
On the Average Communication Complexity of

Asynchronous Distributed Algorithms

JOHN N. TSITSIKLIS AND GEORGE D. STAMOULIS

Massachusetts Instctute of Technology, Cambridge, Massachusetts

Abstract. We study the commumcation complexity of asynchronous distributed algorithms. Such

algorithms can generate excesswely many messages in the worst case. Nevertheless, we show that,

under certain probabilistic assumptions, the expected number of messages generated per time unit

N bounded by a polynomial function of the number of processors under a very general model of

distributed computation. Furthermore, for constant-degree processor graphs, the expected num-

ber of generated messages IS only O(nT), where n is the number of processors and T IS the

running time. We conclude that (under our model) any asynchronous algorithm with good time

complexity will also have good communication complewty, on the average.

Categories and Subject Descriptors: C.2.1 [Computer-communication networks] Network Archi-

tecture and Design—network corrwrzunzcat~orzx G. 1.0 [Numerical analysis]: General —parallel

algont;zms: G.m [Miscellaneous]: CAreuemg theory

General Terms: Algorithms, performance

Additional Key Words and Phrases asynchronous distributed algorithms

1. Introduction

In recent years, there has been considerable research on the subject of

asynchronous distributed algorithms. Such algorithms have been explored both

in the context of distributed numerical computation, as well as for the purpose

of controlling the operation of a distributed computing system (e.g., finding

shortest paths, keeping track of the system’s topology, etc. [Bertsekas and

Gallager 1987]). Some of their potential advantages are faster convergence,

absence of any synchronization overhead, graceful degradation in the face of

bottlenecks or long communication delays, and easy adaptation to topological

changes such as link failures.

In the simplest version of an asynchronous distributed algorithm, each

processor i maintains in its memory a vector y’ consisting of a variable X1,

The authors’ research was supported by the National Science Foundation (NSF) under grant ECS

85-52419, with matching funds from Bellcore, Inc. and the Draper Laboratory and by the ARO

under grants DAAL03-86-K-0171 and DAAL03-92-G-01 15.

Authors’ current address: L~boratory for information and Decnlon Systems, Massachusetts

Institute of Technology, Cambridge, MA 02139; e-mail:jnt@mit. edu; gstamoul@theseas. ntua.gr.

Permnsion to make digital/hard copy of all or part of this material without fee is granted

provided that the copies are not made or distributed for profit or commercial advantage, the

ACM copyright/server notice, the title of the publication. and its date appear, and notice N gwen

that copying is by permission of the Association for Computing Machinery, Inc. (ACM) To copy

otherwise, to republish, to post on serwers, or to redistribute to lists requires prior specific

permission and/or a fee.

0 1995 ACM 0004-541 1/95/0300-0382 $03.50

JOulndi of the ASwcldllon for Computing Machinery, Vol 42 No 2, March 1995. pp 382-400



Average Communication Complexity of Asynchronous Distributed Algorithms 383

together with an estimate x; of the variable x, maintained by every neighbor-

ing processor j. Every processor j updates once in a while its own variable x,

on the basis of the information available to it, according to some mapping ~.

In particular, x, is replaced by fi(y~ ). Furthermore, if the new value of x, 1s

different from the old one, processor j eventually transmits a message contain-

ing the new value to all of its neighbors. When a neighbor i receives (in

general, with some delay) the new values of x,, it can use it to update its own

estimate x; of x,.

A standard example is the asynchronous Bellman–Ford algorithm for the

shortest path problem. Here, there is a special processor designated by O, and

for each pair (i, j) of processors, we are given a scalar cl, describing the length

of a link joining i to j. One version of the algorithm is initialized with x, = CIO,

i # O, and is described by the update rule

Under reasonable assumptions, the distributed asynchronous implementation

of this algorithm terminates in finite time and the final value of each x, is

equal to the length of a shortest path from i to O [Bertsekas 1982].

In general, whenever some processor i receives a message from another

processor j, there is a change in the vector y’ and, consequently, a subsequent

update by processor i may lead to a new value for xl that has to be eventually

transmitted to the neighbors of processor i. Thus, if each processor has d

neighbors, each message reception can trigger the transmission of d messages,

and there is a clear potential for an exponential explosion of the messages

being transmitted. Indeed, there are simple examples, due to Gafni and

Gallager (see [Bertsekas and Tsitsi,klis 1989, p. 450]), showing that the asyn-

chronous Bellman–Ford algorithm for an n-node shortest path problem is

capable of generating ,fl(2”) messages, in the worst case. These examples,

however, rely on a large number of “unhappy coincidences”: the communica-

tion delays of the different messages have to be chosen in a very special way. It

is then reasonable to inquire whether excessive amounts of communication are

to be expected under a probabilistic model in which the communication delays

are modeled as random variables.

In the main model studied in this paper, we assume that the communication

delays of the transmitted messages are independent and identically distributed

random variables, and show that the expected number of messages transmitted

during a time interval of duration T is at most of the order of
nd~+ l/tn

(ln d)l + 1’ n T, where n is the number of processors, d is a bound on

the number of neighbors of eachl processor, and m is a positive integer

depending on some qualitative properties of the delay distribution; in particu-

lar, m = 1 for an exponential or a uniform distribution, while for a Gamma

distribution, m equals the corresponding number of degrees of freedom. ! Note

that this estimate corresponds to O(d 1+ l/~(ln d)l + l/m) messages per unit time

on each link, which is quite favorable if d is constant (i.e., when the interpro-

cessor connections are very sparse) Our result is derived under practically no

assumptions on the detailed operation of the asynchronous algorithm, with one

1In fact, it will be seen that, for m = 1,the logarithmic factor in the upper bound can be

removed.



