

Keywords" Delta Prolog, distributed Prolog, abstract interpretation.

1. Introduction

Delta Prolog [6,11,12,13] is a concurrent logic programming language, which extends

Prolog to include AND-parallelism and interprocess communication and

synchronization. The latter concepts are expressed by means of special language

constructs, namely (synchronous) event goals.

This paper presents a method to derive these constructs automatically for programs

that are executable under the Prolog computation rule. Given such a program, its top-

level call pattern, and annotations concerning the desired AND-parallelism, the method

derives the event goals to be inserted. The technique of abstract interpretation

[4,5,7,8,9,10] is used to gather the necessary information upon which the generation of

event goals can be based. The kind of abstract interpretation applied here is an

extension of the application developed by Bruynooghe and Janssens [3]; this is itself an

instance of the general framework described in [4].

325

However, automatic program transformation is only applicable in a limited number of

cases. We mention several problems and identify a class of treatable programs.

The paper s tar ts wi th a brief overv iew of the Delta Prolog language and concepts.

Af terwards , the method for automat ic generation of event goals is presented. The core

of the method is the abst ract interpretat ion application. The complets procedure is

obtained by augmenting this core wi th the procedure for event-generat ion analysis. In

the last section we evaluate the method and discuss its applicability.

2. Delta Prolog: overview of the language

2.1 Delta Prolog control constructs

Delta Prolog contains some special language constructs: split goals and event goals.

• Spl i t goals are used to express AND-paral lel ism. They are of the f o r m S l / / S 2 ,

where S1 and $2 are a rb i t ra ry Delta Prolog goal expressions. Logically, $1 / / $ 2 is

t r u e iff $1 and $2 are both true. Operationally, $1 and $2 are solved in parallel.

• E v e n t goals are of the fo rm X ! E : C or X ? E : C. Their components are:

- - X: the event t e rm or the message (a Prolog term).

- - ! or ?: the communicat ion mode (infix binary predicate symbol) .

- - E: the event name (a Prolog constant or variable).

- - C: the event condition (a conjunction of goals whose evaluat ion invokes no Delta

Prolog goals)

Two event goals X11E:C1 and X2?E:C2 wi th the same event name and different

communicat ion modes are called c o m p l e m e n t a r y event goals.

Event goals deal wi th interprocess communicat ion as wel l as synchronization.

- - C o m m u n i c a t i o n is realized through two event goals by uni fy ing their event t e rms

under the restrictions given by the event conditions, e.g. X ? e: X > 0.

- - S y n c h r o n i z a t i o n is accomplished by the fact tha t an event goal can only be solved

if its complementa ry one is available in a parallel derivation; otherwise, resolution

of the goal suspends. Event goals thus establish a rendez-vous between two

processes. I f a complementa ry event goal is never derived, a deadlock occurs.

Remarks:

- - To be able to run programs on a parallel machine wi thou t common memory , the

implementors add some restrictions which we adopt in the sequel.

1. In a spli t goal S 1 / / $ 2 , S1 and $2 should not share free variables. I f they do

have variables in common, these are unified at completion of the spli t goal.

2. The event t e rms are required to be ground af ter solving complementa ry event

goals.

- - An event name m a y be shared only by two active parallel processes, to be able to

define a complete t raversa l of the search space. I f mul t ip le consumers or producers

are desired, asynchronous events or a communicat ions manager m a y be used.

326

2.2 Distributed backtracking

In contrast to committed-choice languages, Delta Prolog incorporates don't-know non-

determinism. Executing a program means searching for a//answers to a given query.

The search rule involves sequential clause search and backtracking. Backtracking

occurs at two levels. As long as no interaction point (i.e. a split or event goal) is

involved, /oca/ backtracldng within one process occurs. Distributed backtracking is

triggered to undo a joint derivation step. It is a kind of inte111gent backtracking that

affects only the processes (directly or indirectly) related to a failure. Insight into the

rules for distributed backtracking allows one to place events so that the

communication overhead is reduced and the overall efficiency is increased.

3. Automatic generation of events

3.1 Analysing t h e problem

Suppose we are given a Prolog program whose execution does not fail under the

standard Prolog computation rule. The program's efficiency may be increased if some

of its goal expressions are solved concurrently. The user of our system indicates this

parallellsm by incorporating the spllt operator//into the program, as i11ustrated here.

sumofsquares(L,S):- squares(L,SqL)//sum(SqL,0,S).

(sl) squares([],[]). (rl) sum([],S,S).

(s2) squares([XIL],[SXISL]):- (r2) sum([XIL],AccS,S):-
SX is X'X, NewAccS is AccS + X,

squares(L,SL), sum(L,NewAccS,S).

This program computes the relation sumofsquares(L,S) where S is the sum of the

squares of the elements of L. We use this example throughout the rest of this text.

The goal is to derive an executable and efficient Delta Prolog program which is

ecluivalent to the original one. This mostly requires the addition of event goals:

sumofsquares(L,S):- squares(L,SclL) H sum(SqL,0,S).

(sl) squares([],[]):- [] ! ev.

