
On the Automatic Modularization of
Software Systems Using the Bunch Tool

Brian S. Mitchell, Member, IEEE, and Spiros Mancoridis, Senior Member, IEEE

Abstract—Since modern software systems are large and complex, appropriate abstractions of their structure are needed to make

them more understandable and, thus, easier to maintain. Software clustering techniques are useful to support the creation of these

abstractions by producing architectural-level views of a system’s structure directly from its source code. This paper examines the

Bunch clustering system which, unlike other software clustering tools, uses search techniques to perform clustering. Bunch produces a

subsystem decomposition by partitioning a graph of the entities (e.g., classes) and relations (e.g., function calls) in the source code.

Bunch uses a fitness function to evaluate the quality of graph partitions and uses search algorithms to find a satisfactory solution. This

paper presents a case study to demonstrate how Bunch can be used to create views of the structure of significant software systems.

This paper also outlines research to evaluate the software clustering results produced by Bunch.

Index Terms—Clustering, reverse engineering, reengineering, program comprehension, optimization, maintainability.

�

1 INTRODUCTION

WITHOUT insight into a system’s design, a software
maintainer might modify the source code without a

thorough understanding of its organization. As the require-
ments of heavily used software systems change over time, it
is inevitable that adopting an undisciplined approach to
software maintenance will have a negative effect on the
quality of the system structure. Eventually, the system
structure may deteriorate to the point where the source
code organization is so chaotic that it needs to be
overhauled or abandoned.

Automatic design extraction methods create aggregate
views—similar to “road maps”—of a system’s structure.
Such views help software engineers to cope with the
complexity of software development and maintenance;
they also help with reengineering activities associated with
remodularizing a system and may even help project
managers assign work to different developers (or develop-
ment teams) by identifying areas of the system that are
loosely coupled to each other.

Design extraction starts by parsing the source code to
determine the components and relations of the system. The
parsed code is then analyzed to produce views of the
software structure, at varying levels of detail. Detailed
views of the software structure are appropriate when the
software engineer has isolated the subsystems that are
relevant to his or her analysis. However, abstract (archi-
tectural) views are more appropriate when the software
engineer is trying to understand the global structure of the
software. Software clustering may be used to produce such
abstract views. These views encapsulate source code-level
components and relations into subsystems. The source code
components and relations can be determined using source

code analysis tools. The subsystems, however, are not
found in the source code. Rather, they must be inferred
from the source code either automatically, using a cluster-
ing tool, or manually (e.g., using the package/directory
structure to define clusters), when tools are not available.

The reverse engineering research community has been
actively investigating techniques to decompose (partition)
the structure of software systems into subsystems (clusters)
[1], [2], [3], [4], [5], [6], [7]. Subsystems provide developers
with structural information about the numerous software
components, their interfaces, and their interconnections.
Subsystems generally consist of a collection of collaborating
source code resources that implement a feature or provide a
service to the rest of the system. Typical resources found in
subsystems include modules, classes, and, possibly, other
subsystems. Subsystems facilitate program understanding
by treating sets of source code resources as software
abstractions.

Unlike many other software clustering techniques, our
approach evaluates the quality of a graph partition that
represents the software structure, and it uses heuristics to
navigate through the search space [8] of all possible graph
partitions. We have developed several promising heuristic
approaches to solving this problem, and we outline our
findings in the remaining sections of this paper.

This paper is organized as follows: Section 2 describes
how the software clustering problem can be modeled as a
search problem and presents an example illustrating the
clustering process. Section 3 describes the architecture of
the Bunch software clustering tool. Section 4 describes the
software clustering algorithms that are implemented in the
Bunch tool. Section 5 demonstrates an iterative session in
which a software engineer uses Bunch to build and
incrementally refine useful structural views of a software
system. Section 6 describes several qualitative and quanti-
tative approaches that were used to evaluate the results
produced by Bunch. Section 7 discusses how Bunch’s
clustering approach relates to other work performed by
the reverse engineering community. Section 8 outlines the
contributions this work makes to the software engineering
community. Conclusions are presented in Section 9.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006 1

. The authors are with the Department of Computer Science and Software
Engineering Research Group at Drexel University, Philadelphia, PA
19104. E-mail: {bmitchell, spiros}@drexel.edu.

Manuscript received 5 Mar. 2004; revised 20 Dec. 2005; accepted 28 Dec.
2005; published online DD Mmmm, YYYY.
Recommended for acceptance by D. Weiss.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0035-0304.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

2 SOFTWARE CLUSTERING AS A SEARCH PROBLEM

Our software clustering approach is independent of any
programming language. To accomplish this objective, we
rely on source code analysis tools to transform source code
into a directed graph. We refer to this graph as the Module
Dependency Graph (MDG). The MDG is a language-
independent representation of the structure of the system’s
source code components and relations. This representation
includes all of the modules in the system and the set of
dependencies that exist between the modules. The MDG is
constructed automatically using source code analysis tools
such as CIA [9] for C, Acacia [10] for C and C++, and Chava
[11] for Java.

We define a module to be a source code entity that
encapsulates data and functions that operate on the data
(e.g., Java/C++ classes, C source code files). The depen-
dencies between the modules are binary relations that are
supported by the programming language used to imple-
ment the system (e.g., function/procedure invocation,
variable access, inheritance). Although there are many
types of software structures, our work focuses on clustering
graphs of the static modules and dependencies of software
systems. When the modules and relations are captured
using source code analysis tools, the clustering results are
based on the static structure of the source code. While the
focus of this paper will be on clustering MDGs created this
way, it should be noted that we also clustered MDGs that
were created by collecting profiling information at runtime
[12]. This type of dynamic analysis can capture dependen-
cies that are not specified in the source code (e.g.,
asynchronous calls, procedures that are linked at runtime).

Our approach to solving the clustering problem using
search techniques can be stated informally as “finding a
good partition of theMDG.” We use the term partition in the
graph-theoretic sense, that is, the decomposition of a set of
elements (i.e., all nodes of a graph) into mutually disjoint
sets (i.e., clusters). By a “good partition” we mean a
partition where highly interdependent modules (nodes)
are grouped in the same subsystems (clusters) and,
conversely, independent modules are assigned to separate
subsystems.

Given an MDG, G ¼ ðV ;EÞ, we define a partition of G
into n clusters formally as �G ¼ fG1; G2; . . . ; Gng, where
each Gi (ð1 � i � nÞ ^ ðn � jV jÞ) is a cluster in the parti-
tioned graph. Specifically,

G ¼ ðV ;EÞ; �G ¼
[

n

i¼1

Gi;

Gi ¼ ðVi; EiÞ;
[

n

i¼1

Vi ¼ V ;

8ðð1 � i; j � nÞ ^ ði 6¼ jÞÞ; Vi \ Vj ¼ ;;

Ei ¼ fhu; vi 2 E j u 2 Vi ^ v 2 V g:

If partition �G is the set of clusters of the MDG, each
cluster Gi contains a nonoverlapping set of modules from
V and edges from E. The number of clusters in a
partition ranges from 1 (a single cluster containing all of
the modules) to jV j (each module in the system is placed
into a singleton cluster). A partition of the MDG into
k (1 � k � jV j) nonempty clusters is called a k-partition of
the MDG.

Given an MDG that contains n ¼ jV j modules, and
k clusters, the number Gn;k of distinct k-partitions of the
MDG satisfies the recurrence equation:

Gn;k ¼
1 if k ¼ 1 or k ¼ n

Gn�1;k�1 þ kGn�1;k otherwise:

�

The entries Gn;k are called Stirling numbers [13] and grow
exponentially with respect to the size of set V . For example,
a 5-node module dependency graph has 52 distinct
partitions, while a 15-node module dependency graph has
1,382,958,545 distinct partitions.

