
A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 162–180, 2013.
© IFIP International Federation for Information Processing 2013

On the Automatic Generation of Software-Based
Self-Test Programs for Functional Test

and Diagnosis of VLIW Processors

Davide Sabena, Luca Sterpone, and Matteo Sonza Reorda

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
{davide.sabena,luca.sterpone,matteo.sonzareorda}@polito.it

Abstract. Software-Based Self-Test (SBST) approaches have shown to be an
effective solution to detect permanent faults, both at the end of the production
process, and during the operational phase. However, when Very Long Instruc-
tion Word (VLIW) processors are addressed these techniques require some op-
timization steps in order to properly exploit the parallelism intrinsic in these ar-
chitectures. In this chapter we present a new method that, starting from pre-
viously known algorithms, automatically generates an effective test program
able to still reach high fault coverage on the VLIW processor under test, while
minimizing the test duration and the test code size. Moreover, using this me-
thod, a set of small SBST programs can be generated aimed at the diagnosis of
the VLIW processor. Experimental results gathered on a case study show the ef-
fectiveness of the proposed approach.

Keywords: SBST, VLIW processor, Fault Simulation, Fault Diagnosis.

1 Introduction

The continuous scaling in the semiconductor fabrication process combined with the
progressive growth of the integrated circuits operation frequency pushes processor
cores to face more difficult testability problems. Furthermore, several phenomena
such as metal migration or aging become more likely, thus increasing the occurrence
of permanent faults in the generic system, in particular during the circuit operational
phase. For these reasons, in order to provide high fault coverage with acceptable
costs, new test solutions are being investigated and evaluated (e.g., in terms of silicon
area overhead, required test infrastructure and test time).

Software-Base Self-Test (SBST) has been demonstrated to be a promising and ef-
fective approach for the test of processors and processor-based systems [1]. The
SBST main idea is to generate test programs to be executed by the processor under
test, able to fully stimulate the processor itself or other components belonging to the
system, and to detect possible faults by looking at the produced results. The SBST
technique does not require any additional hardware; therefore, the whole test cost is
reduced and no performance penalty is introduced. Moreover, the SBST technique
allows at-speed testing and can be easily used even for on-line test purposes. Hence,

 Automatic Generation of SBST Programs for Functional Test Programs 163

processor and System on Chip (SoC) testing approaches are increasingly adopting
SBST techniques, often in combination with other approaches.

Correct identification of the most common defective parts in a SoC helps to cha-
racterize the technological process. The localization of a fault allows to effectively
direct physical investigation of the underlying defects [2]. Moreover, a good diagnosis
capability is fundamental for the devices containing self-repair skills. On the other
side, it is well known that the complexity of diagnostic test generation is much higher
than that of detection-oriented test generation [3]. Among the various diagnosis tech-
niques, the Software-Based Diagnosis (SBD) methodology has turned out to be a
suitable solution for processor cores embedded in SoCs [2][3].

Today, several applications demand for high performance while exposing a consider-
able amount of Instruction Level Parallelism (ILP), such as Digital Signal Processing
[4]: among the various microprocessor architectures, Very Long Instruction Word
(VLIW) processors have been demonstrated to be extremely attractive for such kinds of
applications. Nowadays, several products for embedded applications adopt VLIW pro-
cessors; therefore, the problem of testing them is increasingly relevant.

A major difference of VLIW processors with respect to traditional superscalar pro-
cessors is the instruction format. Several VLIW instructions, named micro-
instructions, are grouped into one large macro-instruction (also called bundle) where
all micro-instructions within the bundle are executed in parallel computational units;
each one is independent and referred to as Computational Domain. The operation
scheduling performed by VLIW architectures is executed at compile time; therefore,
the compiler is responsible for allocating the execution of each instruction to a specif-
ic Functional Unit (FU).

Due to these characteristics, VLIW processors are suitable for safety-critical sys-
tems adopted in mission-critical applications such as space, automotive or rail-
transport fields which require computationally intensive functionalities combined
with low power consumption. For example, the processor Tilera TILE64TM, com-
posed of several VLIW cores, is used to efficiently perform image analysis on-board a
Mars rover in support of autonomous scientific activities [5][6].

Few previously developed SBST approaches may be found in the literature in order
to properly test VLIW processors against permanent faults; more in particular, part of
them rely on suitable instructions belonging to the original processors instruction set
to apply the test patterns previously generated by automated test pattern generation
(ATPG) tools, which particularly focus on internal components [7]. These methods
present some drawbacks: first of all, transforming the test patterns generated by the
ATPG into test programs is not always straightforward; secondly, the resulting test
programs are not optimized, especially in terms of test duration; finally, the attainable
fault coverage is rarely as high as it may be required.

VLIW processors include a register file having some characteristics (in particular,
the fact that it can be accessed from different domains) that make it different than the
one in other processors. In [8] we focused on this component and proposed a solution,
based on a SBST approach, which resulted to be quite effective.

Considering the diagnosis problem in VLIW processor, in the literature there is on-
ly a preliminary work aimed at the localization of permanent defects inside VLIW

164 D. Sabena, L. Sterpone, and M. Sonza Reorda

components, and the provided solution is a combination of several self-test techniques
(SBST and BIST) [9].

