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ON THE B-TWISTED TOPOLOGICAL SIGMA MODEL
AND CALABI-YAU GEOMETRY

Qin Li & Si Li

Abstract

We provide a rigorous perturbative quantization of the B-twisted
topological sigma model via a first-order quantum field theory on
derived mapping space in the formal neighborhood of constant
maps. We prove that the first Chern class of the target manifold
is the obstruction to the quantization via Batalin-Vilkovisky for-
malism. When the first Chern class vanishes, i.e. on Calabi-Yau
manifolds, the factorization algebra of observables gives rise to the
expected topological correlation functions in the B-model. We ex-
plain a twisting procedure to generalize to the Landau-Ginzburg
case, and show that the resulting topological correlations coincide
with Vafa’s residue formula.
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1. Introduction

Mirror symmetry predicts dualities between quantum geometries on
Calabi-Yau manifolds. The two sides of the dual theories are called A-
model and B-model respectively. The A-model is related to symplectic
geometry, which is mathematically established as the Gromov-Witten
theory of counting holomorphic maps. The B-model is attached to com-
plex geometry, which could be understood via Kodaira-Spencer gauge
theory. Such gauge theory is proposed by Bershadsky, Cecotti, Ooguri,
and Vafa [4] as a closed string analogue of Chern-Simons theory [28] in
the B-model, whose classical theory describes the deformation of com-
plex structures. We refer to [2, 9, 19–21] for some recent mathematical
development of its quantum geometry.

Although Kodaira-Spencer gauge theory provides the geometry of
the B-model from the point of view of string/gauge duality, a direct
mathematical approach to the B-model in the spirit of σ-model is still
lacking. The main difficulty is the unknown measure of path integral
on the infinite dimensional mapping space. Thanks to supersymmetry,
the physics of the B-model path integral is expected to be fully encoded
in the small neighborhood of constant maps. This allows us to extract
physical quantities via classical geometries, such as Yukawa couplings
for genus-0 correlation functions, etc. (See [15] for an introduction.) It is
thus desired to have a mathematical theory to reveal the above physics
context in the vicinity of constant maps, parallel to the localized space
of holomorphic maps in the A-model.

The main purpose of the current paper is to provide a rigorous geo-
metric model to analyze the B-model via mapping space. To illustrate
our method, we will focus on topological field theory in this paper, while
leaving the topological string for coupling with gravity in future works.
In the rest of the introduction, we will sketch the main ideas and ex-
plain our construction. A closely related development of the B-model in
physics has been communicated recently to us by Losev [22].
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The geometry of the B-twisted σ-model (in the spirit of AKSZ-formalism
[1]) describes the mapping space

(Σg)dR → T∨
X [1],

where (Σg)dR is the ringed space with the sheaf of the de Rham com-
plex on the Riemann surface Σg, and T∨

X [1] is the super-manifold as-
sociated to the cotangent bundle of X with degree one shifting in the
fiber direction. The full mapping space is difficult to analyze. Instead
we will consider the mapping space in the formal neighborhood of con-
stant maps. Such consideration is proposed in [7] to fit into the effective
renormalization method developed in [5]. Therefore the corresponding
perturbative quantum field theory can be rigorously analyzed, which is
the main context of the current paper. As we have mentioned above,
zooming into the neighborhood of constant maps in the B-model does
not lose information in physics due to supersymmetry.
Notations: We will fix some notations that will be used throughout
the paper. For a smooth manifold M , we will let AM denote the sheaf

of the de Rham complex of smooth differential forms on M , and let A�
M

denote the sheaf of smooth differential forms forgetting the de Rham
differential:

AM := (A�
M , dM ).

DM refers to the sheaf of smooth differential operators on M . When M
is a complex manifold, OM refers to the sheaf of holomorphic functions,
and TM denotes either the holomorphic tangent bundle, or the sheaf
of holomorphic tangent vectors, while its meaning should be clear from
the context (similarly for the dual T∨

M ). We will use Ω•
M to denote the

sheaf of the holomorphic de Rham complex on M , and Dhol
M the sheaf

of holomorphic differential operators. The tensor product ⊗ without
mentioning its ring means ⊗C.

1.1. Calabi-Yau model. The space of fields describing our B-twisted
σ-model is given by

E := AΣg ⊗ (gX [1]⊕ g
∨
X),

where gX is the sheaf of curved L∞-algebra on X describing its complex
geometry [6]. As a sheaf itself,

gX = A�
X ⊗OX

TX [−1], g
∨
X = A�

X ⊗OX
T∨
X [1].

The Chevalley-Eilenberg complex C∗(gX) is a resolution of the sheaf OX

of holomorphic functions on X, and the curved L∞-algebra gX⊕g
∨
X [−1]

describes the derived geometry of T∨
X [1] (see section 2 for details).

The Chevalley-Eilenberg differential and the natural symplectic pair-
ing equip T∨

X [1] (more precisely its L∞-enrichment) with the structure
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of QP-manifold [1]. The action functional is constructed via the AKSZ-
formalism in the same fashion as in [6], formally written as

S(α+ β) =

∫
Σg

〈dΣgα, β〉 +
∑
k≥0

〈
lk(α

⊗k)

(k + 1)!
, β

〉
for α ∈ AΣg ⊗ gX [1], β ∈ AΣg ⊗ g

∨
X . Here lk’s are the L∞-products for

gX . By construction, the action functional satisfies a version of classical
master equation (see sections 2.3 and 2.4 ). One interesting feature is
that S contains only one derivative (coming from dΣg ), and the first-
order formulation has been used (e.g. [3,10,17]) to describe the twisted
σ-model around the large volume limit. We follow the more recent for-
mulation [6, 12], using L∞-algebra via jet bundles as a coherent way to
do perturbative expansion over the target manifoldX. In fact, the terms
involving L∞ products exactly represent the curvature of the target (see
[6] for an explanation) in terms of jets.

We would like to do perturbative quantization via Feynman diagrams
on the infinite dimensional space E analogous to the ordinary non-linear
σ-model [11]. One convenient theory via effective Batalin-Vilkovisky for-
malism is developed by Costello [5], and we will analyze the quantization
problem via this approach.

Theorem 1.1 (Theorem 3.32, Theorem 3.36). Let X be a complex
manifold.

1) The obstruction to the existence of perturbative quantization of our
B-twisted topological σ-model is given by (2−2g)c1(X), where g is
the genus of the Riemann surface Σg and c1(X) is the first Chern
class of X.

2) If c1(X) = 0, i.e. X being Calabi-Yau, then there exists a canoni-
cal perturbative quantization associated to a choice of holomorphic
volume form ΩX .

We refer to section 3 for the precise meaning of the theorem. The the-
orem is proved by analyzing Feynman diagrams with the heat kernel on
Σg associated to the constant curvature metric, and this is consistent
with physics that B-twisting can only exist on Calabi-Yau manifolds.
Similar results on half-twisted B-model and 2d holomorphic Chern-
Simons theory have been obtained in [14,25] via background field method.
Another approach to topological B-model via D-module techniques is
communicated to us by Rozenblyum [23].

Given a perturbative quantization, there exists a rich structure of fac-
torization algebra for observables developed by Costello and Gwilliam
[8]. In our case of quantum field theory in two dimensions, the fac-
torization product for local observables gives rise to the structure of
E2-algebra. A perturbative quantization of a so-called cotangent field
theory (where our Calabi-Yau model belongs) can be viewed as defining
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a certain projective volume form on the space of fields [6]. It allows us to
define correlation functions for local observables via the local-to-global
factorization product. The next theorem concerns the local and global
observables in our model.

Theorem 1.2. Let X be a compact Calabi-Yau with holomorphic
volume form ΩX .

1) The cohomology of local quantum observables on any disk U ⊂ Σg

is H∗(X,∧∗TX)[[�]].
2) The complex of quantum observables on Σg is quasi-isomorphic to

the de Rham complex of a trivial local system on X concentrated
at degree (2g − 2) dimCX.

See section 4.2 for the explanation.
Instead of the de Rham cohomology for observables in the Gromov-

Witten theory, the observables in the B-model are described by polyvec-
tor fields. Let μi ∈ H∗(X,∧∗TX), and let 
iUi ⊂ Σg be the disjoint
union of disks on Σg. Let Oμi,Ui

be a local observable in Ui representing
μi via the above theorem. Then the factorization product with respect
to the embedding


iUi ↪→ Σg

gives a global observable Oμ1,U1 �Oμ2,U2 � · · · �Oμk ,Uk
. Following [6], the

correlation function of topological field theory is defined by the natural
integration

〈Oμ1,U1 , · · · , Oμk ,Uk
〉Σg

:=

∫
X
[Oμ1,U1 � Oμ2,U2 � · · · � Oμk ,Uk

] ∈ C((�)).

Here [−] is the de Rham cohomology class represented by the quantum
observable as in the second part of the above theorem. The degree shift-
ing implies that the correlation function is zero unless

∑
i
degOμi,Ui

=∑
i
deg μi = (2− 2g) dimCX. Explicit calculation on the sphere gives

Theorem 1.3 (Theorem 4.29). Let Σg = P1, and let X be a compact
Calabi-Yau with holomorphic volume form ΩX . Then

〈Oμ1,U1 , · · · , Oμk ,Uk
〉P1 = �dimC X

∫
X
(μ1 · · · μk � ΩX) ∧ ΩX ,

where � is the contraction map and � is a formal variable.

When Σg is an elliptic curve, the only non-trivial topological correla-
tion function is the partition function without inputs.

Theorem 1.4 (Theorem 4.30). Let g = 1; then 〈1〉Σg
= χ(X) is the

Euler characteristic of X.
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To establish the above computation of correlation functions, we de-
scribe a formalism in the spirit of Batalin-Vilkovisky Lagrangian integra-
tion, which is equivalent to the above definition of correlation functions
for our model (Corollary 4.27). It not only simplifies the computation,
but also sheds light on the potential application to theories which are not
cotangent. In fact, the Landau-Ginzburg model to be described below is
not a cotangent field theory; hence the definition of the correlation func-
tion in [6] does not work in this case. However, the Batalin-Vilkovisky
Lagrangian integration still makes sense and gives rise to the expected
result (Proposition 5.14).

1.2. Landau-Ginzburg model. The Calabi-Yau model described above
allows a natural generalization to the Landau-Ginzburg model associ-
ated to a pair (X,W ), where W is a holomorphic function on X called
the superpotential. This is accomplished by a twisting procedure: at the
classical level, the interaction is modified by adding a term IW (Defi-
nition 5.5); at the quantum level, this simple modification is still valid
(Proposition 5.9). In particular, a choice of holomorphic volume form
ΩX on X leads to a quantization of our Landau-Ginzburg B-model.

Let us describe the corresponding observable theory. For simplicity,
let us assume X = Cn, and that the critical set of the superpotential
Crit(W ) is finite. We let {zi} be the affine coordinates on Cn, and
choose ΩX = dz1 ∧ · · · ∧ dzn. We consider the quantization associated
to the pair (X,ΩX) with the twisting procedure described above.

Theorem 1.5 (Proposition 5.12). The cohomology of Landau-Ginzburg
B-model local quantum observables on any disk U ⊂ Σg is Jac(W )[[�]].

Similar to the Calabi-Yau model, we use Of,U to denote a local quan-
tum observable representing f ∈ Jac(W ) in the above theorem. Let

iUi ⊂ Σg be the disjoint union of disks on Σg. Then the factorization
product

Of1,U1 � · · · � Ofk ,Uk

defines a global quantum observable on Σg. However, the Landau-Ginzburg
theory is no longer a cotangent theory in the sense of [6], and the projec-
tive volume form interpretation of quantization breaks down. Instead,
we directly construct an integration map on quantum observables fol-
lowing the interpretation of Batalin-Vilkovisky Lagrangian geometry
described above. This allows us to define the correlation function (Def-
inition 5.13)

〈Of1,U1 � · · · � Ofk,Uk
〉WΣg

in the Landau-Ginzburg case.
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Theorem 1.6 (Proposition 5.14). The correlation function of the
topological Landau-Ginzburg B-model is

〈Of1,U1 � · · · � Ofk,Uk
〉WΣg

=∑
p∈Crit(W )

Resp

(
f1 · · · fk det(∂i∂jW )gdz1 ∧ · · · ∧ dzn∏

i ∂iW

)
,

where Resp is the residue at the critical point p [13].

This coincides with Vafa’s residue formula [26].

Acknowledgments. The authors would like to thank Kevin Costello,
Ryan Grady, Owen Gwilliam, and Yuan Shen for valuable discussions
on quantum field theories. Part of the work was done while the authors
were visiting MSC at Tsinghua University in the summer of 2012 and
2013, and while the first author was visiting Boston University in 2012
and 2013. We would like to thank these universities for their hospitality.
The first author is partially supported by Chinese Universities Scientific
Fund WK0010000030. The second author is partially supported by NSF
DMS-1309118.

2. The classical theory

In this section we will describe the geometry of the B-twisted topo-
logical σ-model and set up our theory at the classical level.

2.1. The model. Let X be a complex manifold, and let Σg be a closed
Riemann surface of genus g. Two-dimensional σ-models are concerned
with the space of maps

Σg → X.

One useful way to incorporate interesting information about the geom-
etry and topology of the target X is to enhance ordinary σ-models to
supersymmetric ones and apply topological twists. There are two twisted
supersymmetric theories that have been extensively studied both in
the mathematics and physics literature: the A-model and the B-model.
These lead to the famous mirror symmetry between symplectic and
complex geometries. In this paper we will mainly focus on the B-model.

One possible mathematical formulation of the quantum field theory
of the B-twisted σ-model is proposed by Costello [7] via formal derived
geometry, and we will adopt this point of view.

Definition 2.1 ([7]). The (fully twisted) B-model, with source a
genus g Riemann surface Σg and target a complex manifold X, is the
cotangent theory to the elliptic moduli problem of maps

(Σg)dR → X∂̄ .
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In the subsequent subsections, we will explain all the notations and
geometric data in the above definition. Basically, we have enhanced the
mapping as from a dg-space (Σg)dR to the L∞-space X∂̄ to implement
supersymmetry. However, the full mapping space is complicated and
hard to analyze. Instead, we will focus on the locus in the formal neigh-
borhood of constant maps. Under this reduction, we describe our classi-
cal action functional in section 2.3. From the physical point of view, the
quantum field theory of the B-twisted σ-model is fully encoded in the
neighborhood of constant maps, thanks to supersymmetry. Therefore
we do not lose any information via this consideration.

2.2. The spaces (Σg)dR and X∂̄ .

2.2.1. The dg-space (Σg)dR. We use (Σg)dR to denote the dg-ringed
space

(Σg)dR =
(
Σg,AΣg

)
on the Riemann surface Σg, where the structure sheaf is the sheaf of
asmooth de Rham complex. AΣg is an elliptic complex, and we view
(Σg)dR as an elliptic ringed space in the sense of [7].