(s2) squares([XIL],[SXISL]):-

SX is X'X,
SX t ev,

squares(L,SL).

(rl) sum([],S,S):- [] ? ev.

(r2) sum([XIL],AccS,S):-

X ? ev: integer(X),

NewAccS is AccS+ X,

sum(L,NewAccS,S).

Event goals need to be added only within parallel processes sharing a variable which is

non-ground upon initialisation of the processes. For the moment we consider only the

case in which a variable is common to two processes (extensions will be discussed in

section 3.4). One of the processes (the receiver or conzuraer) uses (part of) the value of

the common variable to

1. be able to continue its execution, as occurs in the example where the builtin +12 in

327

sum/2 causes an error when the value of X is not available, or to

2. avoid was tefu l computations because of non-determinism in one of the processes,

as would be the case in the above example wi th + defined by an infinite set of

ground facts.

The effect of event goals is to suspend the receiver unt i l the sender or producer

provides the information needed to proceed. Although this restricts the parallelism, it

can have a beneficial effect. In case 1, the event is necessary to avoid failure. In case 2,

the event increases e~ciency: with non-determinism in the receiver, it avoids local

backtracking; wi th non-determinism in the sender, it avoids the expensive distr ibuted

backtracking. The lat ter is typical for generate-and-test programs where the generate

part is the sender.

Although b id i rec t iona l communication between paraUel processes is possible in Delta

Prolog, it is never called for in programs wri t ten wi th the s tandard Prolog computation

rule in mind. Consequently, we wil l a lways be able to distinguish a real sender and a

real recetw~.r process.

Having motivated the use of event goals, we now discuss some conditions on their

generation.

First, the derived program should be equiva/ent to the original Prolog program: exported

predicates should retain their input -output behaviour. The main problem to preserve

the set of solutions is to avoid deadlock. This implies that, for each event goal, a

complementary event goal mus t exist at run-t ime.

Second, complementary event goals should satisfy certain properties:

- - A n event wi thin a receiver clause often contains an event condition that tests the

type of the value to be received. This test is necessary ff some receiver goal,

following the event, would cause a run- t ime error in case a value of a wrong type

was accepted. For example, in the above program, the condition integer(X) wi thin

the event of (r2) guarantees that +/2 will have integer operands.

The use of the type test may also prevent fu r the r useless execution of an incorrect

combination of a sender and receiver clause. For example, when combining (s l) and

(r2), s imply unifying the event terms would succeed; due to the explicit type test,

the combination wil l fail when t rying to solve the event goals.

- - In correct clause combinations, each pair of complementary event goals should

contain event terms having not on ly the same type, but also the same enclosing

structure: the event terms should each refer to the original common variable itself or

to components at the same position within the value of the common variable, wi th

that value s t ruc ture being the same in sender and receiver. For example, the type of

common variable values treated by (s2) and (r2) is a non-empty list of integers and

both event terms refer to the first component of the list.

The correspondence of event terms has to be established when generating the event

goals (i.e. at compile-time). It is not - -and even cannot be-- checked at run-t ime,

since, when reaching complementary events during execution, no information is

available about the way in which the event terms were selected wi thin the other

328

parallel process. This is due to an implicit assumption in Delta Prolog, which states

that no information is passed from sender to receiver about the upper functors of the

common variable value. The reason for this restriction is twofold. Adding events to

pass the information would increase the communication overhead. Also, the event

terms would still contain free variables after solving the event goals, e.g. this would

be the case if (s2) and (r2) contained [SXISL] ! ev and [XIL] ? ev respectively.

3.2 Core o f t h e m e t h o d f o r a u t o m a t i c e v e n t g e n e r a t i o n

The heart of the method consists of gathering information to examine the instantiation

of the common variables. This is achieved by using the technique of abstract

interpretation [4,5,7,8,9,10]. Guided by the observations made in the previous section,

we derive what kind of abstract information is needed.

• mode informat ion :

This enables us to decide whether events should be generated at all, and, if so, when

to generate them within the sender. According to the implementation restriction

stated in section 2.1, event terms must be ground after solving complementary

events. The event term of the receiver process usually is a free variable, which is

used afterwards in a goal requiring it to be ground. So, the sender should only be

allowed to send ground data.

• t ype in format ion :

Type information enables us to incorporate in the receiver event goals that are

complementary to those in the sender, ensuring that their event terms correspond.

Type information is also used to derive the type test that is part of the event

condition.

An application of abstract interpretation that integrates type- and mode-inferencing

and supplies sutficiently detailed information for our purpose has already been

developed in [3]. To start the abstract interpretation process, the user has to specify

the top-level call-pattern (or abstract query). While resolving this query, the abstract

interpretation procedure builds an abstract AND/OR graph. This graph represents a set

of concrete proof trees for any concrete call satisfying the abstract query. The solved

goals appear as (OR)nodes in the graph. We obtain a graph rather than a tree because

of the way in which recursive calls are treated: ff a recursive call together with its

abstract call substitution already occurs within the abstract tree, a back reference is

introduced to that previous call. Otherwise, the call is elaborated; it leads to a new

version of the procedure defining the predicate.