2.1 Evaluating MDG Partitions

The primary goal of our software clustering algorithms is to
propose subsystems that expose useful abstractions of the
software structure. Finding good partitions quickly involves
navigating through the very large search space of all
possible MDG partitions in a systematic way. To accom-
plish this task efficiently, our clustering algorithms treat
graph partitioning (clustering) as a search problem. The
goal of the search is to maximize the value of an objective
function, which we call Modularization Quality (MQ).

MQ determines the quality of an MDG partition
quantitatively as the trade-off between interconnectivity
(i.e., dependencies between the modules of two distinct
subsystems) and intraconnectivity (i.e., dependencies be-
tween the modules of the same subsystem). This trade-off is
based on the assumption that well-designed software
systems are organized into cohesive subsystems that are
loosely interconnected. Hence, MQ is designed to reward
the creation of highly cohesive clusters that are not coupled
excessively. Our premise is that the larger the MQ, the
closer the partition of the MDG is to the desired subsystem
structure. It should be noted that criteria other than the ones
that MQ is based on can be used to create different views of
the system structure.

A naive algorithm for finding the optimal partition of an
MDG is to enumerate through all of its partitions and select
the partition with the largest MQ value. This algorithm is
not practical for most MDGs (i.e., systems with more than
15 modules), because the number of partitions of a graph
grows exponentially with respect to its number of
nodes [13]. Thus, our clustering algorithms use heuristic-
search techniques [8] to discover acceptable suboptimal
results quickly.

Fig. 1 illustrates the process supported by our search-
based clustering algorithms. The algorithms start with the
MDG (lower left), then process a collection of partitioned
MDGs (center), and finally produce a partitioned MDG
(lower right) as the clustering result. Before we describe
these algorithms, we next present a small example to
illustrate how suboptimal clustering results can be useful to
software maintainers.

2.2 A Small Software Clustering Example

An example MDG for a small compiler developed at the
University of Toronto is illustrated in Fig. 2. A sample
partition of this MDG, as created by our clustering tool
called Bunch, is shown in Fig. 3. Notice how Bunch
automatically created four subsystems to represent the
structure of the compiler. Specifically, the subsystems
exhibit the code generation, scope management, type
checking, and parsing services of the compiler.

Even though this is a small system, the compiler MDG
can be partitioned in 27,644,437 distinct ways. One run of
Bunch’s search algorithm produced the result shown in

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Fig. 3 in 0.07 seconds, examining a total of 373 partitions
from the search space. An exhaustive search, which
executed for 39.57 seconds,1 validated that the result show
in Fig. 3 is optimal. (It has the highest objective function
value for this MDG.)

The search process used by Bunch selects the initial
partition at random. In this example, any one of the valid
27,644,437 partitions is equally likely to be used as the

starting point for the search. Since the search space is
large, it is unlikely that multiple searches will produce
the same result. However, we would like to have
confidence that the result produced from one run to
the next is similar since the goal is to produce
satisfactory suboptimal results quickly. To illustrate this
point, we clustered the compiler MDG 10 times to
observe the variability in the results. Half of the runs
produced the result shown in Fig. 3 (the optimal

MITCHELL AND MANCORIDIS: ON THE AUTOMATIC MODULARIZATION OF SOFTWARE SYSTEMS USING THE BUNCH TOOL 3

1. The execution times are based on a 1.7 GHz Pentium M processor.

Fig. 1. The software clustering process.

Fig. 2. The MDG for a compiler.

solution) and three of the runs produced the result
shown in Fig. 4. This result is very similar to the optimal
solution—the two clusters in Fig. 4 are formed by
grouping a pair of clusters in Fig. 3. The remaining
two results, which are not shown, were also similar, with
the main difference being influenced by which cluster
contained the declarations module, which is highly
connected to the other modules in the system.

2.3 Measuring MQ

TheMQ function is designed to balance the tradeoff between
the coupling and cohesion of the individual clusters in the
partitioned MDG. Formally, the MQ measurement for an
MDG partitioned into k clusters is calculated by summing
the Cluster Factor (CF) for each cluster of the partitioned
MDG. The Cluster Factor, CFi, for cluster i (1 � i � k) is
defined as a normalized ratio between the total weight of the
internal edges (edges within the cluster) and half of the total

weight of the external edges (edges that exit or enter the

cluster). We split the weight of the external edges in half in

order to apply an equal penalty to both clusters that are are

connected by an external edge.

We refer to the internal edges of a cluster as intraedges

(�i), and the edges between two distinct clusters i and j as

interedges ("i;j and "j;i, respectively). If edge weights are not

provided by the MDG, we assume that each edge has a

weight of 1. Below, we define the MQ calculation:

MQ ¼ sumk
i¼1CFi CFi ¼

0 �i ¼ 0

2�i

2�iþ
P

k

j¼1
j 6¼i

ð"i;jþ"j;iÞ

otherwise:

8

>

>

>

<

>

>

>

:

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Fig. 3. The partitioned MDG for a compiler.

Fig. 4. An alternative partitioned MDG for a compiler.

2.3.1 MQ Performance

The execution complexity of calculating MQ has been
shown to be OðjEjÞ, where jEj is proportional to the number
of edges in the MDG [14]. Applying domain knowledge
about our clustering algorithms, we were able to reduce the
execution complexity of calculating MQ in practice to
OðjEj

jV jÞ [14], where jV j is proportional to the number of
modules in the system. This is a dramatic improvement
since jEj is closer to jV j than it is to jV 2j for the MDGs of

most software systems.2

The optimization described above is based on the
observation that the clustering algorithm used by Bunch
improvesMQ by continuously moving single modules from
one cluster to another. This algorithm is described in
Section 4.

An example of a move operation performed by the
Bunch clustering algorithm is shown in Fig. 5. Notice that
the only difference between the decomposition on the left
and the decomposition on the right is the cluster that
contains module M5. All other nodes and all edges that are
not incident to module M5 remain unchanged. Thus, the
MQ value for the decomposition on the right can be
calculated incrementally from the decomposition on the left
by only updating CFA and CFB. Each edge that is incident
to module M5 can be classified into one of six possible
types, labeled fa� fg as shown in Fig. 5. Simple update
rules can be formulated for each edge type to alter the � and
" weights for CFA and CFB [14].

To illustrate the benefit of calculating MQ incrementally,
we ran an experiment using the source code from the Java
Swing class library, which is provided with Sun’s Java
Development Kit (JDK) [15]. The first run clustered the
class library with the incremental update feature disabled
in 31.94 minutes (1,916) seconds. The result contained
24 clusters and the MQ value was 3.89. The second run
used the incremental optimization and produced a result in
14.2 seconds. This result also contained 24 clusters and had
an MQ value of 4.02. It should also be noted that the first

run with the incremental update feature disabled found a
solution by evaluating 4.5 million MQ evaluations, while
the second run required the calculation of 11.7 million
MQ calculations. The difference in the number of required
MQ evaluations is not surprising since both runs had a
different starting population.

3 THE BUNCH TOOL

The Bunch clustering tool was designed to support an
ongoing research project; therefore, it needed to satisfy the
following requirements:

. Flexibility. The source code for our tool is changed
often, by different people. Because Bunch is a tool
that supports research, changes need to be incorpo-
rated into the source code quickly.

. Installation and Portability. Bunch was intended to
be distributed to students, researchers, and software
developers. It is important that our tool is easy to
install and can be executed on a variety of operating
systems.

