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Abstract. Software-Based Self-Test (SBST) approaches have shown to be an 
effective solution to detect permanent faults, both at the end of the production 
process, and during the operational phase. However, when Very Long Instruc-
tion Word (VLIW) processors are addressed these techniques require some op-
timization steps in order to properly exploit the parallelism intrinsic in these ar-
chitectures. In this chapter we present a new method that, starting from pre-
viously known algorithms, automatically generates an effective test program 
able to still reach high fault coverage on the VLIW processor under test, while 
minimizing the test duration and the test code size. Moreover, using this me-
thod, a set of small SBST programs can be generated aimed at the diagnosis of 
the VLIW processor. Experimental results gathered on a case study show the ef-
fectiveness of the proposed approach. 
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1 Introduction 

The continuous scaling in the semiconductor fabrication process combined with the 
progressive growth of the integrated circuits operation frequency pushes processor 
cores to face more difficult testability problems. Furthermore, several phenomena 
such as metal migration or aging become more likely, thus increasing the occurrence 
of permanent faults in the generic system, in particular during the circuit operational 
phase. For these reasons, in order to provide high fault coverage with acceptable 
costs, new test solutions are being investigated and evaluated (e.g., in terms of silicon 
area overhead, required test infrastructure and test time).  

Software-Base Self-Test (SBST) has been demonstrated to be a promising and ef-
fective approach for the test of processors and processor-based systems [1]. The 
SBST main idea is to generate test programs to be executed by the processor under 
test, able to fully stimulate the processor itself or other components belonging to the 
system, and to detect possible faults by looking at the produced results. The SBST 
technique does not require any additional hardware; therefore, the whole test cost is 
reduced and no performance penalty is introduced. Moreover, the SBST technique 
allows at-speed testing and can be easily used even for on-line test purposes. Hence, 
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processor and System on Chip (SoC) testing approaches are increasingly adopting 
SBST techniques, often in combination with other approaches. 

Correct identification of the most common defective parts in a SoC helps to cha-
racterize the technological process. The localization of a fault allows to effectively 
direct physical investigation of the underlying defects [2]. Moreover, a good diagnosis 
capability is fundamental for the devices containing self-repair skills. On the other 
side, it is well known that the complexity of diagnostic test generation is much higher 
than that of detection-oriented test generation [3]. Among the various diagnosis tech-
niques, the Software-Based Diagnosis (SBD) methodology has turned out to be a 
suitable solution for processor cores embedded in SoCs [2][3]. 

Today, several applications demand for high performance while exposing a consider-
able amount of Instruction Level Parallelism (ILP), such as Digital Signal Processing 
[4]: among the various microprocessor architectures, Very Long Instruction Word 
(VLIW) processors have been demonstrated to be extremely attractive for such kinds of 
applications. Nowadays, several products for embedded applications adopt VLIW pro-
cessors; therefore, the problem of testing them is increasingly relevant.  

A major difference of VLIW processors with respect to traditional superscalar pro-
cessors is the instruction format. Several VLIW instructions, named micro-
instructions, are grouped into one large macro-instruction (also called bundle) where 
all micro-instructions within the bundle are executed in parallel computational units; 
each one is independent and referred to as Computational Domain. The operation 
scheduling performed by VLIW architectures is executed at compile time; therefore, 
the compiler is responsible for allocating the execution of each instruction to a specif-
ic Functional Unit (FU).  

Due to these characteristics, VLIW processors are suitable for safety-critical sys-
tems adopted in mission-critical applications such as space, automotive or rail-
transport fields which require computationally intensive functionalities combined 
with low power consumption. For example, the processor Tilera TILE64TM, com-
posed of several VLIW cores, is used to efficiently perform image analysis on-board a 
Mars rover in support of autonomous scientific activities [5][6]. 

Few previously developed SBST approaches may be found in the literature in order 
to properly test VLIW processors against permanent faults; more in particular, part of 
them rely on suitable instructions belonging to the original processors instruction set 
to apply the test patterns previously generated by automated test pattern generation 
(ATPG) tools, which particularly focus on internal components [7]. These methods 
present some drawbacks: first of all, transforming the test patterns generated by the 
ATPG into test programs is not always straightforward; secondly, the resulting test 
programs are not optimized, especially in terms of test duration; finally, the attainable 
fault coverage is rarely as high as it may be required.  

VLIW processors include a register file having some characteristics (in particular, 
the fact that it can be accessed from different domains) that make it different than the 
one in other processors. In [8] we focused on this component and proposed a solution, 
based on a SBST approach, which resulted to be quite effective.  

Considering the diagnosis problem in VLIW processor, in the literature there is on-
ly a preliminary work aimed at the localization of permanent defects inside VLIW 
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components, and the provided solution is a combination of several self-test techniques 
(SBST and BIST) [9]. 