In this chapter we focus on the generation of effective SBST test programs for VLIW
processors, characterized by minimal size, minimal duration and maximum fault cover-
age. The proposed method starts from existing SBST test programs developed for the
different FUs embedded into most processors (e.g., ALUs, adders, multipliers and
memory units). Although the characteristics of FUs used within a VLIW processor are
similar to those used in traditional processors, generating optimized code to effectively
test these units is not a trivial task: our test generation procedure addresses the several
units embedded into distinct parallel computational domains, thus taking into considera-
tion the inherently parallel architecture of VLIW processors. Another goal of our work
was the development of a general approach that could lead to the automatic generation
of the test program for a VLIW processor, once the test code for testing each unit is
available, and the processor configuration is known. The architecture of a VLIW pro-
cessor does not include any custom hardware module, but rather a combination of
common Functional Units. Our solution allows test program generation and optimiza-
tion to be performed autonomously, while automatically exploiting the VLIW characte-
ristics, without any further manual effort. The proposed method allows to generate
highly optimized test programs which exploit most of the VLIW processor features and
are aimed at minimizing the test time and the test program size. Besides, the method
does not require the usage of any ATPG tool, since it is fully functional. Finally, without
any additional effort, it is possible to exploit the test programs developed during the
proposed flow to perform fault diagnosis and thus identify the faulty unit among the
most relevant modules of the considered VLIW processors.

The main contribution of this chapter is the description of the first technique able
to completely automate the generation of effective Software-Based Self-Testing pro-
grams for VLIW processors, while guaranteeing that the resulting programs are op-
timal in terms of duration and size. Exploiting this automatic method, test programs
having some diagnostic properties can also be generated. The proposed method has
been evaluated on a VLIW platform based on the Delft University ρ-VEX VLIW
processor [10][11] which supports most of the features of industrial VLIW architec-
tures. The results we achieved clearly demonstrate the effectiveness of our approach.
Considering the generation of the optimized test programs, clock cycles have been
reduced by approximately 54% with respect to the original test programs, while the
size of the optimized test program decreased by approximately 58%. When the diag-
nosis capabilities are considered, given a generic fault in the VLIW processor under
test, we are able to distinguish it uniquely in the 2.78% of the cases; moreover, in
79.15% of cases we are able to identify the faulty module containing the fault itself,
while in the remaining cases we are able to narrow down the set of candidate faulty
modules to 2 modules (54.52%) or to 3 modules (38.81%).

The chapter is organized as follows. Section 2 gives an overview of the VLIW archi-
tecture. Section 3 describes the related work on Software-Based Self-Test techniques
specifically oriented to VLIW processors, while Section 4 explains in detail the pro-
posed method. Experimental results on the selected case study and their analysis are
presented in Section 5. Finally, conclusions and future work are described in Section 6.

 Automatic Generation of SBST Programs for Functional Test Programs 165

2 VLIW Architecture Summary

The main characteristic of a VLIW processor is the fact that all the operations are
executed by parallel Computational Domains, each one characterized by its own
Functional Units. Besides, the scheduling is totally static, since compile tools prelimi-
nary define it at compile time. As illustrated in Fig. 1, the assembly code for a VLIW
processor is drastically different from the point of view of the machine code with
respect to a superscalar processor: several instructions are grouped together in a single
macro-instruction (named Bundle) and for each instruction there are some information
items that allow to assign its execution to a specific Computational Domain. Conse-
quently, in a VLIW processor there isn’t any hardware instruction scheduler, and the
tasks typically performed by this component are done by the compiler. The power
consumption is thus reduced and the silicon area decreases if compared to traditional
superscalar processors. Furthermore, the Instruction Level Parallelism (ILP) can be
adequately exploited (at least in the case of data intensive applications) since a good
compiler is able to decide which instructions can be executed in parallel by checking
the entire program at compile time [8].

A generic VLIW processor parametric architecture may have a variable number of
functional units (FUs), so that different options, such as the number and type of func-
tional units, the number of multi-ported registers (i.e., the size of the register file), the
width of the memory buses and the type of different accessible FUs, can be modified
depending on the application requirements [4].

Fig. 1. Architectural differences between a superscalar and a VLIW CPU

All the characteristics of a specific VLIW processor are grouped together and are
listed in the so called VLIW manifest. The manifest specifies the number of computa-
tional domains, the number and type of the Functional Units embedded into each
computational domain, the size and access mode of the register file and any other
feature that must be taken into account when developing the code for the processor.

3 Related Work

Methodologies that require an external tester to perform the test are infeasible
without the use of very expensive Automatic Test Equipments (ATEs); however the

F. U.

SC
H

ED
U

LE
R

 ASM Code VLIW
ASM Code

(a) Superscalar Architecture (b) VLIW Architecture

F. U.

F. U.

F. U.

F. U.

F. U.

F. U.

F. U.

166 D. Sabena, L. Sterpone, and M. Sonza Reorda

increasing gap between maximum ATE frequencies and SoC operating frequencies
makes external at-speed testing problematic and expensive; at-speed testing is needed
because of failures detectable only when the test is performed at the device operating
frequency. Moreover, external test often involves long time and significant efforts to
introduce the required hardware and may be characterized by long test application
times [12]. While ATEs use external resources to perform testing task, BIST involves
internal hardware resources: additional hardware and software are integrated into the
circuit to allow it to perform self-testing. The usage of BIST leads to lower the cost of
the complete test as well as the test time, maintaining or improving the fault coverage,
at the cost of additional silicon area [8].

SBST techniques represent a special solution for on-chip testing [12], since they
adopt existing processor resources and instructions to perform self-testing without any
intrusiveness. The main advantage of the SBST methodology is that it uses only the
processor functionality and instruction set for both test pattern application and output
data evaluation, and thus does not introduce any hardware overhead in the design.
However, software-based self-test methods may require very long programs to
achieve high fault coverage of the device under test, and require ad-hoc techniques for
generating suitable test programs [1][12]. Several papers are available in the literature
related to methods for the functional self-test of processors, but only few of them refer
to the test of Very Long Instruction Word (VLIW) processors [8][13][14][15].