. Performance. Execution speed is important so that
Bunch can be used to cluster large systems.

. Integration and Extension. Our research emphasis
is on designing and implementing clustering algo-
rithms. We wanted to integrate tools from other
researchers into Bunch for related activities, such as
source code analysis and visualization.

Fig. 6 highlights how the Bunch tool (center) relates to
the overall clustering environment and satisfies the require-
ments outlined above. Bunch is designed more like a
framework than an application. For example, the clustering
algorithms themselves are integrated into Bunch via the
extension interface (bottom). Although we use this interface
to enhance our own clustering algorithms, this design
feature also allows other researchers to integrate their own
algorithms and objective functions into Bunch. The exten-
sion interface supported the creation of many of the features
that are described in the subsequent sections of this paper.
Another important capability of the Bunch framework is its
application programming interface (API). We used the API

MITCHELL AND MANCORIDIS: ON THE AUTOMATIC MODULARIZATION OF SOFTWARE SYSTEMS USING THE BUNCH TOOL 5

Fig. 5. Two similar partitions of an MDG.

2. A fully connected software graph, which is unlikely to appear in
practice, actually has jV jðjV j�1Þ

2
edges since reflexive edges are assumed to be

encapsulated inside of the individual modules.

to integrate Bunch into other tools that we designed to assist
software engineers, such as the REportal Web-based reverse
engineering portal [16], and a style-specific architecture
recovery system [17], [18]. Bunch is developed in Java and
has been tested and used on the Windows, Solaris, and
Linux platforms.

4 CLUSTERING ALGORITHM

This section examines one of the clustering algorithms that
is integrated into the Bunch clustering tool. Bunch supports
a hill-climbing algorithm, an exhaustive clustering algo-
rithm that only works well for small systems [14], and a
genetic algorithm [19]. We have found the hill-climbing
algorithm to work best for most systems and have identified
several enhancements that we plan to make to the genetic
algorithm in the future [14].

4.1 The Hill-Climbing Clustering Algorithm

This section describes a family of hill-climbing search
algorithms that have been implemented in Bunch. All of
Bunch’s hill-climbing clustering algorithms start with a
random partition of the MDG. Modules from this partition
are then systematically rearranged in an attempt to find an
improved partition with a higher MQ. If a better partition is
found, the process iterates, using the improved partition as
the basis for finding even better partitions. This hill-
climbing approach eventually converges when no partitions
can be found with a higher MQ.

As with traditional hill-climbing algorithms, each ran-
domly generated initial partition of the MDG eventually
converges to a local maximum. Unfortunately, not every
initial partition of the MDG produces a satisfactory
suboptimal solution. We address this problem by creating
an initial population (i.e., collection) of random partitions.
Our hill-climbing algorithm clusters each of the random

partitions in the population and selects the result with the
largest MQ as the suboptimal solution. As the size of the
population increases, the probability of finding a good
suboptimal solution also increases.

4.1.1 Neighboring Partitions

Bunch’s hill-climbing algorithms move modules between
the clusters of a partition in an attempt to improveMQ. This
task is accomplished by generating a set of neighboring
partitions (NP).

We define a partition NP to be a neighbor of a partition P

if NP is exactly the same as P except that a single element of
a cluster in partition P is in a different cluster in partition
NP. A side effect of creating a neighboring partition is the
potential for creating or removing a cluster. In the former
case, a node may be moved from one cluster to a new
(singleton) cluster. In the latter case, a singleton cluster will
be eliminated when its only node is moved into another
cluster. Fig. 7 illustrates an example partition, and all of its
neighboring partitions.

n other automated software modularization techniques
[20], a poor early module movement can bias the final
results in a negative way because there is no mechanism for
moving a module once it has been placed into a cluster. A
useful property of Bunch’s neighboring partition strategy is
that the approach used to assign a module to a cluster is not
necessarily permanent. Rather, future iterations of the
clustering algorithm may move a module multiple times,
to different clusters.

4.1.2 Simulated Annealing

A well-known problem of hill-climbing algorithms is that
certain initial starting points may converge to poor
solutions (i.e., local optima). To address this problem, the
Bunch hill-climbing algorithm does not rely on a single

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Fig. 6. The Bunch clustering environment.

random starting point but, instead, uses a collection of
random starting points. Bunch also allows the user to alter
the hill-climbing algorithm behavior by enabling a simu-
lated annealing [21] feature.

When applied to optimization problems, simulated
annealing enables the search algorithm to accept, with
some probability, a worse variation as the new solution of
the current iteration. As the computation proceeds, the
probability of accepting a partition of theMDGwith a lower
MQ as the basis for the next iteration of the hill-climbing
process diminishes.

4.1.3 Calibrating the Clustering Algorithm

Bunch’s hill-climbing algorithm uses a threshold �
(0% � � � 100%) to calculate the minimum number of
neighbors that must be considered during each iteration
of the hill-climbing process. A low value for � results in the
algorithm taking more small steps prior to converging, and
a high value for � results in the algorithm taking fewer large
steps prior to converging. Our experience has shown that
examining many neighbors during each iteration (i.e., using
a large threshold, such as � � 75%) increases the time the
algorithm needs to converge to a solution [22]. The increase
in execution time, however, is a tradeoff in that a higher
� value causes the clustering algorithm to explore more of
the search space prior to selecting a partition of the MDG as
the basis of the next iteration of the search. Examining more
of the search space increases the probability of finding a
better solution.

4.2 Other Features of Bunch

Bunch includes features that preprocess the MDG to extract
special modules that might bias the clustering results in a
negative way. Bunch can automatically detect and remove
omnipresent modules, which are modules that have an
unusually large number of connections to the other
modules in the system. According to Müller et al. [3],
omnipresent modules obscure important underlying struc-
tural features and should be removed, along with all of their
incident dependencies, prior to the clustering process.
Bunch also can detect and remove library modules from the
MDG prior to clustering. These modules have a large
number of in-degree edges and no out-degree edges. All of
the special modules are collected into special clusters, and
the user has the option to show or hide the edges from the
MDG that are incident to these modules.

Although automatic clustering with Bunch has been
shown to produce valuable information, some information
about a system design typically exists; thus, we wanted to
integrate this knowledge into the automatic clustering
process. To accomplish this goal, Bunch allows users to
specify sets of modules that belong to the same cluster.

Bunch respects the information provided by the user and
then focuses on clustering the remaining modules.

We have found these additional features helpful when
we work with Bunch users on their own systems. Our
position is that design recovery is an incremental process
where users first use the automatic clustering capabilities of
Bunch to establish a baseline result. This result can then be
further analyzed and updated by the software engineer
since not all modules belong to clusters based solely on
cohesion and coupling criteria. The recommended process
for using Bunch is outlined in Section 5.

5 CASE STUDY

This section describes a case study where Bunch was used
to analyze the structure of a software system. It is worth
noting that we had access to one of the primary developers
of the software that was analyzed in this case study. In
particular, we used Bunch on two consecutive versions of
the graph drawing tool dot [23]. (Note that dot was used to
draw Figs. 8, 9, and 10.)

In what follows, it is useful to have some background on
the dot program and its structure. The dot system is based
on a pipe-and-filter architecture [24] where a series of
processing steps are applied to lay out and draw a graph.
The program starts by reading in a description of a directed
graph and, based on user options as well as the structure
and attributes of the graph, it draws the graph using an
automatic layout algorithm. The automatic graph layout
technique is a pipeline of graph transformations, through
which the graph is filtered, in which each step adds more-
specific layout information: First, cycles in the graph are
broken. If necessary, information about node clusters is
added. Nodes are then optimally assigned to discrete levels.
Edges are routed to reduce edge crossings. Nodes are then
assigned positions to shorten the total length of all the
edges. Finally, edges are specified as Bezier [25] curves.
Once the layout is done, dot writes to a file using a user-
specified output format, such as PostScript or GIF.