In this chapter we focus on the generation of effective SBST test programs for VLIW 
processors, characterized by minimal size, minimal duration and maximum fault cover-
age. The proposed method starts from existing SBST test programs developed for the 
different FUs embedded into most processors (e.g., ALUs, adders, multipliers and 
memory units). Although the characteristics of FUs used within a VLIW processor are 
similar to those used in traditional processors, generating optimized code to effectively 
test these units is not a trivial task: our test generation procedure addresses the several 
units embedded into distinct parallel computational domains, thus taking into considera-
tion the inherently parallel architecture of VLIW processors. Another goal of our work 
was the development of a general approach that could lead to the automatic generation 
of the test program for a VLIW processor, once the test code for testing each unit is 
available, and the processor configuration is known. The architecture of a VLIW pro-
cessor does not include any custom hardware module, but rather a combination of 
common Functional Units. Our solution allows test program generation and optimiza-
tion to be performed autonomously, while automatically exploiting the VLIW characte-
ristics, without any further manual effort. The proposed method allows to generate  
highly optimized test programs which exploit most of the VLIW processor features and 
are aimed at minimizing the test time and the test program size. Besides, the method 
does not require the usage of any ATPG tool, since it is fully functional. Finally, without 
any additional effort, it is possible to exploit the test programs developed during the 
proposed flow to perform fault diagnosis and thus identify the faulty unit among the 
most relevant modules of the considered VLIW processors.  

The main contribution of this chapter is the description of the first technique able 
to completely automate the generation of effective Software-Based Self-Testing pro-
grams for VLIW processors, while guaranteeing that the resulting programs are op-
timal in terms of duration and size. Exploiting this automatic method, test programs 
having some diagnostic properties can also be generated. The proposed method has 
been evaluated on a VLIW platform based on the Delft University ρ-VEX VLIW 
processor [10][11] which supports most of the features of industrial VLIW architec-
tures. The results we achieved clearly demonstrate the effectiveness of our approach. 
Considering the generation of the optimized test programs, clock cycles have been 
reduced by approximately 54% with respect to the original test programs, while the 
size of the optimized test program decreased by approximately 58%. When the diag-
nosis capabilities are considered, given a generic fault in the VLIW processor under 
test, we are able to distinguish it uniquely in the 2.78% of the cases; moreover, in 
79.15% of cases we are able to identify the faulty module containing the fault itself, 
while in the remaining cases we are able to narrow down the set of candidate faulty 
modules to 2 modules (54.52%) or to 3 modules (38.81%).  

The chapter is organized as follows. Section 2 gives an overview of the VLIW archi-
tecture. Section 3 describes the related work on Software-Based Self-Test techniques 
specifically oriented to VLIW processors, while Section 4 explains in detail the pro-
posed method. Experimental results on the selected case study and their analysis are 
presented in Section 5. Finally, conclusions and future work are described in Section 6. 
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2 VLIW Architecture Summary 

The main characteristic of a VLIW processor is the fact that all the operations are 
executed by parallel Computational Domains, each one characterized by its own 
Functional Units. Besides, the scheduling is totally static, since compile tools prelimi-
nary define it at compile time. As illustrated in Fig. 1, the assembly code for a VLIW 
processor is drastically different from the point of view of the machine code with 
respect to a superscalar processor: several instructions are grouped together in a single 
macro-instruction (named Bundle) and for each instruction there are some information 
items that allow to assign its execution to a specific Computational Domain. Conse-
quently, in a VLIW processor there isn’t any hardware instruction scheduler, and the 
tasks typically performed by this component are done by the compiler. The power 
consumption is thus reduced and the silicon area decreases if compared to traditional 
superscalar processors. Furthermore, the Instruction Level Parallelism (ILP) can be 
adequately exploited (at least in the case of data intensive applications) since a good 
compiler is able to decide which instructions can be executed in parallel by checking 
the entire program at compile time [8]. 

A generic VLIW processor parametric architecture may have a variable number of 
functional units (FUs), so that different options, such as the number and type of func-
tional units, the number of multi-ported registers (i.e., the size of the register file), the 
width of the memory buses and the type of different accessible FUs, can be modified 
depending on the application requirements [4]. 

 

Fig. 1. Architectural differences between a superscalar and a VLIW CPU 

All the characteristics of a specific VLIW processor are grouped together and are 
listed in the so called VLIW manifest. The manifest specifies the number of computa-
tional domains, the number and type of the Functional Units embedded into each 
computational domain, the size and access mode of the register file and any other 
feature that must be taken into account when developing the code for the processor. 