Each of the goal nodes is annotated with an abstract call- and success-substitution

containing a normalized type graph for each argument of the goal The call (resp.

success) type graph represents the set of all terms which can appear at that argument

position before (resp. after) that goal is executed. A type graph can contain three kinds

of nodes: functor nodes, nodes representing predefined types (such as integer, atom,

variable) and OR-nodes, which unite several type variants. The type of each argument

of a functor appears as a subgraph of that functor node. Type graphs are normalized,

which essentially means that, pairwise, the sons of an OR-node must have non-

329

overlapping principal functor sets. The set of principal functors of a node is the set of

all functors that can be reached directly of Indirectly through a sequence of OR-nodes.

Normalization not only allows unambiguous selection within type graphs, but it also

eases the development of algorithms to manipulate them.

3.3 Basic m e t h o d

The basic method for automatic generation of event goals consists of three major steps,

which will be elaborated below:

--normalization of the input program

--abstract interpretation, with a subprocedure for analysing where and when an event

should be generated and, ff necessary, for performing event generation

--derivation of a full Delta Prolog program from the abstract interpretation graph

3.3.1 P r o g r a m n o r m a l i z a t i o n

Program normalization consists of reducing all predicates (except builtins) to flat

structures of the form p(X1 Xn) where all Xi are distinct variables. This is done by

introducing explicit unifications of the form X = Y or X = f(Y1 Yn) or X = t, where

X, Y and Y1 Yn are distinct variables and t is a ground term. The third kind of

unification prevents splitting up ground terms.

The sumofsquares program is normalized as:

sumofsquares(Y1,Y2):-

Y1 = L, Y2 = SqL, squares(L,SqL)//(Y3 = 0, sum(SqL,Y3,S)).

(sl) squares(X1,X2):-

x~ = [1, x 2 = [1.
(s2) squares(X1,X2):-

Xl = [XIL], X2 = [SXISL],

SX is X'X,

squares(L,SL).

(r l) sum(X1,X2,X3):-

X l = [1, x 2 = s , x 3 - - s .

(r2) sum(X1,X2,X3):-

X1 = [XIL], X2 =AccS, X3 = S,

NewAccS is AccS + X,

sum(L,NewAccS,S),

Normalization simplifies the abstract interpretation procedure and the subprocedure for

generating event goals. It allows us to deal with unification just once, by ruling out

full call-head unification and reducing it to a simple renaming of variables. To prevent

the need for triggering the event generation procedure at procedure entry, it is

important that aU arguments in the head of a clause are replaced by fresh variables

(cfr. following section about the receiver analysts).

3.3~, A l ~ t r a c t i n t e r p r e t a t i o n a n d e v e n t g e n e r a t i o n

3.3.2.1 Ove ra l l de sc r ip t i on

This step of the method is an extension of the abstract interpretation application for

type and mode inferencing. The event-generation analysis will be carried out as a

subprocess during abstract interpretation, since it is based only upon the abstract

information gathered up to the point where the event is introduced. A generated event

will be saved as a node in the abstract graph, just like an ordinary goal node.

330

The abstract interpretation procedure starts off from a top-level call-pattern, e.g.

sumofsquares(rl,V) where 71= [] [~.TI. ('[' is used to separate several type alternatives

(or OR-branches); '.' is the list constructor. Greek letters are used to represent type

denotations; ¢ represents the integer type and v represents the type of variables.)

Abstract interpretation before and after a split goal proceeds as in [3]. To deal with

split goals, the abstract AND/OR-graph is replaced by an abstract AND~OR~SPLIT-

graph: a SPLIT-node is created whenever a split goal is reached.

If the goal expressions of a split goal contain non-ground common variables, event

generation analysis must be carried out during abstract interpretation of the split

branches. A special label is attached to the common variables to distinguish them from

non-common ones. The label consists of the indication C(ommon), followed by a

unique number. In the sumofsquares example, SqL gets the label Cl. This identifier is

us¢~ to generate the correct event name within all event goals concerning (parts of)

that specific variable. So, variables that get bound to (part of) the original common

variable during execution of the sender or receiver process inherit its label.

A split goal initiates two subprocesses: a sender and a receiver. The leftmost process, L,

can always be considered as the sender. It does not need information from the

rightmost process, R, to proceed with its execution, since we assumed the given

program to be executable under the standard Prolog computation rule. This

determination of the dataflow will be justified in a following section concerning

efficiency.

Another general aspect concerns the order in which sender and receiver are treated.

Abstract interpretation in the existing application [3] is purely sequential and proceeds

from left to right. So, the sender will be treated first. Then, the sender's success

substitution will become the call substitution of the receiver.

For the purpose of event generation, this purely sequential interpretation and analysis

is convenient. Analysing the sender before the receiver respects the natural relation

between those processes. A receiver goal may depend on the sender to obtain the type

of a common variable during abstract interpretation, just as it expects the value of this

variable to be supplied by the sender during a concrete execution.