384 J. N. TSITSIKLIS AND C. D. STAMOULIS

exception discussed in the next paragraph. Furthermore, the result is valid for a

very broad class of probability distributions for the message delays, including

the Gamma distributions as special cases,

Since we are assuming that the delays of different messages are independent,

messages can arrive out of order. Suppose that a message 1 carrying a value x,

is transmitted (by processor j) before but is received (by processor i) later than

another message 1’ carrying a value x;. Suppose that 1 is the last message to be

every received by i. Then, processor i could be left believing that x, is the

result of the final update by processor j (instead of the correct x;). Under such

circumstances, it is possible that the algorithm terminate at an inconsistent

state, producing incorrect results. To avoid such a situation, it is essential that

a receiving processor be able to recognize whether a message just received was

transmitted earlier than any other already received messages and, if so, discard

the newly arrived message. This can be accomplished by adding a timestamp to

each message, on the basis of which old messages are discarded. There are also

special classes of algorithms in which timestamps are unnecessary. For exam-

ple, in the Bellman–Ford algorithm described earlier, the value of XJ is

nonincreasing with time, for every j. Thus, a receiving processor i need only

check that the value XJ in a newly received message is smaller than the

previously stored value x;, and discard the message if this is not the case.

The above-described process of discarding “outdated” messages turns out to

be a very effective mechanism for controlling the number of messages gener-

ated by an asynchronous algorithm. In particular, whenever the number of

messages in transit tends to increase, then there are many messages that are

overtaken by others, and therefore discarded. On the other hand, our “post

office” model of independent and identical distributed message delays is

unlikely to be satisfied in many parallel processing systems. It is more likely to

hold in loosely coupled distributed systems in which processors communicate

by means of some general communication facility.

1.1. OUTLINE OF THE PAPER. In Section 2, we present our model and

assumptions and state the main results, which are then proved in Section 3. In

Section 4, we discuss issues related to the average time complexity of an

asynchronous algorithm under the same probabilistic model. Finally, in Section

5, we provide a brief discussion of alternative (possibly, more realistic) proba-

bilistic models of interprocessor communication, and argue that under reason-

able models, there will exist some mechanism that can keep the number of

transmitted messages under control.

2. The Model and the Main Results

There are n processors, numbered 1,..., n, and each processor i has a set

A(i) of neighboring processors.z Let d = max, IA(i)l. The process starts at time

t = O, with processor 1 transmitting a message to its neighbors.

Whenever processor i receives a message, it can either ignore it, or it can

(possibly, after some waiting time) transmit a message to some of its neighbors.

Suppose that a message 1 is transmitted from i to j and, at some later time,

another message 1’ is transmitted from i to j. If 1’ is received by j before 1, we

‘To simplify language. we make the assumption that t ● A(J) If and only if J ~ A(z ). Our

subsequent results remam vahd in the absence of this assumption.



Allerage Communication Complexity of Asynchronous Distributed Algorithms 385

say that 1 has been overtaken by 1’, and that 1 is discardable. We will be

assuming that discardable message:s have essentially no effects at the receiving

processor. In addition, we will allow processors to send messages that are

self-triggered, that is, not caused by a message reception. However, a bound

will be assumed on the frequency of self-triggered message transmissions. Our

main assumption is:

Assumption 2.1

(a) Every discardable message is ignored by the receiving processor.

(b) Every nondiscardable message (can trigger atmost one transmission to each

one of the neighbors of the receiving processor.

(c) During any time interval of length T, a processor may send at most T

messages that have not been triggered by a received message, on any

outgoing link.

Assumption 2.l(b) allows a processor to ignore messages that are not

discardable. In practical terms, this could correspond to a situation where a

processor i receives a message, updates its value of y’, evaluates x, = fi( y’)

and finds that the new value of x, is the same as the old one, in which case

there is nothing to be communicated to the neighbors of i.

We will be assuming that the communication delays of the different mes-

sages are independent and identically distributed, with a common cumulative

probability distribution function F; that is, if D is the delay of a message, then

Pr(D s t)= F(t).

Simply assuming that message delays are independent and identically dis-

tributed, is actually insufficient for our purposes and does not fully capture the

intuitive notion of “completely I andom and independent” communication

delays. For example, even with independent and identically distributed message

delays it is still possible that a processor “knows” ahead of time the communi-

cation delay of each one of the messages to be transmitted, and then acts

maliciously: choose the waiting tilme before sending each message so as to

ensure that as few messages are discarded as possible. Such malicious behavior

is more difficult to analyze, and also very unnatural. Our next assumption

essentially states that as long as a message is in transit, there is no available

information on the remaining delay of that message, beyond the prior informa-

tion captured by F.

Note that if a message has been in the air for some time s >0, and only the

prior information is available on the remaining delay of that message, then its

total delay D is a random variable with cumulative distribution function

F(r) – F(s)
G(rls) = Pr[D s rlD .> s] = r>s. (2.1)

1 – F(s) ‘

[Of course, G(rls) = O if r < s.]

Assumption 2.2

(a) The communication delays of the different messages are positive, indepen-

dent and identically distributed random variables, with a common cumula-

tive distribution function F.

(b) For every s >0, t >0, and every i, j, k, the following holds. The condi-

tional distribution of the delay of the kth message transmitted from i to j,



386 J. N. TSITSIKLIS AND C. D. STAMOULIS

conditioned on this message having being sent at time t and not being

received within s time units, and also conditioned on any other events that

have occurred up to time t + s,has the cumulative probability distribution

function G(ls).

Finally, we will be using the following technical assumption on F:

Assumption 2.3. There exists some positive integer m and some eO >0

[with F( e,) < 1] such that F is m times continuously differentiable in the

interval (O, 2 Co] and satisfies

dmF
lim — (t) > o;
t~o dtm

moreover, there exist c ~, Cz > 0 such that the rnth derivative of F satisfies

d.,F

c1 5 --’#t) <C2, Vt G(0,2EJ.

