
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1995

On the Average Redundancy Rate of the Lempel-Ziv Code On the Average Redundancy Rate of the Lempel-Ziv Code

Guy Louchard

Wojciech Szpankowski
Purdue University, spa@cs.purdue.edu

Report Number:
95-049

Louchard, Guy and Szpankowski, Wojciech, "On the Average Redundancy Rate of the Lempel-Ziv Code"
(1995). Department of Computer Science Technical Reports. Paper 1223.
https://docs.lib.purdue.edu/cstech/1223

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

On the Average Redundancy Rate
of the Lempel-Ziv Code

Guy Louchard
Laboratoire d'Informatique Theorique

Universite Libre de Bruxe11es
B-1050 Brussels, Belgium

Wojciech Szpankowski
Department of Computer Science

Purdue University
West Lafayette, IN 47907

CSD-TR-95-049
July, 1995

ON THE AVERAGE REDUNDANCY RATE OF THE LEMPEL-ZIV CODE

July 14, 1995

Guy Louchard
Laboratoire d'Informatique Theorique
Universite Lihre de Bruxelles
D-1050 Brussels
Belgium

Abstract

Wojciech Szpankowski'"
Department of Computer Science
Purdue University
W. Lafayette, IN 47907
U.S.A.

It was conjectured that the average redundancy rate, Tnl for the Lempel-Ziv code (LZ78)
is 0(loglognflogn) where n is the length of the database sequence. However, it was
also known that for infinitely many n the redundancy Tn is bounded from the below by
2/ log n. In this paper we settle the above conjecture in the negative by proving that
for memoryless and Markov sources the average redundancy rate attains asymptotically
Ern = (A +8(n))flog n +D(loglog n/log2 n) where A is an explicitly given constant that
depends on the source characteristics, and o(x) is a fluctuating function. This result is a
consequence ofrecently established second-order properties for the number of phrases in the
Lempel-Ziv algorithm. We also derive the leading term for the kth moment of the number of
phrases. Finally, in concluding remarks we discuss generalized Lcrnpel-Ziv codes for which
the average redundancy rates are computed and compared with the original Lempel-Ziv
codes_

Index Terms: Data compression, Lempel-Ziv parsing scheme, generalized Lempel-Ziv
scheme, average redundancy rate, digital search trees, suffix trees.

·Tltis rcscarcb was parLially supporLcd by NSF GranLs NCR-9206315 and CCR-9201078, and NATO
Colla.bora.tive Grant CRG.950060.

1

1. INTRODUCTION

The redundancy of a noiseless corle measures how far the code is from being optimal

for a given source of information. While asymptotically optimal codes require that the

redundancy tends to zero (with the length of the code), sometimes a stronger requirement is

necessary: Namely, that the (average) redundancy per symbol goes to zero at some universal

rate. For example, while there are several asymptotically optimal data compression codes

(e.g., several versions of Lempel-Ziv scheme [23, 25]), one can further optimize the rate

of convergence to the optimal compression ratio. This is of prime importance for some

practical on-line and oIr-line data compression schemes.

It is known that some prefix codes exist for which the expected redundancy per symbol

is O(lognjn) for a class of sources (e.g., Markov, finite-state sources, etc.). But, recently

Shields [17] proved that such a redundancy rate cannot be achieved for general sources.

It must be further observed that often for practical universal data compression codes the

above redundancy rate is not achievable.

In this paper, we investigate the redundancy rate of the Lempel-Ziv parsing scheme

[25] - also known as LZ78 algorithm - that was proved to be universal and asymptotically

optimal. This scheme is used in the UNIX compress command and in a CCITT standard for

data compression for modems_ To recall, the algorithm first partitions a training sequence

(dictionary or database) of length n into variable phrases such that the next phrase is the

shortest phrase not seen in the past. The code consists of pairs of numbers: each pair

being a pointer to the previous occurrence of the prefix of the phrase and the last bit of the

phrase. Thus, if Mn is the number of phrases constructed from the training sequence, then

the code length en is1

(1)

The pointwise redundancy Tn and its expected value f n for a given source of the Lempel

Ziv code are respectively

Mn(logMn +1) - nh

n

(2)

(3)

where h is the entropy rate of the source. Plotnik, Weinberger and Ziv proved in [16] that

the expected redundancy of the Lempel-Ziv code is Tn = O(loglog njlog n)) for finite-state

sources. But, the authors of [16] also noticed that for infinitely many sequences the pointwise

ITlLroughout Lhc paper we shall write log(.) for binary logarithm log2(·).

