ON THE AUTOMORPHISM GROUP OF A FINITE MODULAR *p*-GROUP

RICHARD M. DAVITT AND ALBERT D. OTTO

ABSTRACT. In this paper it is shown that if G is a finite non-Abelian modular p-group (p>2), then the order of G divides the order of the automorphism group of G.

In recent years there have been a number of papers exploring the relationships between the order of a finite *p*-group and the order of its automorphism group. In particular many of these have shown that for a certain class of finite *p*-groups, the order of the group divides the order of the automorphism group ([1], [2], [3], [4], [8]). We recall that a group *G* is modular if the lattice of subgroups of *G* is modular. It is the purpose of this paper to show that if *G* is a non-Abelian modular *p*-group (p>2), then the order of *G* divides the order of the automorphism group of *G*.

The following notation is used: G is a finite p-group where p is an odd prime; A(G) is the group of automorphisms of G; $A_c(G)$ and Inn(G) are the normal subgroups of A(G) of central automorphisms and inner automorphisms, respectively; G_n is the *n*th member of the lower central series of G and so G_2 is the derived group; Z(G) and $Z_2(G)$ are the center and second center of G, respectively (or Z and Z_2 if no ambiguity is possible); exp G is the exponent of G; |G| is the order of the group G; for x and y in G, o(x) is the order of the element x, (x, y) is the commutator $x^{-1}y^{-1}xy$, and $\langle x \rangle$ is the cyclic subgroup generated by x; $\Omega_n(G) =$ $\{x \in G : o(x) \leq p^n\}$; and $\mathfrak{O}_n(G) = \{x^{p^n} : x \text{ in } G\}$. In addition, $H \leq G$ means H is a subgroup of G and \oplus is used to denote the direct sum of subgroups. Finally, for groups A and B, $\operatorname{Hom}(A, B)$ is the set of all homomorphisms from A into B.

There are certain results which we often need and shall use throughout the paper without further reference. Their proofs may be found in [5]. If a, b, and c are elements of a group G, then $(a, bc) = (a, c)(a, b)^c$ and $(ab, c) = (a, c)^b(b, c)$. Also $|\text{Hom}(\bigoplus A_i, \bigoplus B_j)| = \prod_{i,j} |\text{Hom}(A_i, B_j)|$ where A_i and B_j are Abelian p-groups. In addition, $\text{Hom}(C(p^{\alpha}), C(p^{\beta}))$ is isomorphic to $C(p^{\min(\alpha,\beta)})$ where C(n) is the cyclic group of order n. Finally,

e American Mathematical Society 1972

Presented to the Society, January 18, 1972; received by the editors October 11, 1971. AMS 1970 subject classifications. Primary 20D15, 20D45; Secondary 20F55.

Key words and phrases. Finite p-groups, regular, modular, inner automorphisms, central automorphisms.

it is assumed that the definition of a regular p-group and the basic properties of such groups are known.

We now state our theorem.

THEOREM. If G is a finite non-Abelian modular p-group (p>2), then |G| divides |A(G)|.

We may assume that the nilpotency class of G is greater than 2 [4] and also that G/Z is not metacyclic [3]. Furthermore, we may assume G is purely non-Abelian [8] and consequently $|A_c(G)| = |\text{Hom}(G, Z)|$ [1] which is then a power of p.

For purposes of notation we shall let R be the normal subgroup $Inn(G)A_c(G)$ of A(G). We note that R is a p-group and our goal is to show that $|R| \ge |G|$.

We begin by examining in greater detail the structure of G. By [6] and [7] or [9] we know that G contains a normal Abelian subgroup A and an element b such that $G/A = \langle bA \rangle$ and for some fixed nonnegative integer α , $(a, b) = a^{p^{\alpha}}$ for each a in A. Since G/A is Abelian, G_2 is contained in A. Also $\alpha > 0$. For if $\alpha = 0$, (a, b) = a for each a in A and so $G_2 = A$ which is a contradiction since G/A is cyclic. Since $(a, b) = a^{p^{\alpha}}$ for each a in A, $U_{\alpha}(A) \leq G_2$. We next note that $(a, b^i) = a^{(1+p^{\alpha})^{i}-1}$ is in $U_{\alpha}(A)$ for each a in A and integer $i \geq 0$. Thus by using commutator identities we have that each commutator is of the form $a^{p^{\alpha}}$ for some a in A. Thus $U_{\alpha}(A) = G_2$. In a similar fashion we see that $U_{2\alpha}(A) = G_3$. We can now prove the following important and useful lemma.