Our assumption on the distribution of the delays is satisfied, in particular, in

the case of a probability density function ~ that is right-continuous and

infinitely differentiable at O. Of course, the assumption also holds under milder

conditions, such as right-continuity of ~ at O together with lim ~~~~( t) > O; in

this case, we have m = 1. (Various important distributions satisfy these proper-

ties; e.g., the exponential and the uniform distributions.) Assumption 2.3 is also

satisfied by the Gamma distribution with m degrees of freedom. Roughly

speaking, Assumption 2.3 requires that F(t) = (3( t‘) for t G (O, 2 Co].

Our main results are given by the following two theorems. In particular,

Theorem 2.4 corresponds to the case where Assumption 2.3 is satisfied with

m = 1, while Theorem 2.5 corresponds to m > 1.

THEOREM 2.4. Assume that T ~ 1 and that m = 1. Then, there exists a

constant A (depending only on the constants c ~,Cz and CO of Assumption 2.3),

such that the expected total number of messages transmitted during the time interual

[0, T] is bounded by And3T.

THEOREM 2.5. Assume that T k 1 and that m > 1. Then, there exists a

constant A’ (depending only on the constants m, c1, Cz and 60 of Assumption 2.3),

such that the expected total number of messages transmitted dun”ng the time inten]al

[0, T] is bounded by A’nd2+ l/m(lnd)l+ l\’n T.

Notice that the difference between Theorems 2.4 and 2.5 lies on the

logarithmic factor; a short discussion of this point is provided in Subsection 3.5.

3. Proofs of the Results

3.1. AN EASY SPECIAL CASE. In this subsection, we motivate Theorem 2.4

by considering the the following special case:



Allerage Communication Complexip of Asynchronous Distributed Algorithms 38’7

(i) The message delays have exponential probability distributions, with mean

1.

(ii) Each processor transmits a message to every other processor, immediately

upon receipt of a nondiscardable message. (That is, the underlying graph

is assumed to be complete.)

(iii) There are no self-triggered messages except for one message that starts

the computation.

Let m,j(t) be the number of messages in transit from i to j at time t,that

have not been overtaken; that is, no later transmitted message from i to j has

already reached its destination. [The notation nt,J(t) should not be confused

with the constant m involved in Assumption 2.3.] Every message that is in

transit has probability A of being received within the next A time units. Thus,

at time t,the rate at which messages arrive to j along the link (i, j) is m,,(t).

Since any such arrival triggers a message transmission by j, the rate of increase

of m,~(t) is Z,+ , m,,(t). On the other hand, an arrival of a message traveling

along the link (~, j)”’overtakes (on the average) half of the other &essages

transit across that link. Thus,

~[(m,k(t) – l)m,,(t)]j~[m,k(t)]=Z E[m,,(t)] - E[m,,(t)] -
1#J

s ,~J‘[nl,l(t)] - ~E[m,k(t)]z.

Let M(t) = Z;. ~ ZL .j E[mJ~(t)]. The Schwartz inequality

-jf’kf’(t)s ~ ~ E[m,,(t)]2

]=1 L#]

and eq. (3.1) becomes

;M(t) < nfl’l(t)– &w~(t).

2

(3.

gives

in

1)

Note that whenever M(t) > 2nq, we have (dM/dt)(t) s O and this implies that

M(t) < 2ns, for all t >0. Thus, the rate of reception of nondiscardable

messages, summed over all links, is 0(n3). Since each such message reception

generates O(n) message transmissions, messages are generated at a rate of

O(nJ). We conclude that the expected number of messages generated during a

time interval [0, T] is 0(n4 T), which agrees with Theorem 2.4 for the case

d = o(n).

We can now provide some intuition for the validity of Theorem 2.4 for the

case m = 1: messages with communication delay above Co will be overtaken

with high probability and can be ignored; messages with communication delay

below co have approximately uniform distribution (cf. Assumption 2.3 with

m = 1), which is approximately the same as the lower tail of an exponential

distribution, for .sO small. Thus, we expect that the analysis for the case of

exponential distributions should be representative of any distribution satisfying

Assumption 2.3 with m = 1.In fact, the proof of Theorem 2.4 is based on the

argument outlined above. The proof of Theorem 2.5 is based on a somewhat

different idea and is more involved.



388 J. N. TSITSIKLIS AND C. D. STAMOULIS

3.2. SOME NOTATION AND TERMINOLOGY. We start by considering the

transmissions along a particular link, say the link from i to j. Let Ml, be the

(random) number of messages transmitted by processor i along that link during

the time interval [0, T]. Any such message is called successjid if it arrives at j

no later than time T and if it is not discarded upon arrival, that is, if that

message has not been overtaken by a later transmitted message along the same

link. Let S,, be the number of successful messages sent from i to j. With the

exception of T self-triggered messages, only successful messages can trigger a

transmission by the receiving processor. Therefore,

which leads to

EIM,, I s T+ x EIS,, I, Vk cA(j). (3.2)

IGA(])

In order to establish Theorems 2.4 and 2.5, we upper bound EISl, ] by an

appropriate function of E[ Ml,]. This is done in a different way for each of the

two theorems.

3.3. THE PROOF OF THEOREM 2.4.

THEOREM 2.4. Assume that T ? 1 and that m = 1. Then, there exists a

constant A (depending only on the constants c,, Cz and ~() of Assumption 2.3),

such that the expected total number of messages transmitted during the time inten’a[

[0, T] is bounded by And’T.