2

redundancy rate is bounded from the below by 2/ log n. In this paper we prove that this

lower bound is actually attainable for the expected redundancy rate Tn, just closing the gap

between the upper and the lower bounds. Moreover, we shall provide a precise asymptotic

formula for Tn which will indicate that the coefficient at 1flogn contains a fluctuating

function.

In order to present our main results we must introduce some notation. Define for large

(say, integer) x a function J.L(x) as follows:

(4)

where A = 0(1) and will be specified below. Let X n be a positive solution of the following

equation

Observe that the above equation has the following asymptotic solution for large n

nh (loglogn A-logh 0 ((lOglOgn)'))
X n = -- 1 + + + 2 •

log n log n log n log n

(5)

(6)

(8)

In the next section we prove the following main result. Hereafter, for the simplicity

of the presentation we restrict our analysis to binary alphabet, but extension to any finite

alphabet is straightforward.

Theorem. (i) Consider a memoryless binary source with symbol "0" occuring with pmba

bility p and symbol "1" with probability q = 1- p. Let Mn be the number of phrases obtained

after parsing a sequence of length n according to the Lempel-Ziv algorithm. Then, for any

k ~ 1

(7)

MOI·e interestingly, the average redundancy of the Lempel-Ziv code becomes

_ 2h - h'l- ~h2 + ho: - Mo(n) (IOgIOgn)
Tn = + 0 2 'log n log n

where h = -plogp - qlogq is the entropy, I = 0.577 ... is the Euler constant, h2 =

p log2 P+ q log2 q, and Do(n) is a fluctuating functions with small amplitude for log pflog q

rational, and zero otherwise. Finally, the constant 0: is defined as:

(9)

(ii) The above results hold for a Markovian source with h2 and 0: expressed as in [7, 10).

3

We point out that the above result should be compared with recent findings of Jacquet

and Szpankowski [9J who proved that for a memoryless source Pr{Tn > e} :::; A exp(-aeJ1i}

for some constants A, a, and small e > O. In passing, we note that the main result of [9] is

instrumental for the proof of our Theorem.

Furthermore, the above redundancy result should also be compared to the average re

dundancy of another version of the Lempel-Ziv scheme (24), namely that of fixed-database

or sliding window known also as 1Z77. It is easy to see from recent results of Jacquet and

Szpankowski [8] (cf. also [7]) that the average redundancy Tn for memoryless and Markovian

sources becomes
__ ,loglogn 0 (IOglogn)
Tn - ~ + 2 .

log n log n

The redundancy of this scheme is larger than that of 1Z78, thus the sliding-window version

converges slower to the optimal compression ratio. Observe also that there is no fluctuating

term in front of the leading term of Tn in the 1Z77 scheme. In passing, we should mention

that recently Wyner and Wyner [22J proved that a modification of the fixed-database scheme

can achieve the redundancy of order O(lflogn). We conjecture that the coefficient at

1/ logn in this new scheme is not a constant but a fluctuating function, as in the case of

1Z78 scheme.

In concluding remarks of this paper, we extend Theorem to a generalized Lempel-Ziv

parsing algorithm recently proposed by us in [13J. This new algorithm partitions a sequence

into phrases such that the next phrase is the longest substring seen in the past by at most

b - 1 phrases. The case b = 1 corresponds to the original Lempel-Ziv parsing scheme. We

indicate that this new scheme, at least for symmetric memoryless source (equal probabilities

of symbol generations), can slightly improve the average redundancy of 1empel-Ziv-like

codes (however, more research is need to verify this conclusion for other sources). We also

briefly discuss a similar generalization of the sliding window 1empel-Ziv scheme.