In [8] we proposed a new SBST algorithm oriented to the test of the Register File of
a generic VLIW processor; that paper highlights the particular structure of the register
file belonging to a VLIW processor, that presents a particular structure since it is shared
by all the computational domains of the processor; in particular, the proposed algorithm
is able to efficiently test the complex cross-bar switch embedded into the component.
Another technique able to obtain a good diagnostic resolution with a low hardware
overhead is proposed in [14]; this technique combines scan and SBST and it is oriented
to the test of VLIW processors. The specific characteristic of that approach is the ability
to detect faults inside the processor functional units, obtained by loading the same test
patterns directly to the test registers of all the computational domains. The proper func-
tionality of each domain is tested by comparing the test response of all domains, which
should be the same than in the fault-free case. This solution involves a hardware over-
head of about 6% and requires that the processor run in self-test mode.

Similar to test approaches, several Software-Based Diagnosis (SBD) methods ap-
plied to processors have been recently developed. In [2] a new cost-effective approach
is presented: the approach is based on the automatic generation of a diagnostic test set
using an existing post-production test set; the authors propose to improve that set
using an evolutionary method. In [9] the authors present a new diagnostic method for
VLIW processors, based on scan-based BIST and SBST, aimed at a good diagnostic
resolution with low hardware overhead. Software-based BIST is introduced for a fast
diagnosis of the Computational Domains of the processor. This is an initial work in
the field and it is based on the use of several existing self-test techniques; moreover, it
is based on a specific VLIW processor and requires the introduction of several hard-
ware test module in the considered processor.

 Automatic Generation of SBST Programs for Functional Test Programs 167

4 The Proposed Method

In this chapter we describe a new method that allows the automatic generation of an
optimized SBST program for a generic VLIW processor, once its specific configura-
tion is known. The proposed method is composed of two main steps, denoted as
Fragmentation and Customization; moreover, we propose two different flows specifi-
cally oriented to test and diagnosis, respectively. Considering the test flow, step C.1 is
characterized by Selection and Scheduling; considering the diagnosis flow, step C.2 is
characterized by Classification and Equivalence Check (Fig. 2); hereafter, the detailed
description of each of these steps will be provided.

Fig. 2. The flow of the proposed test and diagnosis method

The only two requirements for the global generation flow are the manifest of the
VLIW processor under test, containing all the features of the processor itself, and a
library containing a set of programs able to autonomously test the different modules
within the processor. The library is a collection of generic SBST programs taken from
the literature [8][12][16][17][18]: it contains some functional test code able to test the

Fragmentation

Customization

Fragments
Library

Library

Custom
Fragments

Library

Fault
Simulation

Selection

Scheduling

VLIW Test
program

VLIW
manifest

Step A

Step B

Step C.1

Classification

Test
Flow

Diagnosis
Flow

Equivalence
Check

Diagnosis
Evaluation

Step C.2

168 D. Sabena, L. Sterpone, and M. Sonza Reorda

most relevant Functional Units of a generic VLIW processor. The codes stored into
the library are purely functional (i.e., do not require any Design for Testability fea-
ture) and are completely independent of any physical implementation of the Function-
al Unit they refer; these codes are described with a pseudo-code based on C language.
The mapping process of these codes to the specific architecture under test is per-
formed by the second step of the proposed method (i.e., the Customization step).

4.1 Fragmentation

The goal of the Fragmentation phase is the minimization of the number of test opera-
tions in order to generate optimized and efficient test programs. Two main tasks are
performed by the Fragmentation phase: the first is the selection from the library of the
test programs needed to test the VLIW processor under test, ignoring those which
refer to Functional Units that are not belonging to the processor itself. The second
task performed by this step is the fragmentation of each selected test program into a
set of smaller pieces of code, named Fragments, containing few test operations and
the other instructions needed to perform an independent test. The generation of a
fragment is done by building it around a single instruction, and includes some prelim-
inary instructions required to correctly perform it and to forward the results into ob-
servable locations [2][19]; the description of a Fragment is performed through some
architecture-independent code. On the other hand, a test program is typically com-
posed of a set of test operations enclosed in a loop; a series of short test programs are
generated by simply separating the test operations using the Loop Unrolling tech-
nique, as shown into the pseudo-code of Fig. 3.

The code is then optimized by executing the Fragmentation phase, which exploits the
fact that a VLIW processor is composed of parallel computational domains that execute
several operations in parallel, as described in Section 2. Due to this feature, when a
SBST program is executed with the purpose of testing a selected unit, at the same time
several operations can also be executed on other parallel units. In Fig. 4 an example of
this concept is shown, where it is possible to notice that by applying the SBST program
for the test of the VLIW register file [8] several faults related to the Functional Units
(e.g., the adders and the MEM unit) are also covered. The main idea behind test pro-
gram fragmentation is to divide the original programs in atomic test units in order to
effectively evaluate each one of them; multiple fault coverage is therefore avoided and
the test code can be optimized in terms of test time and used resources. Once the Frag-
mentation phase is completed, a new library called Fragments Library is obtained, that
contains the set of architecture-independent Fragments.