The proof of Theorem 2.4, rests on the following result:

LEMMA 3.3.1. There exist constants B, B’, depending only on the constants c1,

Cz and eO of Assumption 2.3, such that

E[S,, ] < B{- + B’T. (3.3)

PROOF OF THEOREM 2.4. Let Q = maxi ~E[MZj]. Then, Eq. (3.3) yields

EISI, ] s B@ + B’T. Using Eq. (3.2), we obtain E[M,A ] s T + dB~ +

dB’ T. Taking the maximum over all j, k, and using the fact d >1, we obtain

Q < dB@ + d(B’ + l)T. Suppose that Q > T. Then Q s d(B + B’ +

1)~, which yields Q s (B + B’ + I)zdz T. If Q < T, this last inequality is

again valid. We conclude that there exists a constant A such that Q s Adz T.

Thus, E[M,J ] s Adz T for every link (i, j) and since there are at most nd links,

the expected value of the total number of transmitted messages N bounded

above by And3 T, which is the desired result. ❑

It now remains to prove Lemma 3.3.1,

PROOF OF LEMMA 3.3.1. For the purposes of the lemma, we only need to

consider a fixed pair of processors i and j. We may thus simplify notation and

use M and S instead of M,] and S,,, respectively.

Note that if E[M] s T/~~, then E[S] < T/~~ (because S s M) and Eq.

(3.3) holds, as long as B’ is chosen larger than l/~~. Thus, we only need to

consider the case E[ M ] > T/e~, which we henceforth assume.



Al)erage Communication Complexity of Asynchronous Distributed Algorithms 389

Successful messages can be of two types:

(i) Those that reach their destination with a delay of at least co; we call them

slow messages.

(ii) Those that reach their destination with a delay smaller than ~O; we call

them fast messages.

Let S, and Sf be the number of slow and fast successful messages, respec-

tively. We will bound their respective expectations using two somewhat differ-

ent ~rguments, starting with E~Sf 1. “

3.3.1. A Bound on the Expected Number of Fast

split [0, T] into disjoint time intervals of length

def

r

T
6= —

E[M] “

To simplify notation, we assume that ~- is

Successjid Messages. We

an integer. (Without this

assumption, only some very minor modifications would be needed in the

argument that follows.) Thus, the number of intervals in T/S = J-.

Note also that 8< EO,due to our assumption E[ikfl > T/~~.

Let tk= (k – 1)8 be the starting time of the kth interval. Let Yk be the set

of messages transmitted during the kth interval, and let Ik be the cardinality of

&j. Let .Zfi be the set of messages with the following properties:

(a) The time t at which the message was transmitted satisfies tk– E. < t s tL.

(b) At time tk,the message has not yet reached its destination.

(c) The message has not been overtaken by another message that has reached

its destination by time th.

Thus, the set WL contains the messages that are in transit at time ‘k, that still

have a hope of being successful (not yet overtaken), and that have not been in

the air for “too long”. Let NA be the cardinality of tik.

Consider now a message in the set Wk and suppose that it was transmitted at

time tk – S, where O ss < Co. Such a message reaches its destination during

the time interval (tk,tk+~]with probability

F(8 + s) – F(s)
G(ti + SIS) =

1 – F(s) “

[See eq. (2.1) and Assumption 2.2.] Furthermore, Assumption 2.3 (which was

taken to hold with m = 1) implies that

C18<F(8+S) –F(s) <C28,

also, for s = [0, CO],we have O < 1 – F( CO) <

< 1 by Assumption 2.3.] Thus, it follows that

C18<G(8+S IS) < a28,

Va, s e=[0,6.];

1 – F’(s) s 1. [Recall that F( 6.)

V8, S = [0,6.1, (3.4)

where ~z = C2\[l – F( co)]. Therefore, the probability that a message in the

set ~Y~ reaches its destination during (t~, t~ + 11 lies between C1~ and CIL3.

Similarly, for any message in the set ~k, the probability that it reaches its

destination during the time interval (t~, tk+ ~1 is at most F(8), which does not

exceed aq 6. [To see this, apply eq. (3.4) with s = 0.1



390 J. N. TSITSIKLIS AND C. D. STAMOULIS

For a message to be received during the time interval (t~, tk+,]and for it to

be successful and fast, it is necessary that it belong to the set .~~ U XL. Using

the bounds of the preceding paragraph, the expected number of such success-

ful fast messages is bounded above by a~ 8(E[N~ + 1~]). Adding over all k, we

see that the expected number of successful fast messages satisfies

T/8

Next, we estimate the number of messages in the set ~i’~ that also belongs to

.’~+, . (Notice that these two sets may possibly intersect, because t~+, – ~0 < tk

due to the assumption 8< ~fl.) Let us number the messages in the set ti~

according to the times that they were transmitted, with later transmitted

messages being assigned a smaller number. Note that the lth message in #L

belongs to. ii. , only if none of the messages 1, ..., 1 has been received during

the time interval ( tk,tA+,].Using our earlier calculations, each message in .,f~

has a probability of at least c, 8 of being received during (tL,tk+ ~1. Using the

independence of the delays of different messages (Assumption 2.4), the lth

message in .t”~ makes it into Wk + ~ with probability no larger than (1 – c18 )~.

Summing over all 1, the expected number of elements of ~fi that make it into

.1< + ~ is bounded above by l/(c, 8), The set ti% + ~ consists of such messages

together possibly with some of the elements of YL. We thus have

1
EINA+l] < — +EIIk].

c, 8
(3.6)

Combining eqs. (3.5) and (3.6), and using the property ~~~~ E[ IL] = E[M],

we obtain

3.3.2. A Bound on the Expected ~Wnber of Slow Success@ Messages. We

now derive an upper bound for the expected number of successful “slow”

messages. For the purposes of this argument, we split [0. T] into intervals of

length ●0/2. (The last such interval might have length smaller than ●fl/2 if

2 T/.sfl is not an integer.) The total number of such intervals is [2 T/e. 1. Let

tk= (k – l)Eo/2. Let us number the messages transmitted during [tL,tk+,1,

with later transmitted messages being assigned a smaller number. Clearly, a

message generated at time tk + ~ – s, with O s s s cO/2, is received during the

time interval [t~+ ~,tk+~]with probability F(s + ~o/2) – F(s); reasoning simi-

larly as in previous cases, it is seen that this probability is at least Cl( ~(1/2).