2. ANALYSIS

The proof of Theorem is by reduction, that is, we reduce the problem under investigation

to another one on digital trees that is easier to handle. We have already applied this strategy

successfully in the past (d. [9,12]).

The reader is referred to [11, 14] for a discussion and the definition of digital trees. In

short: the root of the tree is empty. All other phrases of the 1empel-Ziv parsing algorithm

are stored in internal nodes. When a new phrase is created, the search starts at the root

and proceeds down the tree as directed by the input symbols exactly in the same manner

as in the digital tree construction, that is, symbol "0" in the input string means a move to

the left and "1" means a move to the right. The search is complete when a branch is taken

[rom an existing tree node to a new node that has not been visited before. Then, the edge

and the new node are added to the tree. (d. Figure 1 in [9, 12] and in Section 3).

Observe that for flxed n the number of nodes in the associated digital tree is random

and equal to M n . However, H is to our advantage to consider also a digital tree in which the

number of nodes is fixed and equal to m. We call such a model the digital tree model while

the original problem (i.e., with fixed length n of a word to parse) we name the Lempel-Ziv

model. 2 The digital tree model was investigated in [3, 9, 12]. In the digital tree model,

we denote by Dm(i) the length of the path from the root to the ith node (the ith depth).

Then, the internal path length Lm is defined as Lm = EY:::1 Dm(i).

In view of the above definitions, it is clear that M n satisfies the following renewal equation

(d. [9])
m

Mn=max{m: Lm=I::Dm(i):::=;n} ,
.1:=1

which directly implies that

P,{Mn > m} = Pr{Lm <; n} .

(10)

(11)

Indeed, consider building a dynamic digital search tree from phrases. Each time a phrase

is created we add it as a new word to the digital tree. The tree grows, and we continue this

process until for the first time the internal path length becomes n. Clearly, the number of

inserted words at this time is M n (cf. [3, 9, 12]).

The above relationship is crucial, and should lead to a complete characterization of Mn

if one can analyze L m . This follows from a result of Billingsley (cf. Theorem 17.3 in [1])

which claims that if

then

Lm -11m -+ N(O, 1) ,
Um

(12)

(13)
Mn - nf(l'mfm)

In(umfm)f(l'mfm)3 ~ N(D, 1)

where N(O, 1) is the standard normal distribution, and J-Lm and am are positive constants

that under mild standard uniform integrability arguments can be asymptotically interpreted

as the mean and the variance of L m .

We concentrate on proving Theorem for a memoryless source (also known as the Bernoulli

model). Recently, Jacquet and Szpankowski [9] proved that Lm appropriately normalized

2Hereafter, we shall consistently use n as the lengt.h of a single word to be parsed, and m as the number

of words used to construct a digital search t.ree.

5

is normally distributed, so by Billingsley's result M n is also normally distributed. But, to

derive second order properties of the Lempel-Ziv algorithm (such as the redundancy), we

need the rate of convergence to the normal distribution. The authors of [9] obtained such

a rate for the path length L m , but not for Mn (since (13) does not provide it). Therefore,

we shall deal mostly with the path length Lm instead of Mn .

For the reader convenience we present below the main results of Jacquet and Sz

pankowski [9J that are necessary to prove our main results. Below, we write

(14)

fro the distribution function of the standard normal distribution. Now we are ready to

recall main results of Jacquet and Szpankowski [9J:

Fact A. Consider a digital search tree buill from m independent worns under the asymmetric

memoryless source.

(1) Asymptotically the average value ELm and the variance Var Lm become

ELm ~ (logm + ~~ + 1- 1- '" + bo(logm))

+ *(IOgm+~~ -,-logp-logq+h",) +0(1)

Var L m c2m1ogm +O(m)

(15)

(16)

C2 0:::0 (h2 - h2)jh3 , and 6o(logm) is a fluctuating functions for log pjlog q rational with

small amplitude, and zero otherwise, and h, h2 and Ct are defined in Theorem above.

(ii) For large m the following weak convergence takes place

(17)

for x ~ o(y'm).

(iii) The above is true /01' symmetric memory/ess source (i.e., symbols occur with tile same

probability) if one replace the variance above by the following

Vac L;;{m ~ m· (C + b(log, m))

where C 0:::0 0.26600 ... and 6(x) is a fluctuating function with small amplitude.

