PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 35, Number 2, October 1972

ON THE AUTOMORPHISM GROUP OF A FINITE
MODULAR p-GROUP
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ABSTRACT. In this paper it is shown that if G is a finite non-
Abelian modular p-group (p>2), then the order of G divides the
order of the automorphism group of G.

In recent years there have been a number of papers exploring the
relationships between the order of a finite p-group and the order of its
automorphism group. In particular many of these have shown that for a
certain class of finite p-groups, the order of the group divides the order of
the automorphism group ([1], [2], [3], [4], [8]). We recall that a group G
is modular if the lattice of subgroups of G is modular. It is the purpose
of this paper to show that if G is a non-Abelian modular p-group (p>2),
then the order of G divides the order of the automorphism group of G.

The following notation is used: G is a finite p-group where p is an odd
prime; A(G) is the group of automorphisms of G; 4.(G) and Inn(G) are
the normal subgroups of A(G) of central automorphisms and inner
automorphisms, respectively; G, is the nth member of the lower central
series of G and so G, is the derived group; Z(G) and Z,(G) are the center
and second center of G, respectively (or Z and Z, if no ambiguity is
possible); exp G is the exponent of G; |G| is the order of the group G;
for x and y in G, o(x) is the order of the element x, (x, y) is the com-
mutator x1y~lxy, and (x) is the cyclic subgroup generated by x; Q (G)=
{x € G:o(x)<p"}; and U,(G)={x"":x in G}. In addition, H=<( means H
is a subgroup of G and @ is used to denote the direct sum of subgroups.
Finally, for groups A and B, Hom(4, B) is the set of all homomorphisms
from 4 into B.

There are certain results which we often need and shall use throughout
the paper without further reference. Their proofs may be found in [5].
If a, b, and c are elements of a group G, then (a, bc)=(a, c)(a, b)° and
(ab, ¢)=(a, c)*(b, ¢). Also [Hom(® A4,, ® B,)|=T1, , IHom(4,, B,)| where
A, and B; are Abelian p-groups. In addition, Hom(C(p®), C(p”)) is iso-
morphic to C(p™™**’) where C(n) is the cyclic group of order n. Finally,
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it is assumed that the definition of a regular p-group and the basic prop-
erties of such groups are known.
We now state our theorem.

THEOREM. If G is a finite non-Abelian modular p-group (p>2), then
|G| divides |A(G)].

We may assume that the nilpotency class of G is greater than 2 [4] and
also that G/Z is not metacyclic [3]. Furthermore, we may assume G is
purely non-Abelian [8] and consequently |4,(G)|=|Hom(G, Z)| [1] which
is then a power of p.

For purposes of notation we shall let R be the normal subgroup
Inn(G)4,(G) of A(G). We note that Ris a p-group and our goal is to show
that |R|Z|G|.

We begin by examining in greater detail the structure of G. By [6] and
[7] or [9] we know that G contains a normal Abelian subgroup 4 and an
element b such that G/4=(bA4) and for some fixed nonnegative integer
a, (a, b)=a for each a in A. Since G/A is Abelian, G, is contained in A.
Also «>0. For if =0, (a, b)=a for each a in A and so G,=A which is a
contradiction smce .G|A is cyclic. Since (a, b)=a*" for each a in A,
O,(4) =G, We next note that (a, b)y=a*»-1 5 in U,(4) for each a
in A and integer i=0. Thus by using commutator identities we have that
each commutator is of the form a** for some a in 4. Thus U,(4)=G,. In
a similar fashion we see that U,,(4)=G;. We can now prove the following
important and useful lemma.

Lemma 1. G is regular.

Suppose x and y are in G and H=(x, y). For convenience we may assume
H is not Abelian. Then (xy)?=x?y?c?d where c is in H, and d is in H,,
Since G is modular, H is also modular. Thus we have H,< H,=0, (Hz)_

l(Hz) where o, is the “«” for H. Thus d=d” where d is in H2 Since

H,=G, which is Abelian c"d (cd)? with cd in H,. So (xy)?=xPyz? with
zin H, and G is regular.

For purposes of notation we let p*=|G/A| and p™=exp G,. Since G
is not Abelian, G,=U,(4)>E and so exp A=p™"*. Also since for each
ain A, e=(a, b)*"=(a, b*")=(a*", b), we see that a*" and b*" are in
Z and hence that U, (G)<Z. Consequently, m>a. For if m<a«, then
G,=0,(4)=0,(G)=0,(G)<Z, which means G has nilpotency class 2.
We also observe that since for each a in 4, (a, b))=a?, we have a**=e if
and only if @ is in Z. Thus Q (4)=ANZ.