Passing the results of analysing the sender on to the receiver provides a way to ensure

that correct complementary event goals will be generated. During the construction of

the common variable type graph within the sender, we will put an event mar/cer at the

root of a subgraph when a component having the type of that subgraph is sent over. A

complementary event goal will be generated as soon as a component with an event

marker at the root of its "type graph is reached during the analysis of the receiver. So,

event terms will automatically correspond. We will also add a complmnm~ary event

m a r ~ r to the root of the type graph of the event term.

At each stage of abstract execution, the current abstract substitution will contain two

components for each accessible variable:

--a variable label, Ci, or _ (i.e. empty) ff the variable is not a common variable.

--a normalized type graph, where functor and predefined nodes contain a node label, a

field to contain an event marker, and one to contain a complementary event marker.

331

We now discuss in detail the event-generation analysis within the sender and the

receiver. For the moment we will ignore whether the sender and receiver are part of a

larger system of parallel processes; we return to. this briefly in section 3.4.

3.3.2.2 S e n d e r a n a l y s i s

The aim of the analysis within the sender is to detect when (part of) a common

variable becomes ground. At that point, an event goal has to be generated. Since the

input program has been normalized, the analysis can be focussed on treating builtins

and explicit unifications: these are the only goals which may cause a change of type.

The analysis procedure is triggered as soon as their success substitution is computed.

The analysis wil l be i l lustrated on the sumofsquares example. We wil l show what

abstract ~uformation is derived at each program point (Pi), i.e. immediately after call-

head unification and af ter each body goal, and how it is used.

In our example, the top-level call pattern is 'sumofsquares(r,v) ' wi th r = [] I t . r . So,

the abstract call substitution of the sender call 'squares(L,SqL)' is: { L: (_ , r) , SqL:

(CI,v) }. The first component of the tuple attached to a variable may contain a

common variable label; the second one indicates the type of the variable.

The first clause defining squares/2 is (in normalized form):

squares(X1,X2):- (P1) X1 = [], (P2) X2 = [] (P3) .

(P1): { XI: (._,r), X2: (Cl,v) I.

(P2): { XI: (__,[]), X2: (Cl,v) }.

Since there is no change of the mode of the common variable X2 from (P1) to (P2), no

event goal has to be generated.

(P3): { XI: (_.~[]), X2: (C1,[1) }.

Comparing (P2) and (P3) reveals that X2 has become completely ground. An event

X2 ! ev l is generated and stored in the abstract AND/OR/SPLIT graph. We choose '!' as

the communication mode of an event within the sender; the event name is derived f rom

the common variable label and there is no event condition. Consequently, there is a

program point (P4), which is the success substitution of the event. An event marker is

put at the root of the type graph of X2 to indicate the generation of the event:

(P4): { XI: (._,[]), X2: (Cl,[]#e) }.

The above clause is t ransformed into its desired form:

squares(XI,X2):- (PI) XI = [], (P2) X2 = [], (P3) X2 1 evl (P4).

We now consider the second clause defining squares/2.

squares(X1,X2):-

(PI) Xl = [XlL], (P2) X2 = [SXISL],

(P3) SX - X * X, (P4) squares(L,SL) (P5).

(P1): { Xl: (_ , r) , X2: (Cl,v), X: (_.~v), L: (_.,v), SX: (_ ,v) , SL: (__,v) }

(P2): { Xl: (._,t.r), X2: (Cl,v), X: (_,t) , L: (..~r), SX: (..~v), SL: (__~v)}

No event goal has to be generated, since no common variable has become ground.

(P3): { XI: (._~t.r), X2: (Cl,v.v), X: (._~), L: (._~r), SX: (Cl,v), SL: (CI,v) }.

332

The common variable label of X2 is passed on to its components SX and SL. None of

the common variables has become completely ground; so, no event goal has to be

generated yet.

(P4): { Xl: (_,~.r), X2: (Cl,~.v), X: (_,~), L: (_.~r), SX: (Cl,~), SL: (Cl,v) }.

A change in the type of SX also affects X2, because of the binding between SX and X2.

We just generate the event goal SX t evl, since SX is the only common variable that has

become completely ground. The success substitution of the event goal contains an event

marker to reflect this generation; so, for the extra program point (P4') we have:

(P4'): { XI: (._~e.r), X2: (Cl,e#e.v), X: (_,e), L: (_,r) , SX: (C1,¢#e), SL: (Cl,v) }.

The recursive call 'squares(L,SL)' has the same call pattern as the original call in the

split goal, i.e. { (._~r), (Cl,v) }. Subsequent interpretation of the call can thus be

avoided; a back reference is introduced to the previous, identical call. The success

substitution (P5) will be:

(P5): { XI: (_,e.r), X2: (Cl , r ') , X: (..~e), L: (_,T), SX: (Cl , t#e) , SL: (Cl , r ') }

wi th r ' - []#e I ~#e.r'

The trzn.~formed version of the second clause is:

squares(X1,X2):-

(Pl) Xl = [XlL], (P2) X2 = [SXISL],

(P3) SX = X * X, (P4) SX ! evl,

(P4') squares(L,SL) (P5).