Fact B. In the asymmetric Bemoulli model, define Zn 0:::0 ~. Then:

6

(18)

(i) The sequence of random variables Zn converges weakly (i.e., in distribution) to N(O, 1).

In addition, for all r;:::: °the sequence (ZnY is uniformly integmble. Thus, all moments of

Zn exist and convelTJe to the appl'Opriate moments of the normal distribution. In particular,

nh

log(n)

c2 h3n

log2 n

(19)

(20)

(ii) For any ~ > 0, there exist an integer no 2:: 1 such that for all n > no

for some positive constants A, a > 0_

(21)

(iH) The above results m·e also true for the symmetric (i.e., unbiased) memoryless source if

one replaces the vQ1'iance by

Var Msym ('oj _n,-(C---'+,--'--,(~lo-,g,,2_n-,-,-))
n log~ n

where the constant C = 0.26600 ... _ In (ii) one must replace Vii by Jnllog n .

(22)

Now, we are in position to prove Theorem (i) for a memoryless source. From (11) we

easily derive the kth moment of Mn - Indeed:

EM:+l = (k +1) L m'PI{Mn > m} = (k +1) L m'PI{Lm ~ n}
m;?:O m;?:O

(k + 1) faoo x'PI{L, ~ n}dx + O(EM:) (23)

where the last estimate follows from the Euler-Maclaurin formula [11]. To verify, it suffices

to do some elementary algebra on the Euler-Maclaurin formula that is recalled below: For

any function f(k), we have

b

Lf(k)
k=a.

(' f(x)dx _ f(b) - f(a) +t B2k (f(2k-')(b) _ f(2k-l)(a))
In 2 '=1 (2k)1

+ 0((2<)-2il' If(2i)(x)ldx

whe,·e fU)(x) is the jth derivative of f(x), and B k is the kth Bernoulli number.

7

erf(x),

Thus, by Fact A and the above we arrive at

EM;+l (k + 1) J:" x'(1 +O(I/v'X))<I' (n :r.\X)) dx

+ (k + 1)f x'(1 + o(1/v'X»<I' (n :r.\X)) dx + O(EM;)

where we use simplified notation J.L(x) :::; ELx and a(x) :::; VaT Lx_ The quantity X n above

is the same as in (5), that is, n:::; J.L(x n). Note that X n is given asymptotically by (6).

In order to estimate the above integrals, we ftrst recall definition of the error function

2 ;X ,
erf(x):::; ..jK 10 e-t dt .

Observing that i.P(x) :::; 1/2 + 1/2erf(x/V2), we estimate the first integral above as (with

the error term 1 + O(1l-vi) dropped for the simplicity of presentation)

r""x'<I'(n-~(x))dX= X~+l _~ ;X"x'(I_erf(n-~(x)))dX.
Jo a(x) k + 1 2 Jo V2a(x)

In a similar fashion, the second integral becomes

100 x'<I' (n - ~(x)) dx = ~1°O x' (1- erf (~(X) - n)) dx.
"" a(x) 2 "" V2a(x)

In summa.ry, we have

x~+l(1 + O(I/Jx,;)) - k; 1r x'(1 +O(I/v'X)) (1 -erf (~:(~;)) dx

+ k + 1100

x'(1 + O(I/v'X)) (1- erf (~!h)-n)) dx + O(x~) . (24)
2 "" 2a(x)

We compute the above two integrals separately. Let us denote them as follows

h :::;

r x' (1 -erf (n~:(~n)dx ,

100 x' (1- erf (~!h)-n)) dx .
"" 2a(x)

We make the following change of variables

~(x) - n
Y = a(x)

and we simplify p:(x) '" CI X log x and a(x) '" ';C2X log x where we write CI :::; 1/h. Observe

that x is a function of y, so we often write x(y). It satisfies the following equation CIX logx-