2.2.2. The L∞-space X∂̄ . The space X∂̄ is a derived version of the
complex manifold X itself, which is introduced in [6] to describe holo-
morphic Chern-Simons theory. This is a suitable concept to discuss per-
turbative quantum field theory invariant under a diffeomorphism group.
It consists of a pair

X∂̄ = (X, gX) ,

where gX is the sheaf of curved L∞-algebras on X that we describe now.
As a graded sheaf on X, gX is defined by

gX := A�
X ⊗OX

TX [−1],
where TX [−1] is the sheaf of holomorphic tangent vectors with degree
shifting such that it is concentrated at degree 1. To describe the curved
L∞-structure, we consider

C∗ (gX) := Ŝym
A�

X

(
gX [1]∨
)
=
∏
k≥0

Symk
A�

X

(
gX [1]∨
)
,

where
gX [1]∨ := A�

X ⊗OX
T∨
X

is the dual sheaf of gX [1] over A�
X , and Symk

A�
X

(gX [1]∨) is the graded

symmetric tensor product of k copies of gX [1]∨ over A�
X . When k = 0,

we set Sym0
A�

X

(gX [1]∨) ≡ A�
X .

It is easy to see that

C∗ (gX) = A�
X ⊗OX

ŜymOX

(
T∨
X

)
.

Thus C∗ (gX) is a sheaf of algebras over A�
X .
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Notation 2.2. Let {z1, · · · , zn} denote local holomorphic coordi-

nates on X; we will let {∂̃zi} denote the corresponding basis of gX over

A�
X , and let {d̃zi} denote the corresponding basis of g∨X over A�

X simi-
larly.

A curved L∞-algebra structure on gX is a differential on C∗ (gX) with
which it becomes a dg-algebra over the dg-ring AX . Such a structure is
obtained in [16], which is called a weak Lie algebra there. We reformulate
the construction for the application in the B-twisted σ-model. Let us
first recall

Definition 2.3. Let E be a holomorphic vector bundle on X. We
define the holomorphic jet bundle JetholX (E) as follows: let π1 and π2
denote the projections of X ×X onto the first and second component
respectively,

X ×X
π1

����
��
��
��
�

π2

���
��

��
��

��

X X

then

JetholX (E) := π1∗

(
ÔΔ ⊗OX×X

π∗
2E
)
,

where Δ ↪→ X × X is the diagonal, and ÔΔ is the analytic formal
completion of X ×X along Δ. The jet bundle JetholX (E) has a natural
filtration defined by

F k JetholX (E) := IkΔ JetholX (E),

where IΔ is the structure sheaf of Δ.

It is clear that JetholX (E) inherits a Dhol
X -module structure from ÔΔ,

and we will let Ω∗
X

(
JetholX (E)

)
be the corresponding holomorphic de

Rham complex. The natural embedding

E ↪→ Ω∗
X

(
JetholX (E)

)
induced by taking Taylor expansions of holomorphic sections is a quasi-
isomorphism.

Let us consider a smooth map

ρ : U → X ×X,

where U ⊂ TX is a small neighborhood of the zero section. We require
that ρ is a diffeomorphism onto its image, and if we write

ρ : (x, v) → (x, ρx(v)),

then ρx(−) is holomorphic if we fix x. Such a diffeomorphism can be
constructed from a Kähler metric on X via the Kähler normal coordi-
nates. Note that in general ρx(−) does not vary holomorphically with
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respect to x. Such a map ρ induces an isomorphism

ρ∗ : C∞(X)⊗OX
π1∗

(
ÔΔ

)
∼→ C∞(X)⊗OX

Ŝym
(
T∨
X

)
.

Tensoring with A�
X , we find the following identification:

(2.1) ρ∗ : A�
X ⊗OX

JetholX (OX)
∼→ C∗ (gX) .

Let dDX
be the de Rham differential on A�

X ⊗OX
JetholX (OX) induced

from the Dhol
X -module structure on JetholX (OX). We can define a differ-

ential dCE on C∗ (gX) by

dCE = ρ∗ ◦ dDX
◦ ρ∗−1.

The differential dCE defines a curved L∞-structure on gX , under
which dCE is the corresponding Chevalley-Eilenberg differential. We re-
mark that the use of a Kähler metric is only auxiliary: any choice of
smooth splitting of the projection

F 1 JetholX (OX )→ F 1 JetholX (OX)/F 2 JetholX (OX)

can be used to define a curved L∞-structure on gX , and different choices
are homotopic equivalent [6]. Therefore we will not refer to a particular
choice.

Definition 2.4. gX is the sheaf of curved L∞-algebras on X defined
by the Chevalley-Eilenberg complex (C∗ (gX) , dCE). We will denote the
components of the structure maps (shifted by degree 1) of gX by

lk : Symk
A�

X

(gX [1])→ gX .

Therefore l1 defines gX as a dg-module over AX , lk’s are A�
X-linear

for k > 1, and l0 defines the curving. There is a natural quasi-isomorphic
embedding

(X,OX ) ↪→ (X,C∗ (gX))

and X∂̄ is viewed as the derived enrichment of X in this sense.
Classical constructions of vector bundles can be naturally extended

to the L∞-space X∂̄ .

Definition 2.5. Let E be a holomorphic vector bundle on X. The
induced vector bundle E∂̄ on the L∞-space X∂̄ is defined by the gX-
module whose sheaf of Chevalley-Eilenberg complex C∗ (gX , E∂̄) is the
dg module

C∗ (gX , E∂̄) := A�
X ⊗OX

JetholX (E)

over the dg algebra C∗(gX).

Example 2.6. The tangent bundle TX∂̄ is given by the module
gX [1], with its naturally induced module structure over gX . Similarly,
the cotangent bundle T ∗X∂̄ is given by the natural gX-module gX [1]∨.
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Symmetric and exterior tensor products of vector bundles are defined
in the same fashion. For example,

∧kT ∗X∂̄ = ∧k
(
gX [1]∨
)

and a k-form on X∂̄ is a section of the sheaf

C∗
(
gX ,∧k
(
gX [1]∨
))

= A�
X ⊗OX

JetholX (∧kT∨
X).

In Appendix D, we present the corresponding L∞ constructions in
more detail.

2.2.3. Mapping space as L∞-space. Let f : Σg → X be a smooth
map. The sheaf

f∗
gX ⊗f∗AX

AΣg

naturally inherits a curved L∞-algebra on Σg within which Maurer-
Cartan elements are defined [6] .

Definition 2.7. A map (Σg)dR → X∂̄ consists of a smooth map
f : Σg → X, together with a Maurer-Cartan element

α ∈ f∗
gX ⊗f∗AX

AΣg .

We would like to consider those maps which are constant on the
underlying manifold. As shown in [6], the space of such maps can be
represented by the L∞-space(

X,AΣg ⊗C gX

)
,

which is an enrichment of X∂̄ by the information from the Riemann
surface Σg.

2.3. Classical action functional. As in Definition 2.1, our model is
defined as the cotangent theory to the elliptic moduli problem of maps

(Σg)dR → X∂̄ .

The cotangent construction of perturbative field theory is described in
[8] as a convenient way to implement Batalin-Vilkovisky quantization.
In our case, we consider the enlarged mapping space

(Σg)dR → T ∗X∂̄ [1].

The dg-space (Σg)dR is equipped with a volume form of degree −2,
and T ∗X∂̄ [1] has a natural symplectic form of degree 1. This fits into
the AKSZ-construction [1] and leads to an odd symplectic structure
of degree −1 on the mapping space as desired for Batalin-Vilkovisky
formalism.

We are interested in the locus around constant maps. As explained
in section 2.2.3, such locus is represented by the L∞-space(

X,AΣg ⊗C gT ∗X∂̄ [1]

)
,

where gT ∗X∂̄ [1]
= gX ⊕ gX [1]∨ is the curved L∞-algebra representing

T ∗X∂̄ [1].
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Definition 2.8. The space of fields of the B-twisted σ-model is the

A�
X-module

E := A�
Σg
⊗C

(
gX [1]⊕ g

∨
X

)
.

Lemma/Definition 2.9. There exists a natural graded sympletic
pairing 〈−,−〉 on E of degree −1.

The proof is standard and we omit it here. The classical action func-
tional is constructed in a similar way as in [6].

Definition 2.10. The classical action functional is defined as the
A�

X-valued formal function on E

S(α + β) :=

∫
Σg

⎛⎝〈dΣgα, β〉 +
∑
k�0

1

(k + 1)!
〈lk(α⊗k), β〉

⎞⎠ ,

where α ∈ A�
Σg
⊗ gX [1], β ∈ A�

Σg
⊗ g

∨
X , dΣg is the de Rham differential

on Σg, and lk is the L∞-product for gX .

We will let

Q = dΣg + l1 : E → E
and split the classical action S into its free and interaction parts

S = Sfree + Icl,

where

Icl(α+ β) =

∫
Σg

⎛⎝〈l0, β〉+∑
k�2

1

(k + 1)!
〈lk(α⊗k), β〉

⎞⎠
and

Sfree(α+ β) =

∫
Σg

〈Q(α), β〉.

For later discussion, we denote the following functionals by

(2.2) l̃k(α+ β) :=
1

(k + 1)!

∫
Σg

〈lk(α⊗k), β〉, for k ≥ 0.

2.4. Classical master equation. The classical action functional S
satisfies the classical master equation, which is equivalent to the gauge
invariance in the Batalin-Vilkovisky formalism. We will explain the clas-
sical master equation in this section and set up some notations to be
used for quantization later.
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2.4.1. Functionals on fields. The space of fields E is an A�
Σg

-module.

Let E⊗k denote the A�
X-linear completed tensor product of k copies

of E , where the completion is over the products of Riemann surfaces.
Explicitly,

E⊗k := AΣg×···×Σg ⊗C

((
gX [1]⊕ g

∨
X

)⊗
A�

X

· · · ⊗
A�

X

(
gX [1]⊕ g

∨
X

))
.

The permutation group Sk acts naturally on E⊗k and we will let

Symk (E) :=
(
E⊗k
)
Sk

denote the Sk-coinvariants.
We will use AΣg to denote the distribution valued de Rham complex

on Σg. E will be distributional sections of E :
E = AΣg ⊗C

(
gX [1] ⊕ g

∨
X

)
.

We will also use

E∨ := Hom
A�

X

(
E ,A�

X

)
to denote functionals on E which are linear in A�

X . The symplectic pair-
ing 〈−,−〉 gives a natural embedding

E ↪→ E∨[−1],
which induces an isomorphism

E ∼= E∨[−1].
Definition 2.11. We define the space of k-homogenous functionals

on E by the linear functional (distribution) on Σg × · · · ×Σg (k-copies)

O(k)(E) := Hom
A�

X

(
Symk(E),A�

X

)
,

where our convention is that O(0)(E) = A�
X . We introduce the following

notations:

O(E) :=
∏
k≥0

O(k)(E), O+(E) :=
∏
k≥1

O(k)(E).

Therefore O(E) can be viewed as formal power series on E . The iso-
morphism E ∼= E∨[−1] leads to natural isomorphisms

O(k)(E) = (E∨)⊗k

Sk

∼=
(E [1])⊗k

Sk
,

where the tensor products are the A�
X-linear completed tensor products

over k copies of Σg.

Definition 2.12. Let P ∈ Symk(E). We define the operator of con-
traction with P

∂

∂P
: O(m+k)(E)→ O(m)(E)
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by (
∂

∂P
Φ

)
(μ1, · · · , μm) := Φ(P, μ1, · · · , μm),

where Φ ∈ O(m+k)(E), μi ∈ E .
Definition 2.13. We will denote by Oloc(E) ⊂ O(E) the subspace

of local functionals, i.e. those of the form given by the integration of a
Lagrangian density on Σg ∫

Σg

L(μ), μ ∈ E .

O+
loc(E) is defined similarly to local functionals modulo constants.

Example 2.14. The classical action functional S in Definition 2.10
is a local functional.
2.4.2. Classical master equation. As a general fact in symplectic
geometry, the Poisson kernel of a symplectic form induces a Poisson
bracket on the space of functions. In our case we are dealing with the
infinite dimensional symplectic space (E , 〈−,−〉). The Poisson bracket
is of the form of δ-function distribution; therefore the Poisson bracket
is well-defined on local functionals.

Lemma/Definition 2.15. The symplectic pairing 〈−,−〉 induces an
odd Poisson bracket of degree 1 on the space of local functionals, denoted
by

{−,−} : Oloc(E)⊗A�
X

Oloc(E)→ Oloc(E),
which is bilinear in A�

X .

Lemma 2.16. Let Fl1 be the functional on E defined as follows:

Fl1(α + β) := 〈l21(α), β〉, α ∈ A�
Σg
⊗ gX [1], β ∈ A�

Σg
⊗ g

∨
X .

The classical interaction functional Icl satisfies the following classical
master equation:

(2.3) QIcl +
1

2
{Icl, Icl}+ Fl1 = 0.

Proof. This follows from the fact that the maps {lk}k≥0 of gX define a
curved L∞-structure. See [6]. The extra term Fl1 describes the curving:
{Fl1 ,−} = Q2 = l21. q.e.d.

In particular, Lemma 2.16 implies that the operator Q + {Icl,−}
defines a differential on Oloc(E).

Definition 2.17. The complex Ob :=
(O+

loc(E), Q+ {Icl,−}
)
is called

the deformation-obstruction complex associated to the classical field
theory defined by (E , S).

As established in [5], the complex Ob controls the deformation theory
of the perburbative quantization of S, hence the name.
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3. Quantization

In this section we establish the quantization of our B-twisted σ-model
via Costello’s perturbative renormalization method [5]. We show that
the obstruction to the quantization is given by (2 − 2g)c1(X). When
c1(X) = 0, i.e. X being Calabi-Yau, every choice of holomorphic volume
form onX leads to an associated canonical quantization of the B-twisted
σ-model.

3.1. Regularization. Perturbative quantization of the classical action
functional S is to model the asymptotic �-expansion of the infinite di-
mensional path integral ∫

L⊂E
eS/�,

where L is an appropriate subspace related to some gauge fixing (a BV-
Lagrangian in the Batalin-Vilkovisky formalism). A natural formalism
based on finite dimensional models is∫

L⊂E
eS/� → exp

(
�−1W (G, Icl)

)
,

where W (G, Icl) is the weighted sum of Feynman integrals over all con-
nected graphs, with G (= P∞

0 below) labeling the internal edges, and Icl
labeling the vertices. One essential difficulty is the infinite dimension-
ality of the space of fields which introduces singularities in the prop-
agator G and breaks the naive interpretation of Feynman diagrams.
Certain regularization is required to make sense of the theory, which is
the celebrated idea of renormalization in quantum field theory. We will
use the heat kernel regularization to fit into Costello’s renormalization
technique [5].

3.1.1. Gauge fixing. We need to choose a gauge fixing operator for
regularization. For any Riemann surface Σg, we pick the metric on Σg of
constant curvature 0, 1, or −1, depending on the genus g. In particular,
we choose the hyperbolic metric on Σg when g > 1. The gauge fixing
operator is

QGF := d∗Σg
,

where d∗Σg
is the adjoint of the de Rham differential dΣg on Σg with re-

spect to the chosen metric. It is clear that the LaplacianH = [Q,QGF ] =
dΣgd

∗
Σg

+d∗Σg
dΣg is the usual Laplacian on AΣg . We will let e−tH denote

the heat operator acting on AΣg for t > 0.

Remark 3.1. The operators QGF ,H, and e−tH extend trivially over
gX [1]⊕ g

∨
X to define operators on E , and we will use the same notations

without confusion.
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3.1.2. Effective propagator. To analyze the B-twisted σ-model, we
first describe the propagator of the theory.

Definition 3.2. The heat kernel Kt for t > 0 is the element in
Sym2 (E) defined by the equation

〈Kt(z1, z2), φ(z2)〉 = e−tH(φ)(z1), ∀φ ∈ E , z1 ∈ Σg.

