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ABSTRACT

This paper investigates the average shape of the largest waves arising in fi-

nite water depths. Specifically, the largest waves recorded in time-histories of

the water surface elevation at a single point have been examined. These are

compared to commonly applied theories in engineering and oceanographic

practice. To achieve this both field observations and a new set of laboratory

measurements are considered. The latter concern long random simulations of

directionally spread sea-states generated using realistic JONSWAP frequency

spectra. It is shown that approximations related to the linear theory of Quasi-

Determinism (QD) cannot describe some key characteristics of the largest

waves. While second-order corrections to the QD predictions provide an im-

provement, key effects arising in very steep or shallow water sea-states are not

captured. While studies involving idealised wave groups have demonstrated

significant changes arising as a result of higher-order nonlinear wave-wave in-

teractions, these have not been observed in random sea-states. The present pa-

per addresses this discrepancy by decomposing random wave measurements

into separate populations of breaking and non-breaking waves. The character-

istics of average wave shapes in the two populations are examined and their

key differences discussed. These explain the mismatch between findings in

earlier random and deterministic wave studies.
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1. Introduction26

The largest waves in the ocean have long attracted oceanographic and engineering interest. Re-27

garding offshore and coastal structures, both the size and the shape of these waves represent key28

design parameters. For example, jacket-type structures require a deck elevation that is high enough29

to avoid potentially catastrophic wave-in-deck loading (Ma and Swan 2020). In principle, it is the30

largest waves, or waves with a very low probability of exceedance in a severe sea-state, that will31

give rise to this type of loading. These are typically defined by the integration of the short-term32

crest height distribution over the long term distribution of sea-state parameters (DNV 2010); the33

latter typically based on hindcast models.34

Following this approach, a “design” wave is fitted to the required crest elevation and the wave35

kinematics calculated. These are then used to perform wave loading calculations; an essential part36

for any structural design. Traditionally, these “design” waves were defined using regular wave the-37

ories. More correctly, they should represent asymptotic approximations to random wave theories.38

In adopting this approach, very long random wave testing can be substituted by the investigation39

of selected wave events; the latter commonly defined by the theory of Quasi-Determinism (QD)40

following (Lindgren 1972; Boccotti 1983; Tromans et al. 1991).41

The justification for using representative wave events has been extensively examined in the lit-42

erature. Typically, the assessment involves comparisons between the average shape of (random)43

measured surface elevation time-histories and available analytical theories; broad agreement be-44

ing generally reported (Phillips et al. 1993b; Jonathan and Taylor 1997; Tayfun and Fedele 2007).45

However, when one of these analytical representations is used as the input to a study of idealised46

wave groups in a fully nonlinear (numerical or experimental) simulation, different results arise.47

This refers to significant changes in the magnitude and symmetry (both vertical and horizontal)48
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of the fully nonlinear waves (Johannessen and Swan 2001, 2003; Gibbs and Taylor 2005; Gibson49

et al. 2007; Adcock et al. 2015). This apparent discrepancy raises a number of important ques-50

tions: Are these nonlinear effects important in random seas? If they are, why are they not observed51

in the average shape of the largest waves recorded therein?52

Considering the statistical distribution of crest heights, several studies have illustrated that53

higher-order nonlinearities can play an important role (Onorato et al. 2009; Shemer et al. 2010).54

More importantly, recent results by Latheef and Swan (2013) and Karmpadakis et al. (2019) have55

shown that the competing mechanisms of nonlinear amplifications and wave breaking have a pro-56

found effect on crest height statistics. To illustrate this effect, the distribution of crest heights57

(ηc) normalised by their significant wave height (Hs) is shown on Figure 1. These results relate58

to a very steep, laboratory-generated, short-crested sea-state with Hs = 15.3m and effective water59

depth kpd = 1.22 reported by Karmpadakis et al. (2019). The measured data are compared to the60

predictions of the commonly applied Forristall (2000) distribution. The latter is defined by:61

Q = exp

[

− 1

αF

(

ηc

Hs

)β

F

]

, (1)

where αF and βF are the scale and shape coefficients defined in terms of the sea-state steepness62

and Ursell parameter and Q is the probability of exceedance. The Forristall (2000) distribution was63

derived as a fit to second-order numerical simulations. In comparing the measured data with the64

second-order distribution, two important observations can be made. First, nonlinear amplifications65

(beyond second-order) are present, appearing as increases above the Forristall distribution in the66

range: 10−3 < Q < 10−1. Second, in the tail of the distribution the largest crest heights fall67

below the Forristall distribution. This demonstrates the dissipative effects of wave breaking for68

Q < 10−3. Taken together, these two competing effects have a profound influence on the crest69

height distribution and have important design implications.70
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Building upon these observations of the crest heights, the present paper addresses the questions71

raised above concerning the significance of nonlinear amplifications and wave breaking on the72

average shape of the largest waves. To achieve this, experimental measurements are supplemented73

by field and numerical data, the intention being to examine the characteristics of non-breaking74

and breaking waves separately. The contents of this paper are arranged as follows. First, a brief75

overview of relevant work in the field is provided in Section 2. The adopted methodology and76

details of the datasets are presented in Section 3. The findings arising from this study are discussed77

in Section 4, and the main conclusions summarised in Section 5.78

2. Background79

Adopting linear random wave theory (LRWT), the water surface elevation correct to first order,80

η(1)(x, t), can be expressed as:81

η(1)(x, t) =
∞

∑
i=1

ai cos(kix−ωit +ψi) , (2)

where x = (x, y) is the horizontal coordinate vector, i denotes an individual wave harmonic of82

amplitude ai and initial phase ψi, and k = (kx,ky) = (k cosθ ,k sinθ) is the wavenumber vector as-83

sociated with the cyclic frequency, ω , and direction, θ , via the linear dispersion relation. Adopting84

this approach the water surface elevation represents a zero-mean, random Gaussian process (Ochi85

1998). As such, Lindgren (1972), Boccotti (1983) and Tromans et al. (1991) used the asymptotic86

properties of Gaussian theory to derive the most probable shape of the largest waves. This ap-87

proach is commonly referred to as the theory of Quasi-Determinism or QD-wave (Boccotti 2000).88

Alternatively, Tromans et al. (1991) re-labelled these events as “NewWaves” and this notation89

has been adopted in some design codes (ISO:19901-1 and API 2MET). Irrespective of the name90

adopted, the average shape of the largest waves arising in a (stationary) sea-state was shown to91
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be proportional to its normalised autocorrelation function, r(τ). Removing the spatial dependence92

from Equation (2), the temporal QD-wave profile at a single location is given by:93

ηQD = Ar(τ) = A

∫ ∞

0
Sηη(ω)cos(ωτ)dω
∫ ∞

0
Sηη(ω)dω

, (3)

where Sηη(ω) is the energy density function, τ is the time-lag (measured from the maximum of94

r(τ)) and A a scaling factor that can be adjusted to approximate the maximum crest elevation,95

ηmax. Theoretically, this approximation is valid for ηc/ση → ∞, where ηc is the crest height and96

ση the standard deviation of the surface elevation time-series. However, as discussed in Section 4,97

the practical application of this model requires the definition of a large but finite value for this98

ratio.99

While the QD-wave profile provides a good approximation for linear sea-states (Boccotti et al.100

1993; Phillips et al. 1993a,b), real seas are nonlinear, particularly those of interest in design. As101

a result, the largest waves arising in these seas will inevitably exhibit some level of nonlinear be-102

haviour (Guedes Soares and Pascoal 2005). At a second-order of wave steepness, the free surface103

elevation is given by the sum of the linear part [Eq.(2)] and the second-order bound contributions.104

The latter are further divided into the frequency-difference terms (η(2−)) and the frequency-sum105

terms (η(2+)), as described by Longuet-Higgins and Stewart (1960) and Sharma and Dean (1981).106

These are given by:107

η(2−)(x, t) =
∞

∑
i=1

∞

∑
j=1

Mi j− cos(Ψi −Ψ j) (4)