In order to find a suitable lower bound on |R|, we begin by determining
Z and Z, and consequently their orders.
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First of all we recall that 4*" is in Z and thus (b*")(4NZ)<Z. Con-
versely suppose x=>b'a with a in 4 is in Z. Then e=(x, b)=(b'a, b)=
(a, b)=a* and so a is in Q,(A4). For 4 in A, e=(ba, d)=(b*, a)=(b, a)’
and so p"|i. Thus Z=(®"")(ANZ)=(b"")Q,(4). We note that, since
o(bA)=p*, o(b(4NZ))=p*. Furthermore o(bZ)=p™. For if o(bZ)<p™,
then, by the regularity of G, each commutator in G has order <p™~!
and soexp G,=< p™-1. Thusin addition we have k=mand | Z|=p*"|Q,(4)|.

Next we investigate Z, and find its order. First of all it is easily seen
that Z, can be characterized as the set of all x in G such that (x, b) e Z
and (x, a) € Z for all a in 4. For a in Q,,(A4), (a, b)=a**is in Q,(4)=Z.
Thus, Q,,(4)<Z,. Also for a in A4, (a,b*" ) is in (@*")<Z. Thus
(b*" ")y, (A) S Z,. Conversely suppose x=bia is in Z, with a in 4. Then
(x, b)=(b'a, b)=(a, b)=a*" is in ZNA=Q,(A) and so a is in Qy,(A4).
So now b* is in Z, and so for a in A4, (¥, a) is in ANZ=Q,(A4). Thus
e=(bi, a)**=(b'**, a). So b*** is in Z and p"‘]ip“. Hence p’"’“li. So now
Z,=(b?""")Qy,(A). Since o(bA)=0(bQ,(A))=p*, we have 0(bQ,(A4))=p".
Thus |Z,| =Pk_m+a|92a(/4)|~

We can now give our first estimate on |R|.

IR| = [Inn(G)A(G)| = |Inn(G)| |4 O)/IZ,/Z]
= (IGINZN1ALODIIZINZ]) = p*IAIALOI P Qoo A)]
= p"*ALD] (|Al/|Q(A]) = p™* |A(G)] [UanA)].

We now turn our attention to finding a suitable lower bound for
[4,(G)]. To do this we look at |Hom(G, Z)| which is the same as
|[Hom(G/G,, Z)|. For this purpose we shall examine A as well as G/G,
and Z.

Since exp A=p™**, 4 may be written in the form (a,,®S where o(a,)=
p™t* and S is a subgroup. We observe that exp S>p® For if not, then
S<Q,(A)=ANZ=Z and so G/Z would be metacyclic with generators
a,Z and bZ. Consequently S=(a,)®T where T is a subgroup of order p’,
r=0, and o(a,)=p™*"* with m,>0. Hence, A=(a,)®(a,)®T.

We next turn our attention to G/G,. Let us suppose G/G,=(b))®" - -®
(b,) where b;=b,G, with b, in G and o(b,)=p* with k;=k,>---=k,.
First of all we observe that v=3. For otherwise G can be generated by the
two elements b and a; and hence would be metacyclic. We now prove a
sequence of three lemmas each of which will establish an important
relationship to be used in estimating [4.(G)|.

LEMMA 2. o(bG,)=p** and so k+aZk,.

Since exp G/Gy=p*!, 0(bG,)=p*'. Furthermore, there is g=b’a with
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0=<i<p* and a in A such that o(gG,)=p*'. Because G,<4, p*=0(bA)=
o(bGy)=p* and so k;=k>o. So e#(gG,)" =(b'aG)"*=(b'"a?")G,=
b7’ Gy=(b'G,)** since a®® € p5,(4)=G,. From (b‘G,)*=(gG,)""#e, we
can conclude that o(bG,)= p** and thus o(bG,)=p**. Since 0(bQ,(4))=p*,
o(b)=p**e. Now with o(bG,)=p*1, we see that k;<k+a.

Thus we may now assume without loss of generality that b=b,. Further-
more we observe that k, =k.

LEMMA 3. p*1Zexp Z.

For the purpose of notation in this lemma let exp Z=p'. We recall
that Q,(4)<Z and thus /= «. If a=/, then since «<k=k,, we have that
k,=I. Thus we may assume that />«. We now recall that Z=(b*")Q,(4)
and since exp Z>exp Q,(A4), we have that o(b*")=p" and so o(b)=p™+.
Since exp Gy=p™ and 0(bG,)=p*', we have b?" " =¢. Hence m+k,Zm+1
and so k,=/.