Notation 3.3. The fact that the symplectic pairing on E is (up to

sign) the tensor product of the natural pairings on A�
Σg

and gX [1]⊕ g
∨
X

implies that the heat kernel Kt(z1, z2) is of the following form:

Kt(z1, z2) = Kt(z1, z2)⊗ (IdgX + Idg∨X ),

where Kt is simply the usual heat kernel of e−tH on Σg, and IdgX +Idg∨X
is the Poisson kernel corresponding to the natural symplectic pairing on
gX [1]⊕ g

∨
X . We will call Kt and IdgX + Idg∨X the analytic and combina-

torial parts of Kt respectively.

The combinatorial part of Kt can be described locally as follows:

pick a local basis {Xi} of gX [1] as an A�
X-module, and let {Xi} be the

corresponding dual basis of g∨X . Then we have

IdgX + Idg∨X =
∑
i

(Xi ⊗Xi +Xi ⊗Xi).

Definition 3.4. For 0 < ε < L < ∞, we define the effective propa-
gator PL

ε as the element in Sym2 (E) by
PL
ε (z1, z2) = PL

ε (z1, z2)⊗ (IdgX + Idg∨X ),

where the analytic part of the propagator PL
ε is given by

PL
ε :=

∫ L

ε
(QGF ⊗ 1)Ktdt.

Remark 3.5. In the notations PL
ε (z1, z2) and Kt(z1, z2), we have

omitted their anti-holomorphic dependence for simplicity.

In other words, PL
ε is the kernel representing the operator∫ L

ε QGF e−tHdt on E . The full propagator P∞
0 represents the operator

QGF

H , which is formally the inverse of the quadratic pairing Sfree af-
ter gauge fixing. The standard trick of Feynman diagram expansions
picks P∞

0 as the propagator. However, P∞
0 exhibits singularity along the

diagonal in Σg × Σg, and the above effective propagator with cut-off
parameters ε, L is viewed as a regularization.

It is known that the heat kernel Kt on a Riemann surface Σg has an
asymptotic expansion:

(3.1) Kt(z1, z2) ∼ 1

4πt
e−

ρ2(z1,z2)

4t

(
∞∑
i=0

ti · ai(z1, z2)
)

as t→ 0,
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where each ai(z1, z2) is a smooth 2-form on Σg×Σg and ρ(z1, z2) denotes
the geodesic distance between z1 and z2. Similarly, for the propagator
PL
ε , we have

Lemma 3.6 (Appendix A). The propagator on the hyperbolic upper
half plane H is given explicitly by
(3.2)

PL
ε =

∫ L

ε
f(ρ, t)dt·(

2(x1 − x2)

y1y2
(dy1 − dy2)− (y1 − y2)(y1 + y2)

y1y2

(
dx1
y1
− dx2

y2

))
,

where xi = Re zi and yi = Im zi, for i = 1, 2. The function f(ρ, t) is
smooth on R�0 × R>0, and has an asymptotic expansion as t→ 0:

(3.3) f(ρ, t) ∼
∞∑
k=0

t−2+ke−
ρ2

4t bk(ρ).

3.1.3. Effective Batalin-Vilkovisky formalism. The heat kernel cut-
off also allows us to regularize the Poisson bracket {−,−} and extend
its definition from local functionals to all distributions.

Definition 3.7. We define the effective BV Laplacian ΔL at scale
L > 0

ΔL :=
∂

∂KL
: O (E)→ O (E)

by contracting with KL (see Definition 2.12).

Since the regularized Poisson kernel KL is smooth, ΔL is well-defined
on O (E) and can be viewed as a second-order differential operator in
our infinite dimensional setting.

Definition 3.8. We define the effective BV bracket at scale L

{−,−}L : O(E)×O(E)→ O(E)
by

{Φ1,Φ2}L :=ΔL (Φ1Φ2)− (ΔLΦ1) Φ2 − (−1)|Φ1|Φ1 (ΔLΦ2) ,

∀Φ1,Φ2 ∈ O(E).
As we will see, Batalin-Vilkovisky structures at different scales will

be related to each other via the renormalization group flow.
For two distributions Φ1,Φ2 ∈ O(E), the bracket {Φ1,Φ2}L will in

general diverge as L→ 0. However, for Φ1,Φ2 ∈ Oloc(E),
lim
L→0

{Φ1,Φ2}L = {Φ1,Φ2} ,
where on the right hand side {−,−} is the Poisson bracket as in Lemma
/Definition 2.15. Therefore {−,−}L is a regularization of the classical
Poisson bracket.
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3.2. Effective renormalization. We discuss Costello’s quantization
framework [5] in our current set-up.

3.2.1. Renormalization group flow. We start from the definition of
graphs:

Definition 3.9. A graph γ consists of the following data:

1) A finite set of vertices V (γ).
2) A finite set of half-edges H(γ).
3) An involution σ : H(γ) → H(γ). The set of fixed points of this

map is denoted by T (γ) and is called the set of tails of γ. The set
of two-element orbits is denoted by E(γ) and is called the set of
internal edges of γ.

4) A map π : H(γ) → V (γ) sending a half-edge to the vertex to
which it is attached.

5) A map g : V (γ)→ Z�0 assigning a genus to each vertex.

There exists a naturally constructed topological space |γ| from the above
abstract data (see chapter 2, section 3.1, in [5] for more details on the
construction). A graph γ is called connected if |γ| is connected. A graph
is called stable if every vertex of genus 0 is at least trivalent, and every
genus 1 vertex is at least univalent. The genus of the graph γ is defined
to be

g(γ) := b1(|γ|) +
∑

v∈V (γ)

g(v),

where b1(|γ|) denotes the first Betti number of |γ|.
Let

(O(E)[[�]])+ ⊂ O(E)[[�]]
be the subspace consisting of those functionals which are at least cubic

modulo � and modulo the nilpotent ideal I in the base ring A�
X . Let

I ∈ (O(E)[[�]])+ be a functional which can be expanded as

I =
∑
k,i≥0

�kI
(k)
i , I

(k)
i ∈ O(i)(E).

We view I
(k)
i as an Si-invariant linear map

I
(k)
i : E⊗i → A�

X .

With the propagator PL
ε , we will describe the Feynman weights

Wγ(P
L
ε , I) ∈ (O(E)[[�]])+

for any connected stable graph γ: we label every vertex v in γ of genus

g(v) and valency i by I
(g(v))
i , which we denote by:

Iv : E⊗H(v) → A�
X ,
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where H(v) is the set of half-edges of γ which are incident to v. We
label every internal edge e by the propagator

Pe = PL
ε ∈ E⊗H(e),

where H(e) ⊂ H(γ) is the two-element set consisting of the half-edges
forming e. Now we can contract

⊗v∈V (γ)Iv : EH(γ) → A�
X

with

⊗e∈E(γ)Pe ∈ EH(γ)\T (γ) → A�
X

to yield a linear map

Wγ(P
L
ε , I) : E⊗T (γ) → A�

X .

We can now define the renormalization group flow operator:

Definition 3.10. The renormalization group flow operator from scale
ε to scale L is the map

W (PL
ε ,−) : (O(E)[[�]])+ → (O(E)[[�]])+

defined by taking the sum of Feynman weights over all stable connected
graphs:

I →
∑
γ

1

|Aut(γ)|�
g(γ)Wγ(P

L
ε , I).

A collection of functionals

{I[L] ∈ (O(E)[[�]])+ |L ∈ R+}
is said to satisfy the renormalization group equation (RGE) if for any
0 < ε < L <∞, we have

I[L] = W (PL
ε , I[ε]).

Remark 3.11. Formally, the RGE can be equivalently described as

eI[L]/� = e
� ∂

∂PLε eI[ε]/�.

3.2.2. Quantum master equation. Now we explain the quantum
master equation as the quantization of the classical master equation.
Usually the quantum master equation is associated with the following
operator [5] in the Batalin-Vilkovisky formalism

Q+ �ΔL,

which can be viewed as a quantization of the differential Q.
However, in our case, the above operator does not define a differential

due to the curving

(Q+ �ΔL)
2 = l21.

We will modify the construction in [5] to incorporate with the curving.
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Definition 3.12. We define the effective curved differential QL : E →
E by

QL := Q+ l21

∫ L

0
QGF e−tHdt,

where l21
∫ L
0 QGF e−tHdt is the composition of the operator

∫ L
0 QGF e−tHdt

with l21.

It is straightforward to prove the following lemma:

Lemma 3.13. The quantized operator QL + �ΔL +
Fl1
� is compatible

with the renormalization group flow in the following sense (recall Lemma
2.16 for the definition Fl1):

e
� ∂

∂PLε

(
Qε + �Δε +

Fl1

�

)
=

(
QL + �ΔL +

Fl1

�

)
e
� ∂

∂PLε .

Moreover, it squares to zero modulo A�
X :(

QL + �ΔL +
Fl1

�

)2
= C

equals the multiplication by some C ∈ A�
X .

Therefore we will use QL + �ΔL +
Fl1
� instead of Q+�ΔL in order to

define the quantum master equation. The constant C does not bother us
since the perturbative quantization in [5] is defined modulo the constant
terms. Precisely,

Definition 3.14. Let {I[L] ∈ (O(E)[[�]])+ |L ∈ R+} be a collection
of effective interactions that satisfy the renormalization group equation.
We say that they satisfy the quantum master equation if for all L > 0
the following scale L quantum master equation (QME) is satisfied:

(3.4)

(
QL + �ΔL +

Fl1

�

)
eI[L]/� = ReI[L]/�,

where R ∈ A�
X [[�]] does not depend on L.

In other words, if we view QL + �ΔL +
Fl1
� as defining a projectively

flat connection, then a solution of the quantum master equation defines
a projectively flat section.

Lemma 3.15. The quantum master equation is compatible with the
renormalization group flow in the following sense: if the collection
{I[L]|L ∈ R+} satisfies the QME at some scale L0 > 0, then the QME
holds for any scale.

Proof. This follows from Lemma 3.13. q.e.d.
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Lemma 3.16. Suppose I[L] satisfies the quantum master equation at
scale L > 0; then QL+ �ΔL+ {I[L],−}L defines a square-zero operator
on O(E)[[�]].

Proof. Let UL = QL + �ΔL + {I[L],−}L and Φ ∈ O(E)[[�]]. Then(
QL + �ΔL +

Fl1

�

)(
ΦeI[L]/�

)
= (UL(Φ) +RΦ) eI[L]/�.

Applying QL + �ΔL +
Fl1
� again to both sides, we find

CΦeI[L]/� =
(
U2
L(Φ) + UL(RΦ) +R(UL(Φ) +RΦ)

)
eI[L]/�.

Set Φ = 1. We find C = dXR + R2, while R2 = 0 since R is a 1-form.
Here dX is the de Rham differential on X. On the other hand,

UL(RΦ) = (dXR)Φ−RUL(Φ).

Comparing the two sides of the above equation, we get U2
L(Φ) = 0 as

desired. q.e.d.

Remark 3.17. From the above proof, we find the following compat-
ibility equation: C = dXR. It is not hard to see that the two form C is
given by the contraction between Fl1 and ΔL, describing the curvature
l21. In fact C represents (2− 2g)c1(X). The compatibility equation says
that C is an exact form, implying that the Calabi-Yau condition is nec-
essary for the quantum consistency (if g �= 1). In section 3.3.3, we will
show that the Calabi-Yau condition is also sufficient for anomaly can-
cellation. Such a phenomenon arising from the curved L∞-algebra does
not play a role in [6], but we expect that it would appear in general.

It is easy to see that the leading �-order of the quantum master
equation reduces to the classical master equation when L→ 0. Therefore
the square-zero operator QL + �ΔL + {I[L],−}L defines a quantization
of the classical Q+ {Icl,−}.
3.2.3. C×-symmetry. Later, when we study quantum theory of the B-
twisted σ-model, we will be interested in quantizations which preserve
certain symmetries we describe now: we consider an action of C× on E
as follows:

λ · (α1 ⊗ g1 + α2 ⊗ g
∨
2 ) := α1 ⊗ g1 + λ−1α2 ⊗ g

∨
2 , λ ∈ C×.

Definition 3.18. We define an action of C× on O(E)((�)) by
(λ · (�kF ))(v) := λk�kF (λ−1 · v), F ∈ O(E), v ∈ E .

It is obvious that the classical interaction Icl/� is invariant under this
action. The following lemma can be proved by straightforward calcula-
tion, which we omit:

Lemma 3.19. The following operations are equivariant under the
action of C×:
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1) the renormalization group flow operator:

W (PL
ε ,−) : (O(E)[[�]])+ → (O(E)[[�]])+,

2) the differential Q : O(E)[[�]] → O(E)[[�]],
3) the quantized differential QL + �ΔL + �−1Fl1 ,
4) the BV bracket {−,−}L : O(E)[[�]] ⊗

A�
X [[�]]

O(E)[[�]] → O(E)[[�]],
for all L > 0.

The following proposition describes those functionals in O(E)[[�]] that
are C×-invariant.

Proposition 3.20. Let I =
∑

i≥0 I
(i) ·�i ∈ O(E)[[�]]. If I is invariant

under the C× action, then I(i) = 0 for i > 1, and furthermore I(1) lies
in the subspace

O(AΣg ⊗ gX [1]) ⊂ O(E).
Proof. The hypothesis that I is invariant implies that I(i) has weight

−i under the C× action. Notice that the weight of the C× action on
O(E) can be only −1 or 0, which implies the first statement. The second
statement of the proposition is obvious. q.e.d.

3.3. Quantization. We study the quantization of the B-twisted σ-
model in this section. Firstly, let us recall the definition of perturbative
quantization of classical field theories in the Batalin-Vilkovisky formal-
ism in [5]:

Definition 3.21. Let I ∈ Oloc(E) be a classical interaction functional
satisfying the classical master equation. A quantization of the classical
field theory defined by I consists of a collection {I[L] ∈ (O(E)[[�]])+|L ∈
R+} of effective functionals such that

1) The renormalization group equation is satisfied.
2) The functional I[L] must satisfy a locality axiom, saying that as

L→ 0 the functional I[L] becomes more and more local.
3) The functional I[L] satisfies the scale L quantum master equation

(3.4).
4) Modulo �, the L→ 0 limit of I[L] agrees with the classical inter-

action functional I.

The strategy for constructing a quantization of a given classical action
functional is to run the renormalization group flow from scale 0 to scale
L. In other words, we try to define the effective interaction I[L] as the
following limit:

lim
ε→0

W (PL
ε , I).

However, the above limit in general does not exist. Then the technique of
counter-terms solves the problem: after the choice of a Renormalization
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Scheme, there is a unique set of counter-terms ICT (ε) ∈ (Oloc(E)[[�]])+
such that the limit

(3.5) lim
ε→0

W (PL
ε , I − ICT (ε)) ∈ (O(E)[[�]])+

exists. For more details on the Renormalization Scheme and counter-
terms, we refer the readers to [5]. It is then natural to define the naive
quantization Inaive[L] of I to be the limit in equation (3.5). For the
B-twisted σ-model, we calculate the naive quantization in section 3.3.1.
In particular, we show that the counter-terms for our theory actually
vanish.