LEMMA 1. G is regular.

Suppose x and y are in G and $H = \langle x, y \rangle$. For convenience we may assume H is not Abelian. Then $(xy)^p = x^p y^p c^p d$ where c is in H_2 and d is in H_p . Since G is modular, H is also modular. Thus we have $H_p \leq H_3 = \mathcal{O}_{\alpha_1}(H_2) \leq \mathcal{O}_1(H_2)$, where α_1 is the " α " for H. Thus $d = d^p$ where d is in H_2 . Since $H_2 \leq G_2$ which is Abelian $c^p d = (cd)^p$ with cd in H_2 . So $(xy)^p = x^p y^p z^p$ with z in H_2 and G is regular.

For purposes of notation we let $p^k = |G/A|$ and $p^m = \exp G_2$. Since G is not Abelian, $G_2 = \mathcal{O}_{\alpha}(A) > E$ and so $\exp A = p^{m+\alpha}$. Also since for each a in $A, e = (a, b)^{p^m} = (a, b^{p^m}) = (a^{p^m}, b)$, we see that a^{p^m} and b^{p^m} are in Z and hence that $\mathcal{O}_m(G) \leq Z$. Consequently, $m > \alpha$. For if $m \leq \alpha$, then $G_2 = \mathcal{O}_{\alpha}(A) \leq \mathcal{O}_{\alpha}(G) \leq \mathcal{O}_m(G) \leq Z$, which means G has nilpotency class 2. We also observe that since for each a in A, $(a, b) = a^{p^{\alpha}}$, we have $a^{p^{\alpha}} = e$ if and only if a is in Z. Thus $\Omega_{\alpha}(A) = A \cap Z$.

In order to find a suitable lower bound on |R|, we begin by determining Z and Z_2 and consequently their orders.

400

1972] AUTOMORPHISM GROUP OF A FINITE MODULAR p-Group 401

First of all we recall that b^{p^m} is in Z and thus $\langle b^{p^m} \rangle (A \cap Z) \leq Z$. Conversely suppose $x = b^i a$ with a in A is in Z. Then $e = (x, b) = (b^i a, b) = (a, b) = a^{p^a}$ and so a is in $\Omega_{\alpha}(A)$. For \bar{a} in $A, e = (b^i a, \bar{a}) = (b, \bar{a})^i$ and so $p^m | i$. Thus $Z = \langle b^{p^m} \rangle (A \cap Z) = \langle b^{p^m} \rangle \Omega_{\alpha}(A)$. We note that, since $o(bA) = p^k$, $o(b(A \cap Z)) = p^k$. Furthermore $o(bZ) = p^m$. For if $o(bZ) \leq p^{m-1}$, then, by the regularity of G, each commutator in G has order $\leq p^{m-1}$ and so $\exp G_2 \leq p^{m-1}$. Thus in addition we have $k \geq m$ and $|Z| = p^{k-m} |\Omega_{\alpha}(A)|$.