Finally, we obtain the success substitution of the original sender call in the split goal:

{ L: (_ , r) , SqL: (Cl , r ') } wi th r - [] I ~.r and r ' - []#e I e#e.r'

3.3,2.3 R e c e i v e r a n a l y s i s

One can distinguish two situations that should lead to the generation of an event goal

within the receiver. The first one is that an event goal should be generated in f ront of

each goal which makes use of (part of) the common variable value (thus requiring it to

be ground). The second requirement is that event goals have to be generated

complementary to the ones in the sender. Therefore, we can use the type graphs,

constructed during interpretation of the sender and passed on to the receiver.

We first focus on fulfilling the second requirement. The analysis wil l be based on

finding common variables wi th an event marker at the root of their type graph. We

only need to consider explicit unifications and bull!ins, since these are the only goals

which can select common variable components and their associated type graphs. Even

original common variables that only appeared within the head of a clause now appear

within an explicit unification, due to the introduction of fresh head variables during

program normalization.

We will use the sumofsquares example to il lustrate the receiver analysis. The call

substitution of the receiver call 'sum(SqL,Y3,S)' is derived from the success

substitution of the sender call, giving { SqL: (C1,T'), Y3: (__,0, S: (__,v) } wi th r ' = []#e

I ~#e . r '

333

The first clause defining sum/3 is:

sum(X1,X2,X3):- (PI) XI = [], (P2) X2 = S, (P3) X3 = S (P4).

(P1): { Xl: (Cl,r ') , X2: (__~), X3: (_~v) }

(P2): { XI: (Cl,[]#e), X2: (_ ,0 , X3: (_,v) }

The common variable XI contains an event marker at its root. So, an event X I ? ev l is

generated. We already noticed that an event goal within the receiver should contain an

explicit type test as event condition. The test can be derived from the type of X1 in

(P2), yielding 'X1 = []'. Since this is identical to the interpreted unification, we can

simply take the unification itself as event condition (which will always be the case for

a unification X = t, where t is a ground term).

To prevent the generation of another event for X1, a complementary event marker is

put at the root of its success type graph:

(P2'): { XI: (Cl,[]#ec), X2: (_,t), X3: (_,v) }

The subsequent unifications in the clause body do not contain or affect common

variables. The first clause is thus transformed into:

sum(X1,X2,X3):- (P1) X1 ? ev: X I = [], (P2') X2 = S, (P3) X3 = S (P4).

The second clause of the sum/3 procedure is:

sum(X1,X2,X3):-

(Vl) X1 = [XIL], (P2) X2 =- AccS, (P3) X3 = S,

(P4) NewAccS is AccS+ X,

(PS) sum(L,NewAccS,S) (P6).

(P1): { XI: (Cl,r ') , X2: (_,~), X3: (_,v), X,L,AccS,NewAccS,S: (_,v) }

(P2): { XI: (Cl,~#e.r'), X2:(_,t), X3: (_,v), X: (Cl,t#e), L: (Cl,r ') ,

AccS,NewAccS,S: (__,v) }

The label of X1 is passed on to its components X and L. X contains an event marker at

the root of its type graph; so, a complementary event has to be generated.

The predefined predicate integer(X) will be used to check the type of the received

event-term value. We hereby want to make a remark about the predefined type atom:

ff this is the expected type of the event term, we will not use the builtin test predicate

atom/l , but real...atom/1 where real__atom(X) is defined as reaL.atom(X):- atom(X),

X \= []. I1~ is important to make the distinction between [] and another atom, because of

the special meaning attached to []: [] is the empty list symbol

The sum/3 clause is so far transformed into:

sum(X1,X2,X3):-
(P1) X1 = [XIL], (P2) X ? ev l : integer(X), (P2') X2 =AccS, (P3) X3 = S,
(P4) NewAccS is AccS+ X,
(PS) sum(L,NewAccS,S) (P6).

with (P2') containing a complementary event marker at the root of the type graph of X

and within the type graph of X1 (because of the binding between X and X1):

(P2'): { XI: (Cl,,#ec.r ') , X2: (_,~), X3: (_,v), X: (Cl,,#ec), L: (Cl,r ') ,

AccA~,NewAccS,S: (_,v) }

334

The subsequent unifications and builtin will not cause the generation of another event.

(P5): { XI: (Cl,t#ec.r'), X2: (_,~), X3: (__,v), X: (Cl,t#ec), L: (Cl,r '),

AccS: (._,~), NewAccS: (_,~), S: (_,v) }

The recursive call sum(L,NewAccS,S) has the same abstract call substitution as the

original sum call, i.e. { (Cl,r '), (_,~), (_,v) }. A back reference is thus introduced in

the abstract AND/OR/SPLIT graph.

The final success substitution of the original receiver call is:

{ SqL: (Cl,r"), X2: (_,~), X3: (_,¢) } with r" -- []#ec I ~#ec.r"

Note that, by generating event goals complementary to the ones in the sender, all

requirements for some common variable value are automatically satisfied. This is at

least so in the usual situation, where the amount of information contained in the event

terms of the sender is exactly the same as the amount required by the receiver.