3 Related Work 

Methodologies that require an external tester to perform the test are infeasible  
without the use of very expensive Automatic Test Equipments (ATEs); however the 
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increasing gap between maximum ATE frequencies and SoC operating frequencies 
makes external at-speed testing problematic and expensive; at-speed testing is needed 
because of failures detectable only when the test is performed at the device operating 
frequency. Moreover, external test often involves long time and significant efforts to 
introduce the required hardware and may be characterized by long test application 
times [12]. While ATEs use external resources to perform testing task, BIST involves 
internal hardware resources: additional hardware and software are integrated into the 
circuit to allow it to perform self-testing. The usage of BIST leads to lower the cost of 
the complete test as well as the test time, maintaining or improving the fault coverage, 
at the cost of additional silicon area [8]. 

SBST techniques represent a special solution for on-chip testing [12], since they 
adopt existing processor resources and instructions to perform self-testing without any 
intrusiveness. The main advantage of the SBST methodology is that it uses only the 
processor functionality and instruction set for both test pattern application and output 
data evaluation, and thus does not introduce any hardware overhead in the design. 
However, software-based self-test methods may require very long programs to 
achieve high fault coverage of the device under test, and require ad-hoc techniques for 
generating suitable test programs [1][12]. Several papers are available in the literature 
related to methods for the functional self-test of processors, but only few of them refer 
to the test of Very Long Instruction Word (VLIW) processors [8][13][14][15]. 

In [8] we proposed a new SBST algorithm oriented to the test of the Register File of 
a generic VLIW processor; that paper highlights the particular structure of the register 
file belonging to a VLIW processor, that presents a particular structure since it is shared 
by all the computational domains of the processor; in particular, the proposed algorithm 
is able to efficiently test the complex cross-bar switch embedded into the component. 
Another technique able to obtain a good diagnostic resolution with a low hardware 
overhead is proposed in [14]; this technique combines scan and SBST and it is oriented 
to the test of VLIW processors. The specific characteristic of that approach is the ability 
to detect faults inside the processor functional units, obtained by loading the same test 
patterns directly to the test registers of all the computational domains. The proper func-
tionality of each domain is tested by comparing the test response of all domains, which 
should be the same than in the fault-free case. This solution involves a hardware over-
head of about 6% and requires that the processor run in self-test mode.  

Similar to test approaches, several Software-Based Diagnosis (SBD) methods ap-
plied to processors have been recently developed. In [2] a new cost-effective approach 
is presented: the approach is based on the automatic generation of a diagnostic test set 
using an existing post-production test set; the authors propose to improve that set 
using an evolutionary method. In [9] the authors present a new diagnostic method for 
VLIW processors, based on scan-based BIST and SBST, aimed at a good diagnostic 
resolution with low hardware overhead. Software-based BIST is introduced for a fast 
diagnosis of the Computational Domains of the processor. This is an initial work in 
the field and it is based on the use of several existing self-test techniques; moreover, it 
is based on a specific VLIW processor and requires the introduction of several hard-
ware test module in the considered processor. 
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4 The Proposed Method 

In this chapter we describe a new method that allows the automatic generation of an 
optimized SBST program for a generic VLIW processor, once its specific configura-
tion is known. The proposed method is composed of two main steps, denoted as 
Fragmentation and Customization; moreover, we propose two different flows specifi-
cally oriented to test and diagnosis, respectively. Considering the test flow, step C.1 is 
characterized by Selection and Scheduling; considering the diagnosis flow, step C.2 is 
characterized by Classification and Equivalence Check (Fig. 2); hereafter, the detailed 
description of each of these steps will be provided.  
 

 

Fig. 2. The flow of the proposed test and diagnosis method 

The only two requirements for the global generation flow are the manifest of the 
VLIW processor under test, containing all the features of the processor itself, and a 
library containing a set of programs able to autonomously test the different modules 
within the processor. The library is a collection of generic SBST programs taken from 
the literature [8][12][16][17][18]: it contains some functional test code able to test the 
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most relevant Functional Units of a generic VLIW processor. The codes stored into 
the library are purely functional (i.e., do not require any Design for Testability fea-
ture) and are completely independent of any physical implementation of the Function-
al Unit they refer; these codes are described with a pseudo-code based on C language. 
The mapping process of these codes to the specific architecture under test is per-
formed by the second step of the proposed method (i.e., the Customization step). 

4.1 Fragmentation 

The goal of the Fragmentation phase is the minimization of the number of test opera-
tions in order to generate optimized and efficient test programs. Two main tasks are 
performed by the Fragmentation phase: the first is the selection from the library of the 
test programs needed to test the VLIW processor under test, ignoring those which 
refer to Functional Units that are not belonging to the processor itself. The second 
task performed by this step is the fragmentation of each selected test program into a 
set of smaller pieces of code, named Fragments, containing few test operations and 
the other instructions needed to perform an independent test. The generation of a 
fragment is done by building it around a single instruction, and includes some prelim-
inary instructions required to correctly perform it and to forward the results into ob-
servable locations [2][19]; the description of a Fragment is performed through some 
architecture-independent code. On the other hand, a test program is typically com-
posed of a set of test operations enclosed in a loop; a series of short test programs are 
generated by simply separating the test operations using the Loop Unrolling tech-
nique, as shown into the pseudo-code of Fig. 3.  