The naive quantization {Inaive[L]|L > 0} automatically satisfies the
renormalization group equation and the locality axiom by construction.
However, it does not satisfy the quantum master equation in general. In
order to find the genuine quantization, we need to analyze the possible
cohomological obstruction to solving the QME, and correct the naive
quantization {Inaive[L]|L > 0} term by term in � accordingly if the
obstruction vanishes. The C× symmetry of the classical interaction Icl
simplifies this computation to a one-loop anomaly, and in Appendix
C we give a formula for a one-loop anomaly for general field theories.
This formula, when specialized to the B-twisted σ-model, shows that the
condition for anomaly cancellation is exactly the Calabi-Yau condition
of the target X. This is done in section 3.3.3. In section 3.3.4, we give
an explicit formula for the one-loop correction of the naive quantization
when X is Calabi-Yau.

Remark 3.22. In later sections, we will give the details of the analysis
for Riemann surfaces of genus g > 1; the studies of P1 and elliptic curves
are similar and actually easier, and we omit them.

3.3.1. The naive quantization. Let Icl denote the classical interac-
tion of the B-twisted σ-model. We will show that the following limit
exists for all L > 0:

(3.6) lim
ε→0

W (PL
ε , Icl).

The following simple observation simplifies the analysis greatly: for
any L > ε > 0 and any graph γ, the associated Feynman weight
�|g(γ)|

|Aut(γ)|Wγ(P
L
ε , Icl) is invariant under the C× action defined in section

3.2.3, by Lemma 3.19 and the fact that Icl/� is C×-invariant. By Propo-
sition 3.20, we have

Wγ(P
L
ε , Icl) = 0

for those stable graphs γ with genus greater than 1. Thus we only need
to consider Feynman weights for trees and one-loop graphs. For any
classical interaction I, the limit (3.6) always exists for trees, but not
necessarily for one-loop graphs. Fortunately, for the classical interaction
Icl of the B-twisted σ-model, the limit (3.6) exists.
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Lemma/Definition 3.23. Let γ be a graph of genus 1; then the
following limit exists:

lim
ε→0

Wγ(P
L
ε , Icl).

We define the naive quantization at scale L to be

Inaive[L] := lim
ε→0

W (PL
ε , Icl).

Remark 3.24. As discussed in Definition 3.4, the propagator PL
ε con-

sists of an analytic part and a combinatorial part. It is clear that only
the analytic part is relevant to the convergence issue. In the following,
we will use the notation W (PL

ε , Icl) to denote the analytic part of the
RG flow W (PL

ε , Icl), whose inputs are only differential forms on Σg. We
will also use similar notations replacing Kε by Kε later.

Proof. Since Icl ∈ (O(E))+ ⊂ (O(E)[[�]])+, we only need to consider
those genus 1 graphs γ whose vertices are all of genus 0, i.e. b1(γ) = 1.
Such a graph is called a wheel if it can not be disconnected by removing
a single edge. Every graph with first Betti number 1 is a wheel with trees
attached on it. Since trees do not contribute any divergence, we only
need to prove the lemma for wheels. Let γ be a wheel with n tails, and
let α1⊗g1, · · · , αn⊗gn ∈ E be inputs on the tails. If the valency of some
vertices of γ is greater than 3, we can combine the analytic part of the
inputs on the tails that are attached to the same vertex. More precisely,
the convergence property of the following two Feynman weights is the
same:

Thus the proof of the lemma can be further reduced to trivalent wheels.
Let γ be a trivalent wheel with n vertices; we prove the lemma for the
three possibilities:

(1) n = 1: in this case, the graph γ contains a self-loop, and the
Feynman weight is given by

Wγ(P
L
ε , Icl)(α) =

∫ L

t=ε
dt

∫
z1∈Σg

d∗Kt(z1, z1)α.

Let the Riemann surface Σg be of the form Σg = H/Γ, where Γ is a
subgroup of isometry acting discretely on H. Let kt denote the heat
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kernel on H, and let π denote the natural projection H→ Σg. The heat
kernel on Σg can be written as:

Kt(π(x1), π(x2)) =
∑
g∈Γ

kt(x1, g · x2),

from which it is clear that Kt is regular along the diagonal in Σg ×Σg:
we can pick x1 = x2 in the above identity. If g = id, then kt(x1, x1)
vanishes by Lemma 3.6; otherwise kt(x1, g · x1) is automatically regular
since the heat kernel is singular only along the diagonal but x1 �= g ·x1.

(2) n ≥ 3: the Feynman weight is given explicitly by:
(3.7)

Wγ(P
L
ε , Icl)(α1, · · · , αn)

=

∫
z1,··· ,zn∈Σg

PL
ε (z1, z2)P

L
ε (z2, z3) · · ·PL

ε (zn, z1)α1(z1, z̄1) · · ·αn(zn, z̄n)

=

∫ L

t1,··· ,tn=ε
dt1 · · · dtn(∫

z1,··· ,zn∈Σg

(d∗Kt1(z1, z2)) · · · (d∗Ktn(zn, z1))α1(z1, z̄1) · · ·αn(zn, z̄n)

)

Using the same argument as in case (1), there is no difference if we
replace Σg in equation (3.7) by H as far as only the convergence property
is concerned:
(3.8)∫ L

t1,··· ,tn=ε
dt1 · · · dtn(∫

z1,··· ,zn∈H
(d∗kt1(z1, z2)) · · · (d∗ktn(zn, z1))α1(z1, z̄1) · · ·αn(zn, z̄n)

)
For simplicity, we keep the notation for the inputs α1, · · · , αn which are
now differential forms on H with compact support. We can write the
integral (3.8) as the sum of the following integrals where σ runs over
the symmetric group Sn:
(3.9)∫

ε�tσ(1)�···�tσ(n)�L
dt1 · · · dtn(∫

z1,··· ,zn∈H
(d∗kt1(z1, z2)) · · · (d∗ktn(zn, z1))α1(z1, z̄1) · · ·αn(zn, z̄n)

)
We will show that the integral (3.9) converges as ε→ 0 for σ = id ∈ Sn;
the proof for other permutations σ is the same. Let (z1, · · · , zn) = (x1+
iy1, · · · , xn + iyn) denote the standard coordinates on H × · · · × H. By
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Lemma 3.6, the leading term of d∗ktk(zk, zk+1) is of the form
(3.10)

1

t2k
e
−

ρ2(zk,zk+1)

4tk

(
Q1(zk, z̄k; zk+1, z̄k+1)(xk+1 − xk)(dyk+1 − dyk)

−Q2(zk, z̄k; zk+1, z̄k+1)(yk+1 − yk)(
dxk+1

yk+1
− dxk

yk
)
)
,

where Q1 and Q2 are smooth functions on H×H. To show the conver-
gence of the integral (3.9) as ε → 0, we will apply Wick’s lemma and
show that the integral of the leading term in (3.9) converges. The higher
order terms have better convergence property.

Without loss of generality, we can assume that the supports of α′
is lie

in a small neighborhood of the small diagonal Δ = {(z, · · · , z) : z ∈ H}
of H × · · · × H. Otherwise we can choose a cut-off function supported
around Δ and split the integral into parts of the desired form. We con-
sider the following change of coordinates: let w0 = (u0, v0) = (x1, y1) ∈
H and let wk = (uk, vk) ∈ R2 be the Riemann normal coordinate of the
point (xk+1, yk+1) with center (xk, yk) for 1 � k � n − 1 such that on
Δk := {(z1, · · · , zn) ∈ H× · · · ×H : zk = zk+1}, we have

(3.11)

∂(xk+1 − xk)

∂uk

∣∣∣∣
Δk

=
∂(yk+1 − yk)

∂vk

∣∣∣∣
Δk

=
1

yk
,

∂(xk+1 − xk)

∂vk

∣∣∣∣
Δk

=
∂(yk+1 − yk)

∂uk

∣∣∣∣
Δk

= 0.

By the definition of Riemann normal coordinates, the geodesic dis-

tance between zk and zk+1 is ρ(zk, zk+1) = (u2k + v2k)
1
2 = ||wk|| when

they are close. It is obvious that there are smooth positive functions
{φk, ψk, 1 � k � n} on H×R2n−2 such that
(3.12)
|xk+1 − xk| � φk · ||wk||, |yk+1 − yk| � ψk · ||wk||, for 1 � k � n− 1

|xn − x1| � φn · (
n−1∑
k=1

||wk||), |yn − y1| � ψn · (
n−1∑
k=1

||wk||).

With the above preparation, we are now ready to show the conver-
gence of the integral of the leading term in (3.9). After plugging equation
(3.10) into (3.9) and using the estimate (3.12), it is not difficult to see
that there is a smooth positive function Φ on H×R2n−2, such that the
integral (3.9) with σ = id is bounded above in absolute value by:∫

ε�t1�···�tn�L

n∏
i=1

dti

∫
w0∈H

∫
w1··· ,wn−1∈R2

Φ(w0, · · · , wn)·(
n−1∏
i=1

||wi||
t2i

e
−

||wi||
2

4ti

)
· ||w1||+ · · · + ||wn−1||

t2n
· e−

ρ2(zn,z1)
4tn

n−1∏
i=0

d2wi
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�

∫
ε�t1�···�tn�L

n∏
i=1

dti

∫
w0∈H

∫
w1··· ,wn−1∈R2

Φ(w0, · · · , wn)·(
n−1∏
i=1

||wi||
t2i

e
−

||wi||
2

4ti

)
· ||w1||+ · · · + ||wn−1||

t2n

n−1∏
i=0

d2wi.

The inequality follows simply by dropping the term e−
ρ2(zn,z1)

4tn , and the
function Φ arises as the product of absolute value of the following func-
tions or differential forms:

1) the functions φk and ψk in (3.12);
2) the Jacobian of the change from the standard coordinates to the

Riemann normal coordinates;
3) the functions Q1, Q2 in (3.10);
4) the inputs on the tails of the wheel.

From 4) it is clear that we can choose Φ with compact support. Thus
we only need to show that the following integral is convergent:

(3.13)

∫
ε�t1�···�tn�L

n∏
i=1

dti

∫
w1··· ,wn−1∈R2

(
n−1∏
i=1

||wi||
t2i

e
−

||wi||
2

4ti

)

· ||w1||+ · · ·+ ||wn−1||
t2n

n−1∏
i=1

d2wi.

We can further change the coordinates: let

ξk = wk · t−
1
2

k , 1 � k � n− 1.

Then (3.13) becomes∫
ε�t1�···�tn�L

n−1∏
i=1

dti

∫
ξ1··· ,ξn−1∈R2

(
n−1∏
i=1

||ξi||
t
1/2
i

e−
||ξi||

2

4

)

· ||ξ1||t
1/2
1 + · · ·+ ||ξn−1||t1/2n−1

t2n

n−1∏
i=1

d2ξi,

which is bounded above by(∫
ε�t1�···�tn�L

(
n−1∏
i=1

t
− 1

2
i

)
t
− 3

2
n

n∏
i=1

dti

)

·
(∫

ξ1,··· ,ξn−1∈R2

P (||ξi||)e−
∑n−1

i=1 ||ξi||2/4

)
,

where P (||ξi||) is a polynomial of ||ξi||’s. It is not difficult to see that
the first integral converges as ε → 0 when n � 3, and that the second
integral is finite.
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(3) n = 2: Plugging the leading term of equation (3.10) into the
integral (3.8) for n = 2, we can see that the integral of the leading term
is of the following form:
(3.14)

1

t21t
2
2

∫ L

t1,t2=ε
dt1dt2

∫
(u0,v0)∈H

∫
(u1,v1)∈R2

Φ(u0, v0, u1, v1)

· (x1 − x2)(y1 − y2) exp

(
−(u21 + v21)

(
1

t1
+

1

t2

))
du0dv0du1dv1,

where Φ is similar to that in the case where n ≥ 3. The fact that the
functions (x1 − x2)

2 and (y1 − y2)
2 do not show up in equation (3.14)

follows from the trivial observation that (dy1−dy2)
2 = (dx1

y1
− dx2

y2
)2 = 0.

This simple fact, together with the derivatives of x1 − x2 and y1 − y2
in equation (3.11), implies that the leading term in Wick’s expansion of
the integral

1

t21t
2
2

∫
(u1,v1)∈R2

Φ(u0, v0, u1, v1)(x1 − x2)(y1 − y2)

· exp
(
−(u21 + v21)

(
1

t1
+

1

t2

))
du1dv1

is given by a multiple of

1

t21t
2
2

∫
(u1,v1)∈R2

u21v
2
1 exp

(
−(u21 + v21)

(
1

t1
+

1

t2

))
du1dv1 ∝ t1t2

(t1 + t2)3
.

The integral of
t1t2

(t1 + t2)3
on [ε, L]× [ε, L] clearly converges as ε→ 0.

Furthermore, since Φ has compact support on H × R2, it is clear that
the integral (3.14) converges as ε→ 0. q.e.d.

3.3.2. Obstruction analysis. By construction, the naive quantization
{Inaive[L]|L ∈ R+} satisfies all requirements of a quantization except for
the quantum master equation. In general, there exist potential obstruc-
tions to solving the quantum master equation known as the anomaly.
The analysis of such obstructions is usually very difficult. In [5], Costello
has developed a convenient deformation theory to deal with this prob-
lem, which we will follow to compute the obstruction space of the B-
twisted σ-model.

Recall thatOb =
(O+

loc(E), Q+ {Icl,−}
)
is the deformation-obstruction

complex of our theory. Costello’s deformation method says that

H1(Ob)

is the obstruction space for solving the quantum master equation, and

H0(Ob)
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parametrizes the deformation space. Both cohomology groups can be
computed via D-module techniques. In our case, we can restrict to a
subcomplex of Ob, thanks to the C×-symmetry.

Definition 3.25. We define Ẽ ⊂ E to be the subspace

Ẽ := AΣg ⊗ gX [1]

and Õb to be the reduced deformation-obstruction complex

Õb :=
(
O+

loc

(
Ẽ
)
, Q+ {Icl,−}

)
.

Proposition 3.26. The obstruction space for solving the quantum

master equation with prescribed C×-symmetry is H1
(
Õb
)
.

Proof. This is the same as the holomorphic Chern-Simons theory in
[6]. q.e.d.

To describe the complex Õb, we first introduce some notations. Let

JetΣg

(
Ẽ
)
:= JetΣg

(AΣg

)⊗ gX [1]

be the sheaf of smooth jets of differential forms on Σg valued in gX [1],

and letDΣg be the sheaf of smooth differential operators on Σg. JetΣg

(
Ẽ
)

is naturally a DΣg -module, and we define its dual

JetΣg

(
Ẽ
)∨

:= Hom
C∞(Σg)⊗A�

X

(
JetΣg

(
Ẽ
)
, C∞(Σg)⊗A�

X

)
.

Equivalently,

JetΣg

(
Ẽ
)∨

= JetΣg

(AΣg

)∨ ⊗ gX [1]∨,

where JetΣg

(AΣg

)∨
is the complex of the dualDΣg -module of JetΣg

(AΣg

)
,

with an induced differential which we still denote by dΣg . There is a nat-
ural identification between complexes of DΣg -modules

JetΣg

(AΣg

)∨ ∼= DΣg ⊗ ∧∗TΣg ,

where TΣg is the smooth tangent bundle, and the right hand side is
the usual complex of Spencer’s resolution. In particular, we have the
quasi-isomorphism

(JetΣg

(AΣg

)∨
, dΣg ) � C∞(Σg).(3.15)

JetΣg

(
Ẽ
)∨

is a locally free DΣg -module. We will let Atop
Σg

denote the

right DΣg -module of top differential forms on Σg. According to the def-

inition of local functionals, O+
loc(Ẽ) is isomorphic to the global sections

of the following complex of sheaves on Σg:

(3.16) Atop
Σg
⊗DΣg

∏
k≥1

Symk
DΣg⊗A�

X

(
JetΣg

(
Ẽ
)∨)
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with the differential induced from Q + {Icl,−}. All the sheaves here,
including the sheaf of jets, are sheaves over smooth functions on Σg.
Thus these sheaves are all fine sheaves, a fact which implies that the
cohomology we want to compute is nothing but the hypercohomology
of the complex (3.16) with respect to the global section functor.