8

y";C2'X log x - n = 0, which implies

(
Y..jC2 + JC2y2+ 4nCI)'x(y)logx(y) =

2c}

h
(

czhy2 yJhcz '---:Ch-c,-y-='--n 1+--+ 1+--
2n ..;n 4n

h(y~ y2czh y3czhVhCi, O('('I'))
n 1 + ..;n +~ + 8n3 / 2 + y n

From the above and after some further Taylor's expansion of log x(y) we derive the following

(with the help of MAPLE)

dx(y) = Vii(1+G(n)) (h
3/

'.jC2 + yh'c, +0 (~))
dy logn vn10gn n

and

(
h yh3/'.jC2 y'h'c, (y3))

x(y) = n(1 + G(n)) 1- + r.:1 + 2 1 + 0 3/'ogn yn ogn n ogn n

where

G(n) = loglogn +"". "
logn

The above substitutions are needed to compute the above integrals which become

(00 , I:': dx(-y)
1, 10 x"(-y)(l - erf(y(v2)) dy dy,

(00 dx(y)
I, 10 x'(y)(1 - crf(Y(V2))---a;ydy "

Let us first estimate h for k = O. We obtain

I, ~ f (1- erf(y(V2)) d:~)dy

(1 + G(n)) f (1- erf(y(V2)) (n;~:'(n~') + 1:;(~) + 0 (j,,))dy

(1+ G(n)) (n(h, - "') + c,h' +0 (~)) "
~log'(n) 21og(n) Vii

To compute the above integral we used the following well known identity (cf. [4] Eq. (6.281))

/,
00 r(q +1(2)

(1 - erf(px))x,,-l = 7~""'"-
o 2",fiqp2q

for p > 0 and q > O. We also need f(3/2) = ...fi/2 (d. [4]). In a similar manner we can

compute II. Indeed, we have

I, = (1 +G(n)) (n(", - "') c,h' +0 (1))
<log'(n) - 21og(n) Vii

9

Thus, putting everything together we get

EMn = X n (1+ 0 Vo~n)) + 0(1)

This proves Theorem for k -= 0, and following the same lines of arguments we prove Theorem

for any k.

To prove the second part of Theorem concerning the average redundancy, we must

evaluate E{Mn(logMn + I)}. 1et N be a random variable distributed as the standard

normal distribution. Then by Fact B we can write Mn -= M n+Nan +X where X -= o(.jn)

(pr.) (in fact, (21) suggests that X -= 0(1) but we use only the above weaker condition

to derive our results). We also use the abridge notation: EMn -= M n nhflogn, and

an -= vVarMn JC2h3n/ log2 n. Using (19)-(20), one easily proves the following

After some algebra and noting that EN -= EX -= EN 3 -= 0 we obtain

E{Mn(logMn + I)} = M n(log M n + I) + 0(1/ logn) .

Now observe that M n -= xn(l +O(Jlog n/n) where X n is defined in (5). Using the asymp

totic expansion (6) of X n , we finally prove formula (8) on the average redundancy. Note

that the term log log nflog n cancels! This completes the proof of Theorem (i).

The proof of Theorem (ii) for Markovian sources follows the same footsteps as above

with Facts A and B already anticipated in [9], and will be formally proved in a forthcoming

pape, [IOJ.

3. EXTENSIONS AND CONCLUDING REMARKS

In [12] we have introduced the following generalization of the Lempel-Ziv parsing scheme:

the next phrase is the longest phrase seen in the past by at most b - 1 phrases. The

case b -= 1 corresponds to the original 1empel-Ziv algorithm. For example, the sequence

di"u"ed above is partitioned as (1)(1)(0)(0)(10)(10)(00)(100)(01)(00)(11) for b = 2. Fa, a

similar generalization of the sliding window version of the Lempel-Ziv scheme (1Z77) the

reader is referred to Szpankowskl [20).

A data compression code for this new algorithm may consists of pairs of number: one

being a pointer to the previous occurrence of the prefix of the phrase, and the second

10

(100)

Figure 1: A 2-digital search tree representation of the generalized Lempel-Zlv parsing for

the string 1100101000100010011

number 1s either empty space or the last bit of the phrase in the case it is the bth phrase.