η(2+)(x, t) =
∞

∑
i=1

∞

∑
j=1

Mi j+ cos(Ψi +Ψ j), (5)

where the interaction kernels Mi j− and Mi j+ are given in the Appendix and Ψ = (kx−ωt+ψ) for108

each (i, j) wave harmonic. Considering these contributions, the frequency-difference terms rep-109

resent slowly varying terms (or group terms), while the frequency-sum terms are high-frequency110
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oscillations. Taken together, the total surface elevation according to second-order random wave111

theory (SORWT) is: η(2) = η(1)+η(2−)+η(2+). To capture the effects arising at a second-order112

of wave steepness, Jensen (1996, 2005); Fedele and Arena (2005); Tayfun (2006a) and Tayfun and113

Fedele (2007) have derived analytical corrections to the linear QD-wave profile. These second-114

order corrections have been shown to provide a better approximation to the average profile of the115

largest waves recorded in field data; evidence provided by Tayfun and Fedele (2007). For this116

reason, both the linear and second-order QD-wave profiles are examined in the present study; the117

latter being obtained explicitly from SORWT (Arena 2005).118

An alternative method to account for nonlinearities has been applied by Johannessen and Swan119

(2003); Walker et al. (2004); Taylor and Williams (2004); Santo et al. (2013) and Whittaker et al.120

(2016) amongst others. In this case, the average profiles of waves with the largest crest heights and121

deepest toughs are employed to decompose the nonlinear contributions. A Stokes-type expansion122

is then used to obtain the nonlinear wave profile. This method has been shown to be quite versatile123

in terms of the order of nonlinearity that can be included; Walker et al. (2004) incorporating effects124

up to a fifth-order of wave steepness.125

One particular category of large ocean waves relates to so-called rogue waves. These represent126

wave events that are significantly larger than the surrounding wave field in a given sea-state. The127

most common definition is that proposed by Haver and Andersen (2000) in which ηmax > 1.25Hs128

or Hmax > 2Hs, where Hs is the significant wave height and the ratios are based upon a 20-minute129

record. Such events are commonly said to be responsible for a number of marine accidents (Kharif130

and Pelinovsky 2003). Increasing evidence in the literature suggest that a physical mechanism131

that leads to the formation of these wave events arises through the spatio-temporal focusing of132

individual wave harmonics (Christou and Ewans 2014; Cavaleri et al. 2016; Benetazzo et al. 2017);133

the linear focusing under-pinning the QD-wave being enhanced by higher-order nonlinearities.134
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While some studies suggest that effects higher than second-order are insignificant (Fedele et al.135

2016), others have shown evidence of their importance in experimental and field measurements136

(Latheef and Swan (2013), Gibson et al. (2014) and Karmpadakis et al. (2019)). It is clear that in a137

linear sense a QD-wave profile and a focused wave are identical; the input spectrum for the latter138

being the Fourier transform of Equation (3). Nonlinear effects can therefore be investigated by139

generating focused waves either experimentally (Baldock and Swan 1996; Johannessen and Swan140

2001) or numerically (Johannessen and Swan 2003; Bateman et al. 2012; Adcock and Taylor141

2016). The aforementioned studies have provided significant insights into the nonlinear physics142

that drive the formation of large wave events. Two characteristic changes relate to increased crest143

height elevations above second-order theory and front-back asymmetry of the largest wave event144

at the time of focusing; the latter being induced by its movement towards the front of the wave145

group. Taking into account that neither of these nonlinear changes is captured by the analytical146

QD-theories, it is worth considering whether they are relevant to the definition of the average shape147

of the largest waves in random seas.148

While many of the aforementioned studies investigate the shape of the largest waves in deep-149

water conditions, fewer studies have considered shallower water conditions (Whittaker et al. 2016).150

Considering the significance of large waves in finite water depths (Nikolkina and Didenkulova151

2011; Karmpadakis 2019), the potential mechanisms of nonlinear amplifications (Slunyaev et al.152

2002; Katsardi et al. 2013; Fernandez et al. 2014) and the effects of wave breaking (Katsardi and153

Swan 2011; Karmpadakis et al. 2020), this study concentrates on finite water depth conditions.154

3. Data sources and methods of analysis155

Three complementary sources of data have been used in the present paper. These include the156

analysis of surface elevation measurements recorded at the field, laboratory observations and nu-157
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merical simulations. In each case the average shapes of the largest waves are compared to theory,158

and the effects of nonlinearity and wave breaking investigated.159

a. Field data160

The field data used within this study were recorded using wave radars mounted on the side of161

fixed offshore platforms. These were part of an extensive field data analysis project (the LoW-162

iSh Joint Industry Project) including measurements from 10 different locations in the central and163

southern North Sea (Karmpadakis et al. 2020). In the present study, data from the shallowest and164

deepest locations are considered; the two platforms being located in water depths of 7.7 m (close165

to the Dutch coast) and 45 m (in the Danish sector) respectively. In both cases the free surface was166

recorded using Saab wave radars with high sampling rates (4Hz ≤ fs ≤ 5.12Hz); the accuracy167

estimated to be ±6mm. Indeed, these measurements are in accordance with the highest standards168

in platform-based observations; a recent review of the operational characteristics of the instrument169

type being provided by Ewans et al. (2014). More importantly, the use of recordings from fixed170

instruments avoids potential issues that have been observed in the analysis of large waves using171

wave buoys. These include the linearisation of the measured waves and the movement around the172

largest, three-dimensional, wave crests (James 1986; Magnusson et al. 1999; Dysthe et al. 2008).173

Moreover, the adopted sampling rate guarantees that the nonlinear characteristics of the largest174

waves can be captured with sufficient accuracy. In this respect, low sampling rates have been175

shown to underestimate the largest crest elevations (Tayfun 1993; Stansell et al. 2002).176

In seeking to obtain a high quality database, the raw surface elevation records were processed177

according to the strict quality control (QC) procedures outlined by Christou and Ewans (2014).178

In effect, this involves the application of a series of flags to identify potential sources of error;179

the latter including instrument lock-ins, sensor drifts and unrealistic spikes in the surface elevation180
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records. When erroneous measurements were identified, the full 20-minute record was abandoned.181

All remaining (un-flagged) records were then processed using standard spectral and zero-crossing182

analysis methodologies. It is also important to note that any tidal fluctuations or storm surges183

were removed prior to the commencement of the analysis. Having completed the analysis of each184

20-minute record, appropriate met-ocean parameters, such as the significant wave height (Hs)185

and peak period (Tp), were used to bin the the resulting sea-states into small groups with similar186

characteristics. The largest waves recorded in the sea-states within each of these data bins were187

then extracted and are presented in the analysis that follows.188

b. Experimental data189

In generating the laboratory wave data, a large number of random sea-states were simulated190

in the directional wave basin at Imperial College London. This wave basin has plan dimensions191

of 10 m x 20 m and a movable horizontal bed; the water depth in the present tests being set to192

d = 0.5m. The basin is equipped with 56 individually controlled, bottom-hinged wave paddles193

positioned along the 20 m length. The wavemakers operate on the basis of a theoretical transfer194

function with active, force-feedback, wave absorption (Spinneken and Swan 2012). The combina-195

tion of the active absorption system and a perforated parabolic beach on the opposite side of the196

wavemakers ensures that the maximum reflection coefficients were less than 5%. Moreover, there197

is no build-up of reflected wave energy within the wave basin during a long random generation198

(Masterton and Swan 2008).199

The time-histories of water surface elevation, η(t), were recorded using 32 resistance-type wave200

gauges. These gauges comprise of two thin steel wires (of diameter 1.5 mm) spaced 10 mm apart201

and were calibrated daily to maintain an accuracy of ±0.5 mm. The sampling rate was sufficiently202

high ( fs = 128Hz) to ensure that η(t) was measured accurately and no post-processing or filtering203
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was required. Importantly, Haley (2016) has demonstrated that this configuration can accurately204

record the surface elevation of both very steep and breaking waves. This was confirmed by com-205

paring the output of these wave gauges with high-speed video imaging. The layout of wave gauges206

for the experiments presented herein consists of a 5 x 5 array in the centre of the wave basin, with207