LEMMA 4. k,=a.
Let b,=bia where b;=b, 0=<i<p*, and a is in A. Then
(bsGo)™ = (bjaGy)™" = (bi”"a®")G, = bi*"G, = (b,G,)™"

since a** is in U,(4)=G,. Because of the direct sum in G/G,, we have
(b,G,)**=e and so a=k,. Now by way of contradiction suppose k,<a.
Since by, - - - , b, generate G/G,, by, by, - - - , b, generate G and hence G,
is the normal closure of {(b, b;):1 i< j=<v}. For i=2, we have 0(b,Gy)=
PHEpt=<p* and thus b?*" is in G,<A. So when i=2 (b?* ) "=e
since exp G,=p". Consequently, for i=2, (b?*")*" *=b?"" is in Q (4)=
Z and hence o(b,Z)<p™~. S0 0(b;, b;) < p™* when 1 =<i<j=v.This means
exp G,=p™"! since G is regular. This is a contradiction. Thus we now
have k,=«.

For convenience we now let H=(b,)®- - -®(b,) and let |H|=p*. We
note that s>0 since v=3. Also we can now calculate |G/G,| in two ways.
Since G/G,=(h,>®(b,)®H, we have

(D |G/G,| = p*rHete.
Furthermore, |G/G,|=|G/U,(4)|=|G/A4| |A/U,(4)| and thus we have
(2) |G/G,| = p*|Q,(A)|.
Taking a careful look at |4,(G)|, we have
|4,(G)| = [Hom(G/G,, Z)| = [Hom((b,), Z)| [Hom((b,), Z)| |Hom(H, Z)|.
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By Lemma 3, |Hom((b,),Z)|=|Z|. By Lemma 4, |Hom((b,),Z)|=
1Q,(Z)| = |Q,(A)|. Since exp Z= p*=p*2=p*s=- - - = p**, we have

|Hom(H, 2)| Z p"

Hence we now see that |4,(G)|Z|Z| |Q,(4)| p'=p* ™ |Q,(4)|? p*
This combined with our earlier calculation of |R] yields

IR| Z p™* [0l A)] P |Q(ADI* p*
3) Z PP | Uanl ] QA

(4) ; Pk_a+s|AI-

First of all let us suppose that r=« where we recall that o(T)=p". If
exp T=p%, then |Q,(4)|=p* " *=p®. If exp T<p®, then T=Q,(4) and
50 |Q,(A)|=p*** |T|=p****"= p*. In either case |Q,(4)|=p**. Then using
(2) we see that |G/G,|=p**®*. Consequently, we have k,+a+s=k+3a
from (1). Then Lemma 2 implies that k+a+a+s=k+3« or that s=«.
Since |G|=p* | 4| we now have |R|=|G| by (4). Thus we may assume r <«
and hence just as important we now have T<Q,(4).

We recall that A= (a1>@<a2>®T where o(a,)=p™** and o(a,)=p™***
with m,>0. Thus Q (4)=(a"®@™)®T. Since o(bQ,(A)=p*, b*=
(@®")“1(a2™*)"2a where w,, w,=0 and a is in T. Furthermore |Q,(4)|=
p**". We now divide the proof into two major cases.

Case (1). my=a. Then b?" " =a?" ™" since exp T<p". Since
m, my= o, wWe have 57" is in U,(A)=G,. Thus k+r=k, because o(bG,)=
p*. Hence, by (1) and (2), k;+a+s=k+2a+r and so k+r+oa+s=
k+2a+r which means s=«. Again by (4) we have |R|Z|G]|.

Case (ii). m,<o. To finish this case we consider two p0551b1ht1es
Subcase (a). a—my=r. Let r=a—m,+f where f=0. Then b”
Q" T ™ gince gP =¢. Because f=0 and a>my, b7 is in
U,(4)=G, and as in Case (i), k+r=k, and again as in Case (i), [R|Z|G|.

Subcase (b). a—my>r. Then b " =a}17" " "qy2** where a?* "*=e
since «—m,>r. Again we have b** *"*is in U,(4)=G,and so k+a—m,=
k,. From (1) and (2) we see that k;4+a+s=k+2a+r and thus k+a—
my+oa+s=k+2a+r. So now sZm,+r. Since my<a we have that
U,,(4)=(a" and s0 |U,,(4)|=p"*. Thus (3) yields

|R| > plc «a-i-spm—z(p&z«kr)tl Z pk+ m+-22 +27+8 > pk~| m+-2a4-3r+my
At the same time
k+-m--224 metr

|Gl = p*[A] = p*p"p™*p" = p

Hence |R|=|G| and the proof is now complete.
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