The code is then optimized by executing the Fragmentation phase, which exploits the 
fact that a VLIW processor is composed of parallel computational domains that execute 
several operations in parallel, as described in Section 2. Due to this feature, when a 
SBST program is executed with the purpose of testing a selected unit, at the same time 
several operations can also be executed on other parallel units. In Fig. 4 an example of 
this concept is shown, where it is possible to notice that by applying the SBST program 
for the test of the VLIW register file [8] several faults related to the Functional Units 
(e.g., the adders and the MEM unit) are also covered. The main idea behind test pro-
gram fragmentation is to divide the original programs in atomic test units in order to 
effectively evaluate each one of them; multiple fault coverage is therefore avoided and 
the test code can be optimized in terms of test time and used resources. Once the Frag-
mentation phase is completed, a new library called Fragments Library is obtained, that 
contains the set of architecture-independent Fragments.  

 

Fig. 3. The pseudo-code of the Fragmentation phase 

1. for each cycle C of the loop L { 
1.1. S = set of performed operations; 
1.2. PI = input pattern applied to S into the cycle C;
1.3. R = expected results performing S using PI as  

input pattern; 
1.4. GENERATE_NEW_FRAGMENT (PI, S, R);  

2. } 
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Fig. 4. The Fault Coverage of the test program for the Register File with respect to faults in the 
other modules of the processor 

4.2 Customization 

The translation of the generic architecture-independent test programs into the VLIW 
code is managed by the Customization step, which uses the Instruction Set Architec-
ture (ISA) of the considered processor. In detail, starting from the VLIW manifest and 
from the Fragments Library, the method translates each generic Fragment into a Cus-
tom Fragment that can be executed by the processors under test. A Custom Fragment 
is defined as a set of instructions related to the ISA of the processor under test that 
performs several operations in order to test the addressed Functional Unit. In Table 1 
an example of the Customization process is reported, where the code of a Fragment 
before and after the Customization phase appears. The example is based on a multip-
lication instruction, and the produced result is saved into the memory. As the reader 
can notice, at the beginning the code is a generic ISA-independent code, while after 
the Customization step, a VLIW code is generated, exploiting the ρ-VEX processor 
ISA [10][11]. 

The Customization phase performs two relevant tasks: the definition of the re-
sources needed to execute the code (such as the memory area required and the regis-
ters) and the introduction of the information, inside the code, that assign the execution 
of an instruction to a defined VLIW Computational Domain. In Table 1, it is reported 
an example of this translation, where CDx is the Computational Domain in charge of 
executing the addressed instruction.  
 

 

98% 

48% 

20% 

48% 

22% 

60% 

30% 

55% 

20% 

70% 

0
10
20
30
40
50
60
70
80
90

100
Fa

ul
t C

ov
er

ag
e 

[%
] 

Functional Unit 



170 D. Sabena, L. Sterpone, and M. Sonza Reorda 

Table 1. Example of the translation performed by the customizer 

Before Customization 
R = mul (All 0’s, All 0’s); 

Store(R , memory); 

After Customization 
;;----Macro-instruction 1---- 
CD0 : mov R1 = 0; 

CD1 : mov R2 = 0; 

;;----Macro-instruction 2---- 
CD0 : mul R3 = R1, R2; 

;;----Macro-instruction 3---- 
CD0 : stw 4[R7] = R3;   //R7 is the stack pointer 
;;----------------------------  

 
The translation of each Fragment is performed independently from the others; fur-

thermore, one architecture-independent Fragment can be translated into several archi-
tecture-dependent Fragments, following the features listed in the VLIW manifest, 
such as the type of functional units contained in each Computational Domain: for 
example, if in the considered VLIW processor there are 4 adder units, one for each of 
the 4 Computational Domains, the generic Fragment related to the test of an adder is 
translated into 4 architecture-dependent Fragments, one for each adder unit embedded 
into the Computational Domains. When the Customization phase is terminated, each 
architecture-dependent Fragment is fault simulated in order to compute a detailed list 
of faults covered by the specific test program considering all the resources of the 
VLIW processor. Finally, a library called Custom Fragments Library is obtained: it 
contains all the architecture-dependent Fragments used to test the processor under test 
and the list of faults covered by each of them. As shown in Fig. 2, the fault lists asso-
ciated to each Custom Fragment are also used for the diagnosis flow, as we will ex-
plain in Section 4.4.  