Notice now that for the lth message transmitted during [tL, tk.~] to be a slow

and successful message, it is necessary that none of the messages 1. . . . . 1

transmitted during that same interval is received during the time interval



Az’erage Communication Complexi@ of Asynchro~zous Distributed Algorithms 391

[tL+,, t~+ ,]; the probability of this event is at most (1 – c,( eo/2))~. Thus, the

expected number of messages that are transmitted during [tL, tk+,] and are

slow and successful is bounded above by 2/c ~co. Adding over all k, we obtain

H

2
E[s, ] < ~ “— < B’T,

E“ C,lso
(3.8)

where B’ is a suitable

Since E[S] = E[Sf]

lemma. II

constant.

+ E[SJ ], eqs. (3.7) and (3.8) complete the proof of the

3.4. THE PROOF OF THEOREM 2.5

THEOREM 2.5. Assume tlzat T > 1 and that m > 1. Then, there exists a

constant A’ (depending only on t~zeconstants m, c1, Cz and ~0 of Assumption 2.3),

such that the expected total number of messages transmitted during the time

inten)al [0, T] is bounded by A’ndz+ ‘/}n(ln d)’+ ‘/’n T.

The proof of Theorem 2.5 rests on the following result:

LEMMA 3.4.1. There exists a constant $, depending only on the constants nz,

c1, Cz and ●. of Assumption 2.3, sz{ch that

(~(E’:’])}’39)
E[S,J] s ~T”7/1”’+’)(EIM,J ])l’(”*+l)max 1 in

PROOF OF THEOREM 2.5. Let Q = max,, ~E[iWj~ ]. Then, eq. (3.9) yields

H)}E[S,J] s fiT~f(n*+l)Q1/(nl+l)mm l,ln ~ .

Using eq. (3.2), we obtain

(01E[M,L] s T + dfiT”’f(n’ +l)QIJ(n’l)max l,ln ~ .

Taking the maximum over all j, k, and using the fact d > 1, we obtain

Q

H)]Q s dT + dBT”’/(”z+ ’) Q’/(rn)maxax l,ln ~ .

Suppose that

Q > x(m+l)/fzT

Then,

Q

()Q < d(~ + l)T’”/(’n+l)Ql/(”z+ l~ln ~ ,

which yields

(Q/T)
m/(m+l)

< ~d,
@~)nz/(Frl+l)]

(3.10)

where ~ = ((m + 1)/m)(~ + 1).



392 J. N. TSITSIKLIS AND C. D. STAMOULIS

Next, we prove the following auxiliary result: If x > e and x/in x s y, then

x s 2y in y. Indeed, since x/lnx is an increasing function of x for x > e, it is

sufficient to show that if x/in x = y then x s 2y in y. Thus, it is enough to

show that x s 2(x/in x)ln(.~/in x ) or x s 2X – 2x(ln in x/in x); equivalently

21n in x < in ~ or in x < W, which is true for all x > e.

Due to eq. (3.10) and the assumption Q > exp((fl + l)\m)T, we can apply

the above result with x = (Q\TY” ‘(”z + *} and y = Bd; thus, it follows that

which gives

~ </f~l+(l/?)(,n ~)t+(l/’’”T,

where A’ is a suitable constant. If Q s exp((m + 1)/m)T, this last inequality

is again valid. We conclude that there exists a constant A’ such that Q <

A’di + 1’ “’(in d)i + 1/’” T. Each processor sends M,, messages along every link

(i, j). Since E[M,J ] s A’dl + l\ ’’’(in d)l + ‘/’”T and since there are at most nd

links, the expected value of the total number of transmitted messages is

bounded above by A’ndz+ liw’(ln d)’ + 1/’”T, which is the desired result. ❑

It now remains to prove Lemma 3.4.1

PROOF OF LEMMA 3.4.1. For the purposes of the lemma, we only need to

consider a fixed pair of processors i and j. We may thus simplify notation and

use M and S instead of M,l and S1,, respectively.

Let 8 be defined as follows:

(1
T

1/(/?1+ 1)

8 ‘Jf —

E[M] ‘
(3.11)

Note that if 8> q), then E[M] s T/~~+’, which implies that

()
1?1

E[J.4] < : TnI/(17Z+I~(~[M])]/(m+l);

‘=()

therefore, eq. (3.9) holds as long as B is chosen larger than l/~~. Thus, we

only need to consider the case 8 < ~tl, which we henceforth assume.

We split the interval [0, T] into disjoint intervals of length 8. To simplify

notations, we assume that T/8 is an integer. (Without this assumption, only

some very minor modifications would be needed in the arguments to follow.)

For definiteness, let the qth interval be Y~ = [(q – 1)8, qti ), with the excep-

tion of +, ~ = [T – 8, T]. Let Mq denote the number of messages gen.rated

during <1. Clearly, we have

7/(5

~ E[M,] =E[M]. (3.12)
q=l

Let S<, be the number of nondiscardable messages generated during >~. We

have

T/(5

~ E[s,,] =E[s]. (3.13)
~=1



Azerage Communication Complexity of Asynchronous Distributed Algorithms 393

Henceforth, we fix some q G {1,..., T/8} and we concentrate on bounding

E[S~].

Let ~~ be the number of messages that are generated during the interval Y~

and arrive no later than time q 8.