Fig. 3. The pseudo-code of the Fragmentation phase

1. for each cycle C of the loop L {
1.1. S = set of performed operations;
1.2. PI = input pattern applied to S into the cycle C;
1.3. R = expected results performing S using PI as

input pattern;
1.4. GENERATE_NEW_FRAGMENT (PI, S, R);

2. }

 Automatic Generation of SBST Programs for Functional Test Programs 169

Fig. 4. The Fault Coverage of the test program for the Register File with respect to faults in the
other modules of the processor

4.2 Customization

The translation of the generic architecture-independent test programs into the VLIW
code is managed by the Customization step, which uses the Instruction Set Architec-
ture (ISA) of the considered processor. In detail, starting from the VLIW manifest and
from the Fragments Library, the method translates each generic Fragment into a Cus-
tom Fragment that can be executed by the processors under test. A Custom Fragment
is defined as a set of instructions related to the ISA of the processor under test that
performs several operations in order to test the addressed Functional Unit. In Table 1
an example of the Customization process is reported, where the code of a Fragment
before and after the Customization phase appears. The example is based on a multip-
lication instruction, and the produced result is saved into the memory. As the reader
can notice, at the beginning the code is a generic ISA-independent code, while after
the Customization step, a VLIW code is generated, exploiting the ρ-VEX processor
ISA [10][11].

The Customization phase performs two relevant tasks: the definition of the re-
sources needed to execute the code (such as the memory area required and the regis-
ters) and the introduction of the information, inside the code, that assign the execution
of an instruction to a defined VLIW Computational Domain. In Table 1, it is reported
an example of this translation, where CDx is the Computational Domain in charge of
executing the addressed instruction.

98%

48%

20%

48%

22%

60%

30%

55%

20%

70%

0
10
20
30
40
50
60
70
80
90

100
Fa

ul
t C

ov
er

ag
e

[%
]

Functional Unit

170 D. Sabena, L. Sterpone, and M. Sonza Reorda

Table 1. Example of the translation performed by the customizer

Before Customization
R = mul (All 0’s, All 0’s);

Store(R , memory);

After Customization
;;----Macro-instruction 1----
CD0 : mov R1 = 0;

CD1 : mov R2 = 0;

;;----Macro-instruction 2----
CD0 : mul R3 = R1, R2;

;;----Macro-instruction 3----
CD0 : stw 4[R7] = R3; //R7 is the stack pointer
;;----------------------------

The translation of each Fragment is performed independently from the others; fur-

thermore, one architecture-independent Fragment can be translated into several archi-
tecture-dependent Fragments, following the features listed in the VLIW manifest,
such as the type of functional units contained in each Computational Domain: for
example, if in the considered VLIW processor there are 4 adder units, one for each of
the 4 Computational Domains, the generic Fragment related to the test of an adder is
translated into 4 architecture-dependent Fragments, one for each adder unit embedded
into the Computational Domains. When the Customization phase is terminated, each
architecture-dependent Fragment is fault simulated in order to compute a detailed list
of faults covered by the specific test program considering all the resources of the
VLIW processor. Finally, a library called Custom Fragments Library is obtained: it
contains all the architecture-dependent Fragments used to test the processor under test
and the list of faults covered by each of them. As shown in Fig. 2, the fault lists asso-
ciated to each Custom Fragment are also used for the diagnosis flow, as we will ex-
plain in Section 4.4.

4.3 Selection and Scheduling

During this phase two important processes are performed: the selection of the Custom
Fragments, according to the objective to be achieved, and the merge of these in order
to obtain a compact and efficient test program.

Considering the Selection step, the Custom Fragments are selected by an algo-
rithm which implements two alternative rules depending on the user requirements.
The first rule is based on the selection of the minimum number of Custom Fragments
that allow to reach the maximum coverage with respect to all resources of the proces-
sor under test. In this way several Custom Fragments are not selected since the faults
covered by these Fragments are already covered by other fragments previously se-
lected. The pseudo-code of this algorithm is shown in Fig. 5.

 Automatic Generation of SBST Programs for Functional Test Programs 171

1. FL = Fault List of the considered processor;
2. CFL = Custom Fragments Library;
3. SFL = Selected Fragments List;
4. while (CFL is not empty AND found) {

4.1. select Fragment F that allows to maximize

the coverage of FL;

4.2. if (F exists){
• put F into SFL;

• remove F from CFL;

• found = TRUE;

4.3. } else

• found = FALSE;

5. }

Fig. 5. The pseudo-code of the algorithm for the selection of the Custom Fragments

The second rule is based on optimizing the number of resources used by the
selected Custom Fragments. The maximal number of usable resources, in terms of
registers and memory words, can be specified by the user. On the basis of these con-
straints, the algorithm selects the Custom Fragments that allow to reach the maximum
coverage without using more resources than those specified. In this way the method is
able to generate test programs depending on the final requirements: for example, if
the final goal is to generate test programs for on-line testing, with the use of this algo-
rithm we are able to generate test codes that exploit only a limited set of registers and
memory words.

At the end of the Selection phase, the selected Custom Fragments enter the Sche-
duling phase: this process is responsible for the integration of the Custom Fragments,
in order to obtain an optimized and efficient final test program. To reach this goal the
scheduler optimizes and merges the codes contained into the Custom Fragments ex-
ploiting the VLIW features; in particular, it compacts the test programs aiming at
maximizing the ILP of the processor. To perform the merge operation two techniques
are defined and adopted; considering two or more Custom Fragments, the former is
based on the exploitation of the common input pattern belonging to different instruc-
tions: in this case it is not required to define two instances of the same input data to
perform the test instructions; an example of this operations is shown in Table 2, where
two Custom Fragments, related to the test of the adder units embedded into the Com-
putational Domain 0 and 1, are merged into a single test program. In this way the ILP
is better exploited and the number of macro-instructions required is less than the sum
of the macro-instructions of the two Fragments. The latter technique is based on the
maximization of the ILP of the VLIW architecture: starting from the code of the se-
lected Custom Fragments, the macro-instructions of these codes are merged together
in order to maximize the parallel operations executed by the code.