4.3 Selection and Scheduling 

During this phase two important processes are performed: the selection of the Custom 
Fragments, according to the objective to be achieved, and the merge of these in order 
to obtain a compact and efficient test program. 

Considering the Selection step, the Custom Fragments are selected by an algo-
rithm which implements two alternative rules depending on the user requirements. 
The first rule is based on the selection of the minimum number of Custom Fragments 
that allow to reach the maximum coverage with respect to all resources of the proces-
sor under test. In this way several Custom Fragments are not selected since the faults 
covered by these Fragments are already covered by other fragments previously se-
lected. The pseudo-code of this algorithm is shown in Fig. 5.  
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1. FL = Fault List of the considered processor; 
2. CFL = Custom Fragments Library; 
3. SFL = Selected Fragments List;  
4. while ( CFL is not empty AND found) { 

4.1. select Fragment F that allows to maximize 

the coverage of FL; 

4.2. if (F exists){ 
• put F into SFL; 

• remove F from CFL; 

• found = TRUE; 

4.3. } else  

• found = FALSE; 

5. } 

Fig. 5. The pseudo-code of the algorithm for the selection of the Custom Fragments 

The second rule is based on optimizing the number of resources used by the  
selected Custom Fragments. The maximal number of usable resources, in terms of 
registers and memory words, can be specified by the user. On the basis of these con-
straints, the algorithm selects the Custom Fragments that allow to reach the maximum 
coverage without using more resources than those specified. In this way the method is 
able to generate test programs depending on the final requirements: for example, if 
the final goal is to generate test programs for on-line testing, with the use of this algo-
rithm we are able to generate test codes that exploit only a limited set of registers and 
memory words.  

At the end of the Selection phase, the selected Custom Fragments enter the Sche-
duling phase: this process is responsible for the integration of the Custom Fragments, 
in order to obtain an optimized and efficient final test program. To reach this goal the 
scheduler optimizes and merges the codes contained into the Custom Fragments ex-
ploiting the VLIW features; in particular, it compacts the test programs aiming at 
maximizing the ILP of the processor. To perform the merge operation two techniques 
are defined and adopted; considering two or more Custom Fragments, the former is 
based on the exploitation of the common input pattern belonging to different instruc-
tions: in this case it is not required to define two instances of the same input data to 
perform the test instructions; an example of this operations is shown in Table 2, where 
two Custom Fragments, related to the test of the adder units embedded into the Com-
putational Domain 0 and 1, are merged into a single test program. In this way the ILP 
is better exploited and the number of macro-instructions required is less than the sum 
of the macro-instructions of the two Fragments. The latter technique is based on the 
maximization of the ILP of the VLIW architecture: starting from the code of the se-
lected Custom Fragments, the macro-instructions of these codes are merged together 
in order to maximize the parallel operations executed by the code. 
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Table 2. Example of the optimization operations performed by the scheduler 

Custom Fragment A Custom Fragment B 
;;--Macro-instruction A1 
CD0 : mov R1 = 0; 
CD1 : mov R2 = 0; 
;;--Macro-instruction A2 
CD0 : add R8 = R1, R2; 

;;--Macro-instruction A3 
CD0 : stw 0[R1] = R8; 
;;---------------------- 

;;--Macro-instruction B1 
CD0 : mov R1 = 0; 
CD1 : mov R2 = 0; 
;;--Macro-instruction B2 
CD1 : add R9 = R1, R2; 

;;--Macro-instruction B3 
CD0 : stw 0[R1] = R9; 
;;----------------------- 

Final Test Program F 
;;-- Macro-instruction F1 
CD0 : mov R1 = 0; 
CD1 : mov R2 = 0; 
;;-- Macro-instruction F2 
CD0 : add R8 = R1, R2; //tests the adder of CD0 
CD1 : add R9 = R1, R2; //tests the adder of CD1 
;;-- Macro-instruction F3 
CD0 : stw 0[R7] = R8;  //R7 is the stack pointer 
;;-- Macro-instruction F4 
CD0 : stw 4[R7] = R9;  //R7 is the stack pointer 
;;---------------------- 