LEMMA 3.4.2. E[fi~] s az SrnE[M~], where az = cz/m!, where Cz and m are

the constants of Assumption 2.3.

PROOF OF LEMMA 3.4.2. Let tl,....tM be the times in >~, in increasing

order, at which messages are generated. ‘Let D ~, ..., D~ be the respective

delays of these messages. We have
cl

E[~,] = ~ Pr[M, > k] Pr[D~ S qi5 – t~lM, > k]

k=l

~ k~l pr[~q z ~]pr[Dk s 81Mq> k], (3.14)

where the last inequality follows from the fact tk> (q – 1)8. By Assumption

2.2, the delay of a message is independent of all events that occurred until the

time of its generation; hence, we have

Pr[Dk s 81M~ >k] =F(8), (3.15)

because, at time tk,the event lf~ > k is known to have occurred. Further-

more, using Assumption 2.3 and some elementary calculus, we see that there

exist constants al, az > 0 such that

al(xn’ –ym) s F(x) – F(y) s a2(xm –y”’), for 0Sy<.x<2~0.

(3.16)

(In particular, al = cl/m! and CYz= cJm !.) Applying eq. (3.16) with x = 8

and y = O, we have F(8) s a~~’”; combining this with eqs. (3.14) and (3.15),

we obtain

Let ~~ be the number of nondiscardable m~ssages that are generated during

>~ and arrive after time qi3. Recalling that lV~ is the number of messages that

are generated during Y~ and arrive no later than q 8, we have

E[sq] < EIIj] +E[~,]. (3.18)

Lemma 3.4.2 provides a bound for E[i$]; thus, it only remains to upper

bound S~.

LEMMA 3.4.3. We hal)e

where a ~, PI, fi2, PB, Y are constants that depend only on the constants introduced

in Assumption 2.3.



394 J. N. TSITSIKLIS AND C. D. STAMOULIS

PROOF OF LEMMA 3.4.3. Let 5Z stand for the history of the process up to

and including time q~. Let N~ be the number of messages that were transm~t-

ted during Y~ and have not been received by time qti; note that N~ = Lfq – N~.

We will be referring to the aforementioned N~ messages as PI, . . ., P~<,. In

particular, message P~ is taken to be generated at time tL,where (q – 1)8 s tl

<t2< “””< tN < q8. The delay of P~ is denoted by D~; there holds DL > q8

– t~, by assum~tion. Note that N~ and ( tl, . . ., tN ) are Y-measurable; that is,

their values are known at time q 8. Alsoj Assumfition 2.2 implies that, condi-

tioned on ~ the random variables D1, . . . . 11~, are independent, with the

conditional cumulative distribution of ~~ being G(”1 q~ – t~ ).

In the analysis to follow, we assume that N~ >2: the trivial cases N~ = O and

N~ = 1 will be considered at the end. At time qti, message Pk has been in the

air for Sk‘:fq8 – t~ time units; notice that Sk s 8. Let R~ denote the random

variable D~ – Sk; that is, RL is the residual time (after q8 ) for which message

P~ will remain in the air. As argued above, conditioned on ~ the random

variables R,, . . ., RN are independent; moreover, the conditional cumulative

distribution function”of R~ is given by

F(l-+sk) –F’(sk)
ff~(r)d~f Pr[R~ s F19] = G(r + s~ls~) =

1 –F(sk) “
(3.19)

Let ~(r) = (dF/dr)(r) and lz~(r) = ( dH~/dr)(r); both derivatives are guaran-

teed to exist in the interval (O, Co] due to Assumption 2.3 and the fact

Sk < 8 < 60. Clearly, if k # N~, then for P~ not to be discardable it is necessa~

P~ arrive later than PL. Therefore, we havethat messages Pk+,, . . . . ,,

Pr[Pk is nondiscardable Is] s Pr[ Rk s R, for 1 = k + 1,..., N#Z]

—
-/ [

‘Prr<Rf forl=k+ l,..., N~ls]dHk(r)
o

N,,
.

—-/-[n )Pr[Rl > rl,7] dHJr)

o l=k+l

N,,
m

—-J-(I3 )~=k+l [1 – H[(r)l dHL(r).
(1

We split this integral into three parts and for each part, we use a different

bound for the integrand: for r E [0, 8], we use the bound 1 – H~(r) < 1; for

r = [ ~o, CO),we use the bound 1 — Ht(r) < 1 — H1(cO). We therefore obtain

In what follows, we derive an upper bound for each of the three terms in eq.

(3.20).



A1’erage Communication Complexi~ of Asynchronous Distributed Algorithms 395

Starting with H~( 8 ), we have

[
(I2 (I3 + Sk)m—s?

H~(8) <
1

1 –I’(SL) ‘

due to eqs. (3.19) and (3.16). Since Sk <8, we have (Sk + i3)w’ – 8V’ < (2m –

1)8”’; moreover, there holds O < 1 – Flco) < 1 – F(sl), because S1< 8< ~.

and F( ●0) < 1 (see Assumption 2.3). Combining these facts, it follows that

a2(2m – 1)
HL(8) < am = /316”’.

1 – F(eo)
(3.21)

Furthermore, let A be a small positive real number; by eq. (3.19), we have

F(r + S1 + A) – F’(r + Sl)
II[(r + A) – Hi(r) =

1 – F(sl) “

Since S[ <8< eO, it follows from eq. (3.16) that

a!~

[(r+sl+A)m– (r+ s,)’”]
1 – F(s[)

0!2

[(r+sl+A)m– (r+ sl)m], Vr= [0,6.].
< 1 – F(sl)

Reasoning similarly as in the case of eq. (3.21), it follows (after some algebra)

that

a2(2”2 – 1)
[(r + A)m – r’”], Vr c [0, ~(,]. (3.22)

< 1 –F(eo)

On the other hand, using eq. (3.16), we have

al[(r + A)m – r“’] s F(r + A) – F(r) < az[(r + A)’” – r’”],

Vr = [0, Eel;

this together with eq. (3.22) implies that there exist constants p2, P3 > Q which

do not depend on 1, such that

~,[F’(r + A) - F(r)] s Hl(r + A) - H,(r) < f12[F(r + A) - F(r)],

vr G [o, eel.