3.3.3 P r o g r a m d e r i v a t i o n

After the entire input program has been interpreted and analysed, a complete abstract

AND/OR/SPLIT graph will have been built up. During the interpretation and analysis,

the generated event goals were inserted at the right places within the program graph. A

full Delta Prolog program can thus be derived from the abstract graph.

3A Extens ions

Up to now we only examined the case of two parallel processes out of their context.

The presented method can be extended to deal with nested split goals where each

common variable is shared by at most two processes. The essential point is that a

process may now contain some common variables with a sending role and others with a

receiving role; so, the sender/receiver distinction has to be made on variable level,

rather than on process level. A common variable has a sending role within the leftmost

o f the two processes in which it occurs, and a receiving role within the rightmost one.

The labels CSi and CRi have to be used instead of Ci to characterize an occurence of a

common variable. Both parts of the event generation procedure may now be executed

within the same process, depending on the kind of common variable.

If a variable is common to more t han two processes, asynchronous events are needed,

since synchronous ones may only be shared by two active processes. We will not

further explore this case.

A final remark concerns the type of variable sharing between parallel processes. Static

sharing is the sharing of variables with identical names or what we called common

variables. Dynam/c sharing is established through variable binding at run time:

variables with different names in the split parts became bound during execution up to

the split goal. Our method presented so far uses information about static sharing and

will thus yield Delta Prolog programs which closely resemble hand-written ones.

However, information about dynamic sharing is derived during abstract interpretation

and can be used to generate additional events. This may contribute to the efaciency of

the final program: in the absence of events, compatibility of variable bindings created

by each of the parallel processes is not checked until completion of the split goal; by

adding events, failure can often be derived much sooner.

335

4. D~scussion

Based on the abstract interpretation application for type- and mode-inferencing, we

developed a method for automatic event goal generation that consists of 3 steps:

program normalization, abstract interpretation and event-generation analysis, and

program derivation. The analysis procedure to decide when an event has to be

generated and how it is constructed can be split in two parts:

- -analysis wi thin the sender, where event goals and associated event markers are

generated as soon as a common variable becomes completely ground; and

- -analysis wi thin the receiver, where complementary event goals and complementary

event markers are generated, for each common variable having an event marker at

the root of its type graph.

4.1 E f f i c i e n c y c o n s i d e r a t i o n s

Efficiency of a Delta Prolog program depends largely on how communication between

parallel processes is established. We cannot assure that the position of generated events

will be optimal. However, by applying some obvious principles one can reduce the

communication and synchronization overhead considerably.

Reducing the number of synchronization points implies that:

- -one should send as much information as possible within one event goal, thus

reducing the number of events, and

--one should avoid to trigger distr ibuted backtracking as much as possible, replacing it

by local backtracking.

We contributed to meeting the first principle by a careful normalization of the original

program. If we had only allowed explicit unifications of the fo rm X = Y and X =

f(Y1,...,Yn) (wi th X,Y,Y1 Yn all variables), this would have led to a lot of events

each sending a small amount of information, e.g. X = f(1,g(2)) in the sender would be

t ransformed into X - f(Y1,Y2), Y1 = 1, Y1 ! evl , Y2 ffi g(Y3), Y3 = 2, Y3 { evl ,

al though all information could be sent at once through X ! ev. This is achieved by

introducing the th i rd kind of explicit unification, X = t where t is a ground term.

Attempts we made to realize the second principle are as follows.

mUnifications and their associated events in the sender are put af ter tests affecting the

correct clause selection and thus the val id i ty of the associated common variable

instantiation (cfr. next section on correctness); fai lure of the tests then implies on ly

local backtracking.

mWith in the receiver, the type test and the built in tha t caused the generation of an

event can be made par t of the event condition. Failure of the tests wil l then be

covered while still t ry ing to solve the event goals, whereas distr ibuted backtracking

would be triggered - thus involving a second synchronization of sender and receiver-

if the 'tests were executed sequentially af ter solving the events.

The degree of distr ibuted backtracking also depends on which of both split processes is

chosen to be the sender. In some cases, efficiency may be increased by considering the

336

rightmost process R as the sender instead of sticking to a lef t- to-r ight data flow. This

occurs when R is more deterministic than the lef tmost process L wi th regard to possible

values of the common variable. Selecting sender and receiver has an influence on the

position of events: an event in the sender occurs after the instantiation of the variable,

whereas in the receiver it will be p u t / n front of the goal which now just tests the

variable value. This in tu rn determines whether local or distr ibuted backtracking is

applied in the case of incompatible sender and receiver bindings: first, local

backtracking is performed to t r y out other receiver possibilities; only when none of

those turns out to be compatible wi th the sender instantiation, distr ibuted backtracking

is triggered to explore another sender choice. Having the largest number of choices

within the receiver ensures that distr ibuted backtracking is avoided as much as

possible. However, since analysing the degree of non-determinism is difficult and

expensive, we a lways consider the lef tmost process to be the sender.