Next we investigate Z_2 and find its order. First of all it is easily seen that Z_2 can be characterized as the set of all x in G such that $(x, b) \in Z$ and $(x, a) \in Z$ for all a in A. For a in $\Omega_{2\alpha}(A)$, $(a, b) = a^{p^{\alpha}}$ is in $\Omega_{\alpha}(A) \leq Z$. Thus, $\Omega_{2\alpha}(A) \leq Z_2$. Also for a in A, $(a, b^{p^{m-\alpha}})$ is in $\langle a^{p^m} \rangle \leq Z$. Thus $\langle b^{p^{m-\alpha}} \rangle \Omega_{2\alpha}(A) \leq Z_2$. Conversely suppose $x = b^i a$ is in Z_2 with a in A. Then $(x, b) = (b^i a, b) = (a, b) = a^{p^{\alpha}}$ is in $Z \cap A = \Omega_{\alpha}(A)$ and so a is in $\Omega_{2\alpha}(A)$. So now bⁱ is in Z_2 and so for \overline{a} in A, (b^i, \overline{a}) is in $A \cap Z = \Omega_{\alpha}(A)$. Thus $e = (b^i, \overline{a})^{p^{\alpha}} = (b^{i p^{\alpha}}, \overline{a})$. So $b^{i p^{\alpha}}$ is in Z and $p^m | i p^{\alpha}$. Hence $p^{m-\alpha} | i$. So now $Z_2 = \langle b^{p^{m-\alpha}} \rangle \Omega_{2\alpha}(A)$. Since $o(bA) = o(b\Omega_{\alpha}(A)) = p^k$, we have $o(b\Omega_{2\alpha}(A)) = p^k$. Thus $|Z_2| = p^{k-m+\alpha} | \Omega_{2\alpha}(A)|$.

We can now give our first estimate on |R|.

$$|R| = |\operatorname{Inn}(G)A_{c}(G)| = |\operatorname{Inn}(G)| |A_{c}(G)|/|Z_{2}/Z|$$

= ([|G|/|Z|] |A_{c}(G)|)/(|Z_{2}|/|Z|) = p^{k} |A| |A_{c}(G)|/p^{k-m+\alpha} |\Omega_{2\alpha}(A)|
= $p^{m-\alpha} |A_{c}(G)| (|A|/|\Omega_{2\alpha}(A)|) = p^{m-\alpha} |A_{c}(G)| |\mho_{2\alpha}(A)|.$

We now turn our attention to finding a suitable lower bound for $|A_c(G)|$. To do this we look at |Hom(G,Z)| which is the same as $|\text{Hom}(G/G_2,Z)|$. For this purpose we shall examine A as well as G/G_2 and Z.

Since $\exp A = p^{m+\alpha}$, A may be written in the form $\langle a_1 \rangle \oplus S$ where $o(a_1) = p^{m+\alpha}$ and S is a subgroup. We observe that $\exp S > p^{\alpha}$. For if not, then $S \leq \Omega_{\alpha}(A) = A \cap Z \leq Z$ and so G/Z would be metacyclic with generators a_1Z and bZ. Consequently $S = \langle a_2 \rangle \oplus T$ where T is a subgroup of order p^r , $r \geq 0$, and $o(a_2) = p^{m_2+\alpha}$ with $m_2 > 0$. Hence, $A = \langle a_1 \rangle \oplus \langle a_2 \rangle \oplus T$.

We next turn our attention to G/G_2 . Let us suppose $G/G_2 = \langle \tilde{b}_1 \rangle \oplus \cdots \oplus \langle \tilde{b}_v \rangle$ where $\tilde{b}_i = b_i G_2$ with b_i in G and $o(\tilde{b}_i) = p^{k_i}$ with $k_1 \ge k_2 \ge \cdots \ge k_v$. First of all we observe that $v \ge 3$. For otherwise G can be generated by the two elements b and a_1 and hence would be metacyclic. We now prove a sequence of three lemmas each of which will establish an important relationship to be used in estimating $|A_c(G)|$.

LEMMA 2. $o(bG_2) = p^{k_1}$ and so $k + \alpha \ge k_1$.