Proposition 3.27. The cohomology of the deformation-obstruction
complex of the B-twisted σ-model is

Hk(Õb) =
∑

p+q=k+2

Hp
dR(Σg)⊗Hq(X,Ω1

cl),

where Ω1
cl is the sheaf of closed holomorphic 1-forms on X. In particular,

the obstruction space for the quantization at the one-loop is given by

H1(Õb) =
(
H0

dR(Σg)⊗H3(X,Ω1
cl)
)⊕ (H1

dR(Σg)⊗H2(X,Ω1
cl)
)

⊕ (H2
dR(Σg)⊗H1(X,Ω1

cl)
)
.

Proof. We follow the strategy developed in [6]. The Koszul resolution
gives a resolution of the DΣg -module

AΣg(DΣg )[2]→ Atop
Σg

,

where AΣg

(
DΣg

)
[2] is the de Rham complex of DΣg . Together with the

quasi-isomorphism (3.15) and the fact that the DΣg -module∏
k≥1

Symk
DΣg⊗A�

X

(
JetΣg

(
Ẽ
)∨)

is flat, we find quasi-isomorphisms

Õb ∼= Atop
Σg
⊗L

DΣg

⎛⎝∏
k≥1

Symk
DΣg⊗A�

X

(
JetΣg

(
Ẽ
)∨)⎞⎠

∼= AΣg(DΣg )⊗L
DΣg

⎛⎝∏
k≥1

Symk
DΣg⊗A�

X

(
JetΣg

(
Ẽ
)∨)⎞⎠ [2]

∼= AΣg ⊗C

⎛⎝∏
k≥1

Symk
A�

X

(
gX [1]∨
)⎞⎠ [2] = AΣg ⊗C C∗

red (gX) [2].

The differential on the last complex is dΣg + l1 + {Icl,−} = dΣg + dCE ,
where dΣg is the de Rham differential on AΣg and dCE is the Chevalley-
Eilenberg differential on the reduced Chevalley-Eilenberg complex of
gX . Therefore

Hk
(
Õb
)
=
∑

p+q=k+2

Hp
dR (Σg)⊗Hq (C∗

red(gX), dCE) .
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Finally, from the following short exact sequence

0→ AX → C∗ (gX)→ C∗
red (gX)→ 0,

we have the quasi-isomorphism of complexes of sheaves

C∗
red (gX) � [AX → C∗ (gX)] � [C→ OX ] � Ω1

X,cl,

which implies

Hq (C∗
red(gX), dCE) ∼= Hq

(
X,Ω1

X,cl

)
.

q.e.d.

3.3.3. Computation of the obstruction. We now compute the ob-
struction to the quantization of the B-twisted σ-model. In section 3.3.1,
we have seen that the C×-invariance of Icl/� and the RG flow operator
guarantees that the naive quantization {Inaive[L]|L > 0} only contains
the constant term and linear term in the power expansion of �. The
naive quantization automatically satisfies the quantum master equation
modulo � since Icl satisfies the classical master equation. Thus, we only
need to take care of the one-loop anomaly. We have the following explicit
graphical expression of the one-loop anomaly for general perturbative
QFTs:

Theorem 3.28. The one-loop obstruction O1 to quantizing a classi-
cal field theory with classical interaction Icl is given graphically by

(3.17) O1 = lim
ε→0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+lim

ε→0

( )

Remark 3.29. After fixing a renormalization scheme, we can define
the smooth part of a Feynman weight Wγ(P

L
ε , Icl) for any graph γ. We

take the smooth part of the term in the dashed red circle.

The proof of this theorem is given in Appendix C. For the B-twisted
σ-model, the following two lemmas imply that the first term in (3.17)
vanishes as ε→ 0. We defer the proof of these two lemmas to Appendix
B.

Lemma 3.30. Let γ be a genus 1 graph containing a wheel with 2
vertices. Then the following Feynman weight vanishes:

(3.18)
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Lemma 3.31. Let γ be a genus 1 graph containing a wheel with n
vertices, and let e be an edge of γ which is part of the wheel. Assume
that n ≥ 3; then we have

lim
ε→0

Wγ,e(P
L
ε ,Kε −K0, Icl) = lim

ε→0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.

Hence the scale L one-loop obstruction is given by

(3.19) O1[L] =
∑
γ:tree

lim
ε→0

1

|Aut(γ)|Wγ

(
PL
ε ,

)
.

By the fact that limL→0(I
(0)
naive[L]) = Icl, we have:

(3.20) O1 = lim
L→0

O1[L] = lim
ε→0

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ .

The obstruction O1 contains an analytic part and a combinatorial
part. It is clear that the analytic part is given by the limit of the super
trace of the heat kernel along the diagonal in Σg × Σg:

lim
ε→0

Str(Kε(z, z)) = (2− 2g)dvolΣg ,

where dvolΣg is the normalized volume form on Σg with respect to
the constant curvature metric, and the identity follows from the local
index theorem. Similar to the holomorphic Chern-Simons theory [6], the
combinatorial factor of equation (3.20) gives the first Chern class of the
target manifold X. Thus, we can conclude this section by:

Theorem 3.32. The obstruction to quantizing the B-twisted σ-model
is given by

[(2−2g)dvolΣg
]⊗ c1(X) = c1(Σg)⊗ c1(X) ∈ H2

dR(Σg)⊗H1(X,Ω1

cl) ⊂ H1(Õb),

and the topological B-twisted σ-model can be quantized (on any Riemann
surface Σg) if and only if the target X is Calabi-Yau.
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3.3.4. One-loop quantum correction. Now let us assume that X is
a Calabi-Yau manifold with a holomorphic volume form ΩX . By Theo-
rem 3.32, the quantization of our topological B-twisted σ-model is unob-
structed. This means that there exists some quantum correction Iqc[L]
to the naive quantization Inaive[L] such that Inaive[L] + �Iqc[L] solves
the quantum master equation. In this section we give an explicit de-
scription of the one-loop quantum correction which will be used in the
next section to compute the quantum correlation functions.

We first have the following lemma:

Lemma 3.33. Let Iqc ∈ Oloc(E) be a local functional on E satisfying
the equation

(3.21) QIqc + {Icl, Iqc} = O1,

where O1 is the one-loop anomaly described in section 3.3.3. Then the
effective functionals

Iqc[L] := lim
ε→0

∑
γ∈trees,v∈V (γ)

Wγ,v(P
L
ε , Icl, Iqc)

satisfy the equation

QIqc[L] + {I(0)naive[L], Iqc[L]}L = O1[L],

where Wγ,v(P
L
ε , Icl, Iqc) is the Feynman weight associated to the graph

γ with the vertex v labeled by Iqc and all other vertices labeled by Icl. In
particular, Inaive[L] + �Iqc[L] solves the quantum master equation.

Proof. The proof of the lemma is a simple Feynman graph calculation.
See [5]. q.e.d.

The objective is to find a local functional Iqc satisfying equation
(3.21). Let Δ be the operator on Sym∗(gX) ⊗ Sym∗(gX [1]∨) given by
contraction with the identity in EndAX

(gX ⊕ g
∨
X), and let L denote the

functional on gX [1]⊕ g
∨
X given by

L(α+ β) :=
1

(n+ 1)!

∑
n�0

〈ln(α⊗n), β〉, α ∈ gX [1], β ∈ g
∨
X .

From the graphical expression of O1 in equation (3.20), it is not difficult
to see that O1 is only a functional on C∞(Σg) ⊗ gX [1] of the following
form:

(O1)k((f1 ⊗ g1)⊗ · · · ⊗ (fk ⊗ gk))

=(2− 2g)(ΔL)k(g1 ⊗ · · · ⊗ gk)

∫
Σg

f1 · · · fk dvolΣg ,

where (O1)k denotes the k-component of O1 in O(k)(E), and similarly
for (ΔL)k. We are looking for an Iqc which is only a functional on
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C∞(Σg)⊗ gX [1] of the form

(3.22)

(Iqc)k((f1 ⊗ g1)⊗ · · · ⊗(fk ⊗ gk))

=Bk(g1 ⊗ · · · ⊗ gk)

∫
Σg

f1 · · · fk dvolΣg ,

where Bk ∈ Symk(gX [1]∨). With this ansatz, we have QIqc = l1Iqc by
the type reason and equation (3.21) is reduced to

(3.23) l1Iqc + {Icl, Iqc} = O1.

Letting B =
∑

k≥0Bk, it is clear that

(l1Iqc + {Icl, Iqc}) ((f1 ⊗ g1)⊗ · · · ⊗ (fk ⊗ gk))

=(dCEB)(g1 ⊗ · · · ⊗ gk)

∫
Σg

f1 · · · fk dvolΣg .

Equation (3.23) is then reduced to

dCEB = (2− 2g)ΔL

which, since the Chevalley-Eilenberg differential dCE is the same as the
bracket {L,−}, can be further reduced to

(3.24) (2− 2g)ΔL− {L,B} = 0.

Since we only need to solve the equation modulo constant functionals,
equation (3.24) is equivalent to the vanishing of the operator {(2 −
2g)ΔL− {L,B},−}.

Lemma 3.34. We have the following two identities for any B:

{{L,B},−} = [{L,−}, {B,−}],
{ΔL,−} = [Δ, {L,−}].

Proof. The first identity follows directly from the Jacobi identity. The
second identity follows from the identity

[Δ, [Δ, L]] = 0.

q.e.d.

By Lemma 3.34, to solve equation (3.24), we only need to find B ∈
C∗(gX) such that the operator (2− 2g)Δ + {B,−} commutes with the
Chevalley-Eilenberg differential dCE = {L,−}. The following technical
proposition transfers the problem to a geometric context:

Proposition 3.35. [6] There is a natural isomorphism of cochain
complexes of AX-modules

(3.25) K̃ : (C∗(gX ,Sym∗
gX), dCE)

∼→
(
AX ⊗OX

JetholX (∧∗TX), dDX

)
,

where dCE on the left hand side is the Chevalley-Eilenberg differential
of the gX-module Sym∗

gX , and dDX
is the differential of the de Rham

complex of the holomorphic jet bundle.
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The explicit formula of the above isomorphism is given in Appen-
dix D.

There is a natural second order differential operator on the right hand
side of equation (3.25) which commutes with the differential dDX

: let ΩX

be a holomorphic volume form on X which induces an isomorphism be-
tween holomorphic polyvector fields and holomorphic differential forms
via the contraction map:

∧∗TX
∼→ Ω∗

X

α → α � ΩX .

This isomorphism transfers the holomorphic de Rham differential ∂
on Ω∗

X to an operator on polyvector fields:

∂ΩX
: Γ(∧∗TX)→ Γ(∧∗−1TX),

which naturally induces a second order operator (denoted by the same
symbol)

∂ΩX
: AX ⊗OX

JetholX (∧∗TX)→ AX ⊗OX
JetholX (∧∗−1TX),

that commutes with dDX
.

To solve equation (3.24), we need to transfer the operator Δ to the
de Rham complex of the jet bundle in equation (3.25). For simplicity,
we still denote this operator by Δ.

Claim. The two second order differential operators Δ and ∂ΩX
on

AX ⊗OX
JetholX (∧∗TX) have the same symbol.

Proof. We prove the claim by some local calculation from which we
can also find an explicit expression of the functional B ∈ C∗(gX).

Let {z1, · · · , zn} be local holomorphic coordinates on U ⊂ X where
n = dimCX, such that the holomorphic volume form can be expressed
as ΩX |U = dz1∧ · · · ∧dzn, and let δz1, · · · , δzn be the corresponding jet

coordinates. The isomorphism K̃ in equation (3.25) gives rise to (recall
Notation 2.2):

(3.26)
AX(U)[[δzi, π∗

2(∂zi)]] = AX ⊗OX
JetholX (∧∗TX)(U)

∼= AX(U)[[K̃(d̃zi), K̃(∂̃zj )]].

Let T denote the restriction of ρ∗−1 in equation (2.1) to Ω1
X :

T : Ω1
X → C∞(X) ⊗OX

JetholX (OX).

Let ∂dR be the internal de Rham differential

∂dR : JetholX (Ω∗
X)→ JetholX (Ω∗+1

X ),

and let ∂dR ◦ T be the composition

(3.27) ∂dR ◦ T : Ω1
X → C∞(X)⊗OX

JetholX (Ω1
X).
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Let

〈−,−〉 :
(
C∞(X) ⊗OX

JetholX (TX)
)
⊗C∞(X)

(
C∞(X)⊗OX

JetholX (Ω1
X)
)

→ C∞(X) ⊗OX
JetholX (OX)

be the natural pairing induced from that between TX and Ω1
X . By our

convention, T (dzi) = T̃ (d̃zi), and〈
∂dR ◦ T (dzi), K̃(∂̃zj )

〉
= δij ,

〈
∂dR(δz

i), π∗
2(∂zj )
〉
= δij.(3.28)

By construction, there exists an invertible P ∈ C∞(X) ⊗OX
JetholX

(OX)(U) such that

(3.29)
π∗
2(dz

1 ∧ · · · ∧ dzn)

=P · ((∂dR ◦ T )(dz1) ∧ · · · ∧ (∂dR ◦ T )(dzn)
) ∈ JetholX (Ω∗

X)(U).

Under the identification (3.26),

Δ =
∑
i

∂

∂(T̃ (d̃zi)

∂

∂(K̃(∂̃zi))
, ∂ΩX

=
∑
i

∂

∂(δzi)

∂

∂(π∗
2(∂zi))

.

By (3.28), (3.29), it is not difficult to see that
(3.30)

∂ΩX
= Δ+

∑
i

〈
∂dR ◦ T (dzi), log P

〉 ∂

∂(K̃(∂̃zi))
= Δ + {log P,−}.

This proves the claim. q.e.d.

We conclude this section with the following theorems:

Theorem 3.36. Any pair (X,ΩX) leads to a canonical quantization
of the topological B-twisted σ-model, whose one-loop quantum correction,
which will be denoted by Iqc, is of the form in equation (3.22).

The theorem follows from the following explicit description of B in
equation (3.22). By taking the top wedge product of ∂dR ◦ T , we define

∧n (∂dR ◦ T ) : Ωn
X → C∞(X)⊗OX

JetholX (Ωn
X).

Proposition 3.37. The quantum correction associated to the canon-
ical quantization of the pair (X,ΩX) has the combinatorial part

B = (2 − 2g) log

(
π∗
2(ΩX)

∧n (∂dR ◦ T ) (ΩX)

)
∈ C∞(X)⊗OX

JetholX (OX) ⊂ C∗(gX),

where π2 is the same as in Definition 2.3.

Proof. This follows from equation (3.24) and the local calculation
(3.30). q.e.d.
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Remark 3.38. The existence of the quantum correction is due to the
fact that the curved L∞ structure on gX requires the choice of a splitting
[6], although different choices lead to homotopic equivalent theories.
The quantum correction Iqc precisely compensates such a choice and
links the effective Batalin-Vilkovisky geometry to the canonical Batalin-
Vilkovisky structure of polyvector fields associated to the Calabi-Yau
structure.