Observe that the length en of such a code depends on two parameters: Namely, the number

of phrases Mn(b), and the number of distinct phrases M~(b). With this notation in mind,

we express the length in as a function of Mn(b) and M~(b) as follows:

en(Xn = Mn(b)(logM~(b) + I(b)) (25)

where I(b) is equal to one if the phrase consists of a previous prefix and one more bit (1.e.,

already b - 1 phrases have occurred), and zero otherwise.

As in the case b = 1, to study this generalization of the Lempel-Ziv scheme we construct

a special digital search tree called b-digital search tree which stores up to b phrases in a

node (cf. Figure 1). We also consider the case when the number of phrases is fixed and

equal to m (as before we call such a model the digital tree model to distinguish it from the

Lempel-Ziv model). The details of the tree construction can he found in [11, 12].

The analysis of b-digital trees, even with fixed number of strings, is much more com

plicated than for the case b = 1, as explained in [2, 12]. While for b = 1 some recurrence

equations have explicit solutions, this is not any longer true for b > 1. The digital tree model

for unbiased (symmetric) Bernoulli model was first investigated by Flajolet and Richmond

[2] (d. [5]). In a forthcoming paper [10] it will be presented a full characterization of

b-digital trees. Let us summarize some of our anticipated results.

For fIxed (number of strings) m, let 8m and L m denote respectively the size (number

of nodes) of a tree and the internal path length (sum of all depths to all strings). In

11

[2, 5, 10, 21J one can extract the following results

m[qo(b) + ,5, (m)J + 0(1) ,

m (h')h logm+
2h

-IIb- 1 +W+,-I+o,(m) +O(logm),

(26)

(27)

where qo(b) and ware some constants, and Hb is the harmonic number. The functions

61(m), 62 (m), and 63 (m) are fluctuating functions with small amplitudes. For example, for

the symmetric (unbiased coin tossing) Bernoulli model Flajolet and Richmond [2] computed

I {=(I+t)b dt
qo(b) = log2 Jo Q(t) 1 + 1 ' (28)

where Q(t) = nj~o(l + t2-i). Clearly, 90(1) = 1, and the authors of [2] computed qo(2) =

0.57'17, qo(3) = 0.4069, and so on. For large b one easily derives from (28) that qo(b) '"

1{(blog2) as b ~ 00 (d. [2]).

Moreover, in [10] we shall prove that Lm and Sm after proper normalizations are nor

mally distributed. Thus, an equivalence of Fact A holds for b-digital search trees, however,

the proof is much more complicated.

As before, the parameters of the Lempel-Ziv model can be expressed in terms of the

corresponding parameters of the digital tree model. In particular:

Mn(b)

M~(b)

max:{m: L m ~ n} ,

SM•.

Furthermore, from the construction of the compression code we observe that the second

number in the code is nonempty (i.e., it is equal to a single bit) whenever an overflow

occurs in the associated digital search tree, that 1s, a new phrase arrives to a full node.

Thus, Ef(b) = E(M~(b) -1)!(EMn) ~ qo(b).

Using the above anticipated results, we are in position to establish the average redun

dancy Tn(b) of the generalized Lempel-Ziv code. Finally, after some algebra similar to the

one performed for the b = 1 case, we obtain

Tn(b) = h 1 - 7 - ~ - w + IIb- 1 + qo(b) + logqo(b) - o(n) + 0 (loglogn) (29)
logn log2 n

where 6(n) 1s a fluctuat1ng function with a small amplitude, and the other quantities are

defined as before.

It might be interesting to compare the average redundancy for different values of b

hoping that there exists an optimal value of b. At this point, we have full understanding

12

",(I)

",(00) =

(and computations) for the unbiased memoryless source (d. (2]). Our computation show

that

2.68+o(n) +0 (IOglOgn)
logn log2 n

1.87 +o(n) + 0 (log log n)
log n log2 n

Thus, (at least for the unbiased case) there exists an optimal value of b which minimizes the

average redundancy. We are planning to investigate this problem more deeply by extending

our computations to unbiased memoryless and Markovian sources, and by performing some

experiments on real data.