Since exp $G/G_2 = p^{k_1}$, $o(bG_2) \leq p^{k_1}$. Furthermore, there is $g = b^i a$ with

 $0 \leq i < p^k$ and a in A such that $o(gG_2) = p^{k_1}$. Because $G_2 \leq A$, $p^k = o(bA) \leq o(bG_2) \leq p^{k_1}$ and so $k_1 \geq k > \alpha$. So $e \neq (gG_2)^{p\alpha} = (b^i aG_2)^{p\alpha} = (b^{ip\alpha}a^{p\alpha})G_2 = b^{ip^{\alpha}}G_2 = (b^iG_2)^{p^{\alpha}}$ since $a^{p^{\alpha}} \in \mathfrak{T}_{\alpha}(A) = G_2$. From $(b^iG_2)^{p^{\alpha}} = (gG_2)^{p^{\alpha}} \neq e$, we can conclude that $o(bG_2) \geq p^{k_1}$ and thus $o(bG_2) = p^{k_1}$. Since $o(b\Omega_{\alpha}(A)) = p^k$, $o(b) \leq p^{k+\alpha}$. Now with $o(bG_2) = p^{k_1}$, we see that $k_1 \leq k + \alpha$.

Thus we may now assume without loss of generality that $b=b_1$. Furthermore we observe that $k_1 \ge k$.

LEMMA 3. $p^{k_1} \ge \exp Z$.

For the purpose of notation in this lemma let $\exp Z = p^l$. We recall that $\Omega_{\alpha}(A) \leq Z$ and thus $l \geq \alpha$. If $\alpha = l$, then since $\alpha < k \leq k_1$, we have that $k_1 \geq l$. Thus we may assume that $l > \alpha$. We now recall that $Z = \langle b^{p^m} \rangle \Omega_{\alpha}(A)$ and since $\exp Z > \exp \Omega_{\alpha}(A)$, we have that $o(b^{p^m}) = p^l$ and so $o(b) = p^{m+l}$. Since $\exp G_2 = p^m$ and $o(bG_2) = p^{k_1}$, we have $b^{p^{m+k_1}} = e$. Hence $m + k_1 \geq m + l$ and so $k_1 \geq l$.

LEMMA 4. $k_2 = \alpha$.

Let $b_2 = b_1^i a$ where $b_1 = b$, $0 \le i < p^k$, and a is in A. Then

$$(b_2G_2)^{p^{\alpha}} = (b_1^{i}aG_2)^{p^{\alpha}} = (b_1^{ip^{\alpha}}a^{p^{\alpha}})G_2 = b_1^{ip^{\alpha}}G_2 = (b_1G_2)^{ip^{\alpha}}$$

since $a^{p^{\alpha}}$ is in $\mathcal{O}_{\alpha}(A) = G_2$. Because of the direct sum in G/G_2 , we have $(b_2G_2)^{p^{\alpha}} = e$ and so $\alpha \ge k_2$. Now by way of contradiction suppose $k_2 < \alpha$. Since $\bar{b}_1, \dots, \bar{b}_v$ generate $G/G_2, b_1, b_2, \dots, b_v$ generate G and hence G_2 is the normal closure of $\{(b_i, b_j): 1 \le i < j \le v\}$. For $i \ge 2$, we have $o(b_iG_2) = p^{k_i} \le p^{k_2} \le p^{\alpha-1}$ and thus $b_i^{p^{\alpha-1}}$ is in $G_2 \le A$. So when $i \ge 2$ $(b_i^{p^{\alpha-1}})^{p^m} = e$ since exp $G_2 = p^m$. Consequently, for $i \ge 2$, $(b_i^{p^{\alpha-1}})^{p^{m-\alpha}} = b_i^{p^{m-1}}$ is in $\Omega_{\alpha}(A) \le Z$ and hence $o(b_iZ) \le p^{m-1}$. So $o(b_i, b_j) \le p^{m-1}$ when $1 \le i < j \le v$. This means exp $G_2 \le p^{m-1}$ since G is regular. This is a contradiction. Thus we now have $k_2 = \alpha$.