4~, C o r r e c t n e ~ c o n s i d e r a t i o n s - a p p l i c a b i l i t y o f t h e m e t h o d

We first summarize some important issues which have to be taken care of in order to

obtain a correct Delta Prolog program - not only during automatic t ransformat ion but

also when manual ly developing such a program. All of these criteria eventual ly serve

the main goal, namely to preserve the input-output behaviour of exported goals.

The pr imary concern is to avoid deadlock. One always has to ensure that

comp&,men~ary events are generated. Moreover, generating superfluous events -- in

particular duplication of events-- must be avoided. Secondly, complementary events

can only establish useful communication between sender and receiver if their event

terms correspond. Thirdly , a type check is often needed as event condition to avoid

run- t ime errors.

We have stated above how those basic issues are approached within our method, but

some points still need to be mentioned.

A first point concerns the prevention of duplicating events: within the sender, an event

for some common variable component is generated only when the component becomes

completely ground, which happens at one speci~c point in the program; wi thin the

receiver, duplication is prevented by using complementary event markers.

Secondly, the generation of complementary events requires precise abstract information

to be passed f rom sender to receiver. Here, a problem may occur due to the

approximate nature of the abstract interpretation procedure. In order to have a finite

abstract domain, a depth restriction is introduced: a functor symbol may only appear a

limited number of times on a path starting f rom the root of a type graph. This

restriction implies tha t the sender's final success type graph may be only an

approximation of the real type. For example, if the depth restriction ts taken to be 1,

the sender's success type graph of a matr ix represented as a list of rows wil l be r = []#e

I (r l t#e) . r instead of the more precise type r - []#e I r2 . r wi th rz = []#e I t #e . r z. When

a matr ix element is selected within the receiver, the root of its type graph wil l not

contain an event marker; so, no complementary event wil l be generated, causing

deadlock at run-t ime. We also note tha t the depth needed to obtain the required

precision cannot be derived automatical ly f rom the program text.

337

Beyond this lack in the analysis, a major share of problems are related to the s t ruc ture

of the input programs. Within the rest of this section we wil l i l lustrate some of the

most impor tant problems.

A first problem concerns the position of events within the sender. In some cases, the

basic sender analysis procedure would cause event goals to be generated too soon. An

example of one such case is the following procedure (which is part of a larger system):

proc(N):- f l l t e r (N ,X) / / consumer (X) .

fllter(N,N):- N > 0, N < 100. consumer(X):- write(X).

Assume the call substi tut ion of proc(N) is { N: (_,¢) }. Applying the basic sender

analysis yields:

proc(N):- f i l t e r (N ,X) / / consumer (X) .

fllter(X1,X2):- X1 = N, X2 --- N, X2 ! ev, N > 0, N < 100.

consumer(X1):- X1 ? ev: integer(X1), X1 = X, write(X).

Note that the input -ou tput behaviour of proc(N) is not preserved: a value which does

not lie between the given bounds may appear on the output stream ! The reason is

twofold: the common variable value is passed to the receiver before it is tested wi thin

the sender and the receiver uses this value while performing a side-effect; this side-

effect cannot be undone upon fai lure of the sender test. To solve this problem, the test

part of sender clauses has to be determined such that the common variable unification

and associated event goal can be put after the sender test, e.g.: filter(X1,X2):- X1 = N,

N > 0, N < 100, X2 = N, X2 ! ev. This is ent i re ly analogous to the derivation of

guards in the context of committed-choice languages [1,2] and cannot easily be

automated in general.

Another case concerns a non-tail-recursive sender procedure, where the non-tai l -

recursive clause contains an analogous test af ter its recursive call. For example,

consider the predicate min imum/2 wi th call pat tern minimum(r ,v) where r ~ []] e.r;

we immediately present the derived Delta Prolog version:

minimum(X1,X2):-

Xl z IX/L], X2 = Mini., minimum(L,MinL), X > MinL, g.

mtnlmum(Xl ,X2) : -

Xl = [XlL], X2 = X, X2 ! ev.

Note that a value that is not the required minimum can be passed on to the receiver.

One possible solution is to t ransform the non-tail-recursive procedure into a talN

recursive one (which is again not obvious), e.g.:

minimum(Y1,Y2):- Y1 = IX[L], Y2 = Min, minimum tr(L,X,Min).

minimum t r (X 1,X2,X3):-

X1 = [], X2 ~ Min, X3 = Min, X3 ! ev.

minimum t r (X 1 ,X2 ,X3):-

X1 = [XIL], X2 = AccMin, X3 = Min, X > AccMln, !, min imum tr(L,AccMin,Min).

minimum t r (X 1 ,X2 ,X3):-

X1 = [XIL], X2 = AccMin, X3 -- Min, minimum _tr(L,X,Min).

338

A second possible solution consists of putt ing the event goal af ter the original call to

the non-tail-recursive procedure.

Another kind of problem occurs when the common variable is not instantiated

incrementally. Consider the following program fragment:

append(Xl,X2,X3):-

X1 -- [], X2 ~ L, X3 -- L.

append(X1,X2,X3):-

X1 ~ [XIL1], X2 ~ L, X3 ~ [XIL3],

append(L1,L2,L3).

sum(Xl,X2,X3):-

X1 ~ [], X2 -- S, X3 ~ S.

sum(X1,X2,X3):-

X 1 ~ [XIL], X2 ~ AccS, X3 ~ S,

NewAccS is AccS+ X, sum(L,NewAccS,S).