172 D. Sabena, L. Sterpone, and M. Sonza Reorda

Table 2. Example of the optimization operations performed by the scheduler

Custom Fragment A Custom Fragment B
;;--Macro-instruction A1
CD0 : mov R1 = 0;
CD1 : mov R2 = 0;
;;--Macro-instruction A2
CD0 : add R8 = R1, R2;

;;--Macro-instruction A3
CD0 : stw 0[R1] = R8;
;;----------------------

;;--Macro-instruction B1
CD0 : mov R1 = 0;
CD1 : mov R2 = 0;
;;--Macro-instruction B2
CD1 : add R9 = R1, R2;

;;--Macro-instruction B3
CD0 : stw 0[R1] = R9;
;;-----------------------

Final Test Program F
;;-- Macro-instruction F1
CD0 : mov R1 = 0;
CD1 : mov R2 = 0;
;;-- Macro-instruction F2
CD0 : add R8 = R1, R2; //tests the adder of CD0
CD1 : add R9 = R1, R2; //tests the adder of CD1
;;-- Macro-instruction F3
CD0 : stw 0[R7] = R8; //R7 is the stack pointer
;;-- Macro-instruction F4
CD0 : stw 4[R7] = R9; //R7 is the stack pointer
;;----------------------

The goal of this scheduling technique is to generate the macro-instructions of the

final test program, thus reducing the whole test time. Three analysis steps are required
to acquire the necessary information with respect to each Custom Fragment: the re-
sources required by the code, such as the registers, the memory words and the Func-
tional Units exploited; the temporal characteristics, defined as the number of clock
cycles where the resources mentioned above are employed in the execution of the
code; finally, the data dependences between the instructions belonging to the Custom
Fragments. These pieces of information are used to create the final test program, ac-
cording to the features of the VLIW processor described in the VLIW manifest. In
order to do this, the scheduler uses three structures: the first is an activity frame
schedule that is used to schedule the execution of the Custom Fragments into the
Computational Domains: an example of this is reported in Fig. 6, where the chart
representation of the activity frame schedule of the code listed in Table 2 is reported,
consisting of two Custom Fragments, called A and B, each composed of three macro-
instructions called A-1, A-2, A-3 and B-1, B-2, B-3, respectively. The second
structure needed to create the final test program is a graph structure, where the depen-
dences between the instructions composing the program are saved; in Fig. 7 is
reported the graph structure related to the simple example shown in Table 2. Finally,
the last structure is a graph containing the information about the resources, such as
registers and memory word, used by the final test program for each clock cycle. At
the end of this step, the final test program is generated.

 Automatic Generation of SBST Programs for Functional Test Programs 173

Fig. 6. The chart representation of the activity frame schedule

Fig. 7. The graph structure for the instruction dependence

4.4 Classification and Equivalence Check

In some situations, diagnosis is required, which means that the goal becomes the iden-
tification of the fault existing in the unit under test. For example, diagnosis is crucial
in the ramp-up phase of a new product, when the yield of the production process is
expected to grow thanks to the tuning of the process (which requires knowing where
the faults are) [20]. Another typical scenario where diagnosis is crucial is when sys-
tem reconfiguration can be performed after a fault is detected, e.g., thanks to the
adoption of a programmable architecture: in this case diagnosis is crucial to identify
(once a fault is detected during the operational phase) the partition containing the
fault, so that the system can be reconfigured and the partition can be substituted by a
fault-free one [21].

Given the importance of diagnosis, we performed a preliminary analysis about the
diagnostic power of the test programs generated by our method, and we made some
considerations aimed at improving their diagnosis capabilities.

First of all, we will define the notation to be used and the steps of the diagnosis
method; then, we will report some experimental figures (in Section 5.2) about the
diagnostic capabilities of the test programs generated by the proposed method.

Notation. Let us call F = {f0, f1, …, fn-1} the set of n faults that can affect the Unit
Under Test (UUT). Each of these faults causes the UUT to produce a given output
behavior b when a given sequence of input stimuli is applied; let bi denote the output
behavior produced by fault fi, and bg the output behavior of the fault-free circuit.
Clearly, bi = bg for all undetected faults fi. In the literature (and in practice) the output

Resources

clock
cycle

CD 0

CD 1

A - 1

A - 2

A - 3 B - 1 B - 2 B - 3

Custom Fragment A Custom Fragment B

B - 1

A - 2

B - 2 B - 3

A - 3

1 2 3 4

B-1

A-2 B-2

A-3 B-3

174 D. Sabena, L. Sterpone, and M. Sonza Reorda

behavior can be observed (for the purpose of diagnosis) resorting to two different
criteria:

• Criterion #1: the output behavior of a fault is simply the sequence of time instants
in which the fault is detected. Therefore, according to this criterion bi = bj iff the
two faults fi and fj are detected in the same time instants.

• Criterion #2: the output behavior of a fault is the sequence of output values pro-
duced by the fault. Therefore, according to this criterion bi = bj iff the two faults fi
and fj always produce the same output values.

For the purpose of this paper we will consider a criterion which is a mix of crite-
rion #1 and criterion #2. In particular, we will classify faults according to an output
behavior corresponding to the set of values produced by the program at the end of its
execution. Therefore, according to this criterion bi = bj iff the two faults fi and fj pro-
duce the same output values in memory at the end of their execution.