Finally, we consider a similar extension of the sliding window Lempel-Ziv (LZ77) scheme

announced in Szpankowski [20]. The idea is as follows: Let Xr be a fixed database (training)

sequence. We search now for the longest prefix of X'*l that occurs at most b times in the

database, and we denote the length of this longest prefix as Ln{b). The compression code

contains the pointer to the first occurrence of the prefix in the database and the length

Ln(b) of the longest prefix. Clearly, Ln(b) is smaller then Ln(1) (which is bad) but due

to (at most) b repetitions we do not need logn bits to store pointers but less (hopefully

log(n/b) - which is not really correct as we shall see below).

Our goal is to estimate the average redundancy Tn{b) and compare it with the redun

dancy of LZ78 code as well as for different values of b in order to select the best b. To

estimate the number of bits necessary to store pointers to the database, we need to repre

sent the database as the so called b-suffix tree introduced in [20J. This is an ordinary suffix

tree that allows to store up to b (sub)strings in an external node (similar to the b extension

of the digital tree as discussed above). Observe as in [20] that Ln(b) is just the depth of

insertion, while the number of distinct pointers to the database is the number of external

nodes in the associated b-suffix tree. We denote the latter quantity by Sn(b). Then, as in

[22] we can welle
- ()_ ElogS,(b) +ElogL,(b) -h (30)
T, b - EL,(b) .

To estimate rn(b) above, we must evaluate Ln(b) and Sn{b). As proved in [8J, the above

parameters of a suffix tree do not differ to much from the corresponding parameters of a

trie built from n independent strings (see [8] for a more precise statement). Thus, using the

results of [18] we immediately obtain

1 1 "y h, (1)
EL,(b) = h:logn- h:Hb-I+h:+2h' +o3(n)+0 :;;

with the same notation as before, and H b denoting the bth Harmonic sum.

13

The average size ESn seemed not to be analyzed before except for the symmetric case

(d. [15]). But it is easy to see that it satisfies the following recurrence: ESo(b) = 0,

E,(b) = ... = ESb(b) = 1 and

ESn(b) = E(~)pkqn-k(ESk(b) + ESn_k(b)) .

Tltis recurrence equation can be solved using a general result of Szpankowski [18], and we

obtain

ESn(b) = n - i:(-l)k(~) L,~-2(-~)'(:1(1-t - q") .
k~ P q

Using Mellin-like approach or Rice's method (cf. (12, 18, 19]), we easily derive an asymptotic

expansion wltich becomes

((
1 bp"+q"))

ESn(b) = n 1- 1 - b - ~ r(r _ 1) + ,,(n) + 0(1) = n· e(b) + 0(1)

where o<\(n) is another flucLuating function with a small amplitude. Observe that c(b) < 1.

Finally, using Jacquet and Regnier [6J and Jacquet and Szpankowski [8J we conclude

using the same arguments as above for 1Z78 scheme - that ElogSn(b) '" log ESn(b) and

ElogLn(b) '" 10gELn(b). Thus, putting everything together we finally obtain

rn(b) = h log(logn - Hb_l) + log e(b) +0 (_1_)
logn - Hb_l logn

For large b, we can approximate 11& log b, and then

rn(b) = hloglog(nlb) -log(b(l- h)) + 0 (_1_)
log(nib) log n

(31)

(32)

From the above, we conclude that the redundancy of LZ78 code 1s better than LZ77.

Furthermore, the extension discussed in tltis section 1s more relevant for the LZ78 code

than for LZ77. From (32) we also observe that the above extension can slightly improve

the redundancy of the sliding w1ndow Lempel-Ziv scheme for not too large n, that is, when

the term 10g(b(l- h)) is comparable to loglog(n/b).

ACKNOWLEDGEMENT

We would like to thank M. Feder, P. Jacquet, J. Kieffer and P. Shields for helpful

comments and discussions regarding this work.

14

References

(1) P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York
1968.

[2J P. Flajolet and B. Richmond, Generalized Digital Trees and Their Difference
Differential Equations, Random Structm"es & Algorithms, 3, 305-320, 1992.

[3] E. Gilbert and T. Kaclota, The Lempel-Ziv Algorithm and Message Complexity, IEEE
Trans. Information Theory, 38, 1839-1842, 1992.