The model we employed to create the MDG of dot uses
files as modules and defines a directed edge between two
files if the code in one file refers to a type, variable, function,
or macro defined in the other file. To generate the MDG, we
first used the Acacia [10] system to create a source code
database for dot. Then, using Acacia and standard Unix
tools, we generated the MDG for input to Bunch. Fig. 8
presents the original MDG for the first version of dot. Little
of the structure of dot is evident from this diagram.

When we apply Bunch to this MDG, we arrive at the
clustering shown in Fig. 9. The partition shown is reason-
ably close to the software structure described above.
Cluster 1 contains most of the layout algorithm. Cluster 2

MITCHELL AND MANCORIDIS: ON THE AUTOMATIC MODULARIZATION OF SOFTWARE SYSTEMS USING THE BUNCH TOOL 7

Fig. 7. Neighboring partitions.

handles the initial processing of the graph. Cluster 3
captures the output framework. Cluster 5 represents the
main function and program input. Cluster 7 contains
modules for drawing composite nodes (clusters) and
performing edge-crossing minimization. Finally, Cluster 8
concerns GIF-related output.

However, there are some anomalies in the partition
shown in Fig. 9. Knowing the program, it is hard to make
sense of Clusters 4 and 6, or why the module mifgen.c is
put into Cluster 5. This latter observation, in fact, exposed a
flaw in the program structure. There is a global variable
defined in dot.c that is used to represent the version of the

software. This information is passed to each of the output
drivers as a parameter; the driver in mifgen.c, however,
accesses the variable directly rather than using the value
passed to it. This explains why mifgen.c finds itself in the
same subsystem as dot.c.

In addition, we note very large fan-ins for some of the
modules in Cluster 1, which greatly adds to the clutter of
the graph. Using Bunch’s omnipresent module calculator,
we see that these modules are identified as potential
omnipresent modules. Based on program semantics, we
recognized these modules as include files that define data
types that are common to many of the other program

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Fig. 9. The automatically produced MDG partition of dot.

Fig. 8. The Module Dependency Graph (MDG) of dot.

modules. It, therefore, makes sense to instruct Bunch to
consider these modules as omnipresent suppliers, which
are treated separately for the purposes of cluster analysis.
We also instruct Bunch not to draw the edges to these
omnipresent suppliers, in order to simplify the graph.

After the omnipresent modules are extracted, the next
step is to use the Bunch user-directed clustering mechanism
to fine-tune the cluster structure by “locking in” certain
cluster associations. The designer of the system relocated a
few modules from the result that Bunch produced auto-
matically and also provided meaningful names for the
subsystems. The resulting clustered graph is shown in
Fig. 10.

6 EVALUATION

The approaches used to evaluate software clustering tools
fall into two major categories. Qualitative evaluation
approaches often involve soliciting feedback on the cluster-
ing results from one or more of the system developers [26],
[27]. Quantitative evaluation approaches measure the
distance from the results produced by a software clustering
algorithm to an authoritative reference solution [28]. Bunch
has been evaluated using both of these approaches.

6.1 Qualitative Evaluation of Bunch

The results produced by Bunch have been qualitatively
evaluated for several popular systems for which we had
direct access to the developers. Specifically, we reviewed
the results of the recovered structure of the Korn shell
program with David Korn and the structure of the dotty
graph drawing program (Section 5) with one of its authors,
Gansner [27]. We also integrated Bunch’s clustering engine
into the Enterprise Navigator tool [29], which is used at
AT&T to visualize and analyze the interactions between
their enterprise information systems. The experts provided
positive feedback on the quality of the structural views
produced by Bunch. To illustrate this type of evaluation
further, the remainder of this section presents a case study
where the results of Bunch were reviewed by an expert on a
proprietary file system developed by AT&T research.

Fig. 11 shows the MDG of a C++ program that
implements a file system service. It allows users of a new
file system nos to access files from an old file system oos

(with different file node structures) mounted under the
users’ name space. Each edge in the graph represents at
least one relation between program entities in the two
corresponding source modules (C++ source files). For
example, the edge between oosfid.c and nos.h repre-
sents 19 relationships from the former to the latter.

The program consists of 50,830 lines of C++ code, not
counting the system library files. The Acacia tool [10]
parsed the program and detected 463 C++ program
entities and 941 relations between them. Note that
containment relations between classes/structs and their
members are excluded from consideration in the con-
struction of the MDG.

Even with the MDG, it is not clear what the major
components of this system are. Bunch produced the results
shown in Fig. 12 containing two large clusters and two
smaller ones in each. After discussing the outcome of our
experiment with the original designer of the system, several
interesting observations were made:

. It is obvious that there are two major components in
this system. The right cluster mainly deals with the
old file system, while the left cluster deals with the
new file system.

. The clustering tool is effective in placing strongly
coupled modules, like pwdgrp.c and pwdgrp.h, in
the same cluster, even though the algorithm does not
get any hints from the file names.

. On the other hand, just by looking at the module
names, a designer might associate oosfid.c with
the right cluster. Interestingly, the algorithm decided
to put it in the left cluster because of its associations
with sysd.h and nos.h, which are mostly used by
modules in the left cluster. The designer later
confirmed that the partition makes sense because it
is the main interface file used by the new file system
to talk to the old file system.

MITCHELL AND MANCORIDIS: ON THE AUTOMATIC MODULARIZATION OF SOFTWARE SYSTEMS USING THE BUNCH TOOL 9

Fig. 10. The dot partition (with user-defined cluster names) after the omnipresent modules have been identified and isolated.

. It is not obvious why a small cluster, consisting of
errlst.c, erv.c, and nosfs.h, was created on
the left. It appears that it would have been better to
merge that small cluster with its neighbor cluster. In
examining the topology of the clustered MDG

(Fig. 12), Bunch probably created this additional
cluster because the interface file nosfs.h is used by
many modules in both the old and new file systems.
Merging this cluster with its neighbor would
increase its coupling to the new file system. It

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Fig. 11. Module dependency graph of the file system.

Fig. 12. Clustered view of the file system from Fig. 11.

should be noted that the clustering algorithm did,
however, eventually combine the two clusters on the
left into a single cluster. This observation also shows
one of the benefits of creating a hierarchy of clusters,
namely, that a user can examine a partitioned MDG
at varying levels of detail.

6.2 Quantitative Evaluation of the Stability of
Bunch’s Clustering Algorithm

We define a clustering algorithm to be stable if it
consistently produces results that are close to a local
optimum. We distinguish algorithm stability from the
orthogonal concept of solution stability, which is related
to the number of distinct solutions that are close to the
global optimum. An algorithm that exhibits an unstable
behavior is not indicative of an unstable solution to the
problem. Likewise, an algorithm that exhibits a stable
behavior is not indicative of a stable solution.

In this section, we conduct a quantitative evaluation of
the stability of the Bunch algorithm. Quantitative evaluation
approaches of software clustering results often require a
benchmark standard (i.e., reference decomposition) and a
distance measurement. The distance measurement deter-
mines the similarity (or dissimilarity) between the result
produced by the clustering algorithm and the benchmark
standard. Note that the benchmark need not be the optimal
solution in a theoretical sense. Rather, it is a solution that is
perceived by several people to be satisfactory. Wen,
Tzerpos, and Andritsos used this evaluation approach for
a number of clustering algorithms (including Bunch) on the
Linux [28] and TOBEY3 systems. They used the MoJo [30],
[31], [32] measurement to determine the similarity of the
results produced by several clustering algorithms to the
benchmark. MoJo measures similarity between two clusters
by calculating the minimum number of module move and
cluster join operations required to transform one cluster into
the other. Bunch performed well in their case studies.