With the one-loop quantum correction term Iqc, we can give an ex-
plicit formula of the constant term R ∈ AX in quantum master equation
(3.4), which will be used later in observable theory:

Lemma 3.39. Let (Iqc)1 denote the linear term in the one-loop cor-

rection Iqc, and let l̃0 denote the functional on E given by

l̃0(α+ β) = 〈l0, β〉.
Then the constant term R is given by:

R = {(Iqc)1, l̃0}.
Proof. Let I[L] = I(0)[L]+�I(1)[L] be the scale L effective interaction.

Then the quantum master equation (3.4) can be expanded as
(3.31)

QLI[L]+
1

2
{I(0)[L]+�I(1)[L], I(0)[L]+�I(1)[L]}L+�ΔLI[L]+�R+Fl1 = 0.

It is clear by the type reason that the constant term in equation (3.31)

other than �R can only live in the bracket {I(0)[L], �I(1)[L]}L. Thus
we only need to find the linear terms in both I(0)[L] and I(1)[L]. On

one hand, it is obvious that the only linear term in I(0)[L] is l̃0 since l̃0
does not propagate by the type reason. Therefore the only linear term
in I(1)[L] that contributes {I(1)[L], l̃0}L is (Iqc)1. It follows that

R = {(Iqc)1, l̃0}L = {(Iqc)1, l̃0}
since R does not depend on L. q.e.d.

4. Observable theory

The objective of this section is to study the quantum observables of
the B-twisted topological σ-model following the general theory devel-
oped by Costello and Gwilliam [8]. In section 4.1, we show that clas-
sical and quantum local observables are given by the cohomology of
polyvector fields. In section 4.2, we study global topological quantum
observables on Riemann surfaces of any genus g. Using the local to
global factorization map, we define the topological correlation functions
of quantum observables. In section 4.3, we show that the correlation
functions on P1 are given by the trace map on the Calabi-Yau manifold,
and the partition function on the elliptic curve reproduces the Euler
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characteristic of the target manifold. This is in complete agreement
with the physics prediction.

4.1. Classical observables. We first recall that classical observables
are given by the derived critical locus of the classical action functional
[8].

Definition 4.1. The classical observable of the B-twisted σ-model is
the graded commutative factorization algebra on Σg whose value on an
open subset U ⊂ Σg is the cochain complex

(4.1) Obscl(U) := (O(EU ), Q+ {Icl,−}) .
Here Icl is the classical interaction functional and EU = AΣg(U) ⊗
(gX [1]⊕ g

∨
X).

By definition,

O(EU ) = Ŝym
(E∨U) =∏

k≥0

Symk
(E∨U) .

With the help of the symplectic pairing, we have the following identifi-
cation:

E∨U ∼= Ac(U)[2] ⊗ (g∨X [−1]⊕ gX),

where Ac(U) is the space of compactly supported distribution-valued
differential forms on U . Thus we have

Symn(E∨U ) = Symn
((A(U)⊗ (gX [1]⊕ g

∨
X

))∨)
∼= Symn

(Ac(U)[2] ⊗ (g∨X [−1]⊕ gX

))
.

We would like to consider local observables in a small disk on Σg

and define their correlation functions. This can be viewed as the mirror
consideration of observables associated to marked points in Gromov-
Witten theory. At the classical level, we have

Proposition 4.2. Let U ⊂ Σg be a disk. The cohomology of classical
local observables of the B-twisted topological σ-model on U is given by
the cohomology of polyvector fields:

Hk(Obscl(U)) ∼=
⊕

p+q=k

Hp(X,∧qTX).

Proof. Recall that Obscl(U) is a dg-algebra over AX . Let Ak
X denote

the smooth k-forms on X. We filter Obscl(U) by defining

F kObscl(U) := Ak
XObscl(U).

Since the operator l1+{Icl,−} increases the degree of differential forms
on X by one while dΣg preserves it, it is clear that the E1-page of the
spectral sequence is obtained by taking the cohomology with respect to
dΣg . By Atiyah-Bott’s lemma, the chain complex of currents on U is
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quasi-isomorphic to the chain complex of compactly supported differen-
tial forms. Thus we have:

E1 =
(
Ŝym
(
H2

c (U)⊗ (g∨X [−1]⊕ gX

))
, l1 + {Icl,−}

)
.

The next lemma identifies the E1-page of the spectral sequence with
the de Rham complex of a certain jet bundle on X. It is clear that
the spectral sequence degenerates at the E2-page. Thus we have the
quasi-isomorphism

Obscl(U) ∼=
(
AX ⊗OX

JetholX (∧∗TX), dDX

) ∼= (A0,∗
X ⊗OX

∧∗TX , ∂̄).

The proposition follows by taking the cohomology of the rightmost
cochain complex. q.e.d.

Lemma 4.3. We have the following isomorphism of cochain com-
plexes over the dga AX :(

Ŝym
(
H2

c (U)⊗ (gX [1]∨ ⊕ gX

))
, l1 + {Icl,−}

)
∼=
(
AX ⊗OX

JetholX (∧∗TX), dDX

)
,

where dDX
denotes the differential of the de Rham complex of

JetholX (∧∗TX).

Proof. Since U is a disk in Σg, we have the canonical isomorphism
H2

c (U) ∼= C induced by the integration of 2-forms. And the following
isomorphism is clear:(

Ŝym
(
H2

c (U)⊗ (gX [1]∨ ⊕ gX

))
,l1 + {Icl,−}

)
∼= (C∗(gX ,Sym∗

gX), dCE).

Thus the lemma follows from Proposition 3.35. q.e.d.

4.2. Quantum observables. Quantum observables are the quantiza-
tion of classical observables. Let I[L] be a quantization of the clas-
sical interaction Icl. The operator QL + {I[L],−}L + �ΔL squares to
zero (Lemma 3.16) and defines a quantization of the classical operator
Q+ {Icl,−}.

Definition 4.4. The quantum observables on Σg at scale L are de-
fined as the cochain complex

Obsq(Σg)[L] := (O(E)[[�]], QL + {I[L],−}L + �ΔL) .

The definition is independent of the scale L since quantum observ-
ables at different scales are homotopic equivalent via renormalization
group flow (see [5, Chapter 5, Section 9]). Therefore we will also use
Obsq(Σg) to denote quantum observables when the scale is not speci-
fied.
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The quantum observables form a factorization algebra on Σg [8]. To
define the quantum observables on an arbitrary open subset U ⊂ Σg,
we need the concept of parametrices.

Definition 4.5. A parametrix Φ is a distributional section

Φ ∈ Sym2
(E)

with the following properties:

1) Φ is of cohomological degree 1 and (Q⊗ 1 + 1⊗Q)Φ = 0;
2) 1

2 (H ⊗ 1 + 1⊗H)Φ − K0 ∈ Sym2 (E) is smooth, where H =

[Q,QGF ] is the Laplacian and K0 = lim
L→0

KL is the kernel of the

identity operator.

Remark 4.6. We have dropped the ”proper” condition as in [8]. This
is automatic here since we are working with compact Riemann surface
Σg. We have also symmetrized (H ⊗ 1)Φ used in [8].

Definition 4.7. We define the propagator P (Φ) and BV kernel KΦ

associated to a parametrix Φ by

P (Φ) :=
1

2

(
QGF ⊗ 1 + 1⊗QGF

)
Φ ∈ Sym2

(E) ,
KΦ := K0 − 1

2
(H ⊗ 1 + 1⊗H)Φ.

The effective BV operator ΔΦ := ∂
∂KΦ

induces a BV bracket {−,−}Φ
on O (E) in a way similar to the scale L BV bracket {−,−}L is induced
by ΔL.

The following identity describes the relation between the propagator
P (Φ) and BV kernel KΦ:

(Q⊗ 1 + 1⊗Q)P (Φ) = K0 −KΦ,

i.e. P (Φ) gives a homotopy between the singular kernel K0 and the
regularized kernel KΦ.

Example 4.8. Φ =
∫ L
0 Ktdt is the parametrix we have used to define

quantization. There

P (Φ) =
1

2

∫ L

0

(
QGF ⊗ 1 + 1⊗QGF

)
Ktdt =

∫ L

0

(
QGF ⊗ 1

)
Ktdt = PL

0 ,

KΦ = KL, ΔΦ = ΔL.

The basic reason we use an arbitrary parametrix here is that the usual
renormalization group flow W

(
PL
ε ,−
)
of observables using length scales

does not preserve the property of being supported in an open subset U .
Instead, there exist parametrices whose supports are arbitrarily close to
the diagonal Δ ⊂ Σg × Σg that we can use to achieve this.
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Definition 4.9. Let I[L] be a given quantization of Icl, and let Φ be a
parametrix. We define the effective quantization I[Φ] at the parametrix
Φ by

I[Φ] := W
(
P (Φ)− PL

0 , I[L]
)
.

Note that P (Φ)− PL
0 ∈ Sym2(E) is a smooth kernel since

(H ⊗ 1 + 1⊗H)(P (Φ)− PL
0 )

=(QGF ⊗ 1 + 1⊗QGF )(
1

2
(H ⊗ 1 + 1⊗H)Φ−K0 +KL)

is smooth and H is an elliptic operator.
I[Φ] satisfies a version of the quantum master equation described by

the parametrix Φ as in [8] (with a slight modification to include Fl1),
and defines the corresponding cochain complex of quantum observables.
We leave the details to the readers since we will not use its form for later
discussions. Furthermore, different parametrices Φ,Φ′ lead to homotopic
equivalent cochain complexes which are linked by the renormalization
group flow W (P (Φ)− P (Φ′),−).

Definition 4.10 ([8]). Given a quantum observable O[L] at scale L,
we define its value O[Φ] at the parametrix Φ by requiring that

I[Φ] + δO[Φ] := W
(
P (Φ)− PL

0 , I[L] + δO[L]
)
,

where δ is a square-zero parameter. The map O[L] → O[Φ] defines a
homotopy between the corresponding cochain complexes of observables.

Definition 4.11. Given O ∈ O(E) = ∏
k,i≥0

Symi (E∨) �k, we will let

O
(k)
i denote the corresponding component, i.e.

O =
∑
k,i≥0

O
(k)
i �k.

Definition 4.12 ([8]). We say that a quantum observable O[L] has
support in U , if for any k, i ≥ 0, there exists a parametrix Φ such that

Supp
(
O[Φ]

(k)
i

)
⊂ U.

As shown in [8], the subspace of quantum observables supported in
U forms a sub-cochain complex of Obsq(Σg), which will be denoted by
Obsq(U).

4.2.1. Local quantum observable. Let U be a disk on Σg. As shown
in [8] with great generality, the cohomology of the local quantum ob-
servables

H∗ (Obsq(U))

defines a deformation of H∗
(
Obscl(U)

)
:

H∗ (Obsq(U)) ⊗C[[�]] C ∼= H∗
(
Obscl(U)

)
.(4.2)
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We will construct a splitting map in this subsection, reflecting the van-
ishing of quantum corrections for observables in our B-model.

Let η ∈ H2
c (U) be a fixed generator with

∫
U η = 1. By the proof of

Proposition 4.2, it induces a quasi-isomorphic embedding(
AX ⊗OX

JetholX (∧∗TX), dDX

)
↪→ Obscl(U),

and different choices of η are homotopic equivalent. Let μ ∈ AX ⊗OX

JetholX (∧∗TX), and we will denote by Oμ the corresponding local classi-
cal observable. Let {Oμ[L]|L > 0} denote the RG flow of the classical
observable Oμ. More explicitly, we define Oμ[L] by requiring that

I[L] + δOμ[L] = lim
ε→0

W (PL
ε , Icl + �Iqc + δOμ),

where δ2 = 0, and Iqc denotes the one-loop quantum correction in equa-
tion (3.21). The existence of the limit follows from Lemma/Definition
3.23 and the observation that the distribution Oμ is in fact smooth
(tensor products of η’s). By construction, Oμ[L] is a local quantum ob-
servable supported in U . We denote the above map by

Ψ : AX ⊗OX
JetholX (∧∗TX)→ Obsq(U), μ → Oμ[L].

Proposition 4.13. Ψ is a cochain map.

Proof. Let UL = QL+�ΔL+{I[L],−}L be the differential on quantum
observables. By construction,

Oμ[L]e
I[L]/� = lim

ε→0
e
� ∂

∂PLε

(
Oμe

Icl/�+Iqc
)
.

By Lemma 3.16,

(UL(Oμ[L]) +Oμ[L]R)eI[L]/� = (QL + �ΔL + Fl1/�)
(
Oμ[L]e

I[L]/�
)

= lim
ε→0

e
� ∂

∂PLε (Qε + �Δε + Fl1/�)
(
Oμe

Icl/�+Iqc
)

= lim
ε→0

e
� ∂

∂PLε

(
(QεOμ + {Icl, Oμ}ε) eIcl/�+Iqc

+Oμ(Qε + �Δε + Fl1/�)e
Icl/�+Iqc

)
where we have used the fact that both Oμ and Iqc can only have non-
trivial inputs for 0-forms on Σg, hence

�ΔεOμ = {Oμ, Iqc}ε = 0

by the type reason. Since the distribution Oμ is in fact smooth, we are
safe to take ε → 0 by a similar argument as Lemma/Definition 3.23,
Lemma 3.30, and Lemma 3.31. The first term above gives

lim
ε→0

e
� ∂

∂PLε

(
(QεOμ + {Icl, Oμ}ε) eIcl/�+Iqc

)
= e

� ∂

∂PL0 (OdDX
μe

Icl/�+Iqc).
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The quantum master equation implies that the second term is

lim
ε→0

e
� ∂

∂PLε

(
Oμ(Qε + �Δε + Fl1/�)e

Icl/�+Iqc
)
= e

� ∂

∂PL
0 (OμReIcl/�+Iqc)

= Oμ[L]ReI[L]/�.

It follows that

UL(Oμ[L])e
I[L]/� = e

� ∂

∂PL0 (OdDX
μ)e

Icl/�+Iqc

= OdDX
μ[L]e

I[L]/�,

i.e. UL(Ψ(μ)) = Ψ(dDX
μ) as desired. q.e.d.

Corollary 4.14. The cohomology of local quantum observables on a
disk U is given by

H∗ (Obsq(U)) ∼= H∗ (X,∧∗TX) [[�]].

Proof. In fact, the map Ψ defines a splitting of (4.2).
q.e.d.

This says that the local observables do not receive quantum correc-
tions via perturbative quantization, which is a very special property of
the B-model.

4.2.2. Global quantum observable. Now we consider global observ-
ables on the Riemann surface Σg. The cochain complex of global quan-
tum observables on Σg at scale L is defined as

(4.3) Obsq(Σg)[L] := (O(E)[[�]], QL + {I[L],−}L + �ΔL).

Since the complexes of quantum observables are homotopic equivalent
for different length scales, we only need to compute the cohomology of
global observables at scale L =∞. By considering the dΣg -cohomology
first, the complex (4.3) at L = ∞ is quasi-isomorphic to the following
complex:(

O (H∗(Σg)⊗
(
gX [1]⊕ g

∨
X

))
[[�]],

l1 + {I(0)[∞]|H,−}∞ + �({I(1)[∞]|H,−}∞ +Δ∞)
)
,

where H∗(Σg) denotes the space of harmonic forms on Σg. I
(0)[∞]|H

and I(1)[∞]|H are the restrictions of the tree-level and one-loop effective
interactions to the space of harmonic fields:

H := H∗(Σg)⊗
(
gX [1]⊕ g

∨
X

)
.