 
The goal of this scheduling technique is to generate the macro-instructions of the 

final test program, thus reducing the whole test time. Three analysis steps are required 
to acquire the necessary information with respect to each Custom Fragment: the re-
sources required by the code, such as the registers, the memory words and the Func-
tional Units exploited; the temporal characteristics, defined as the number of clock 
cycles where the resources mentioned above are employed in the execution of the 
code; finally, the data dependences between the instructions belonging to the Custom 
Fragments. These pieces of information are used to create the final test program, ac-
cording to the features of the VLIW processor described in the VLIW manifest. In 
order to do this, the scheduler uses three structures: the first is an activity frame  
schedule that is used to schedule the execution of the Custom Fragments into the 
Computational Domains: an example of this is reported in Fig. 6, where the chart 
representation of the activity frame schedule of the code listed in Table 2 is reported, 
consisting of two Custom Fragments, called A and B, each composed of three macro-
instructions called A-1, A-2, A-3 and B-1, B-2, B-3, respectively. The second  
structure needed to create the final test program is a graph structure, where the depen-
dences between the instructions composing the program are saved; in Fig. 7 is  
reported the graph structure related to the simple example shown in Table 2. Finally, 
the last structure is a graph containing the information about the resources, such as 
registers and memory word, used by the final test program for each clock cycle. At 
the end of this step, the final test program is generated.  
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Fig. 6. The chart representation of the activity frame schedule 

 

Fig. 7. The graph structure for the instruction dependence 

4.4 Classification and Equivalence Check 

In some situations, diagnosis is required, which means that the goal becomes the iden-
tification of the fault existing in the unit under test. For example, diagnosis is crucial 
in the ramp-up phase of a new product, when the yield of the production process is 
expected to grow thanks to the tuning of the process (which requires knowing where 
the faults are) [20]. Another typical scenario where diagnosis is crucial is when sys-
tem reconfiguration can be performed after a fault is detected, e.g., thanks to the 
adoption of a programmable architecture: in this case diagnosis is crucial to identify 
(once a fault is detected during the operational phase) the partition containing the 
fault, so that the system can be reconfigured and the partition can be substituted by a 
fault-free one [21]. 

Given the importance of diagnosis, we performed a preliminary analysis about the 
diagnostic power of the test programs generated by our method, and we made some 
considerations aimed at improving their diagnosis capabilities. 

First of all, we will define the notation to be used and the steps of the diagnosis 
method; then, we will report some experimental figures (in Section 5.2) about the 
diagnostic capabilities of the test programs generated by the proposed method. 

Notation. Let us call F = {f0, f1, …, fn-1} the set of n faults that can affect the Unit 
Under Test (UUT). Each of these faults causes the UUT to produce a given output 
behavior b when a given sequence of input stimuli is applied; let bi denote the output 
behavior produced by fault fi, and bg the output behavior of the fault-free circuit. 
Clearly, bi = bg for all undetected faults fi. In the literature (and in practice) the output 
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behavior can be observed (for the purpose of diagnosis) resorting to two different 
criteria: 

• Criterion #1: the output behavior of a fault is simply the sequence of time instants 
in which the fault is detected. Therefore, according to this criterion bi = bj iff the 
two faults fi and fj are detected in the same time instants. 

• Criterion #2: the output behavior of a fault is the sequence of output values pro-
duced by the fault. Therefore, according to this criterion bi = bj iff the two faults fi 
and fj always produce the same output values.  

For the purpose of this paper we will consider a criterion which is a mix of crite-
rion #1 and criterion #2. In particular, we will classify faults according to an output 
behavior corresponding to the set of values produced by the program at the end of its 
execution. Therefore, according to this criterion bi = bj iff the two faults fi and fj pro-
duce the same output values in memory at the end of their execution. 

A given pair of faults (fi, fj) is said to be distinguished by a given sequence of input 
stimuli I iff bi ≠ bj. Otherwise, they are said to be equivalent wrt I. All faults that are 
equivalent wrt to a give sequence of input stimuli I are said to belong to the same 
Equivalence Class wrt I. A detected fault fi is said to be fully diagnosed by a sequence 
of input stimuli I iff any couple of faults (fi, fj) including fi is distinguished by I. Since 
two faults fi, fj can never be distinguished if they are functionally equivalent, the num-
ber of fully diagnosed faults in a circuit is typically rather low. 

Several possible metrics can be adopted to measure the diagnostic capabilities of a 
sequence of input stimuli I [22]. A popular one is the so-called diagnostic resolution, 
or DR(I), which corresponds to the fraction of all pairs of detected faults that are dis-
tinguished by I. 

When diagnosis is used in reconfigurable system for identifying the partition in-
cluding the fault, the precision required is lower: in fact, the final goal in this case is 
to be able to distinguish all pairs of faults belonging to different partitions, while dis-
tinguishing pairs of faults belonging to the same partitions is not of interest. Hence, in 
this case a different definition of the diagnostic resolution can be introduced, based on 
a given partition of the circuit elements among P partitions. Assuming that the generic 
fault fi is associated to the partition pi, we will only consider those pairs of faults (fi, fj) 
such that pi ≠ pj and define the partition-oriented diagnostic resolution of a given 
sequence of input stimuli I, or PRDR(I), as the fraction of all pairs of detected faults 
belonging to different partitions that are distinguished by I. 