Evaluating software clustering results against a bench-
mark is useful; however, this kind of evaluation is not
always possible, because benchmarks are often not docu-
mented, and the developers are not always accessible for
consultation. To address this issue, we wanted to explore if
the variations in the clustering results produced by Bunch’s
heuristic search algorithms could be useful for evaluation.
When Bunch is run against a system many times, we
observe that certain modules appear in the same clusters
constantly (high similarity), certain modules appear in
different clusters constantly (high dissimilarity), and a small
number of modules tend to drift between different clusters.
This observation led us to believe that we could generate an
approximation to the de facto reference decomposition in
the cases where one does not exist. The underlying
assumption is that if a large sample of clustering results
agree on certain clusters, these clusters become part of the
generated reference decomposition.

The first step in this evaluation process is to cluster a
system many times and record the result of each clustering
run. Let S ¼ fM1;M2; . . .Mng be the set of the modules
from the system being clustered. For each distinct pair of
modules ðMi;MjÞ, where 1 � i; j � jSj and Mi 6¼ Mj, we
calculate the frequency (�i;j) that this pair appears in the
same cluster. Given that the system was clustered � times,
the number of times that a pair of modules can appear in

the same cluster is bounded by 0 � � � �. The principle
that guides our analysis is that the closer � is to �, the more
likely that the pair of modules belongs to the same cluster in
the generated reference decomposition. An � that is closer
to 0 is an indicator of high dissimilarity, meaning that the
pair of modules should appear in different clusters in the
reference decomposition.

After the clustering step, the set D is constructed
containing all of the fMi;Mj; �i;jg triples sorted in decreas-
ing order by �i;j. The next step in forming the generated
reference decomposition involves creating an initial cluster
by taking the relation from D with the largest � value. The
closure of the modules in this relation is then calculated and
new modules are added to the cluster by searching for
additional relations in D such that one of the modules in the
triple is already contained in the newly formed cluster, and
the � value exceeds a user defined threshold �

(0% � � � 100%). The � threshold balances the size and
number of clusters in the reference decomposition. A
� value of 0 percent will create a single cluster containing
all modules in S, while a � value of 100 percent will only
group modules that appear in the same cluster all of the
time. We have found that using a larger � value (� � 75%)
works well in creating a balance between the size and
number of clusters.

When adding modules to clusters in the generated
reference decomposition, care is taken so that each module
in setS is assigned to nomore than one cluster; otherwise, we
would not have a valid partition of the MDG. After the
closure of the cluster is calculated, a new cluster is created
and the process repeats. Eventually, all modules that appear
in relations in D that have an � value that exceeds the user
defined threshold � will be assigned to a cluster. In some
cases, however, there may be modules for which no relation
in D exists with a large enough � value to be assigned to a
cluster. In these instances, for each remaining unassigned
module in S, a new cluster is created containing a single
module. This condition is not an indication that the module
belongs to a singleton cluster but, instead, ismeant to indicate
that the module is somewhat unstable in its placement as it
tends not to get assigned to any particular cluster.

From an evaluation perspective, we also wanted to
measure the similarity of the individual clustering results to
the reference decomposition. If the similarity of the
individual runs varied dramatically, then Bunch users
would not have confidence in an individual clustering
run. We calculated the the average, standard deviation,
minimum, and maximum values using two different
similarity measurements: EdgeSim and MeCl [3].

The EdgeSim similarity measurement normalizes the
number of intra and intercluster edges that agree between
two partitions. The MeCl similarity measurement deter-
mines the distance between a pair of partitions by first
calculating the Clumps, which are the largest subset of
modules from both partitions that agree with respect to
their placement into clusters. Once the “clumps” are
determined, a series of Merge operations are performed to
convert the first partition into the second one. The actual
MeCl distance is determined by normalizing the number of
Merge operations [33].

To illustrate this approach for evaluating Bunch
clustering results, we analyze the Java Swing [34] class
library. The Swing library consists of 413 classes that have

MITCHELL AND MANCORIDIS: ON THE AUTOMATIC MODULARIZATION OF SOFTWARE SYSTEMS USING THE BUNCH TOOL 11

3. The TOBEY system is a proprietary compiler optimization back-end
developed by IBM.

1,513 dependencies between them. A partial view4 of the
result produced by using Bunch to generate a reference
decomposition is illustrated in Fig. 13. The nodes
represent the classes in the Swing framework and the
edges show the � value for the relation between the
nodes. The Swing system was clustered 100 times and the
default � value of 75 percent was used to create the
visualization.

Table 1 details how the results of the individual clustering
runs compare to the generated reference decomposition.

Since the average of both similarity measurements is high,

coupledwith a low standard deviation, we can conclude that

the individual clustering results do not deviate far from the

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

4. The entire view was too large to visualize for layout on a printed sheet
of paper.

Fig. 13. A partial view of swing’s reference decomposition.

TABLE 1
Similarity Results for the Swing Class Library

generated reference decomposition. It should also be noted
that the results shown in Fig. 13 are highly consistent with
the Java package structure of the Swing library, which
provides additional confidence that the individual cluster-
ing results produced by Bunch are useful.

It is worth noting that measuring the similarity between
the individual clustering runs and the generated reference
decomposition can be used to assess the quality of the
generated reference decomposition. Recall that the refer-
ence decomposition is constructed by grouping modules
that appear in the same subsystem across many of the
individual clustering runs. If the results produced by the
individual clustering runs are stable, this approach will
result in a reference decomposition that is similar to each of
the individual clustering runs. If the results produced by
the individual clustering runs vary significantly, then the
generated reference decomposition will contain many small
clusters and will not be similar to the individual clustering
results. Thus, by determining the average similarity
between the reference decomposition and the individual
clustering runs, we can assess if the reference decomposi-
tion is representative of the results produced by clustering
algorithms. Namely, a high similarity would indicate that
the reference decomposition represents a useful solution,
where a low similarity would suggest the opposite.

6.3 Evaluation Summary

Evaluation based on both qualitative and quantitative
methods is useful for gaining confidence that a clustering
algorithm produces good results. Both of these evaluation
methods require an expert either to give feedback on a
result produced by a clustering algorithm or to define a
benchmark that can be used to compare to the results
produced by a clustering algorithm.

Bunch is valuable because it provides useful views of the
software structure that are helpful to practitioners perform-
ing maintenance activities. For example, in Section 2.3 we
described our MQ measurement, which was designed to
reward the creation of cohesive clusters. Since MQ guides
Bunch’s search algorithms, the results produced by Bunch
provide structural views that embody a generally accepted
software engineering principle that well-designed systems
are organized into cohesive clusters that are loosely
interconnected [35].

Unfortunately, determining the partition of theMDGwith
the largest MQ value is only possible using an exhaustive
search. However, we have demonstrated elsewhere [36] that
we can bound the solutions produced by Bunch within a
known factor log2 N of the optimal solution.