7 additional wave gauges placed along the centreline of the wave basin. Full details of this layout208

are given in Karmpadakis et al. (2019). Importantly, the minimum distance between the upstream209

wave gauge and the wavemakers (l = 2.3m) was larger than 3d. This ensures that there were no210

evanescent wave modes present in the measured data. The operational characteristics of this fa-211

cility yield results that are spatially homogeneous in the working area of basin (Latheef and Swan212

2013). As such, unless otherwise stated, the results presented correspond to measurements at the213

central wave gauge; the latter being representative of the full wave gauge array.214

All the experiments involve random, directionally spread, sea-states. To ensure that the sea-215

states under consideration correspond to realistic conditions in the field, they were defined on the216

basis of the JONSWAP spectrum (Hasselmann et al. 1973); the spectral density function, Sηη , for217

each case defined by:218

Sηη(ω) =
αg2

ω5
exp

(

−βω4
p

ω4

)

γ
exp

[

− (ω−ωp)
2

2σ2ω2
p

]

, (6)

where ω is the circular wave frequency (ω = 2π/T ), T the corresponding wave period, ωp circular219

wave frequency at the spectral peak, β = 1.25, σ = 0.07 for ω ≤ ωp and σ = 0.09 for ω > ωp.220

To simulate sea-states with finite frequency bandwidth, the peak enhancement factor, γ , was set to221

2.5 for all test cases. The Phillips parameter, α , was adjusted in each test case so that the target222

Hs could be obtained for a given spectral peak period, Tp. Although the JONSWAP spectrum does223

not represent the present state-of-the-art when modelling real seas (see, for example, Lenain and224

Melville (2017)), it is widely applied in engineering practice and has been adopted as the basis225
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for many earlier studies. Moreover, it provides a reasonable description of the field data employed226

in the present study. To generate directionally spread sea-states, a wrapped-normal directional227

spreading function (DSF) was applied to the uni-directional spectra defined in Equation (6). The228

functional form of the DSF is given by:229

D(ω,θ) =
A

σθ
exp

(

− θ 2

2σ2
θ

)

, (7)

where θ is the angle of propagation, measured relative to the x-axis, σθ is the standard devia-230

tion of the frequency independent directional spreading and A is a normalising factor such that231

∫ 2π

0
D(ω,θ)dθ = 1. The directional spectrum is thus given by: F(ω,θ) = Sηη(ω)D(ω,θ). Fur-232

ther details concerning the effective generation of directionally spread seas are given in Latheef233

et al. (2017). Given the nature of the input conditions, the target sea-states can be uniquely defined234

by 3 parameters: (Hs, Tp, σθ ). In relating the experimental test cases to field measurements, scal-235

ing based on Froude number similarity has been applied. Specifically, a length-scale of ls = 1 : 100236

and a corresponding time-scale of ts =
√

ls = 1 : 10 have been adopted throughout these tests.237

The analysis in the present paper focuses on test cases with kpd = 1.22 (Tp = 1.4s) and σθ = 10◦;238

a variety of sea-state steepnesses being examined. These cases correspond to a wide variety of239

realistic sea-state conditions in which a detailed investigation of the effects of nonlinearity and240

wave breaking is conducted. In validating the results obtained in these conditions, additional241

sea-states were also considered. In total, these involve 3 different effective water depths, kpd =242

1.53, 1.22 and 1.02, each with directional spreads of σθ = 0◦, 10◦ and 20◦ and a range of sea-state243

steepnesses (Sp). A summary of the relevant experimental test cases is provided in Table 1.244

The selection of the test cases presented in Table 1 was primarily driven by the need to investigate245

the changes induced by increasing sea-state steepness in finite water depths. In this respect, the246
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sea-state steepness, Sp, is defined as:247

Sp =
2πHs

gT 2
p

, (8)

where g = 9.81ms−2 is the gravitational acceleration. The significant wave height, Hs, in each test248

case was selected to provide an incremental increase in Sp, such that ∆Sp = 0.01. Taken together,249

the sea-states presented herein vary from near-linear (Sp = 0.01) to extremely steep (Sp = 0.06);250

the latter being characterised by extensive wave breaking.251

For each of these test cases, 20 random simulations or seeds were undertaken; the duration of a252

single simulation being 1024 s. Given the adopted scaling, each simulation (approximately) cor-253

responds to a 3-hour sea-state at field-scale. Furthermore, the target spectrum used as input to the254

wavemakers comprised of frequency components lying in the range 0.4Hz < f < 2.5Hz and had255

a resolution of ∆ f = 1/1024Hz. This yields a set of 2145 individual wave components that define256

each random seed. The amplitude of each wave component was defined by the target JONSWAP257

spectrum without being further randomised. This means that the (one-dimensional) energy spec-258

tra for each seed within the same test case are identical. The initial phase (ψ) of each individual259

wave component was chosen randomly from a uniform distribution lying in the range [0, 2π). Ad-260

ditionally, each individual wave component was assigned a direction of propagation (θ ). These261

varied between −45◦ ≤ θ ≤ 45◦ and were randomly sampled from the target DSF defined in Equa-262

tion (7). It should be noted that the adoption of this method leads to the generation of individual263

frequency components propagating in a single direction and is effectively a modification of the264

Single Summation Method (Miles and Funke 1989), often called the Random Directional Method265

(RDM). Latheef et al. (2017) have shown that the RDM method has significant advantages when266

it comes to generating ergodic, directionally spread sea-states.267

A subtle but very important point regarding this experimental investigation concerns the treat-268

ment of the initial phases and directions of propagation between the seeds of different test cases.269
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Specifically, a set of random phases and directions were defined for each seed in the lowest steep-270

ness case (for example, case B1-10 with Sp = 0.01 and σθ = 10◦- see Table 1). For the cases with271

larger Sp (but the same Tp and σθ ), the sets of phases and directions were kept unchanged. As a272

result, the amplitude of the individual wave components is the only variable that changes between273

the same seeds in sea-states of different steepnesses. This methodology leads to a collection of 20274

random simulations or seeds for each sea-state. However, each single seed has the same “random”275

characteristics in all test cases with the same effective water depth and directional spreading. In276

other words, the Inverse Fourier Transform of the input directional spectra of the same seed in277

different sea-states provides time-histories that are exactly aligned; the only difference between278

them being the scale of η(t). This alignment is clearly shown on Figure 2 which presents the279

same 5-second segment of the surface elevation, η(t), time-histories from seed 11 in cases A1-10,280

A2-10 and A3-10; their steepnesses being Sp = 0.01, 0.02 and 0.03 respectively. The main ad-281

vantage of this method lies in the ability to perform direct comparisons between individual wave282

events within random, directionally spread sea-states with increasing steepness. As such, its ap-283

plication is critical in identifying the effects driven by increases in nonlinearity; the latter arising284

at second-order of wave steepness and above.285

c. Numerical Simulations286

To take full advantage of the experimental method described above, numerical simulations were287

also performed using second-order random wave theory (SORWT) based upon Sharma and Dean288

(1981). These were generated using the same input conditions and output locations as in the ex-289

periments. This allows the direct superposition of experimental and numerical results. Figure 3290

presents examples of time-histories of the water surface elevation, η(t), recorded on the centreline291

of the wave basin with direct comparisons to the predictions of SORWT. Figure 3(a) concerns a292
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near-linear sea-state (Sp = 0.01, kpd = 1.02, σθ = 10◦) and shows very good agreement between293

the experimental and numerical results. This agreement indicates that second-order random wave294

theory is sufficient to describe the wave field and acts to validate the accuracy of the adopted wave295

generation. More importantly, the agreement in both space and time indicates that the wave field296

is not contaminated by any spurious waves or significant reflections; further validation being pro-297

vided in Karmpadakis et al. (2019). Figure 3(b) concerns the same time segment, but corresponds298

to a more nonlinear sea-state (Sp = 0.02). Overall, the experimental and numerical results show299

good agreement, but some differences arise during the formation of the largest wave event. For300

example, the wave recorded at the last wave gauge, around t ≈ 964s, is larger than its second-order301

counterpart. Karmpadakis et al. (2019) have attributed this increase to the effects of higher-order302

nonlinear interactions and discussed its implications for the short-term distribution of crest heights303