Lemma 4.15. Restricted to the harmonic fields at scale L =∞, we
have

I(0)[∞]|H = Icl|H, I(1)[∞]|H = Iqc|H + I
(1)
naive[∞]|H.
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Proof. We only prove the first identity, and the second one can be
proved similarly. Let Γ be a tree diagram with at least two vertices. We
show that the Feynman weight WΓ(P

∞
0 , Icl) associated to Γ vanishes

when restricted to harmonic fields:

WΓ(P
∞
0 , Icl)|H = 0.

We choose an orientation of the internal edges of Γ such that every
vertex is connected by a unique oriented path to a vertex v• in Γ, where
v• has only one edge which is oriented toward v•. The vertex v• will be
called the root. A vertex which has only one edge oriented outward will
be called a leaf. By assumption, Γ has at least one leaf which is distinct
from the root.

If a leaf has only H0(Σg) and H2(Σg) inputs on its tails, then the
propagator P∞

0 attached to its edge will annihilate WΓ(P
∞
0 , Icl)|H since

wedge products of harmonic 0-forms and 2-forms are still harmonic, and

d∗ = 0 on H∗(Σg).

Similarly, if a leaf has only one input of typeH1(Σg), thenWΓ(P
∞
0 , Icl)|H =

0. So we can assume that all leaves have at least two inputs of type
H1(Σg) on their tails (possibly other inputs of type H0(Σg)). Since P∞

0
is a 1-form on Σg × Σg, it is easy to see by tracing the path that the
incoming edge of the root v• has to contribute a 1-form to the copy of
Σg corresponding to v• which is d∗-exact, and by the type reason there
is exactly one extra input of type H1(Σg) on one tail of v•. Since∫

Σg

d∗(a) ∧ b = 0, ∀a ∈ A(Σg), b ∈ H∗(Σg).

This again implies that WΓ(P
∞
0 , Icl)|H = 0. q.e.d.

For later discussions on correlation functions of observables, we also need
some description of the one-loop naive interaction as in the following
lemma:

Lemma 4.16. For Riemann surfaces Σg of genus g = 0 and g = 1,
the infinity scale one-loop naive interaction vanishes when restricted to
H:

I
(1)
naive[∞]|H = 0.

Proof. For both genus 0 and genus 1 Riemann surfaces with constant
curvature metric, the product of harmonic forms remains harmonic.
Thus by the same argument as in the proof of Lemma 4.15, if a one-
loop graph γ is a wheel with nontrivial trees attached to it, then

Wγ(P
∞
0 , Icl)|H = 0.

Hence we only need to deal with wheels. For the genus 0 Riemann
surface P1, since there are no harmonic 1-forms, there must be at least
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one vertex on the wheel, attached to which all inputs are harmonic 0-
forms by the type reason. The corresponding Feynman integral vanishes
since the composite of two propagators P∞

0 on that vertex is zero by
(d∗)2 = 0.

For an elliptic curve Σ1 = C/(Z+Zτ), if the number of vertices on a
wheel is even, then the vanishing of the associated Feynman weight can
be proved by the same argument as in Lemma 3.30. For a wheel with an
odd number of vertices, a Z2-symmetry of the analytic propagator P∞

0

results in the vanishing of the Feynman weights: Let dw be a harmonic
1-form on Σ1, and we assume without loss of generality that all the
vertices of the wheel are trivalent, and all the inputs are of the form
dw ⊗ gi, where gi ∈ gX .

Similar to [6, Lemma 17.4.4], the analytic part of the corresponding
Feynman weight W (P∞

0 , Icl)(dw) will be a linear combination of∑
(a,b)∈Z2\{0}

1

(aτ + b)k(aτ̄ + b)2n+1−k
,

which clearly vanishes. q.e.d.

Now let us compute the cohomology of the global quantum observ-
ables.

Remark 4.17. In the following discussion, the harmonic formsHk(Σg)
sit at degree k, and Ω1

X [1] ∼= T∨
X [1] sits at degree −1.

Lemma 4.18. There is a natural isomorphism of AX-modules
(4.4)

O (H∗(Σg)⊗
(
gX [1]⊕ g

∨
X

)) ∼= AX ⊗OX
JetholX

(
Ŝym
(
TX ⊗H1(Σg)

)∨
⊗ Ŝym

(
TX ⊗H2(Σg)

)∨ ⊗ Ŝym(Ω1
X [1]⊗H∗(Σg))

∨
)
.

Proof. We have the following isomorphisms:

O(H∗(Σg)⊗ (gX [1]⊕ g
∨
X))

∼=O(H0(Σg)⊗ gX [1])⊗AX
O
(

2⊕
k=1

Hk(Σg)⊗ gX [1] ⊕
2⊕

k=0

Hk(Σg)⊗ g
∨
X

)
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∼=C∗(gX)⊗AX
Ŝym

(
2⊕

k=1

Hk(Σg)⊗ gX [1]⊕
2⊕

k=0

Hk(Σg)⊗ g
∨
X

)∨
.

It is clear that the tensor products of the isomorphisms T̃ and K̃ in
Propositions D.5 and D.6 respectively give the desired isomorphism.

q.e.d.

Definition 4.19. Let π∗
2

(
Ω2g−2
X

)
denote the canonical flat section

of the jet bundle

JetholX

(
Sym2g·dimC X

(
TX ⊗H1(Σg)

)∨
⊗ SymdimC X(Ω1

X [1]⊗H0(Σg))
∨ ⊗ SymdimC X(Ω1

X [1]⊗H2(Σg))
∨
)

induced by the holomorphic volume form ΩX . Here we use the notation
π∗
2 to be consistent with Definition 2.3.

We can view π∗
2

(
Ω2g−2
X

)
as a quantum observable via the identifica-

tion in Lemma 4.18. The general philosophy in [6] says that the quanti-
zation gives rise to a projective volume form, and the next proposition

says that the volume form is exactly given by π∗
2

(
Ω2g−2
X

)
.

Proposition 4.20. The following embedding

ι : AX((�)) ↪→ O (H∗(Σg)⊗
(
gX [1] ⊕ g

∨
X

))
((�))

defined by

A → ι(A) := �−2 dimC XA⊗OX
π∗
2

(
Ω2g−2
X

)
, ∀A ∈ AX

is a quasi-isomorphism which is equivariant with respect to the C×-
symmetry defined in section 3.2.3.

Proof. We first show that ι respects the differential. This is equiva-

lent to showing that π∗
2

(
Ω2g−2
X

)
is closed under l1 +

{
I(0)[∞]|H,−

}
∞
+

�({I(1)[∞]|H,−}∞ +Δ∞). By Lemma 4.15,(
l1 +
{
I(0)[∞]|H,−

}
∞

)(
π∗
2

(
Ω2g−2
X

))
= dDX

(
π∗
2

(
Ω2g−2
X

))
= 0,

since π∗
2

(
Ω2g−2
X

)
is flat. Here dDX

is the de Rham differential of the

DX -module.

Claim.
{
I
(1)
naive[∞],

(
π∗
2

(
Ω2g−2
X

))}
∞

= 0.

Proof. It is straightforward to check (similar to the proof of Lemma
4.15) that for any one-loop graph γ, either the Feynman weight
Wγ(P

∞
0 , Icl) vanishes, or the operator {Wγ(P

∞
0 , Icl),−}∞ applied to
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π∗
2

(
Ω2g−2
X

)
will generate new terms in (H1(Σg) ⊗ gX [1])∨. These terms

force the bracket
{
Wγ(P

∞
0 , Icl), π

∗
2

(
Ω2g−2
X

)}
∞

to vanish since π∗
2

(
Ω2g−2
X

)
already contains the highest wedge product of (H1(Σg)⊗gX [1])∨. q.e.d.

Hence we only need to consider the operator Δ∞+{Iqc,−}∞. Letting
n = dimC X, the map

∧n (∂dR ◦ T ) : Ωn
X → C∞(X) ⊗OX

JetholX (Ωn
X)

in Proposition 3.37 induces a natural embedding

T ′ : (Ωn
X)⊗(2g−2) ↪→ JetholX

(
Sym2g·n

(
TX ⊗H1(Σg)

)∨
⊗ Symn

(
Ω1
X [1] ⊗H0(Σg)

)∨ ⊗ Symn
(
Ω1
X [1]⊗H2(Σg)

)∨ )
.

Let T ′
(
Ω2g−2
X

)
denote the image of the section (ΩX)⊗(2g−2), where ΩX

denotes the volume form and its negative power denotes its dual. By
construction,

Δ∞T ′
(
Ω2g−2
X

)
= 0

and by Proposition 3.37, we have

π∗
2

(
Ω2g−2
X

)
= e−IqcT ′

(
Ω2g−2
X

)
.

It follows that

Δ∞π∗
2

(
Ω2g−2
X

)
=Δ∞

(
e−IqcT ′

(
Ω2g−2
X

))
=− e−Iqc

{
Iqc, T

′
(
Ω2g−2
X

)}
∞

= −
{
Iqc, π

∗
2

(
Ω2g−2
X

)}
∞
,

as desired.
Now we show that ι is a quasi-isomorphism. We consider the filtra-

tion on O (H∗(Σg)⊗ (gX [1]⊕ g
∨
X)) ((�)) by the degree of the differential

forms on X:

F kO (H∗(Σg)⊗
(
gX [1]⊕ g

∨
X

))
((�))

:= Ak
X · O
(
H∗(Σg)⊗

(
gX [1]⊕ g

∨
X

))
((�)).

The differential of the graded complex is given by

d1 = �
(
Δ∞ + {Iqc,−}∞

)
= �e−IqcΔ∞eIqc .

By the Poincare lemma below, the d1-cohomology is precisely given by
Im(ι). It follows that ι is a quasi-isomorphism. q.e.d.

Recall the following Poincare lemma:

Lemma 4.21. Let {xi} be even elements and let {ξi} be odd elements;
then we have

H∗

(
C[[xi, ξi]],Δ =

∂

∂xi
∂

∂ξi

)
= Cξ1 ∧ · · · ∧ ξn.
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Corollary 4.22. The top cohomology of Obsq(Σg)[�
−1] is at degree

(2− 2g) dimCX, given by

H(2−2g) dimC X
(
Obsq(Σg)[�

−1]
) ∼= C((�)).

4.3. Correlation function. Proposition 4.20 implies that a quantiza-
tion I[L] defines an integrable projective volume form in the sense of [6],
which allows us to define correlation functions for quantum observables.

Definition 4.23. Let O ∈ Obsq(Σg) be a closed element, represent-

ing a cohomology class [O] ∈ Hk (Obsq(Σg)). We define its correlation
function (via Corollary 4.22) by

〈O〉Σg
:=

{
0 if k �= (2− 2g) dimCX

[O] ∈ C((�)) if k = (2− 2g) dimCX

Recall that the local quantum observables form a factorization alge-
bra on Σg. This structure enables us to define correlation functions for
local observables, for which let us first introduce some notations.

Definition 4.24. Let U1, · · · , Un be disjoint open subsets of Σg. The
factorization product

Obsq(U1)× · · · ×Obsq(Un)→ Obsq(Σg)

of local observables Oi ∈ Obsq(Ui) will be denoted by O1 � · · ·�On. This
product descends to cohomologies.

Definition 4.25. Let U1, · · · , Un be disjoint open subsets of Σg, and
let Oi ∈ Obsq(Ui) be closed local quantum observables supported on Ui.
We define their correlation function by

〈O1, · · · , On〉Σg
:= 〈O1 � · · · � On〉Σg

∈ C((�)).

We would like to compute the correlation functions for the B-twisted
topological σ-model. By the degree reason, the only nontrivial cases are
g = 0, 1. We show that they coincide with the prediction from physics.

For later computation, we give an equivalent definition of correlation

functions via the BV integration point of view. Let ̂T ∗ (TΣgX)[−1] de-
note the ringed space with underlying topological space X and structure
sheaf as that of equation (4.4):

̂T ∗ (TΣgX)[−1] = (X,O (H∗(Σg)⊗
(
gX [1]⊕ g

∨
X

)))
.

It is clear that the intersection pairing on H∗(Σg), together with the
canonical pairing between gX [1] and g

∨
X , induces an odd symplectic

structure on ̂T ∗ (TΣgX)[−1] . Let L be the ringed space with under-
lying topological space X and structure sheaf being generated by the
odd generators over AX in O (H∗(Σg)⊗ (gX [1]⊕ g

∨
X)). Thus L can be

viewed as a Lagrangian subspace of ̂T ∗ (TΣgX)[−1].
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It is clear from the form of the jet bundle in equation (4.4) that there

is a canonical projection of functions on ̂T ∗ (TΣgX)[−1] to the subspace

AX ⊗OX
JetholX

(
Ŝym
(
TX ⊗H2(Σg)

)∨ ⊗ Ŝym
(
Ω1

X [1]⊗H1(Σg)
)∨)

π∗

2
(Ω2g−2

X )

generated by π∗
2(Ω

2g−2
X ). We denote by (f)TF the projection of f , where

TF is short for “top fermions.”

Proposition 4.26. The map

i∗L : Obsq(Σg)→ AX((�))[(2g − 2) dimCX]

O → �2 dimC X
(
(eI[∞]/� · O|H)TF

/
π∗
2(Ω

2g−2
X )
) ∣∣∣

L

is a C×-equivariant cochain map. Here the differential on the right hand
side is the de Rham differential dX , and∣∣∣
L
:AX ⊗OX

JetholX

(
Ŝym

∗ (
TX ⊗H2(Σg)

)∨ ⊗ Ŝym
∗ (

Ω1
X [1] ⊗H1(Σg)

)∨)
→ AX

denotes the map which sets all the jet coordinates and that of TX ⊗
H2(Σg),Ω

1
X [1]⊗H1(Σg) to be zero.

Proof. Let O ∈ Obsq(Σg). Recall that from QME, we have

(Q∞O+�Δ∞O+{I[∞], O}∞)·eI[∞]/� = (Q∞+�Δ∞+
Fl1

�
−R)(eI[∞]/�·O).

We have the following three simple observations:

1)
(
�Δ∞(eI[∞]/�O)

)TF
= 0 since Δ∞ annihilates one odd generator.

2)
Fl1

�
(eI[∞]/�O) vanishes when restricted to the Lagrangian L, since

Fl1 contains non-trivial bosonic generators.
3) When restricted to H, Q∞ = l1.

Thus, we only need to show that((
(Q∞ −R)(eI[∞]/� ·O∣∣

H
)
)TF

/π∗
2(Ω

2g−2
X )

) ∣∣∣∣
L

= dX

(
(eI[∞]/� · O∣∣

H
)TF /π∗

2(Ω
2g−2
X )
) ∣∣∣

L
.

Since l1 commutes with
∣∣∣
L
, we can assume that (eI[∞]/�O

∣∣
H
)TF is of the

form

(eI[∞]/�O
∣∣
H
)TF = B · π∗

2(Ω
2g−2)

(1)
= B · e−IqcT ′(Ω2g−2

X ),

where B ∈ AX , and identity (1) and the map T ′ are explained in the
proof of Proposition 4.20. Then

Q∞(B · π∗
2(Ω

2g−2
X )) =dX(B) · π∗

2(Ω
2g−2
X ) +B · l1(π∗

2(Ω
2g−2
X )).
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The fact that π∗
2(Ω

2g−2
X ) is a flat section of the jet bundle is translated

to

l1(π
∗
2(Ω

2g−2
X )) + {Icl, π∗

2(Ω
2g−2
X )} = 0,

where Icl = l̃0 +
∑

k≥2 l̃k is the classical interaction functional and l̃k is

defined in equation (2.2).