The views produced by Bunch should not be perceived
as the definitive solution to the software clustering problem.
We advocate that users follow an incremental approach in
which the results produced by Bunch are refined as
additional information about the systems structure is
discovered. We demonstrated this approach in Section 5
on the dot system. It is also important to note that there is
not a single way to assign modules into clusters, as some of
these modules may be placed better using other criteria
(e.g., directory names, file names, package names). The case
study in Section 5 demonstrated several automated facilities
to automatically identify candidate libraries, drivers, and
omnipresent modules [3]. When appropriate, users can
bypass the automatic placement of certain modules by
assigning them to clusters manually. The Bunch tool also
has an extensive API [14] so that users can extend the
framework by adding new clustering algorithms, objective

functions, simulated annealing cooling schedules, output
formats, etc.

The papers and software produced by the Bunch project
are widely cited [37], [38], and have been used in advanced
software engineering classes. Bunch has been integrated
into an industrial-strength software system at AT&T [39] as
well as a number of other software engineering tools used
by researchers [16], [18], [17]. We also compared the results
produced by Bunch to a spectral clustering technique,
which enabled us to discover an upper bound for how far
the results created by Bunch are from the optimal solution.

7 RELATED WORK

Early work by Belady and Evangelisti [40] identified
automatic clustering as a means to produce views of the
structure of software systems. Much of the initial work on
software clustering, like that of Hutchens and Basili [41],
focused on techniques for grouping related procedures and
variables into modules. Progressively, as software systems
began to grow in size, the new problem of grouping sets of
modules into hierarchies of subsystems became pertinent.

Schwanke’s ARCH tool [20] determined clusters using
coupling and cohesion measurements. The Rigi system [42],
by Müller et al. pioneered the concepts of isolating
omnipresent modules, grouping modules with common
clients and suppliers, and grouping modules that had
similar names. The last idea was followed up by Anquetil
and Lethbridge [43], who used common patterns in file
names as a clustering criterion.

Lindig and Snelting [4] proposed a software modular-
ization technique based on mathematical concept analysis.
Eisenbarth et al. [44] also used concept analysis to map a
system’s externally visible behavior to relevant parts of the
source code.

Tzerpos and Holt’s ACDC clustering algorithm [45]
uses patterns that have been shown to have good
program comprehension properties to determine the
system decomposition. The authors define seven sub-
system patterns and, then, describe their clustering algo-
rithm that systematically applies these patterns to the
software structure. After applying the subsystem patterns
of the ACDC clustering algorithm, most, but not all, of
the modules are placed into subsystems. ACDC then uses
orphan adoption [46] to assign the remaining modules to
appropriate subsystems.

Koschke [47] examined 23 different clustering techni-
ques and classified them into connection-, metric-, graph-,
and concept-based categories. Of the 23 clustering
techniques examined, 16 are fully automatic and seven
are semiautomatic. One of Koschke’s metric-based algo-
rithms that is closest to our work is called similarity
clustering, which is an extension of earlier work done by
Schwanke [20]. The challenge with this clustering ap-
proach is to calibrate a large number of parameters
properly. Koschke used search techniques, including
simulated annealing, to optimize the clustering algorithm
parameters. Koschke also created a semiautomatic cluster-
ing framework based on modified versions of the fully
automatic techniques he investigated. The goal of Koch-
ke’s framework is to enable a collaborative session
between his clustering framework and the user. The
clustering algorithm does the processing, and the user
validates the results.

Mockus and Weiss [48] identified the value of assigning
independent parts of the code base, or “chunks,” to

MITCHELL AND MANCORIDIS: ON THE AUTOMATIC MODULARIZATION OF SOFTWARE SYSTEMS USING THE BUNCH TOOL 13

maintenance teams that are globally distributed. They apply
a search technique based on simulated annealing to identify
candidates for chunksrdquo; of code that can be assigned to
different development teams. The premise for their research
is that minimizing the need for coordination and synchro-
nization across globally distributed development teams has
a measurable positive impact on the quality and develop-
ment time to implement software changes.

Although most clustering approaches are bottom-up,
which produce structural views starting from the source
code, some promising top-down approaches have demon-
strated their effectiveness for helping with software main-
tenance problems. Murphy et al. developed Software
Reflexion Models [49] to capture and exploit differences
that exist between the actual source code organization and
the designer’s mental model of the system organization.

Bunch includes several features that were inspired by
other software clustering research such as orphan adoption
[46] and the automatic detection of candidate omnipresent
modules [42]. Bunch has also influenced the work of other
researchers and distinguishes itself from other software
clustering approaches in several ways:

. The Bunch framework provides integrated manual,
semiautomatic, and fully automatic clustering facil-
ities because the process of design extraction is often
iterative. Users can automatically generate parti-
tioned views of a system’s structure and then refine
these views using Bunch’s semiautomatic clustering
features. This process was shown in Section 5.

. Bunch uses search techniques and treats the
clustering activity as a graph partitioning problem.
Other early work investigating search strategies for
software clustering problems was performed by
Koschke [47], in which he used simulated anneal-
ing to calibrate the parameters necessary to guide
his clustering algorithm. More recently, Mahdavi
et al. [50] agglomerated results from multiple hill-
climbing runs to identify software clusters, an
approach similar to the one that we used for
evaluating software clustering results [51].

. Most software clustering algorithms are determi-
nistic, and as such, always produce the same result
for a given input. Since our approach is based on
randomized heuristic search techniques, our clus-
tering algorithms often do not produce the same
result, but a family of similar results. We exam-
ined some useful properties associated with this
behavior to model the search space, investigate the
stability of the clustering results [22], [52], and to
create reference decompositions [51]. Mahdavi et
al. recently investigated this property to improve
their genetic clustering algorithm [50]. As men-
tioned earlier, Mockus and Weiss [48] used
simulated annealing to partition the code base
ownership to different geographically separated
maintenance teams.

. Bunch’s algorithms and tools were designed to be
fast. We often work on large systems, like Swing [34]
and Linux, and are able to produce results in several
minutes.

. Bunch is available for download over the Internet
[53]. We encourage users to download, use, and
extend our tool through its published programming

interface. We also integrated Bunch into an online
software engineering portal called REportal [16].

Now that a broad range of approaches to software
clustering exist, the validation of clustering results is
starting to attract the interest of the reverse engineering
research community. Early work in this area was performed
by Koschke and Eisenbarth [54], who described a quanti-
tative method to evaluate software clustering results. The
authors state that a reference decomposition is necessary in
order to compare the strengths and weaknesses of
individual clustering algorithms. Early work by Tzerpos
and Holt [55] used this approach for evaluation, which led
to the development of a distance measurement called MoJo
to compare clustering results with a reference decomposi-
tion. We outlined some problems with the initial version of
MoJo and other similarity measurements used to evaluate
software clustering results. These measurements only
considered the placement of modules into clusters and not
the relations between the modules. We proposed two new
measurements called EdgeSim and MeCl [33] that use the
strength of the module relations to measure similarity. Wen
and Tzerpos [31], [32] have since extended MoJo to consider
both the placement of modules and the strength of the
relations between the modules when measuring the
similarity of software clustering results.

8 CONTRIBUTION TO THE SOFTWARE ENGINEERING

COMMUNITY

Using Bunch to create views of the system structure directly
from its implementation has several useful applications:

. Software engineers who manage maintenance activ-
ities often try to identify the points of loose coupling
in the system implementation so that work can be
distributed to maintainers efficiently. Ensuring a
high degree of independence in the code touched by
maintainers reduces the need for multideveloper
coordination [48]. This approach simplifies activities
such as integration testing, placing more emphasis
on fixing defects in earlier phases of the software
development lifecycle (i.e., during unit testing).