Method. Considering the Diagnosis flow, shown in Fig. 2 Step C.2, there are two 
main steps necessary to acquire the diagnostic data. 

First of all the fault lists associated to each Custom Fragment, and generated 
through fault simulation (Fig 2, Step B) are analyzed and compared: the goals of this 
analysis are (1) the classification of each fault, belonging to the VLIW processor un-
der test, in the class of distinguished faults and equivalent faults, respectively, and (2) 
the creation of the equivalence classes, according to the notation described in the 
previous paragraph. 
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The second step is the analysis and the classification of the equivalence classes; for 
each of them, the classification is based on the number of partitions that have at least 
one fault in the considered equivalence class; the composition of the partition defines 
the granularity of the diagnosis and it is managed by the final user, according to the 
chosen diagnosis goal.  

At the end of these two steps, using the obtained data and given a fault in the con-
sidered VLIW processor, we will be able to either uniquely identify it (if the fault is 
distinguished), or to identify the partition (one or more) containing the fault itself and 
the equivalent faults (if the fault has one or more equivalent). 

5 Experimental Results 

In this section, we present the experimental results, both for the optimized generation 
of the SBST program and for the diagnosis evaluation; the ρ-VEX VLIW processor 
has been used as a case study (Fig. 8). 

The ρ-VEX is a VLIW processor released by researchers from Delft University of 
Technology [10][11]. Among its main features, the most important advantage is the 
possibility of reconfiguring the pipeline according to the user need. The pipeline, in 
the standard configuration, is composed of four stages: fetch, decode, execute and 
write-back. Following the VLIW architecture principles, the decode, execute and 
write-back stages are divided into four Computational Domains (CD). The fetch unit 
is in charge of fetching a VLIW macro-instruction from the attached instruction 
memory; then, it splits the considered macro-instruction into several (according to the 
processor configuration) micro-instructions; finally, these are passed in parallel to the 
decode unit. In the decoding stage two main tasks are executed: firstly, the operations 
are performed, and secondly the registers used as operands are fetched from the gen-
eral purpose register file (the GR module of Fig. 8) and from the branch management 
register file (the BR module of Fig. 8). The micro-operations are then forwarded to 
the parallel execution units, that in this case are ALUs (1 ALU for each CD) and 
MULs (2 MULS, embedded in the second and in the third CD). 
 

 
 

Fig. 8. The ρ-VEX VLIW processor [10][11] 
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In order to perform the stuck-at fault simulation experiments, we synthesized and 
implemented the ρ-VEX processor using a standard ASIC gate library. In total the 
number of faults is 387,290. The assembly code generated following the described 
method has been inserted into the instruction memory; then, a fault simulation expe-
riment has been performed. Moreover, we wrote a prototypical tool (composed of 
about 3K lines of C++ code) implementing the proposed methods.  

First of all, we have selected 6 SBST programs [8][12] [16][17][18] from the lite-
rature for testing the Functional Units embedded in the processor: each of them has 
been encoded in architecture-independent pseudo-code and has been inserted in the 
starting library. At the end of the fragmentation step we obtained a Fragments Library 
composed of 520 architecture-independent Fragments, while at the end of the  
Customization step the Custom Fragments Library was composed of 989 Custom 
Fragments.  

5.1 Optimized SBST Program Generation Results 

Using the technique for the maximum coverage with the minimum number of Frag-
ments, 768 Custom Fragments have been selected and subjected to the scheduling 
step. At the end, we obtained the final test program for the test of the ρ-VEX proces-
sor: the generation time was approximately 40 hours, of which about 95% used for the 
fault simulation of the Custom Fragment. Computational time has been evaluated on a 
workstation with an Intel Xeon Processor E5450. We compared the test program gen-
erated by our approach with a test program consisting in several literature-based test 
programs simply queued in a unique test program, without performing any selection 
or scheduling steps, therefore adopting a realistic test estimation of what can be 
achieved with previously developed test algorithms without any optimization method. 
In order to fairly evaluate the two solutions, the original test programs have been ap-
plied using the loop-unrolling technique, as it is common for any VLIW application. 
In Table 3 we compare the obtained results.  

As the reader can notice, while the coverage remains at the 98%, the number of 
clock cycles and the size of the test program generated with the proposed method 
decreased significantly. This is due to two causes: the former is that not all the Cus-
tom Fragments are chosen in the selection step; in fact the maximum coverage is 
reached with about 78% of the Custom Fragments. This comes from the fact that 
some fragments are aimed at detecting faults in some unit, which were already cov-
ered by Fragments targeted at other units. The latter is related to the scheduling step, 
that optimizes the code compacting the instructions, exploiting the VLIW features, 
and parallelizing as much as possible the execution of the Custom Fragments; conse-
quently, the amount of clock cycles required by the final test program, is about 54% 
less than in the test program obtained using previously developed test programs with-
out any selection or scheduling improvements. 