A given pair of faults (fi, fj) is said to be distinguished by a given sequence of input
stimuli I iff bi ≠ bj. Otherwise, they are said to be equivalent wrt I. All faults that are
equivalent wrt to a give sequence of input stimuli I are said to belong to the same
Equivalence Class wrt I. A detected fault fi is said to be fully diagnosed by a sequence
of input stimuli I iff any couple of faults (fi, fj) including fi is distinguished by I. Since
two faults fi, fj can never be distinguished if they are functionally equivalent, the num-
ber of fully diagnosed faults in a circuit is typically rather low.

Several possible metrics can be adopted to measure the diagnostic capabilities of a
sequence of input stimuli I [22]. A popular one is the so-called diagnostic resolution,
or DR(I), which corresponds to the fraction of all pairs of detected faults that are dis-
tinguished by I.

When diagnosis is used in reconfigurable system for identifying the partition in-
cluding the fault, the precision required is lower: in fact, the final goal in this case is
to be able to distinguish all pairs of faults belonging to different partitions, while dis-
tinguishing pairs of faults belonging to the same partitions is not of interest. Hence, in
this case a different definition of the diagnostic resolution can be introduced, based on
a given partition of the circuit elements among P partitions. Assuming that the generic
fault fi is associated to the partition pi, we will only consider those pairs of faults (fi, fj)
such that pi ≠ pj and define the partition-oriented diagnostic resolution of a given
sequence of input stimuli I, or PRDR(I), as the fraction of all pairs of detected faults
belonging to different partitions that are distinguished by I.

Method. Considering the Diagnosis flow, shown in Fig. 2 Step C.2, there are two
main steps necessary to acquire the diagnostic data.

First of all the fault lists associated to each Custom Fragment, and generated
through fault simulation (Fig 2, Step B) are analyzed and compared: the goals of this
analysis are (1) the classification of each fault, belonging to the VLIW processor un-
der test, in the class of distinguished faults and equivalent faults, respectively, and (2)
the creation of the equivalence classes, according to the notation described in the
previous paragraph.

 Automatic Generation of SBST Programs for Functional Test Programs 175

The second step is the analysis and the classification of the equivalence classes; for
each of them, the classification is based on the number of partitions that have at least
one fault in the considered equivalence class; the composition of the partition defines
the granularity of the diagnosis and it is managed by the final user, according to the
chosen diagnosis goal.

At the end of these two steps, using the obtained data and given a fault in the con-
sidered VLIW processor, we will be able to either uniquely identify it (if the fault is
distinguished), or to identify the partition (one or more) containing the fault itself and
the equivalent faults (if the fault has one or more equivalent).

5 Experimental Results

In this section, we present the experimental results, both for the optimized generation
of the SBST program and for the diagnosis evaluation; the ρ-VEX VLIW processor
has been used as a case study (Fig. 8).

The ρ-VEX is a VLIW processor released by researchers from Delft University of
Technology [10][11]. Among its main features, the most important advantage is the
possibility of reconfiguring the pipeline according to the user need. The pipeline, in
the standard configuration, is composed of four stages: fetch, decode, execute and
write-back. Following the VLIW architecture principles, the decode, execute and
write-back stages are divided into four Computational Domains (CD). The fetch unit
is in charge of fetching a VLIW macro-instruction from the attached instruction
memory; then, it splits the considered macro-instruction into several (according to the
processor configuration) micro-instructions; finally, these are passed in parallel to the
decode unit. In the decoding stage two main tasks are executed: firstly, the operations
are performed, and secondly the registers used as operands are fetched from the gen-
eral purpose register file (the GR module of Fig. 8) and from the branch management
register file (the BR module of Fig. 8). The micro-operations are then forwarded to
the parallel execution units, that in this case are ALUs (1 ALU for each CD) and
MULs (2 MULS, embedded in the second and in the third CD).

Fig. 8. The ρ-VEX VLIW processor [10][11]

In
st

ru
ct

io
n

M
em

or
y

Fetch Decode Execute Writeback

D
at

a
M

em
or

y

A

A

A

A

M

M

MEMBR

CTRLGRPC

ρ-VEX processor

176 D. Sabena, L. Sterpone, and M. Sonza Reorda

In order to perform the stuck-at fault simulation experiments, we synthesized and
implemented the ρ-VEX processor using a standard ASIC gate library. In total the
number of faults is 387,290. The assembly code generated following the described
method has been inserted into the instruction memory; then, a fault simulation expe-
riment has been performed. Moreover, we wrote a prototypical tool (composed of
about 3K lines of C++ code) implementing the proposed methods.

First of all, we have selected 6 SBST programs [8][12] [16][17][18] from the lite-
rature for testing the Functional Units embedded in the processor: each of them has
been encoded in architecture-independent pseudo-code and has been inserted in the
starting library. At the end of the fragmentation step we obtained a Fragments Library
composed of 520 architecture-independent Fragments, while at the end of the
Customization step the Custom Fragments Library was composed of 989 Custom
Fragments.

5.1 Optimized SBST Program Generation Results

Using the technique for the maximum coverage with the minimum number of Frag-
ments, 768 Custom Fragments have been selected and subjected to the scheduling
step. At the end, we obtained the final test program for the test of the ρ-VEX proces-
sor: the generation time was approximately 40 hours, of which about 95% used for the
fault simulation of the Custom Fragment. Computational time has been evaluated on a
workstation with an Intel Xeon Processor E5450. We compared the test program gen-
erated by our approach with a test program consisting in several literature-based test
programs simply queued in a unique test program, without performing any selection
or scheduling steps, therefore adopting a realistic test estimation of what can be
achieved with previously developed test algorithms without any optimization method.
In order to fairly evaluate the two solutions, the original test programs have been ap-
plied using the loop-unrolling technique, as it is common for any VLIW application.
In Table 3 we compare the obtained results.