. The clustering results produced by Bunch can be
used by project managers and enterprise planners
who manage software maintenance activities or are
responsible for a large portfolio of integrated
systems. For example, we integrated Bunch’s clus-
tering engine into the Enterprise Navigator tool [29],
which is used at AT&T to visualize and analyze the
interactions between their enterprise information
systems. Specifically, Bunch was used to partition a
large graph where the nodes represented informa-
tion systems and the edges represented data flows
between them. The goal of this work was to help
planners understand and manage the integration
points between a large number of legacy systems.

. The design of the Bunch tool and its associated
clustering algorithms has been extensively docu-
mented [14]. The Bunch tool, along with the
documentation of its programming interface, is
available for download [53] over the Internet.
Although a significant amount of recent research
on clustering focuses on comparing the results of
other clustering algorithms to those produced by

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

Bunch [37], [38], we have also been contacted by
researchers and students who are integrating
Bunch into their own work. By keeping the
programming interface public and the design of
our tool flexible, we hope that others will not only
continue to integrate Bunch into their own work
but also to extend Bunch by creating new
clustering algorithms and objective functions. Since
Bunch is designed to be extended quickly, the
Bunch framework can be used to expedite new
research into software clustering algorithms and
alternative objective functions [56].

9 CONCLUSIONS

The Bunch framework was designed to help maintainers
who are trying to understand large and complex software
systems. Using search techniques, Bunch partitions the
structure of a software system using the entities and
relations that are specified in the source code. Bunch is fast
and scalable, as systems like the Linux kernel (10,000 mod-
ules and 100,000 relations) can be clustered in about
30 seconds [33]. Over the past several years, we have
applied Bunch to over 50 systems, obtained from both
industry and the open source community. These systems
range in size from a few thousand lines of code to upwards
of a million lines of code.

This paper places a significant emphasis on how Bunch
can help software engineers to perform a variety of
program understanding and maintenance activities. It also
illustrates how the results produced by Bunch can be
evaluated, since software engineers must have confidence
in the tools that they use to analyze systems. This paper
explains how Bunch was evaluated using qualitative and
quantitative methods.

In addition to the clustering algorithms described in this
paper, Bunch was designed so that it can be extended to
include other clustering algorithms, MQ measurement
functions, and simulated annealing cooling schedules.
Bunch also includes an API that makes it easy to integrate
its clustering services into other software engineering tools.

ACKNOWLEDGMENTS

The authors would like to thank the US National Science
Foundation (grant numbers CCR-9733569 and CISE-
9986105), AT&T, and Sun Microsystems for their generous
support of this research. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the NSF, US government, AT&T, or Sun Micro-
systems. We would also like to thank Emden Gansner and
Yih-Farn Chen for their help with the qualitative evaluation
of Bunch.

REFERENCES

[1] R. Schwanke and S. Hanson, “Using Neural Networks to
Modularize Software,”Machine Learning, vol. 15, pp. 137-168, 1998.

[2] S. Choi and W. Scacchi, “Extracting and Restructuring the Design
of Large Systems,” IEEE Software, pp. 66-71, 1999.

[3] H. Müller, M. Orgun, S. Tilley, and J. Uhl, “A Reverse Engineering
Approach to Subsystem Structure Identification,” J. Software
Maintenance: Research and Practice, vol. 5, pp. 181-204, 1993.

[4] C. Lindig and G. Snelting, “Assessing Modular Structure of
Legacy Code Based on Mathematical Concept Analysis,” Proc.
Int’l Conf. on Software Eng., May 1997.

[5] A.V. Deursen and T. Kuipers, “Identifying Objects Using Cluster
and Concept Analysis,” Int’l Conf. Software Eng., pp. 246-255, May
1999, http://citeseer.nj.nec.com/vandeursen99building.html.

[6] N. Anquetil, “A Comparison of Graphis of Concept for Reverse
Eng.,” Proc. Int’l Workshop Program Comprehension, June 2000.

[7] N. Anquetil and T. Lethbridge, “Recovering Software Architecture
from the Names of Source Files,” Proc. Working Conf. Reverse Eng.,
Oct. 1999.

[8] J. Clark, J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B.S. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd,
“Reformulating Software Engineering as a Search Problem,” J. IEE
Proc. Software, vol. 150, no. 3, pp. 161-175, 2003.

[9] Y. Chen, “Reverse Engineering,” Practical Reusable Unix Software,
chapter 6, pp. 177-208, B. Krishnamurthy, ed. New York: John
Wiley & Sons, 1995.

[10] Y. Chen, E. Gansner, and E. Koutsofios, “A C++ Data Model
Supporting Reachability Analysis and Dead Code Detection,”
Proc. Sixth European Software Eng. Conf. and Fifth ACM SIGSOFT
Symp. Foundations of Software Eng., Sept. 1997.

[11] J. Korn, Y. Chen, and E. Koutsofios, “Chava: Reverse Engineering
and Tracking of Java Applets,” Proc. Working Conf. Reverse Eng.,
Oct. 1999.

[12] M. Salah and S. Mancoridis, “Reverse Engineering of a Hierarchy
of Dynamic Software Views: From Object Interactions to Feature
Dependencies,” Proc. IEEE Int’l Conf. Software Maintenance, Sept.
2004.

[13] A. Nijenhuis and H.S. Wilf, Combinatorial Algorithms, second ed.
Academic Press, 1978.

[14] B.S. Mitchell, “A Heuristic Search Approach to Solving the
Software Clustering Problem,” PhD dissertation, Drexel Univ.,
2002.

[15] “The Sun Developer Network,” Javasoft, http://www.Javasoft.
com, **YEAR?**.

[16] S. Mancoridis, T. Souder, Y. Chen, E.R. Gansner,, and J.L. Korn,
“REportal: A Web-Based Portal Site for Reverse Engineering,”
Proc. Working Conf. Reverse Eng., Oct. 2001.

[17] B.S. Mitchell and S. Mancoridis, “Using Interconnection Style
Rules to Infer Software Architecture Relations,” Proc. Genetic and
Evolutionary Computation Conf., 2004.

[18] M. Traverso and S. Mancoridis, “On the Automatic Recovery of
Style-Specific Structural Dependencies in Software Systems,”
J. Automated Software Eng., vol. 9, no. 3, 2002.

[19] D. Doval, S. Mancoridis, and B. Mitchell, “Automatic Clustering of
Software Systems Using a Genetic Algorithm,” Proc. Software
Technology and Eng. Practice, Aug. 1999.

[20] R. Schwanke, “An Intelligent Tool for Re-Engineering Software
Modularity,” Proc. 13th Int’l Conf. Software Eng., May 1991.

[21] S. Kirkpatrick, C.D. Gelatt Jr., and M. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, pp. 671-680, May 1983.

[22] B.S. Mitchell and S. Mancoridis, “Using Heuristic Search
Techniques to Extract Design Abstractions from Source Code,”
Proc. Genetic and Evolutionary Computation Conf., July 2002.

[23] E. Gansner, E. Koutsofios, S. North, and K. Vo, “A Technique for
Drawing Directed Graphs,” IEEE Trans. Software Eng., vol. 19,
no. 3, pp. 214-230, Mar. 1993.

[24] M. Shaw and D. Garlan, Software Architecture: Perspectives on An
Emerging Discipline. Prentice-Hall, 1996.

[25] J.D. Foley, A. Van Dam, S.K. Feiner, and J.F. Hughes, Computer
Graphics, second ed. Addison-Wesley, 1990.

[26] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and E. Gansner,
“Using Automatic Clustering to Produce High-Level System
Organizations of Source Code,” Proc. Sixth Int’l Workshop Program
Comprehension, June 1998.