(see Figure 1). In figure 3(c), the sea-state steepness has been further increased to Sp = 0.03. In304

this case, the wave event identified above is shown to be smaller than the SORWT prediction at all305

locations and arrives at the last wave gauge earlier. Considering that the surrounding wave field306

is described reasonably well by the numerical simulations, this decrease in the surface elevation307

indicates that the wave recorded in the experiment has broken. Clearly, this is not something that308

can be captured using second-order random wave theory.309

Following a similar approach, Figure 4 presents results arising in sea-states with increasing310

steepness recorded at the central wave gauge. Figure 4(a) concerns time segments for sea-states311

with Sp = 0.01, Sp = 0.02 and Sp = 0.03; the experimental data again being compared to SORWT.312

In the less steep cases, the numerical results provide an accurate description of the wave field.313

However, discrepancies are apparent in the steepest case (Sp = 0.03). These are demonstrated314

in two ways. First, the crest height of the largest wave event in the experiment is larger than its315

SORWT counterpart. Second, the relative elevation of the wave troughs adjacent to the largest316
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experimental wave crest is reduced compared to the second-order simulation. In explaining these317

changes, the effects of higher-order nonlinear interactions, arising at third-order and above, need318

to be considered. At a third-order of approximation, these interactions consist of both bound and319

resonant (or near-resonant) terms. The former contribute to the total surface elevation, but their320

magnitude becomes progressively smaller at higher-orders of nonlinearity. In contrast, resonant321

interactions act to modify the free wave spectrum and induce changes in the amplitude and phasing322

of the individual wave harmonics. As such, their contribution is to increase the total crest height323

elevation and change the shape of (at least) the largest wave event presented in this figure. In324

Figure 4(b), a near-linear sea-state (Sp = 0.01) is compared with a nonlinear (Sp = 0.03) and a325

highly nonlinear sea-state (Sp = 0.06). While similar conclusions can be drawn for the first two326

steepnesses, it is clear that the surface elevations for Sp = 0.06 show marked differences. The327

height of the largest wave crest in the experiment is smaller than the corresponding second-order328

crest height; the same wave having a larger crest when comparisons relate to a sea-state with329

Sp = 0.03. The reduced crest heights recorded in the steepest sea-states provide direct evidence of330

the dissipative effect of wave breaking.331

Taken together, the methodology described above is used to provide temporal wave profiles332

from random experimental simulations that are influenced solely by the sea-state steepness; the333

alignment of the corresponding waves being clearly defined. By comparing these results with the334

predictions of second-order random wave theory, the effects of nonlinearity and wave breaking335

can be explicitly identified.336

4. Discussion of results337

While the study of individual wave events, such as those presented in Section 3, is very informa-338

tive, the focus of the present study lies in the characteristics of the largest waves. This is addressed339
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by investigating their average shape (in time) in both field and laboratory measurements. To obtain340

these average wave shapes, a common approach is to extract a short time segment of the surface341

elevation, η(t), around the largest crest heights. The (shortened) time-histories are then shifted in342

time such that the maximum crest elevation occurs at t = 0s and averaged. While this approach343

has been widely applied in the literature (Phillips et al. 1993b; Jonathan and Taylor 1997; Guedes344

Soares and Pascoal 2005; Whittaker et al. 2016), the exact number of waves being averaged varies345

between studies. In many field related studies, the 20 largest waves arising in sea-states of 30346

minutes duration are used, while in others some fraction of ηc/ση is preferred. As indicated in347

Section 2, the theoretical limit of ηc/ση → ∞ cannot be applied in practice.348

In an effort to select an appropriate (and consistent) number of individual waves to include in the349

averaging process, a large number of numerical simulations were performed using linear random350

wave theory (adopting the methodology outlined in Section 3). To this end, 50 random seeds,351

each of 3-hour duration (at field-scale), were used to extract the largest waves corresponding to352

different percentiles; the latter including the largest [0.1%, 0.2%, 0.5%, 1%, 2% and 5%] waves353

in each seed. The inclusion of a larger number of waves inevitably leads to a downscaling of the354

resulting profile, η(t), since smaller waves are included in the averaging process. In contrast, the355

inclusion of only a small number of waves within the averaging process increases the statistical356

variability and (consequently) introduces deviations from the symmetric profile of a QD-solution.357

In seeking to define the optimal number of waves to be included within the averaging process,358

two metrics are defined. First, the ratio between the maximum of the average wave profile at each359

percentile and the maximum corresponding to the smallest percentile, η̄max/η̄0.1%
max is considered.360

The second metric is the root-mean-square (RMS) error, εrms, between the average wave profiles361

and the scaled QD-wave profile (ηQD); the scaling factor based upon the maximum crest height,362
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ηmax, in each case. This second metric is defined by:363

εrms =
1

N

√

N

∑
i=1

(η̄i −ηQD,i)2, (9)

where i corresponds to each observation and N is the total number of time steps in the time-364

histories, t ∈ [−2Tp, 2Tp]. Figure 5 presents the values of these metrics for each percentile under365

consideration; the two vertical axes having different scales. These show that the average maximum366

crest height decreases monotonically, with the inclusion of more (smaller) waves, while the mini-367

mum rms error (εrms) is observed for the 1% percentile. Specifically, εrms reduces towards the 1%368

percentile, as more waves are included, but then increases for larger percentiles. This indicates that369

the smaller waves added for increased percentiles violate the asymptotic assumptions of the QD-370

wave profile. In such cases an alternative representation should be sought (Lindgren 1970, 1972).371

Using this guidance, the 1% of the largest waves is used when calculating the average wave shapes372

for the remainder of the present paper. This percentile corresponds to a ratio ηc/ση ≈ 3, which373

has been proposed by some earlier studies (Phillips et al. 1993a) and is justified theoretically by374

Cartwright and Longuet-Higgins (1956). It is also important to note that similar results regarding375

the statistical variability arise if the Lindgren variance is used as an alternative (Lindgren 1972);376

the latter quantifying the statistical variability when moving away from the largest crest height.377

However, the approach adopted herein relates directly to the experimental method and provides a378

simpler alternative.379

Having selected the optimal number of waves to consider, the average profile of the largest waves380

can be readily calculated. While field observations generally provide the most accurate represen-381

tation of realistic conditions, it is seldom possible to record sufficiently long time-series in severe382

sea-states. In this respect, laboratory experiments can be used to address the lack of data in the383

steepest sea-states. However, the experimental generation of large waves in shallow water is ex-384
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tremely difficult due to unrepresentative energy losses by bed friction and the inherent limitations385

of wavemaking theory; the latter associated with the increased importance of the second-order386

difference terms as d reduces. To address these issues, the experimental and field datasets are used387

in a complementary manner to provide comparisons to the QD-predictions.388

These comparisons are shown on Figure 6. In all cases the average wave profiles have been nor-389

malised by their maximum elevation (ηmax). As such, the (vertical) deviations between the theo-390

retical and measured wave profiles appear as differences in the depth of the adjacent wave troughs.391

In two examples (Figures 6(a) and 6(c)), the light gray lines correspond to the individual measured392

wave profiles used within the averaging process; the first relating to laboratory data and the second393

to field data. Comparisons between these profiles show that the observed variability is similar in394

the two datasets. Figures 6(a) and 6(b) present comparisons between experimental results and the395