(4) I. Gradshteyn and 1. Ryznik, Tables, Integrals, Series, and Products, Academic press,
New York 1980.

[5] F. IIubalek, Further Results on Generalized Digital Trees - The Mellin Convolution
Approach, Theoretical Computer Science, to appear.

[5] P. Jacquet and M. Regnier, Normal Limiting Distribution of the Size of Tries, Proc.
Performance'81, 209-223, North Holland, Amsterdam 1987

(7] P. Jacquet and W. Szpankowski, Analysis of Digital Tries with Markovian Dependency,
IEEE Trans. Information Theory, 37, 1470-1475, 1991.

[8] P. Jacquet and W. Szpankowski, Autocorrelation on Words and Its Applications. Anal
ysis of Suffix Trees by String-Ruler Approach, J. Combin.Theory Ber. A, 66, 237-269,
1994.

[9] P. Jacquet and W. Szpankowski, Asymptotic Behavior of the Lempel-Ziv Parsing
Scheme and Digital Search Trees, Theoretical Computer Science, 144, 161-197, 1995.

[10] P. Jacquet and W. Szpankowski, Asymptotic Behavior of Generalized Lempel-Ziv Pars
ing Scheme for Markovian Sources, in preparation.

[11] D. Knuth, The Art of Computer Programming. Sorting and Searching, Addison-Wesley,
1973.

[12] G. Louchard and W. Szpankowski, Average Prome and Limiting Distribution for a
Phrase Size in the Lempel-Ziv Parsing Algorithm, IEEE Trans. Information Theory,
41,478-488, 1995.

[13] G. Louchard and W. Szpankowski, Generalized Lempel-Ziv Parsing Scheme and its
Preliminary Analysis of the Average Profile, Proc. Dala Compression Conference, 262
271, Snowbird, 1995.

[14] H. Mahmoud, Evolution of Random Search Trees, John Wiley & Sons, New York 1992.

[15] H. Mahmoud and T. Papadakis, A Probabilistic Analysis of Fixed and Elastic Buckets
in Tries and Patricia Trees, Proc. 30th Allerton Conference, 874-883, Monticello, 1992.

15

[16] E. Plotnik, M.J. Weinberger, and J. Ziv, Upper Bounds on the Probability of Sequences
Emitted by Finite-State Sources and on the Redundancy of the Lempel-Ziv Algorithm,
IEEE Trans. Information Theon), 3S, 66-72, 1992.

[17] P. Shields, Universal Redundancy Rates Do Not Exist, IEEE Informalion Theory, 39,
520-524, 1993.

[IS] W. Szpankowski, Some Results on V-ary Asymmetric Tries, J. Algorithms, 9, 224-244,
1988.

[19] W. Szpankowski, A Characterization of Digital search Trees From the Successful Search
Viewpoint, Theoretical Computer Science, 85,117-134,1991.

[20] W. Szpankowski, A Generalized Suffix Tree and Its (Un)Expected Asymptotic Behav
iors, SIAM J. Computing, 22, 1176-119S, 1993.

[21] W. Szpankowski and J. Tang, Analysis of a Digital Search Tree with Applications to a
Generalized Lempel-Ziv Algorithm, Proc. 33-rd Annual Allerlon Conference, 1995.

[22] A.D. Wyner and A.J. Wyner, Improved Redundancy of a Version of the Lempel-Ziv
Algorithm, IEEE Trans. Information Theory, 41, 723-732, 1995.

[23] J. Ziv, Compression, Test of Randomness, and Estimating the Statistical Model of
Individual Sequences, SEQUENCES, R. Capocelli, Ed. New York: Springer-Verlag,
366-373, 1990_

[24] J. Ziv and A. Lempel, A Universal Algorithm for Sequential Data Compression, IEEE
Trans. Information Theory, 23, 337-343, 1977.

[25) J. Ziv and A. Lempel, Compression oflndividual Sequences via Variable-rate Coding,
IEEE Trans. Information Theory, 24, 530-536, 1978.

16

	On the Average Redundancy Rate of the Lempel-Ziv Code
	Report Number:
	

	tmp.1307986960.pdf.Fy_Op