Using this, it follows easily that

hi(r) < pzf(r), Vr C [O, eo], (3.23)

and

Hi(r) > &F’(r), Vr G [O, EO]. (3.24)



396 J. N. TSITSIKLIS AND C. D. STAMOULIS

Combining eqs. (3.23) and (3.24), we have

% 1

‘& Nq-k+l’
(3.25)

where we have also used the fact &F( eO) s Hk( ●0) s 1 [see eq. (3.22) with

r = eO and 1 = k]. Similarly, by eq. (3.24), we have

ii [1 - ~,(~”)1 < [1 - /33F(Eo)]N”-’ = ~&~, (3.26)
l=k+l

where y is constant and satisfies O s y < 1.

Combining eqs. (3.20), (3.21), (3.25), and (3.26), we obtain

1
Pr[ P~ is nondiscardable I=] s PI 8” + & + yx-~,

~aN~–k+l

The above result holds for k = 1,..., N~ – 1; adding over all those k, we have

Nq–l

~ Pr[l’, is nondiscardable Is] < /318~(N, - 1)

k=]

(3.27)

Notice that

and

because O s y <1. Thus, it follows from eq. (3.27) that

E [ ~~ Is] = ~ Pr[ P~ is nondiscardable IY]

k=l



Auerage Communication Complexity of A~nchronous Distributed Algorithms 397

where the term “ + 1” bounds the probability that PN, is nondiscardable, The

above result was established for all l?~ > 2; it is strai~htforward to see that it

also holds for N~ = 1 and for N~ = O. We now take expectations, to remove the

conditioning on % and the desired result is obtained. fl

We now combine Lemmas 3.4.2 and 3.4.3, together with eq. (3.18), and

obtain

B2 1

E[sq] s (a2 -E f31)8’nE[Mq] -E ~E[ln(A4, + 1)] + —
l–y’

where we have also used the fact 1$ < Mq. The above inequality holds for all

qe {l,..., T/a}; adding over all q, and using eq. (3.13), we obtain

T/8

q=j

(3.28)

Since the logarithmic function is concave, Jensen’s inequality yields

This together with eqs. (3.12) and (3.28) implies that

/3, T

( )

lT
E[S] < (az + ~1)8”’E[M] + ‘i-in ~E[~] + 1 + —–

D, a l–y8”
(3.29)

By eq. (3.11), we have 8“’E[M] = T/i3 = T“’/(w+l)(EIM]) *j(’fi+ 1) and

(i3/T)E[~] = l/8”’ = (EIM]/T)”l/f”’+ l); since 8< ~o, we have (8/T)E[~]

> l~e~, which gives [after some algebra) that

( ) (:E’M])+ln(’f+l’In ~E[M] -+ 1 s in

Using these facts, it follows from eq. (3.29) that

[

1
E[s]< ff2+f$+—

l–y 1
+ ln(~~ + 1) Tm/(’”~l)(E[~])l/(m+l)

m P2

+ (m + l)p3
Tm)(m+t~(E[fW]) l/(m+l)ln(EIM]/T);

this proves the lemma for the case 8< CO. Cl

3.5. DISCUSSION. First, we discuss a generalization of Theorems 2.4 and 2.5.

Let us suppose that the distribution of the delays is as described by Assump-

tion 2.3, except that it is shifted to the right by a positive amount. (For

example, the delay could be the sum of a positive constant and an exponen-

tially distributed random variable.) As far as a particular link is concerned, this



398 J. N. TSITSIKLIS AND C. D. STAMOULIS

change of the probability distribution is equivalent to delaying the time that

each message is transmitted by a positive constant. Such a change does not

affect the number of overtakings that occur on any given link. Thus, Lemmas

3.3.1 and 3.4.1 remain valid, and Theorems 2.4 and 2.5 still hold.

Next, we discuss the tightness of the bounds in Theorems 2.4 and 2.5. These

bounds are obviously tight if d = 0(1), that is, for sparse processor graphs. In

general, we are not able to establish that our upper bounds are tight. However,

it can be shown that the bound in Lemma 3.3.1 is tight and the bound in

Lemma 3.4.1 is tight within a logarithmic factor [Tsitsiklis and Stamoulis 1990].

Since these lemmas are the key to our proofs, we are led to conjecture that the

upper bound of Theorem 2.4 is tight and that the upper bound of Theorem 2.5

is tight within a logarithmic factor.

In our results, we have assumed that the delay of all messages are indepen-

dent and identically distributed, even for messages on different links. If we

assume that message delays are independent but that the mean delay is

different on different links, then our results are no more valid. In fact, under

those circumstances, one can construct examples in which the number of

transmitted messages over a given time interval increases exponentially with

the number of processors.

4. Some Remarks on the Time Complexity

In this section, we still assume that the model of Section 2 is in effect.

Furthermore, to simplify the discussion, let us assume that if a message

reception triggers the transmission of messages by the receiving processor,

these latter messages are transmitted without any waiting time.

Consider the asynchronous Bellman-Ford algorithm and consider a path

(i~,i~_ l,... , il, 0) from a node ik to the destination node O. We say that this

path has been traced by the algorithm if there exist times t~,t2,....tLsuch that

a message is transmitted by processor i, at time t,and this message is received

by processor i,+l at time t!+l,j = 1,. ... k – 1. Under the initial conditions

introduced in Section 1, it N easily shown [Bertsekas and Tsitsiklis 1984] that

the shortest distance estimate x,, of processor i~ becomes equal to the true

shortest distance as soon as there exists a shortest path from ik to O that has

been traced by the algorithm.