QD-wave profiles for kpd = 1.22 and σθ = 10◦. In the moderate sea-state (Sp = 0.01) presented in396

sub-plot (a), the linear and second-order corrected QD-wave profiles are closely aligned, given the397

limited nonlinearity, and agree very well with the measured data. In contrast, sub-plot (b) consid-398

ers the nonlinear sea-state (Sp = 0.04) and shows that the measured profile deviates markedly from399

the theoretical predictions. These deviations are apparent both in the adjacent wave troughs and400

the front slope (∂η/∂ t) of the largest wave; the measured data exhibiting both a steeper gradient401

and a narrower crest. These observations indicate nonlinear contributions that are not captured by402

the QD models. However, it is important to note that the second-order correction to the QD-wave403

profile provides notably better predictions than its linear counterpart.404

Following a similar approach the average wave profiles recorded in the field are also compared405

to theory. In defining the sea-states to consider at each of the two locations, the data-binning406

methodology (Section 3) was adopted. To achieve the largest possible homogeneity, the selection407

was based upon a maximum variation of ±5% in the sea-state parameters (Hs, Tp and T1); where T1408
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defines the mean wave period. Figures 6(c) and 6(d) relate to measurements from the deepest loca-409

tion (d = 45m), while Figure 6(e) relates to the shallowest location (d = 7.7m). Interestingly, the410

sea-states in sub-plots (c) and (d) are characterised by a similar effective water depth (kpd ≈ 1.4)411

but different steepnesses Sp = [0.018, 0.027]. In the former case, it can be seen that the linear QD-412

wave profile does not agree well with the measurements. In contrast, the second-order corrected413

QD-wave profile closely follows the measured average profile. Similar conclusions arise when the414

steeper case is considered (sub-plot (d)). However, the improvement provided by the second-order415

correction is not sufficient to approximate the measured profile. Considering that these correspond416

to steeper sea-states the explanation lies in the effects of nonlinearity arising above second-order.417

In addition, wave breaking will also be present; the extent to which it influences the results being418

examined in what follows. While these results are in agreement with the findings of Guedes Soares419

and Pascoal (2005), most studies in the literature (Section 2) do not identify such deviations; the420

absence of reliable data in sufficiently steep sea-states being the most probable explanation. More421

importantly, the results presented in sub-plot (e) exhibit clear nonlinear behaviour with steep front422

and back wave slopes (∂η/∂ t), a sharp wave crest and flat wave troughs; all of them being in-423

dicative of the small effective water depth (kpd ≈ 0.75). As such, the linear QD-wave profile424

presents widely different predictions; the second-order correction being outside its range of valid-425

ity (Tayfun 2006b). This last example is indicative of the vast majority of the results obtained in426

this water depth; irrespective of sea-state steepness. This raises significant concerns regarding the427

applicability of the QD-wave approach in very shallow effective water depths.428

With the laboratory data used to extrapolate findings into steeper sea-states that have either not429

been encountered in the field or for which insufficient data is available, it is crucial to verify that430

the two independent data sources provide the same results in those cases where there is an overlap431

between the two. Figure 7 presents an example of a direct comparison between the average profiles432
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of the largest waves recorded in the laboratory and the field for similar sea-states. To achieve this, a433

nearest neighbour algorithm was employed to identify the sea-states from the deepest field location434

(d = 45m) that matched experimental cases in terms of the nondimensional parameters (Sp, kpd).435

A requirement for T1/Tp ≈ 0.82 (DNV 2010) was also enforced to obtain sea-states with peak436

enhancement factors similar to the experiments (γ = 2.5). The observed agreement indicates that437

the experimental measurements can accurately describe the conditions encountered in the field.438

More importantly, the fact that this agreement is observed in a sea-state with Sp = 0.03 provides439

additional confidence because noteworthy nonlinear effects have been observed in the crest height440

statistics for similar sea-state conditions (Karmpadakis et al. 2019).441

To elaborate on this, the average wave shapes arising in experimentally generated sea-states442

with increasing steepness are further investigated on Figure 8. The conditions correspond to443

kpd = 1.22 and σθ = 10◦ and have been normalised with respect to the standard deviation of444

the free surface (ση ) and the mean period (T1). Sub-plot (a) presents results corresponding to445

Sp = 0.01, 0.02, and 0.03, while sub-plot (b) relates to sea-states with Sp = 0.04, 0.05, and 0.06.446

It is clear that in the former case, an increase in sea-state steepness leads to more nonlinear average447

wave profiles; the nonlinearities being manifested as increases in the crest elevation, steepening of448

the wave slopes (∂η/∂ t) and flattening of the wave troughs. In contrast, in the steepest sea-states449

(sub-plot (b)) the reverse trend is observed; particularly considering the maximum crest height. In-450

deed, increases in the sea-state steepness lead to a reduction in the maxima of the average profiles.451

Importantly, the average profiles in sub-plot (a) show little or no evidence of horizontal asymme-452

try, while some minor asymmetries are observed in sub-plot (b); the wave troughs preceding the453

largest crest being marginally shallower than that which follows.454

If these results are examined in isolation, the aforementioned observations could largely be455

attributed to bound nonlinear interactions and the limited influence of wave breaking; the former456
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used to justify the nonlinear changes observed in Figure 8(a) and the latter the energy dissipation in457

Figure 8(b). As a consequence, an observed agreement with a weakly nonlinear QD-profile would458

not seem unreasonable, as suggested in the literature (Section 2). However, any interpretation459

that nonlinear resonant (or near-resonant) effects are not significant is misleading. This is because460

the population of the largest measured waves will likely include both breaking and non-breaking461

waves; their characteristics potentially averaging out important nonlinear changes. To illustrate462

this, the distributions of crest heights (ηc) arising in all sea-states (Sp = 0.01−0.06) are considered463

on Figure 9. For each sea-state, these are based upon a zero-crossing analysis of the time-histories464

of each individual seed. Given that the crest heights in each seed (of the same sea-state) represent465

random samples of the same population, they can be combined into a single larger sample, ranked466

in descending order and plotted against their probability of exceedance (Q). In this way, results467

with much lower probabilities of exceedance, lying at the tail of the distribution, can be examined.468

Subsequently, the 5 largest crest heights arising in the second-order simulation for Sp = 0.01 are469

identified and correlated to their corresponding wave events in the laboratory measurements. As470

the steepness of the sea-states is scaled-up these wave events are tracked taking advantage of the471

(time) alignment of the coupled numerical and experimental datasets (Section 3). These are then472

superimposed on Figure 9; their corresponding probability of exceedance (Q) being calculated on473

the basis of their rank at each sea-state.474

In examining these results, it is clear that the waves that exhibit the largest crest height in the475

near-linear case Sp = 0.01 do not maintain their rank (as the largest) in the steeper cases. In fact,476

they are redistributed towards larger probabilities of exceedance from Sp = 0.02 onwards. The477

range of probabilities which they occupy is also clearly broadening as the sea-state steepness is478

increased. In the steepest case their probabilities range from 10−1 to 3 ·10−3 and only one is still479

ranked in the largest 5 waves in the 3 sea-states with Sp > 0.03. It is worth keeping in mind that480
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if the corresponding statistics were generated on the basis of SORWT results, these waves would481

maintain their rank; since no energy transfers or wave breaking are incorporated. For the experi-482

mental results, the migration towards larger probabilities of exceedance is justified by the occur-483

rence of wave breaking and the associated wave energy dissipation. This implies that eventually484

the largest waves in a linear (or second-order) simulation are more susceptible to wave breaking485

and will not remain the largest as the steepness of the sea-state is increased. As a result, their place486

in the ordered set of crest heights will be occupied by a different wave which will correspond487

to a smaller linear (or second-order) equivalent. This result has far-reaching implications with488

respect to the interpretation of crest height (or wave height) distributions. Generally, it is well-489

established that the occurrence wave breaking leads to crest height reductions and, consequently,490

waves moving towards larger probabilities of exceedance. However, thus far this movement was491

considered to be relatively small; the largest waves considered to remain in the tail of the distribu-492

tion despite the reductions, as discussed by Battjes and Groenendijk (2000). In view of the results493

presented herein it is clear that this is not the case; the breaking waves being characterised by494

probabilities that are typically associated to small non-breaking waves. In this respect, the novelty495

of the adopted approach of coupling numerics and experiments, as well as sea-states with different496

steepness, becomes apparent and is shown to be very insightful.497

With the aim to further clarify these points, this approach is extended to define separate pop-498

ulations of breaking and non-breaking waves. More specifically, the total population of the499

normalised crest heights in the SORWT simulations (η
(2)
c /Hs) is partitioned into bins of width500