As the reader can notice, while the coverage remains at the 98%, the number of
clock cycles and the size of the test program generated with the proposed method
decreased significantly. This is due to two causes: the former is that not all the Cus-
tom Fragments are chosen in the selection step; in fact the maximum coverage is
reached with about 78% of the Custom Fragments. This comes from the fact that
some fragments are aimed at detecting faults in some unit, which were already cov-
ered by Fragments targeted at other units. The latter is related to the scheduling step,
that optimizes the code compacting the instructions, exploiting the VLIW features,
and parallelizing as much as possible the execution of the Custom Fragments; conse-
quently, the amount of clock cycles required by the final test program, is about 54%
less than in the test program obtained using previously developed test programs with-
out any selection or scheduling improvements.

It is also worth mentioning that the proposed method was able to reduce by about
58% the size of the test code. In Table 4 the achieved coverage for the relevant units
of the ρ-VEX processor are reported.

 Automatic Generation of SBST Programs for Functional Test Programs 177

Table 3. Optimized SBST program generation: obtained results

Test
Program

Clock
cycle [#]

Fault
Coverage

Size
[KB]

Original Test Programs 18,540 98.2% 3,894
Proposed method 8,447 98.2% 1,612

Table 4. Details of the achieved fault coverage

ρ-VEX Components
Faults

[#]
Fault

coverage
Fetch 2,156 99.2%
Decode 269,196 98.1%

Execute
4 ALU 75,554 98.3%
2 MUL 37,244 98.6%

MEM 1,730 97.2%
Writeback 1,420 98.1%

Total 387,290 98.2%

5.2 Diagnosis Evaluation Results

First of all we wrote a C++ program able to compare the fault lists generated by the
Fault Simulation step (Section 4.2); the goal of this program is the detection of the
number of distinguished faults and the classification of the undistinguished faults, i.e.,
the equivalent faults, in two categories: the first is composed of the faults which are
equivalent and belonging to the same partition, while the second is composed of the
faults belonging to different partitions. For this purpose, we divided the ρ-VEX pro-
cessor in 10 partitions: the fetch unit, the decode unit, the general-purpose register
file, the branch-management register file, the write-back unit, and one for each Com-
putational Domains (i.e., 4) in which the functional units are embedded.

Then, we run this program using two different sets of fault lists: the first contains
only the fault lists associated to the Custom Fragments selected by the Selection step
(Fig. 2, Step C.1) of the optimized generation of the SBST program, which are 78%
of the total; the second set, instead, contains the fault lists of all the Custom Frag-
ments generated by the Customization step. In Table 5 the results of these two expe-
riments are reported.

As it is possible to notice, the set of all fault lists (set 2) allows to increment the
number of distinguished faults and the number of the equivalent faults belonging to
the same partition. Consequently, considering the results of Table 5, given a fault in
the ρ-VEX processor, in about 82% of the cases we are able to identify the partition
affected by the fault itself.

In Table 6 the evaluation of the Equivalence Classes, generated when all the fault
lists of the all Custom Fragments are considered (fault lists set 2), is shown; the pur-
pose of this evaluation is the classification of each equivalence class, based on the
number of partitions with at least one fault in the considered equivalence class. As

178 D. Sabena, L. Sterpone, and M. Sonza Reorda

reported in Table 6, about 93% of the equivalence classes are composed of faults
belonging to the same partition. In the other cases, as reported in the graph of Fig. 9,
most of the classes are composed of equivalent faults belonging to two (54.52%) or
three (38.81%) different partitions.

Table 5. Faults classification: diagnosis point of view

Faults lists
set

Distinguished
Faults

Equivalent Faults
SAME

partition
DIFFERENT

partitions
TOTAL

1 – Optimized Test 1.13% 63.29% 35.59% 98.87%
2 - All 2.78% 79.15% 18.07% 97.22%

Table 6. Equivalence classes evaluation

Partition [#] E.C. [#] E.C. [%] Faults Category
1 14,319 92.90 % Equivalent – SAME partition

2 597 54.52 %

Equivalent – DIFFERENT
partition

3 425 38.81 %
4 42 3.84 %
5 21 1.92 %
6 9 0.82 %
7 0 0.00 %
8 1 0.09 %
9 0 0.00 %

10 0 0.00 %

Fig. 9. The classification of the equivalent classes calculated using all the available faults lists

2 Modules = 597
3 Modules = 425

4 Modules = 42

5 Modules = 21 6 Modules = 9
8 Modules = 1

Equivalence Class Evaluation

 Automatic Generation of SBST Programs for Functional Test Programs 179

6 Conclusions and Future Work

In this chapter we presented the first method able to automatically generate optimized
Software-Based Self-Test programs for VLIW processors. The obtained results, with
respect to the selected case study, clearly demonstrate the efficiency of our method,
that allows to reduce significantly both the number of clock cycles and the required
memory resources with respect to the plain application of previous methods. Moreo-
ver, it is also possible to exploit the proposed method to obtain a set of small SBST
programs useful for the diagnosis of the considered VLIW processor.

As future work we plan to better evaluate the performance of the proposed solu-
tion with the use of another VLIW model with different Functional Units; moreover,
we plan to generate small optimized SBST programs that can be specifically used for
on-line testing and able to improve the diagnosis capabilities.