For convenience we now let $H = \langle \bar{b}_3 \rangle \oplus \cdots \oplus \langle \bar{b}_v \rangle$ and let $|H| = p^s$. We note that s > 0 since $v \ge 3$. Also we can now calculate $|G/G_2|$ in two ways. Since $G/G_2 = \langle \bar{b}_1 \rangle \oplus \langle \bar{b}_2 \rangle \oplus H$, we have

$$|G/G_2| = p^{k_1 + \alpha + s}.$$

Furthermore, $|G/G_2| = |G/\Im_{\alpha}(A)| = |G/A| |A/\Im_{\alpha}(A)|$ and thus we have

(2)
$$|G/G_2| = p^k |\Omega_\alpha(A)|.$$

Taking a careful look at $|A_c(G)|$, we have

$$|A_c(G)| = |\operatorname{Hom}(G/G_2, Z)| = |\operatorname{Hom}(\langle \bar{b}_1 \rangle, Z)| |\operatorname{Hom}(\langle \bar{b}_2 \rangle, Z)| |\operatorname{Hom}(H, Z)|.$$

By Lemma 3, $|\operatorname{Hom}(\langle \bar{b}_1 \rangle, Z)| = |Z|$. By Lemma 4, $|\operatorname{Hom}(\langle \bar{b}_2 \rangle, Z)| = |\Omega_{\alpha}(Z)| \ge |\Omega_{\alpha}(A)|$. Since $\exp Z \ge p^{\alpha} = p^{k_2} \ge p^{k_3} \ge \cdots \ge p^{k_v}$, we have

403

 $|\operatorname{Hom}(H,Z)| \geq p^s$.

Hence we now see that $|A_c(G)| \ge |Z| |\Omega_a(A)| p^s \ge p^{k-m} |\Omega_a(A)|^2 p^s$. This combined with our earlier calculation of |R| yields

(3)
$$|R| \ge p^{m-\alpha} |\mathcal{O}_{2\alpha}(A)| p^{k-m} |\Omega_{\alpha}(A)|^2 p^{s} \ge p^{k-\alpha+s} |\mathcal{O}_{2\alpha}(A)| |\Omega_{\alpha}(A)|^2$$

(4)
$$\geq p^{k-\alpha+s}|A|.$$

First of all let us suppose that $r \ge \alpha$ where we recall that $o(T) = p^r$. If $\exp T \ge p^{\alpha}$, then $|\Omega_{\alpha}(A)| \ge p^{\alpha+\alpha+\alpha} = p^{3\alpha}$. If $\exp T < p^{\alpha}$, then $T \le \Omega_{\alpha}(A)$ and so $|\Omega_{\alpha}(A)| = p^{\alpha+\alpha} |T| = p^{\alpha+\alpha+r} \ge p^{3\alpha}$. In either case $|\Omega_{\alpha}(A)| \ge p^{3\alpha}$. Then using (2) we see that $|G/G_2| \ge p^{k+3\alpha}$. Consequently, we have $k_1 + \alpha + s \ge k + 3\alpha$ from (1). Then Lemma 2 implies that $k + \alpha + \alpha + s \ge k + 3\alpha$ or that $s \ge \alpha$. Since $|G| = p^k |A|$ we now have $|R| \ge |G|$ by (4). Thus we may assume $r < \alpha$ and hence just as important we now have $T \le \Omega_{\alpha}(A)$.

We recall that $A = \langle a_1 \rangle \oplus \langle a_2 \rangle \oplus T$ where $o(a_1) = p^{m+\alpha}$ and $o(a_2) = p^{m_2+\alpha}$ with $m_2 > 0$. Thus $\Omega_{\alpha}(A) = \langle a_1^{p^m} \rangle \oplus \langle a_2^{p^{m_2}} \rangle \oplus T$. Since $o(b\Omega_{\alpha}(A)) = p^k$, $b^{p^k} = (a_1^{p^m})^{w_1} (a_2^{p^m})^{w_2} a$ where $w_1, w_2 \ge 0$ and a is in T. Furthermore $|\Omega_{\alpha}(A)| = p^{2\alpha+r}$. We now divide the proof into two major cases.