∆η
(2)
c /Hs = 0.1 for η

(2)
c /Hs > 0.5. The corresponding normalised crest heights from the labora-501

tory simulations are identified in the same manner as above and the ratio (r = ηc/η
(2)
c ) between502

the two is calculated on a wave by wave basis. As such, r > 1 means that the measured crest503

height is larger than SORWT, while the opposite is true for r < 1. This ratio is then used to detect504
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whether an individual (zero-crossing) wave is being amplified (by nonlinearity) or dissipated (by505

breaking). To avoid the influence of small fluctuations in the measured water surface a “buffer” of506

5% in the calculated values for r is imposed. Therefore, a wave is labelled as breaking if r < 0.95,507

and amplified if r > 1.05; a sensitivity analysis on the width of the “buffer” zone showing that no508

qualitative changes arise when different bands are considered. In this context, the term “break-509

ing” refers to waves that are exhibiting some level of dissipation with respect to the predictions510

of SORWT. In this sense, these include waves that have already broken when they arrive at the511

measuring location. Therefore, this criterion is different to the classic geometric, kinematic and512

dynamic criteria (Babanin 2011; Perlin et al. 2013) which identify incipient breaking and should513

not be interpreted as such.514

The aforementioned definitions are applied to the partitioned data to derive the conditional prob-515

abilities of amplification (Pa) and breaking (Pb) as the ratio between the number of waves in each516

population over the total number of waves contained in each bin. These probabilities are shown517

in Figure 10 for all the sea-states with kpd = 1.22 and σθ = 10◦. Considering the probability of518

amplification in sub-plot (a), it can be seen that as η
(2)
c /Hs increases the probability of a (second-519

order) wave being amplified reduces across all sea-state steepnesses. Moreover, as the sea-state520

steepness increases, the probability of amplification for the smallest (second-order) waves is also521

increased, while it is rapidly reduced for the largest waves. Considering the probability of breaking522

in sub-plot (b), the opposite trends are observed; the largest (second-order) waves are progressively523

more likely to break as η
(2)
c /Hs and Sp increase. Wave breaking is observed even in the most mod-524

erate sea-states with small Sp. In undertaking this analysis, it is worth noting that data bins with525

fewer than 5 points have been excluded in the calculation of both probabilities. When the two526

plots are examined together, it becomes clear that the reason why the largest (second-order) waves527

are not further amplified is because they are breaking; for example η
(2)
c /Hs = 0.8 for Sp = 0.06.528
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These results justify the observations discussed earlier with respect to tracking the relative rank of529

crest heights in the total population of waves (Figure 9). This has clear implications when it comes530

to selecting individual wave events for a wide range of design applications or the calculation of531

extremal statistics; the main conclusion being that the largest wave in a fully nonlinear sense will532

not necessarily stem from a wave that is found in the tail of a linear or second-order crest height533

distribution. In contrast, the largest waves in the steepest sea-states may well correspond to much534

smaller linear or second-order waves.535

In effect, the results presented in Figure 10 clearly show that across a wide range of η
(2)
c /Hs536

breaking and non-breaking waves will be present in sea-states of varying steepness. The question537

that immediately arises is whether the average shapes of the largest waves in these two popula-538

tions have the same characteristics. To address this, the same approach of wave classification is539

employed to investigate the largest 1% of waves; the latter referring to the experimentally mea-540

sured data instead of SORWT simulations. After classifying each wave as breaking and non-541

breaking the wave profiles of each population are extracted from the experimental and numerical542

time-histories, time-shifted and averaged. Given that the waves included in the averaging process543

correspond to the same events in the numerical and experimental datasets, the comparisons of their544

average profiles are deterministic. As such there is significantly more information carried than sim-545

ply comparing averages from uncorrelated samples. Such comparisons have not previously been546

presented in the literature.547

First, the average profiles of the largest non-breaking waves are considered. Figure 11 presents548

comparisons between the corresponding linear, second-order and experimental wave profiles.549

Considering data with kpd = 1.22 and σθ = 10◦, sub-plots (a) and (b) show results for a very550

moderate (Sp = 0.01) and a steep (Sp = 0.04) sea-state respectively. In the former, the largest551

non-breaking waves agree well with the second-order results and are only marginally larger then552
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the linear predictions. This confirms that the waves are weakly nonlinear; the dominant nonlinear553

effects arising at a second-order of wave steepness. In contrast, the comparison in the steeper554

sea-state shows two important effects. First, the maximum crest heights observed experimentally555

are larger than the second-order predictions. The magnitude of this difference is at least compa-556

rable to the difference between LRWT and SORWT suggesting that it cannot be justified solely557

by higher-order bound contributions; the magnitude of the latter being one order of magnitude558

smaller (Fedele et al. 2016). Considering the deterministic nature of these comparisons, this ob-559

servation supports the importance of resonant and near-resonant interactions (Slunyaev et al. 2002;560

Fernandez et al. 2014) in these random records. This is further supported by the amplifications561

in the crest height statistics above the (second-order) Forristall (2000) model for the same data562

discussed by Karmpadakis et al. (2019). Second, when considering the depth of the adjacent wave563

troughs another important difference is observed. The following wave trough in the experimen-564

tal measurements appears to be shallower than the corresponding SORWT and LRWT prediction.565

This indicates the aforementioned higher-order interactions act to change the shape of the waves566

in a way that bound-interactions can not. In drawing an analogy with the study of focused wave567

groups, similar increases in the following wave troughs have been reported by Johannessen and568

Swan (2003) amongst others. In that respect the nonlinearities are manifested as a movement of569

the largest wave event towards the front of the group leading to a trough asymmetry. Conversely,570

if the measured data are considered in isolation, it is obvious that their profile is not symmetric but571

has a front-back asymmetry; the following trough being deeper than the preceding. This trend is572

observed in all the sea-states (Sp > 0.02) in this water depth (kpd = 1.22). In addition, two rep-573

resentative examples are included for a deeper (kpd = 1.53) and shallower (kpd = 1.02) sea-state,574

both with Sp = 0.03 in Figures 11(c) and (d). In examining these examples the same conclusions575
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are reached regarding nonlinear changes in the wave crest and wave shape thereby extending these576

findings to a wider range of effective water depths.577

The results presented in Figure 11 have addressed the average shape of the largest non-breaking578

waves. In performing the same analysis on the population of breaking waves, their average shapes579

can again be extracted. These are now compared to the average wave profiles from the non-580

breaking population to illustrate the differences between them. Figures 12(a)-(d) present these581

comparisons for sea-state steepnesses between Sp = 0.03 and Sp = 0.06 for kpd = 1.22. In com-582

paring the profiles of the breaking and non-breaking waves, two important observations arise.583

First, the broken waves are characterised by smaller maximum crest heights, a clear manifestation584

of energy dissipation. Second, the breaking wave profiles exhibit a horizontal asymmetry that is585

opposite to the asymmetry of the non-breaking waves; the observation being consistent across all586

steepnesses. This means that the wave troughs preceding the largest crest elevations are deeper587

than the following wave troughs for the largest broken waves. Noting that these results represent588

a breakdown of the average wave profiles shown on Figure 8, the lack of significant asymmetries589

observed in the latter can be justified. In effect, the two different types of asymmetries for breaking590

and non-breaking wave populations largely cancel out, leading to a more symmetric wave profile591

when all waves are considered (for the largest 1%). This does not, however, imply that a weakly592

nonlinear QD-wave profile is appropriate, rather that important effects have been cancelled out by593

addressing two very different wave populations.594

To verify that the interpretation of asymmetry presented so far is indeed important, we examine595

the statistics of the geometry of the largest waves. In this way, the results arising from the analysis596

of average wave profiles can be generalised. To achieve this, an asymmetry parameter β is defined597
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as:598