[27] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner, “Bunch: A
Clustering Tool for the Recovery and Maintenance of Software
System Structures,” Proc. Int’l Conf. Software Maintenance, pp. 50-
59, Aug. 1999.

[28] I.T. Bowman, R.C. Holt, and N.V. Brewster, “Linux as a Case
Study: Its Extracted Software Architecture,” Proc. Int’l Conf.
Software Eng., May 1999.

[29] A. Buchsbaum, Y.-F. Chen, H. Huang, M. Jankowsky, E.
Koutsofos, S. Mancoridis, J. Mocenigo, and A. Rogers, “Enterprise
Navigator: A System for Visualizing and Analyzing Software
Infrastructures,” IEEE Software, vol. 18, no. 5, 2001.

[30] P. Andritsos and V. Tzerpos, “Software Clustering Based on
Information Loss Minimization,” Proc. IEEE Working Conf. Reverse
Eng., Nov. 2003.

MITCHELL AND MANCORIDIS: ON THE AUTOMATIC MODULARIZATION OF SOFTWARE SYSTEMS USING THE BUNCH TOOL 15

[31] Z. Wen and V. Tzerpos, “An Effectiveness Measure for Software
Clustering Algorithms,” Proc. IEEE Int’l Conf. Software Mainte-
nance, Sept. 2004.

[32] Z. Wen and V. Tzerpos, “Evaluating Similarity Measures for
Software Decompositions,” Proc. IEEE Int’l Workshop Program
Comprehension, June 2004.

[33] B.S. Mitchell and S. Mancoridis, “Comparing the Decompositions
Produced by Software Clustering Algorithms Using Similarity
Measurements,” Proc. Int’l Conf. Software Maintenance, Nov. 2001.

[34] “Javasoft Swing Libraries: Java Foundation Classes,” Swing,
http://www.javasoft.com/products/jfc, **YEAR**.

[35] I. Sommerville, Software Eng., seventh ed. Addison-Wesley, 2004.
[36] A. Shokoufandeh, S. Mancoridis, and M. Maycock, “Applying

Spectral Methods to Software Clustering,” Proc. IEEE Working
Conf. on Reverse Eng., pp. 3-10, Oct. 2002.

[37] “Computer and Information Science Papers Citeseer Publications
Research Index,” CiteSeer, http://citeseer.ist.psu.edu, **YEAR**.

[38] “Google Scholar Search Engine,” http://scholar.google.com,
YEAR.

[39] A. Buchsbaum, Y.-F. Chen, H. Huang, M. Jankowsky, E.
Koutsofios, S. Mancoridis, J. Mocenigo, and A. Rogers, “Enterprise
Navigator: A System for Visualizing and Analyzing Software
Infrastructures,” IEEE Software, vol. 18, no. 5, pp. 62-70, 2001.

[40] L.A. Belady and C.J. Evangelisti, “System Partitioning and Its
Measure,” J. Systems and Software, vol. 2, pp. 23-29, 1981.

[41] D. Hutchens and R. Basili, “System Structure Analysis: Clustering
with Data Bindings,” IEEE Trans. Software Eng., vol. 11, pp. 749-
757, Aug. 1985.

[42] H. Müller, M. Orgun, S. Tilley, and J. Uhl, “A Reverse Eng.
Approach to Subsystem Structure Identification,” J. Software
Maintenance: Research and Practice, vol. 5, pp. 181-204, 1993.

[43] N. Anquetil and T. Lethbridge, “Extracting Concepts from File
Names: A New File Clustering Criterion,” Proc. 20th Int’l Conf.
Software Eng., May 1998.

[44] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding Program
Comprehension by Static and Dynamic Feature Analysis,” Proc.
IEEE Int’l Conf. Software Maintenance, Nov. 2001.

[45] V. Tzerpos and R.C. Holt, “ACDC: An Algorithm for Comprehen-
sion-Driven Clustering,” Proc. Working Conf. Reverse Eng., pp. 258-
267, Nov. 2000.

[46] V. Tzerpos and R. Holt, “The Orphan Adoption Problem in
Architecture Maintenance,” Proc. Working Conf. Reverse Eng., Oct.
1997.

[47] R. Koschke, “Evaluation of Automatic Re-Modularization Tech-
niques and Their Integration in a Semi-Automatic Method,” PhD
dissertation, Univ. of Stuttgart, Stuttgart, Germany, 2000.

[48] A. Mockus and D.M. Weiss, “Globalization by Chunking: A
Quantitative Approach,” IEEE Software, vol. 18, no. 2, pp. 30-37,
2001.

[49] G. Murphy, D. Notkin, and K. Sullivan, “Software Reflexion
Models: Bridging the Gap Between Source and High-Level
Models,” Proc. ACM SIGSOFT Symp. Foundations of Software
Eng., 1995.

[50] K. Mahdavi, M. Harman, and R. Hierons, “A Multiple Hill
Climbing Approach to Software Module Clustering,” Proc. IEEE
Int’l Conf. Software Maintenance, Sept. 2003.

[51] B.S. Mitchell and S. Mancoridis, “CRAFT: A Framework for
Evaluating Software Clustering Results in the Absence of Bench-
mark Decompositions,” Proc. Working Conf. Reverse Eng.,Oct. 2001.

[52] B.S. Mitchell and S. Mancoridis, “Modeling the Search Landscape
of Metaheuristic Software Clustering Algorithms,” Proc. Genetic
and Evolutionary Computation Conf., 2003.

[53] “The Drexel University Software Eng. Research Group (SERG),”
http://serg.cs.drexel.edu, **YEAR**.

[54] R. Koschke and T. Eisenbarth, “A Framework for Experimental
Evaluation of Clustering Techniques,” Proc. Int’l Workshop Program
Comprehension, June 2000.

[55] V. Tzerpos and R.C. Holt, “MoJo: a Distance Metric for Software
Clustering,” Proc. Working Conf. Reverse Eng., Oct. 1999.

[56] M. Harman, S. Swift, and K. Mahdavi, “An Empirical Study of the
Robustness of Two Module Clustering Fitness Functions,” Proc.
Genetic and Evolutionary Computation Conf., 2005.

Brian S. Mitchell received the ME degree
(1995) in computer engineering from Widener
University and the MS degree (1997) and the
PhD degree (2002) in computer science from
Drexel University. He has more than 15 years of
technical and leadership experience in the soft-
ware industry. He is currently a research
associate and a member of the Software
Engineering Research Group (SERG) at Drexel
University. He is also an enterprise architect at

CIGNA Corporation in Philadelphia, Pennsylvania, where he works as a
lead software engineer on enterprise strategic initiatives. His interests
include software architecture, reverse engineering, program under-
standing, software security, and computer architecture. He is a member
of the IEEE and the IEEE Computer Society and has served as a
program committee member for several IEEE, ACM, AAAI, and industry
conferences. He is a member of the organizing committee for the 2006
IEEE ICSM conference.

Spiros Mancoridis received the PhD degree in
computer science from the University of Toronto
under the supervision of Professor Richard C.
Holt. He joined Drexel University in 1996 and is
now an associate professor in the Department of
Computer Science and the founder and director
of the Software Engineering Research Group
(SERG) at Drexel University. At SERG, he
works with a team of students and researchers
on problems related to the reverse engineering

of large software systems, program understanding, software testing, and
software security. In 1998, he received a Career Award for Young
Investigators from the US National Science Foundation. Since then, he
has received additional funding from the NSF, DARPA, the US Army,
AT&T, and Sun Microsystems. He is the general chair for the 2006 IEEE
ICSM Conference in Philadelphia, Pennsylvania, and a senior member
of the IEEE Computer Society and the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 3, MARCH 2006