Case (i). $m_2 \ge \alpha$. Then $b^{p^{k+r}} = a_1^{w_1 p^{m+r}} a_2^{w_2 p^{m_2+r}}$ since $\exp T \le p^r$. Since $m, m_2 \ge \alpha$, we have $b^{p^{k+r}}$ is in $\mathcal{O}_{\alpha}(A) = G_2$. Thus $k+r \ge k_1$ because $o(bG_2) = p^{k_1}$. Hence, by (1) and (2), $k_1 + \alpha + s = k + 2\alpha + r$ and so $k+r+\alpha + s \ge k+2\alpha + r$ which means $s \ge \alpha$. Again by (4) we have $|R| \ge |G|$.

Case (ii). $m_2 < \alpha$. To finish this case we consider two possibilities.

Subcase (a). $\alpha - m_2 \leq r$. Let $r = \alpha - m_2 + \beta$ where $\beta \geq 0$. Then $b^{p^{k+r}} = a_1^{w_1 p^{m+\alpha-m_2+\beta}} a_2^{w_2 p^{\alpha+\beta}}$ since $a^{p^r} = e$. Because $\beta \geq 0$ and $\alpha > m_2$, $b^{p^{k+r}}$ is in $\mathcal{O}_{\alpha}(A) = G_2$ and as in Case (i), $k + r \geq k_1$ and again as in Case (i), $|R| \geq |G|$. Subcase (b). $\alpha - m_2 > r$. Then $b^{p^{k+\alpha-m_2}} = a_1^{w_1 p^{m+\alpha-m_2}} a_2^{w_2 p^{\alpha}}$ where $a^{p^{\alpha-m_2}} = e$ since $\alpha - m_2 > r$. Again we have $b^{p^{k+\alpha-m_2}}$ is in $\mathcal{O}_{\alpha}(A) = G_2$ and so $k + \alpha - m_2 \geq k_1$. From (1) and (2) we see that $k_1 + \alpha + s = k + 2\alpha + r$ and thus $k + \alpha - m_2 + \alpha + s \geq k + 2\alpha + r$. So now $s \geq m_2 + r$. Since $m_2 < \alpha$ we have that $\mathcal{O}_{2\alpha}(A) = \langle a_1^{p^{2\alpha}} \rangle$ and so $|\mathcal{O}_{2\alpha}(A)| = p^{m-\alpha}$. Thus (3) yields

$$|R| \geq p^{k-\alpha+s}p^{m-\alpha}(p^{2\alpha+r})^2 \geq p^{k+m+2\alpha+2r+s} \geq p^{k+m+2\alpha+3r+m_2}.$$

At the same time

$$|G| = p^{k} |A| = p^{k} p^{m+\alpha} p^{m_{2}+\alpha} p^{r} = p^{k+m+2\alpha+m_{2}+r}.$$

Hence $|R| \ge |G|$ and the proof is now complete.

REFERENCES

1. J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137-143. MR 30 #2072.

2. R. M. Davitt, The automorphism group of finite p-Abelian p-groups, Illinois J. Math. 16 (1972), 76-85.

3. R. M. Davitt and A. D. Otto, On the automorphism group of a finite p-group with the central quotient metacyclic, Proc. Amer. Math. Soc. 30 (1971), 467-472.

4. R. Faudree, A note on the automorphism group of a p-group, Proc. Amer. Math. Soc. 19 (1968), 1379-1382. MR 40 #1476.

5. B. Huppert, *Endliche Gruppen*. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 #302.

6. K. Iwasawa, Über die endlichen und die Verbände ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Tokyo Sect. I 4 (1941), 171–199. MR 3, 193.

7. F. Napolitani, Sui p-gruppi modulari finiti, Rend. Sem. Mat. Univ. Padova 39 (1967), 296-303. MR 36 #6509.

8. A. D. Otto, Central automorphisms of a finite p-group, Trans. Amer. Math. Soc. 125 (1966), 280–287. MR 34 #4362.

9. G. Seitz, On the structure of modular p-groups, unpublished paper.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LOUISVILLE, LOUISVILLE, KENTUCKY 40208

DEPARTMENT OF MATHEMATICS, ILLINOIS STATE UNIVERSITY, NORMAL, ILLINOIS 61761