β =
ηpt

η f t

, (10)

where ηpt and η f t are the preceding and following trough depths respectively. As such, if β < 1599

a profile is exhibiting the characteristic non-breaking asymmetry, while the opposite is true for600

β > 1. This metric is used to examine the individual wave profiles corresponding to the largest601

1% of waves arising in each individual sea-state. More specifically, the asymmetry parameter602

is calculated separately for the total, breaking and non-breaking populations of waves. Figure 13603

presents the values of β for all sea-state steepnesses in kpd = 1.22; sub-plot (a) relating to σθ = 10◦604

and sub-plot (b) to σθ = 20◦. In this respect, the findings of this analysis are extended towards605

sea-states with different directional spreading. Additionally, the 95% confidence intervals has606

been added on the results of the total wave population as an indication of the variability in the607

estimates of β . In interpreting the results on Figure 13 it is clear that in both cases the non-breaking608

wave population has β < 1, the breaking population has β > 1 and that the total population lies609

between the two fluctuating around β = 1. This is exactly the same behaviour as discussed with610

respect to the average wave shapes and provides a significant validation of the results presented611

earlier. Moreover, a secondary trend in the the values of the asymmetry parameter β for the612

total and non-breaking populations can be observed. This refers to a decreasing trend in β for613

increasing steepness towards a local minimum (for example Sp = 0.04 in sub-plot (a)) followed614

by an increasing trend for larger steepnesses. This is implies that the nonlinear effects have a615

larger influence for increasing steepness until a critical steepness is reached. Beyond this point the616

effects of wave breaking become progressively more important; the latter leading to some degree617

of saturation. While this secondary trend is less clear for σθ = 20◦ it certainly coincides with the618

observed nonlinear effects in the crest height statistics which obtain a maximum for Sp = 0.04619

(Karmpadakis et al. 2019).620
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Interestingly, comparisons between Figures 14(a) and 14(b) also allow some comments to be621

drawn concerning the role of directionality. For the non-breaking wave population (β < 1) it is622

clear that the higher-order amplifications remain significant, but are perhaps rather smaller with623

increases in the directional spread. Furthermore, in the breaking wave population (β > 1) an in-624

crease in the directional spread leads to smaller β values suggesting that breaking is rather less625

important, particularly for lower Sp values. These effects are consistent with the crest height distri-626

butions reported in Latheef and Swan (2013), Latheef et al. (2017) and Karmpadakis et al. (2019),627

following the expected reduction in the individual wave steepness with increasing directionality.628

Finally, using these results an answer is provided as to why some studies of field data report sym-629

metric average wave profiles even in relatively severe sea-state conditions (Christou and Ewans630

2014; Gemmrich and Thomson 2017), while others have recorded asymmetries (Myrhaug and631

Kjeldsen 1986; Guedes Soares et al. 2004). The extent to which either type of asymmetry can632

be identified critically depends on the competing effects of nonlinear amplifications and the dis-633

sipative effects of wave breaking. Clearly, the method adopted in the experimental part of this634

study cannot be applied to field measurements where coupled simulations cannot be generated.635

However, the asymmetry parameter β can be used to assess whether any statistically significant636

trends are apparent in the present field data. To achieve this, the normalised zero up-crossing and637

down-crossing wave heights arising in all available sea-states are sorted and their probability of638

exceedance (Q) calculated. Using the ratio of the (ordered) wave heights the asymmetry parame-639

ter is calculated and plotted against Q on Figure 14; data recorded in the two water depths being640

superimposed. Considering d = 45m, it can be seen that β fluctuates consistently around 1 for the641

vast majority of the data with some increases observed for the largest wave heights located in the642

tail of the distribution. In contrast, for d = 7.7m the asymmetry parameter is consistently larger643

than 1 indicating a strong presence of wave breaking. In interpreting these findings, the behaviour644
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of β for the deeper location indicates the presence of both breaking and non-breaking waves which645

effectively cancel out their effects. This is consistent with the expected behaviour in intermediate646

and deep water locations and explained above (Figure 10). In contrast, for the shallowest location647

the observed asymmetry implies that wave breaking is the dominating process. Indeed, a recent648

analysis of wave height statistics at this location (Karmpadakis et al. 2020) has shown that there is649

a very strong presence of breaking waves, primarily driven by depth limitations. Since the major-650

ity of the largest waves are breaking the observed values of β > 1 are consistent with the analysis651

presented herein. Clearly, this example relates to the general population trends at each field loca-652

tion and not to the characteristics of individual sea-states; the latter being a natural extension of653

the present work.654

5. Concluding remarks655

The present paper has investigated the characteristics of the largest waves arising in random,656

directionally spread sea-states in finite water depths. This has been achieved using field, experi-657

mental and numerical data. The average profiles of the largest waves for a wide range of sea-states658

have been compared to the theory of Quasi-Determinism (QD). Whilst this undoubtedly provides659

a marked improvement over the “equivalent” regular waves commonly adopted in engineering de-660

sign, it is not without its limitations. Specifically, comparisons to linear QD-wave profiles show661

good agreement for near-linear sea-states. With an increase in the sea-state steepness, the second-662

order corrected QD-wave profile incorporates some of the nonlinearity of the wave profile and663

provides a better approximation. However, very steep sea-states or sea-states in shallow water664

show significant departures from the theoretical predictions.665

When considering the total population of the largest 1% of waves in sea-states with varying666

steepness, it was found that their average profile was either (horizontally) symmetric or charac-667
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terised by very small asymmetries between the wave troughs adjacent to the largest crest. This668

is inconsistent with the observations of fully nonlinear focused wave groups that develop strong669

asymmetries due to the nonlinear physics arising at third-order and beyond. To address this dis-670

crepancy, a novel coupling approach was employed to generate random time-histories of direc-671

tionally spread seas that are phase-aligned for increasing sea-state steepnesses. This data was672

generated both experimentally and numerically; the latter using linear and second-order random673

wave theory. Taking advantage of this coupling, the total population of the largest (1%) waves674

was sub-divided into two smaller populations of non-breaking and breaking waves. When the675

average profiles of the breaking and non-breaking waves are examined separately it was shown676

that they develop opposite asymmetries. In many sea-states these two asymmetries effectively677

cancel out. When the total population of large waves is considered, this produces a symmetric678

wave profile and the inappropriate conclusion that a weakly nonlinear QD-wave profile is rele-679

vant. Interestingly, the asymmetric profile observed for the largest non-breaking waves has the680

same characteristics as that of nonlinear focused waves. Importantly, the higher-order nonlinear681

wave-wave interactions that have been shown to produce significant amplifications in crest height682

statistics (Karmpadakis et al. 2019) have been shown to induce characteristic changes in the shape683

of the largest non-breaking waves; a result that has not previously been established from random684

wave records.685

The coupling of the phase-aligned data has also allowed the tracking of (the same) individual686

waves in sea-states of different steepnesses. This has shown that the largest waves arising in a687

linear (or second-order) simulation do not maintain their rank (as largest) in a fully nonlinear688