References

1. Psarakis, M., Gizopoulos, D., Sanchez, E., Sonza Reorda, M.: Microprocessor software-
based self-testing. IEEE Design & Test of Computers 2(3), 4–19 (2010)

2. Bernardi, P., Sànchez, E., Schillaci, M., Squillero, G., Sonza Reorda, M.: An Effective
Technique for Minimizing the Cost of Processor Software-Based Diagnosis in SoCs. In:
Design, Automation and Test in Europe, DATE 2006, vol. 1, pp. 1–6 (March 2006)

3. Chen, L., Dey, S.: Software-Based Diagnosis for Processors. In: Design Automation Con-
ference 2002, pp. 259–262 (2002)

4. Fisher, J.A., Faraboschi, P., Young, C.: Embedded computing: a VLIW approach to archi-
tecture, compilers and tools. Morgan Kaufmann (2004)

5. Bornstein, B., Estlin, T., Clement, B., Springer, P.: Using a multicore processor for rover
autonomous science. In: IEEE Aerospace Conference, pp. 1–9 (March 2011)

6. Tilera Corporation, “Multicore Development Environment User Guide,” Doc #UG201 Re-
lease 1.2 (February 2008)

7. Beardo, M., Bruschi, F., Ferrandi, F., Sciuto, D.: An approach to functional testing of VLIW
architectures. In: IEEE High-Level Design Validation and Test Workshop, pp. 29–33 (2000)

8. Sabena, D., Sonza Reorda, M., Sterpone, L.: A new SBST algorithm for testing the register
file of VLIW processors. In: IEEE International Conference on Design, Automation &
Test in Europe (DATE), pp. 412–417 (March 2012)

9. Ulbricht, M., Schölzer, M., Koal, T., Vierhaus, H.T.: A New Hierarchical Built-In Self-
Test with On-Chip Diagnosis for VLIW Processors. In: 2011 IEEE 14th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), pp.
143–146 (April 2011)

10. Wong, S., Anjam, F., Nadeem, F.: Dynamically reconfigurable register file for a softcore
VLIW processor. In: IEEE International Conference on Design, Automation and Test in
Europe (DATE), pp. 962–972 (March 2010)

11. Wong, S., Van As, T., Brown, G.: ρ-VEX: a reconfigurable and extensible softcore VLIW
processor. In: International Conference on ICECE Technology, pp. 369–372 (December
2010)

12. Kranitis, N., Paschalis, A., Gizopoulos, D., Xenoulis, G.: Software-based self-testing of
embedded processors. IEEE Transactions on Computers 54(4), 461–475 (2005)

180 D. Sabena, L. Sterpone, and M. Sonza Reorda

13. Koal, T., Vierhaus, H.T.: A software-based self-test and hardware reconfiguration solution
for VLIW processors. In: IEEE Symposium on Design and Diagnostic of Electronic Cir-
cuits and Systems (DDECS), pp. 40–43 (April 2010)

14. Ulbricht, M., Scholzel, M., Koal, T., Vierhaus, H.T.: A new hierarchical built-in self-test
with on-chip diagnosis for VLIW processors. In: IEEE Symposium on Design and Diag-
nostic of Electronic Circuits and Systems (DDECS), pp. 143–146 (April 2011)

15. Pillai, A., Zhang, W., Kagaris, D.: Detecting VLIW hard errors cost-effectively through a
software-based approach. In: Advanced Information Networking and Applications Work-
shops, pp. 811–815 (2007)

16. Gizopoulos, D., Psarakis, M., Hatzimihail, M., Maniatakos, M., Paschalis, A., Raghuna-
than, A., Ravi, S.: Systematic software-based self-test for pipelined processors. IEEE
Transaction on Very Large Scale Integration (VLSI) Systems 16(11), 1441–1453 (2008)

17. Paschalis, A., Gizopoulos, D., Kranitis, N., Psarakis, M., Zorian, Y.: Deterministic soft-
ware-based self-testing of embedded processor cores. In: IEEE International Conference
on Design, Automation and Test in Europe (DATE), pp. 92–96 (2001)

18. Kranitis, N., Gizopoulos, D., Paschalis, A., Psarakis, M.: Instruction-based self-testing of
processor cores. In: IEEE VLSI Test Symposium, pp. 223–228 (2002)

19. Sanchez, E., Sonza Reorda, M., Squillero, G.: On the transformation of manufacturing test
sets into on-line test sets for microprocessor. In: IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, pp. 494–502 (October 2005)

20. Bernardi, P., Sánchez, E., Schillaci, M., Squillero, G., Sonza Reorda, M.: An Effective
Technique for the Automatic Generation of Diagnosis-Oriented Programs for Processor
Cores. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 27(3), 570–574 (2008)

21. Koester, M., Luk, W.S., Hagemeyer, J., Porrmann, M., Rückert, U.: Design Optimizations
for Tiled Partially Reconfigurable Systems. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 19(6), 1048–1061 (2011)

22. Ryan, P.G., et al.: Fault dictionary compression and equivalence class computation for se-
quential circuits. In: Proc. IEEE Int. Conf. Comput.-Aided Des., pp. 508–511 (1993)

	On the Automatic Generation of Software-Based Self-Test Programs for Functional Testand Diagnosis of VLIW Processors
	1 Introduction
	2 VLIW Architecture Summary
	3 Related Work
	4 The Proposed Method
	4.1 Fragmentation
	4.2 Customization
	4.3 Selection and Scheduling
	4.4 Classification and Equivalence Check

	5 Experimental Results
	5.1 Optimized SBST Program Generation Results
	5.2 Diagnosis Evaluation Results

	6 Conclusions and Future Work
	References