It is easily seen that under the model of Section 2, the time until a path is

traced is bounded by the sum of (at most n) independent and identically

distributed random variables. Assuming that the delay distribution has an

exponentially decreasing tail, we can apply large deviations bounds on sums of

independent random variables (e.g., the Chernoff bound [Chernoff 1952]). We

then see that the time untd the termination of the asynchronous Bellman–Ford

algorithm is 0(n), with overwhelming probability. Furthermore, the expected

duration of the algorithm is also O(n).

From the above discussion and Theorem 2.4, we can conclude that, for

nz = 1, the number of messages until termination of the asynchronous Bell-

man–Ford is 0( n ‘ds), with overwhelming probability.3 Similarly, for m > 1,

the corresponding upper bound is 0(n2dz+ (1/w*)(ln d)]+ ‘l/’’’)). We note that for

sparse graphs [i.e., when d = 0(l)], the asynchronous Bellman–Ford has very

good communications complexity, equal to the communication complexity of its

synchronous counterpart.



Average Communication Complexi@ of Asynchronous Distributed Algorithms 399

It should be clear at this point that the above argument is not specific to the

Bellman-Ford algorithm, In particular, any asynchronous algorithm with poly-

nomial average time complexity will also have polynomial communication

complexity, on the average.

5. Different Models

We have established so far that (under the assumption of independent and

identically distributed message delays) the average communication complexity

of asynchronous distributed algorithms is quite reasonable. In particular,

discarding messages that are overtaken by others is a very effective mechanism

for keeping the number of messages under control.

Modeling message delays as independent and identically distributed random

variables seems reasonable when a “general mail facility” is used for message

transmissions, and the messages corresponding to the algorithm are only a

small part of the facility’s load. On the other hand, for many realistic multipro-

cessor systems, the independent and identically distributed assumption could

be unrealistic. For example, any system that is guaranteed to deliver messages

in the order that they are transmitted (FIFO links) will violate the independent

and identically distributed assumption (unless the delays have zero variance).

This raises the issue of constructing a meaningful probabilistic model of FIFO

links. In our opinion, in any such model (and, furthermore, in any physical

implementation of such a model) the links have to be modeled by servers

preceded by buffers, in the usual queuing-theoretic fashion. We discuss such a

model below.

Let us assume, for concreteness, that each link consists of an infinite buffer

followed by a server with independent and identically distributed, exponentially

distributed, service times. In this setup, the following modification to the

algorithm makes the most sense: Whenever there is a new arrival to a buffer,

every message that has been placed earlier in that same buffer, but has not yet

been “served’” by the server, should be deleted. This modification has no

negative effects on the correctness and termination of an asynchronous dis-

tributed algorithm. Furthermore, the rate at which a processor receives mes-

sages from is neighbors is 0(d). This is because there are at most d incoming

links and the arrival rate along each link is constrained by the service rate of

the server corresponding to each link. Each message arrival triggers O(d)

message transmissions. We conclude that the expected communication com-

plexity of the algorithm will be 0(nd2 T), where T is the running time of the

algorithm.

We have once more reached the conclusion that asynchronous algorithms

with good time complexity T will also have a good communication complexity.

Let us conclude by mentioning that an alternative mechanism for reducing

the communication complexity of an asynchronous algorithm is obtained by

introducing a “synchronizer” [Awerbuch 1985]. A synchronizer could result in a

3For m = 1, the formal argument goes as follows. If T is the random time until termination and

C(t) is the number of messages transmitted until time f. then

Pr[C(~) 2A1A2n2d3] < Pr[T 2A1n] + Pr[C(A1rz) 2zA1A2n2d3].

We bound Pr[T z A ,n] using the Chernoff bound, and we bound Pr[C(~ ,n) ~ ~, ~z~z~~l Usiw

Theorem 2.4 and the Markov inequalhy.



400 J. N. TSITSIKLIS AND C. D. STAMOULIS

communication complexity that is even better than the one predicted by

Theorem 2.4 or by the calculation in this section. On the other hand, our

results indicate that acceptable communication complexity is possible even

without a synchronizer.

ACKNOWLEDGMENT. We are grateful to David Aldous for carrying out the

calculation in Subsection 3.1, which suggested that a nice result should be

possible for the general case. Furthermore, using another heuristic calculation,

he suggested that the correct power of d in Theorem 2.5 is d~+ ‘l\m’).

REFERENCES

AWERBUCH, B. 1985. CompIex~ty of network synchronization. J. ACM, 32, 4 (Oct.), 804-823.

BERTSEKAS, D. P. 1982. Distributed dynamic programming. IEEE Trans. Aafornat. Control

AC-27, 610-616.

BERTSEKAS, D, P., ANEJGALLA~ER, R, G. 1987. Data Nefworks. Prentice-Hall, Englewood Chffs,

NJ.

BERTSEKM, D. P. AW TSITSIKLIS, J. N. 1989. Parallel and Dmibuted cO/’?lpLLfdtCOll: Nuntencal

Methods. Prentice-Hall, Englewood Cliffs, N.J.

CHERNOFF, H. 1952. A measure of asymptotic efficiency for tests of a hypothesn based on a sum

of obsmvatlons. Ann. Math. Stat. 23, 493–507.

TSITSTKLN, J. N., AND STAMOULIS,G. D. 1990, On the average communication complexity of

asynchronous distributed algorithms. Tech. Rep. LIDS-P-1986. Laborato~ for Information and

Declslon Systems. MIT, Cambridge Mass.

RE~EIVED JUNE 1990; ~EVISED DECEMBER 1993; ACCEPTED JULY 1994