In the first clause of append, the generated event term would not be a list element but a

list, which is not what is expected by the receiver sum/3. A correct Delta Prolog

program can be obtained by changing the s t ructure of the sender procedure such that

all list elements will be passed one by one. For example,

append(X1,X2,X3):=

X1 ~ [], copy(X2,X3).

copy(X1,X2):-
X l - [1, x 2 = [1.

copy(X1,X2):-

Xl - [XIL1], X2 - [XIL2], copy(L1,L2).

Finally, an even more complex situation concerns the order in which the common

variables or their components are instantiated: the sender should send information in

the same order as it is expected by the receiver. It is not at all obvious how to change

the s t ructure of the program automatical ly in order for this proper ty to hold.

All of this shows tha t it is ve ry hard to obtain a general procedure for automatic

transformation. The main ditficulty is that the program s t ructure of ten has to be

changed significantly. At least, we can characterize a class of programs to which our

method can safely be applied. These programs have the following properties: they

define a simple system of two parallel processes, sharing one non-ground common

variable of the list type whose elements are successively instantiated by the sender

(note tha t the problem of event order is avoided here). Stream-communication is then

established between the parallel processes.

For the subclass of generate-and-test programs (e.g. permsort, N-queens), efficiency

wil l be increased significantly by allowing parallel execution of the generate and the

test part; hereby, the possibility of distr ibuted backtracking is f u l l y exploited.

A c k n o w l e d g e m e n t s

We are indebted to Gerda Janssens, whose work on type- and mode-inferencing

consti tuted the base for this research. We also want to thank S.K. Debray, W.

Wlnsborough and anonymous referees for their comments on a d ra f t of this paper.

Veroniek Dumort ier is supported by the contract RFO/AI/02 and Maurice Bruynooghe

is supported by the Belgian National Fund for Scientific Research.

339

References

[1] Bansal, A.K., Incorporating parallelism in logic programs using program

transformation, Ph.D. Thesis, Dept. of Computer Science, Case Western Reserve

University, Cleveland, Ohio, July 1988.

[2] Bansal, A.K., Sterling, L., On source-to-source transformation of sequential logic

programs to AND-parallelism, Proc. Int. Conf. on Parallel Processing, St. Charles,

Illinois, Aug. 1987, pp. 795-802.

[3] Bruynooghe, M., Janssens, G., An instance of abstract interpretation integrating type

and mode tnferencing, Proc. 5th Int. Conf. and Symp. on Logic Programming, Seattle,

Aug. 1988, pp. 669- 683.

[4] Bruynooghe, M., A practical framework for the abstract interpretation of logic

programs, revised version of Report CW 62, Dept. of Computer Science, K.U.Leuven,

1989. (to appear in Journal of Logic Programming)

[5] Cousot, P., Cousot, R., Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints, Proc. 4th ACM

POPL Symp., Los Angeles, June 1977, pp. 238-252.

[6] Cunha, J. C., Ferreira, M. C., Pereira, L. M., Programming in Delta Prolog, Proc. 6th

Int. Conf. on Logic Programming, Lisboa, 1989, pp. 487-502.

[7] Debray, S.K., Warren, D.S., Automatic mode inferencing for Prolog Programs, Proc.

3rd Syrup. on Logic Programming, Salt Lake City, Sept. 1986, IEEE Society Press,

pp.78-88

[8] Jones, N.D., Sondergaard, H., A semantics-based framework for the abstract

interpretation of Prolog, in Abstract Interpretation of Declarative Languages, eds. S.

Abramsky and C. Hankin, Ellis Horwood, 1987, pp. 123-142.

[9] Kanamori, T., Kawamura, T., Analysing success patterns of logic programs by

abstract hybrid interpretation, ICOT technical report TR 279, 1987.

[10] Mellish, C.S., Abstract interpretation of Prolog programs, Proc. 3rd Int. Conf. on

Logic Programming, London, July 1986, Springer Verlag, pp. 463-474, revised in

Abstract Interpretation of Declarative Languages, eds. S. Abramsky and C. Hankin,

Ellis Horwood, 1987, pp. 181-198.

[11] Pereira, L. M., Monteiro, L. F., Cunha, J. H., Aparfcio, J. N., Concurrency and

Communication in Delta-Prolog, IEE International Specialist Seminar: the design and

application of parallel digital processors, 1988, No 298, pp. 94-104.

[12] Pereira, L. M., Monteiro, L., Cunha, J., Aparfcio, J. N., Delta Prolog, a distributed

backtracking extension with events, Proc. 3rd Int. Conf. on Logic Programming,

London, July 1986, Springer-Verlag, pp. 69-83

[13] Pereira, L. M., Nasr, R., Delta-Prolog : a distributed logic programming language,

Proc. Int. Conf. on Fifth Generation Computer Systems, Tokyo, 1984, pp. 283-291.