It is also worth mentioning that the proposed method was able to reduce by about 
58% the size of the test code. In Table 4 the achieved coverage for the relevant units 
of the ρ-VEX processor are reported. 
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Table 3. Optimized SBST program generation: obtained results 

Test 
Program 

Clock 
cycle [#] 

Fault  
Coverage 

Size 
[KB] 

Original Test Programs 18,540 98.2% 3,894 
Proposed method 8,447 98.2% 1,612 

Table 4. Details of the achieved fault coverage 

ρ-VEX Components 
Faults  

[#] 
Fault 

coverage 
Fetch 2,156 99.2% 
Decode 269,196 98.1% 

Execute 
4 ALU 75,554 98.3% 
2 MUL 37,244 98.6% 

MEM 1,730 97.2% 
Writeback 1,420 98.1% 

Total 387,290 98.2% 

5.2 Diagnosis Evaluation Results 

First of all we wrote a C++ program able to compare the fault lists generated by the 
Fault Simulation step (Section 4.2); the goal of this program is the detection of the 
number of distinguished faults and the classification of the undistinguished faults, i.e., 
the equivalent faults, in two categories: the first is composed of the faults which are 
equivalent and belonging to the same partition, while the second is composed of the 
faults belonging to different partitions. For this purpose, we divided the ρ-VEX pro-
cessor in 10 partitions: the fetch unit, the decode unit, the general-purpose register 
file, the branch-management register file, the write-back unit, and one for each Com-
putational Domains (i.e., 4) in which the functional units are embedded.  

Then, we run this program using two different sets of fault lists: the first contains 
only the fault lists associated to the Custom Fragments selected by the Selection step 
(Fig. 2, Step C.1) of the optimized generation of the SBST program, which are 78% 
of the total; the second set, instead, contains the fault lists of all the Custom Frag-
ments generated by the Customization step. In Table 5 the results of these two expe-
riments are reported. 

As it is possible to notice, the set of all fault lists (set 2) allows to increment the 
number of distinguished faults and the number of the equivalent faults belonging to 
the same partition. Consequently, considering the results of Table 5, given a fault in 
the ρ-VEX processor, in about 82% of the cases we are able to identify the partition 
affected by the fault itself. 

In Table 6 the evaluation of the Equivalence Classes, generated when all the fault 
lists of the all Custom Fragments are considered (fault lists set 2), is shown; the pur-
pose of this evaluation is the classification of each equivalence class, based on  the 
number of partitions with at least one fault in the considered equivalence class. As 
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reported in Table 6, about 93% of the equivalence classes are composed of faults 
belonging to the same partition. In the other cases, as reported in the graph of Fig. 9, 
most of the classes are composed of equivalent faults belonging to two (54.52%) or 
three (38.81%) different partitions.  

Table 5. Faults classification: diagnosis point of view 

Faults lists   
set 

Distinguished 
Faults 

Equivalent Faults  
SAME  

partition 
DIFFERENT 

partitions 
TOTAL 

1 – Optimized Test  1.13% 63.29% 35.59% 98.87% 
2 - All 2.78% 79.15% 18.07% 97.22% 

Table 6. Equivalence classes evaluation 

Partition [#] E.C. [#] E.C. [%] Faults Category 
1 14,319 92.90 % Equivalent  – SAME partition 

 

2 597 54.52 % 

Equivalent – DIFFERENT 
partition 

3 425 38.81 % 
4 42 3.84 % 
5 21 1.92 % 
6 9 0.82 % 
7 0 0.00 % 
8 1 0.09 % 
9 0 0.00 % 

10 0 0.00 % 
 

 

Fig. 9. The classification of the equivalent classes calculated using all the available faults lists 

2 Modules = 597
3 Modules = 425 

4 Modules = 42

5 Modules = 21 6 Modules = 9
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6 Conclusions and Future Work 

In this chapter we presented the first method able to automatically generate optimized 
Software-Based Self-Test programs for VLIW processors. The obtained results, with 
respect to the selected case study, clearly demonstrate the efficiency of our method, 
that allows to reduce significantly both the number of clock cycles and the required 
memory resources with respect to the plain application of previous methods. Moreo-
ver, it is also possible to exploit the proposed method to obtain a set of small SBST 
programs useful for the diagnosis of the considered VLIW processor.  

As future work we plan to better evaluate the performance of the proposed solu-
tion with the use of another VLIW model with different Functional Units; moreover, 
we plan to generate small optimized SBST programs that can be specifically used for 
on-line testing and able to improve the diagnosis capabilities. 
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