(experimental) simulation. Whilst some mobility in the probability domain was expected due to689

energy dissipation by wave breaking, these waves were expected to remain at the tail of the crest690

height (or wave height) distributions. However, the present results show that this is not the case,691
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emphasising the importance of both nonlinear evolution (above second-order) and, particularly,692

wave breaking. This has clear implications in the consideration of extremal statistics of crest693

heights, wave heights and the associated wave shapes. Building upon this data, a first attempt is694

made to quantify the conditional probabilities of amplification and wave breaking based upon the695

magnitude of the underlying linear (or second-order) waves. Again, this emphasizes the impor-696

tance of wave breaking when seeking to describe the individual waves defining the tail of the crest697

height distribution in steep sea-states. Further work to quantify the variation of this effect with698

effective water depth, directional spread and spectral bandwidth is presently on-going.699
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APPENDIX705

a. Second-order interaction kernels706

The second-order interaction kernels used in Equations (4-5) are given by:707

Mi j− =
∞

∑
i=1

∞

∑
j=1

aia j

4

[

Di j − (ki ·k j +RiR j)
√

RiR j

+(Ri +R j)

]

(A1)

and708

Mi j+ =
∞

∑
i=1

∞

∑
j=1

aia j

4

[

Di j+(ki ·k j −RiR j)
√

RiR j

+(Ri +R j)

]

, (A2)
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where709

Di j+ =
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√

R j

)
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2
j −R2
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√

R j(k
2
i −R2

i )
]

(√
Ri +

√

R j

)2 − k+i j tanh(k+i j d)
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(A3)

and710
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2
i −R2
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Ri(k
2
j −R2
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2
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(ki ·k j +RiR j)

(√
Ri −
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)2 − k−i j tanh(k−i j d)
,

(A4)

and where711

k−i j = |ki −k j|, k+i j = |ki +k j|, Ri = ki tanh(kid). (A5)
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TABLE 1. Definition of the laboratory test cases at Imperial College London (d = 0.5m).

Sea-state Tp [s] Hs [mm] Sp =
2πHs

gT 2
p

[-]
Hskp

2
[-] σθ [deg] kpd [-]

A1

1.2

22 0.01 0.035

0,10, 20 1.53

A2 44 0.02 0.069

A3 67 0.03 0.103

A4 89 0.04 0.138

A5 112 0.05 0.172

A6 134 0.06 0.207

A7 157 0.07 0.241

B1

1.4

30 0.01 0.037

0,10, 20 1.22

B2 61 0.02 0.075

B3 91 0.03 0.112

B4 122 0.04 0.150

B5 153 0.05 0.187

B6 183 0.06 0.224

C1

1.6

40 0.01 0.040

0,10, 20 1.02

C2 80 0.02 0.081

C3 120 0.03 0.122

C4 160 0.04 0.163

C5 200 0.05 0.204
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FIG. 1. Normalised crest height (ηc/Hs) distribution [dots] arising in a laboratory-generated, short-crested

sea-state with kpd = 1.22 and Hs = 15.3m compared to the predictions of the Forristall (2000) distribution

[continuous line].
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FIG. 2. Segment of time-histories that demonstrate the wave generation method and relate to the same seed in

sea-states with: Sp = 0.01 [black line], Sp = 0.02 [grey line] and Sp = 0.03 [dashed line]; all with σθ = 10◦.
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(a) Sp : 0.01, kpd : 1.02 and σθ : 10◦ (b) Sp : 0.02, kpd : 1.02 and σθ : 10◦

(c) Sp : 0.03, kpd : 1.02 and σθ : 10◦

FIG. 3. Comparisons between the experimental [black line] and numerical (SORWT) [grey line] time-histories

of the free surface elevation, η(t), along the centreline of the wave basin; the gauge locations being indicated in

the y-axis.
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(a) kpd : 1.02 and σθ : 10◦ (b) k1d : 1.22 and σθ : 10◦

FIG. 4. Comparison of experimental (continuous lines) and numerical (dashed lines) time-histories of water

surface elevation, η(t). The numerical results correspond to SORWT simulations using the same input parame-

ters as the experiment. The results relate to: (a) Sp = 0.01 [blue line], Sp = 0.02 [red line] and Sp = 0.03 [black

line] and (b) Sp = 0.01 [blue line], Sp = 0.03 [red line] and Sp = 0.06 [black line].
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FIG. 5. Assessing the number of large wave profiles appropriate to the determination of an effective average.

Left axis [black line]: ratio between the maximum crest from each average profile and the maximum crest for the

smallest percentile. Right axis [grey line]: Root-mean-square error between the scaled autocorrelation function

and average wave shapes; all data being based upon long linear calculations.
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(a) Laboratory data: Sp = 0.01 (b) Laboratory data: Sp = 0.04

(c) Field data: Hs = 4m, Tp = 12 s, d = 45m (d) Field data: Hs = 6m, Tp = 12 s, d = 45m

(e) Field data: Hs = 2m, Tp = 8 s, d = 7.7m

FIG. 6. Normalised linear [blue line] and second-order corrected [red line] QD-wave profiles (η/ηmax) com-

pared to the average shapes of the largest waves [black line] in a wide variety of sea-states; individual wave

profiles being shown in gray. Sub-plots (a) and (b) correspond to experimental measurements with kpd = 1.22

and σθ = 10◦ but different steepnesses. Sub-plots (c)-(e) correspond to sea-states recorded in the field.
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FIG. 7. Normalised average profiles of the largest waves (η/ηmax) showing agreement between field and

laboratory data with similar sea-state characteristics (kpd = 1.22, Sp = 0.03). The field data have been recorded

at a water depth of d = 45m, while the experimental data correspond to case B3 with σθ = 10◦.
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(a) 0.01 ≤ Sp ≤ 0.03 (b) 0.04 ≤ Sp ≤ 0.06

FIG. 8. Effect of increasing sea-state steepness (as a measure of nonlinearity) for the largest 1% of experimen-

tally recorded waves. The average wave profiles (η/ση ) correspond to: (a) Sp = 0.01 [black line], Sp = 0.02

[grey line] and Sp = 0.03 [dotted line] and (b) Sp = 0.04 [black line], Sp = 0.05 [grey line] and Sp = 0.06 [dotted

line]; all with kpd = 1.22 and σθ = 10◦.
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FIG. 9. Crest height distributions (ηc) [grey dots] arising in all the sea-states with kpd = 1.22 and σθ = 10◦;

the 5 largest crest heights in the corresponding SORWT simulations [coloured dots] being tracked for increasing

sea-state steepness.
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(a) Probability of wave amplification. (b) Probability of wave breaking.

FIG. 10. Probability of waves being (a) amplified or (b) breaking conditional on their corresponding nor-

malised SORWT crest height (η
(2)
c /Hs) for all sea-states with kpd = 1.22 and σθ = 10◦.
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(a) Sp = 0.01, kpd = 1.22 (b) Sp = 0.04, kpd = 1.22

(c) Sp = 0.03, kpd = 1.53 (d) Sp = 0.03, kpd = 1.02

FIG. 11. Effects of nonlinear amplification on the average shape of non-breaking waves. The measured

profiles [black] are compared to their corresponding SORWT (η(2)) [red] and linear (η(1)) [blue] profiles. The

sub-plots correspond to cases with different kpd and Sp, all with σθ = 10◦.
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(a) Sp = 0.03 (b) Sp = 0.04

(c) Sp = 0.05 (d) Sp = 0.06

FIG. 12. The competing effects of nonlinear amplifications and wave breaking on the average wave profiles.

Comparison between average profiles of non-breaking and breaking waves for varying sea-state steepness and

(kpd = 1.22, σθ = 10◦): Large non-breaking waves [black line], large breaking waves [grey line].
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(a) kpd = 1.22 and σθ = 10◦ (b) kpd = 1.22 and σθ = 20◦

FIG. 13. Evolution of the asymmetry parameter β with increasing sea-state steepness Sp. The results corre-

spond to the total population [black line] (of the 1%) of largest waves, the non-breaking [blue line] and breaking

[red line] populations. The 95% confidence intervals have been added on the estimates for the total population.
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FIG. 14. Distribution of the front-back wave trough ratio (β ) corresponding to all sorted wave heights arising

in field measurements water depths of d = 45m [red] and d = 7.7m [blue].

1013

1014

61