The functionals {l̃k, π∗
2(Ω

2g−2
X )} for k ≥ 2 vanish when restricted to

the Lagrangian L since they contain jet coordinates. Thus(
l1(π

∗
2(Ω

2g−2
X ))
) ∣∣∣

L

=− {l̃0, π∗
2(Ω

2g−2
X )}
∣∣∣
L

=− {l̃0, e−IqcT ′(Ω2g−2
X )}
∣∣∣
L

=−
(
−{l̃0, Iqc} · e−IqcT ′(Ω2g−2

X ) + e−Iqc · {l̃0, T ′(Ω2g−2
X )}
) ∣∣∣

L

(1)
=
(
{l̃0, Iqc} · e−IqcT ′(Ω2g−2

X )
) ∣∣∣

L

(2)
=R · π∗

2(Ω
2g−2
X ).

The identity (1) follows from the fact that {l̃0, T ′(Ω2g−2
X )} = 0 by the

type reason, and identity (2) follows from Lemma 3.39. Thus we have((
(Q−R)(eI[∞]/� · O)

∣∣
H

)TF
/π∗

2(Ω
2g−2
X )

) ∣∣∣∣
L

=
(
(Q−R)(B · π∗

2(Ω
2g−2))/π∗

2(Ω
2g−2
X )
) ∣∣∣

L

=
(
(dB +B · R−B · R) · π∗

2(Ω
2g−2))/π∗

2(Ω
2g−2
X )
) ∣∣∣

L

= dB.

q.e.d.

It is clear that the cochain map i∗L induces an isomorphism on the
degree (2−2g) dimC X component. Thus we have the following corollary:

Corollary 4.27. Let O be a global quantum observable which is
closed; then the correlation function of O is the same as the integral
of i∗L(O) on X:

〈O〉Σg = �2 dimC X

∫
X

(
(eI[∞]/� ·O∣∣

H
)TF /π∗

2(Ω
2g−2
X )
) ∣∣∣

L
.

We are ready to compute the topological correlation functions on P1

and elliptic curves.
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4.3.1. g = 0.

Lemma 4.28. Let {Ui} be a disjoint union of disks contained in a
larger disk U ⊂ Σg, and let [Oμi,Ui

] ∈ H∗ (Obsq(Ui)) be the local quantum
observable associated to μi ∈ H∗(X,∧∗TX) on Ui. Then

[Oμ1,U1 � · · · � Oμm,Um ] = [Oμ1···μm,U ] ∈ H∗ (Obsq(U)) .

Proof. For any parametrix Φ, we have

(Oμ1,U1 � Oμ2,U2)[Φ]
(1)
= lim

L→0
W (P (Φ)− PL

0 , I[L], Oμ1 ,U1 [L] � Oμ2,U2 [L])

(2)
= W (P (Φ), Icl + �Iqc, Oμ1,U1 · Oμ2,U2)

= Oμ1μ2,U [Φ].

Here identity (1) is the definition of the factorization product of observ-
ables, and identity (2) follows from Proposition 4.13. q.e.d.

Theorem 4.29. Let Σg = P1, and let {Ui} be the disjoint union of
disks on P1. Let Oμi,Ui

∈ H∗ (Obsq(Ui)) be a local quantum observable
associated to μi ∈ H∗(X,∧∗TX) supported in Ui. Then

〈Oμ1,U1 , · · · , Oμm,Um〉P1 = �dimC X

∫
X
(μ1 · · ·μm � ΩX) ∧ ΩX .

Proof. We compute the correlation function at the scale L = ∞. By
the degree reason and the previous lemma, we can assume m = 1, and
μ = μ1 ∈ HdimC X(X,∧dimC XTX). Let Oμ be the classical observable
represented by μ. By Proposition 4.13, the corresponding quantum ob-
servable is described by

Oμ[∞]eI[∞]/� = lim
L→∞

lim
ε→0

e
� ∂

∂PLε

(
Oμe

Icl/�+Iqc
)
.

Since H1(P1) = 0, a similar argument as in Lemma 4.15 implies

Oμ[∞]
∣∣
H
= Oμ

when restricted to harmonic fields. By Corollary 4.27,

〈Oμ[∞]〉P1 = �2 dimC X

∫
X

(
(eI[∞]/� · Oμ

∣∣
H
)TF/π∗

2(Ω
−2
X )
) ∣∣∣

L
.

By Lemma 4.16 and Lemma 4.15,

(eI[∞]/� ·Oμ

∣∣
H
)TF = (eIcl/�+Iqc · Oμ

∣∣
H
)TF .

By the type reason, the only terms in eIcl/�+Iqc that will contribute after∣∣
L
are products of l̃0:
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Let {zi} be holomorphic coordinates on U ⊂ X such that locally
ΩX |U = dz1 ∧ · · · ∧ dzn. Let

μ = Adz̄1 ∧ · · · ∧ dz̄n ⊗ ∂z1 ∧ · · · ∧ ∂zn ,

where n = dimCX. We can choose the following element in the jet
bundle representing μ:

Oμ = Adz̄1∧· · ·∧dz̄n⊗OX

(
(π∗

2(dz
1)⊗ 1)∨ ∧ · · · ∧ (π∗

2(dz
n)⊗ 1)∨ ⊗ 1

)
,

where 1 denotes the other component in the jet bundle. On the other
hand,

el̃0/� = �−n · dz1 ∧ · · · ∧ dzn ⊗OX
(T (∂z1) ∧ · · · ∧ T (∂zn))

+lower wedge products.

It follows easily that(
(eI[∞]/� ·Oμ

∣∣
H
)TF /π∗

2(Ω
−2
X )
) ∣∣∣

L
= �−n · (μ � ΩX) ∧ ΩX .

q.e.d.

4.3.2. g = 1. On elliptic curves, the only nontrivial input is at coho-
mology degree 0.

Theorem 4.30. Let E = Σ1 be an elliptic curve. Then 〈1〉E = χ(X)
is the Euler characteristic of X.

Proof. By Corollary 4.27, we only need to look at the term eI[∞]/�.

For the case g = 1, we have shown in Lemma 4.16 that I
(1)
naive[∞]

∣∣
H

vanishes, and the quantum correction Iqc also vanishes. Hence I[∞] =

I(0)[∞] = Icl. Let w denote the normalized holomorphic coordinate on
the elliptic curve E such that

√−1
∫
E
dwdw̄ = 1.

It is not difficult to see that by the type reason, the only terms in eIcl/�|H
that can survive under

∣∣
L
are the following:

(4.5) (1) , (2)

Let {zi} be local holomorphic coordinates on X as we chose before; then
term (1) in equation (4.5) can be expressed explicitly as:

(4.6) Ak
ij ⊗OX

((dw)∨ ⊗ T̃ (d̃zi))⊗ ((dw̄)∨ ⊗ T̃ (d̃zj))⊗ (1∨ ⊗ K̃(∂̃zk)).
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And term (2) can be expressed as

(4.7) dzl ⊗
(
(
√−1dwdw̄)∨ ⊗ K̃(∂̃zl)

)
.

By the discussion in [6], the following differential form valued in the
bundle End(TX) = TX ⊗OX

T∨
X

(Ak
ijdz

i)⊗OX
(dzj ⊗ ∂

∂zk
)

is exactly the Dolbeault representative of the Atiyah class of the holo-
morphic tangent bundle TX . It is straightforward to check that(

(exp(I[∞]/�)|H)TF /π∗
2(Ω

2−2g
X )
) ∣∣∣

L
= Tr

(
(Ak

ijdz
i)⊗ (dzj ⊗ ∂

∂zk
)

)n
= Tr(At(TX))n

= cn(X).

It then follows easily that

〈1〉E =

∫
X
cn(X) = χ(X).

q.e.d.

5. Landau-Ginzburg Twisting

In this section we discuss the Landau-Ginzburg twisting of the B-
twisted σ-model and establish the topological Landau-Ginzburg B-model
via the renormalization method.

Remark 5.1. To avoid confusion, “twisted” and “untwisted” in this
section are always concerned with the twist that arises from the super-
potential W , instead of the B-twist.

5.1. Classical theory. Let X be a smooth variety with a holomorphic
function

W : X → C.

Recall that the B-twisted σ-model describes maps

(Σg)dR → T ∗X∂̄ [1].

Let
dW� : ∧∗TX → ∧∗TX

be the contraction with the 1-form dW . It induces a differential on
O (T ∗X∂̄ [1]) of degree −1, commuting with dDX

. By abuse of notations,
we still denote this differential by dW�.

Definition 5.2. We define T ∗XW
∂̄
[1] to be the L∞-space with under-

lying space X, and its sheaf of functions the Z2-graded complex

O (T ∗XW
∂̄ [1]
)
:= AX ⊗OX

JetholX (∧∗TX)

with the twisted differential dDX
+ dW�.
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Remark 5.3. When X = Cn, and W is a weighted homogeneous
polynomial, i.e.

W (λqizi) = λW (zi), ∀λ ∈ C∗

where qi’s are positive rational numbers called the weights, then there
emerges a Q-grading by assigning the weights: wt(zi) = qi, wt (∂zi) =
1−qi, wt(z̄

i) = −qi, wt(dz̄i) = −qi. However, we will not explore further
on this in the current paper.

Note that there is a quasi-isomorphism of Z2-graded complexes of
sheaves

O (T ∗XW
∂̄ [1]
) ∼= (A0,∗

X (∧∗TX) , ∂̄W

)
, ∂̄W = ∂̄ + dW�.

Therefore T ∗XW
∂̄
[1] can be viewed as the derived critical locus of W .

The Landau-Ginzburg B-model describes the space of maps

(Σg)dR → T ∗XW
∂̄ [1].

As in the untwisted case, we consider those maps in the formal neigh-
borhood of constant maps. This corresponds to the physics statement
that path integrals in the B-twisted Landau-Ginzburg model are local-
ized around the neighborhood of constant maps valued in the critical
locus of W .

Recall that there exists a Poisson bracket (Schouten-Nijenhuis bracket):
∧∗TX ⊗C∧∗TX → ∧∗TX . Viewed as a bi-differential operator, it induces
a bracket on the jet bundles, which we denote by

{−,−}T ∗X∂̄ [1]
: O (T ∗X∂̄ [1])⊗AX

O (T ∗X∂̄ [1])→ O (T ∗X∂̄ [1]) .

Lemma/Definition 5.4. Let W̃ ∈ O (T ∗X∂̄ [1]) be the image of W
under the natural embedding

OX ↪→ JetholX (OX) ↪→ AX ⊗OX
JetholX (∧∗TX) .

Then {W̃ ,−}T ∗X∂̄ [1]
= dW� as operators on O (T ∗X∂̄ [1]).

Proof. This follows from the corresponding statement on ∧∗TX . q.e.d.

Definition 5.5. The space of fields of the topological Landau-Ginzburg
B-model is

E := AΣg ⊗C

(
gX [1]⊕ g

∨
X

)
,

and the classical action functional SW is defined by

SW = S + IW ,

where S is the classical action functional of the Calabi-Yau model, and
IW is the local functional on AΣg ⊗ gX [1] defined by

IW (α) :=

∫
Σg

W̃ (α), α ∈ AΣg ⊗ gX [1].
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Here W̃ is extended linearly in AΣg to AΣg ⊗ gX [1]. The LG-twisted
interaction is

IWcl = Icl + IW .

Remark 5.6. The C×-symmetry of the untwisted B-model is broken
by the term IW . In particular, the LG-twisted theory is no longer a
cotangent theory in the sense of [6].

Lemma 5.7. The classical interaction IWcl of the Landau-Ginzburg B-

model satisfies the classical master equation QIWcl + 1
2

{
IWcl , I

W
cl

}
+Fl1 =

0.

Proof.

QIWcl +
1

2

{
IWcl , I

W
cl

}
+ Fl1

=QIcl +
1

2
{Icl, Icl}+ Fl1 +QIW +

1

2
{IW , IW }+ {Icl, IW }

(1)
=QIW + {Icl, IW } ,

where (1) follows from the classical master equation of Icl in the un-
twisted case and the vanishing of {IW , IW } by the type reason. It is not
difficult to see that for α ∈ AΣg ,

(QIW + {Icl, IW })(α) =
∫
Σg

dDX
(W̃ )(α) = 0,

since W̃ is flat. q.e.d.

5.2. Quantization. We assume that X is Calabi-Yau with holomor-
phic volume form ΩX . Since X is non-compact, the choice of ΩX will
not be unique, and we will always fix one such choice.

Let Iqc be the one-loop quantum correction of the B-twisted σ-model
associated to (X,ΩX ), with which the quantization of the untwisted
theory is defined as

I[L] = W (PL
0 , Icl + �Iqc) := lim

ε→0
W (PL

ε , Icl + �Iqc).

Definition 5.8. We define the Landau-Ginzburg twisting of I[L] by

IW [L] = W (PL
0 , Icl + IW + �Iqc) := lim

ε→0
W (PL

ε , Icl + IW + �Iqc).

Since IW is only a functional on AΣg ⊗ gX [1], it is easy to see by the
type reason that

IW [L] = I[L] +Wtree(P
L
0 , Icl, IW ).

Proposition 5.9. IW [L] defines a quantization of the B-twisted topo-
logical Landau-Ginzburg model SW in the sense of Definition 3.14.
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Proof. Let δW [L] = Wtree(P
L
0 , Icl, IW ). By the type reason, ΔLδW [L] =

{δW [L], δW [L]}L = 0. Since I[L] satisfies the QME, we have(
QL + �ΔL +

Fl1

�
−R

)
eI

W [L]/�

=�−1 (QLδW [L] + {I[L], δW [L]}L) eIW [L]/�.

Since δW [L] is given by sum over trees, it satisfies the classical RG flow
equation. The vanishing of QLδW [L]+ {I[L], δW [L]}L then follows from
its vanishing in the classical limit

QIW + {Icl, IW} = 0.

q.e.d.

5.3. Observable theory and correlation functions. We would like
to explore the correlation functions of local quantum observables of our
Landau-Ginzburg theory. One essential difference with the untwisted
case is that it is no longer a cotangent theory due to the term IW ; hence
the interpretation of quantization as projective volume forms [6] does
not work directly in this case. However, the BV integration interpreta-
tion in Corollary 4.27 still makes sense in the LG-twisted case, which
we will use to define the correlation functions.

For simplicity, we will assume X to be a Stein domain in Cn, and
that Crit(W ) is finite. We choose the holomorphic volume form ΩX =
dz1 ∧ · · · ∧ dzn, where {zi} are the linear coordinates on Cn.

Definition 5.10. The quantum observables on Σg at scale L are
defined as the cochain complex

Obsq(Σg)[L] :=
(O(E)[[�]], QL + {IW [L],−}L + �ΔL

)
.

Observables Obsq(U) with support in U ⊂ Σg are defined in a similar
fashion as in section 4.2.

Correlation functions are defined for a proper subspace of quantum
observables which are ”integrable” in some good sense, since we are
working with non-compact space X. We consider the following simplest
class:

Definition 5.11. We define the sub-complex Obsqc(Σg)[L] ⊂ Obsq

(Σg)[L] by

Obsqc(Σg)[L] :=
(Oc(E)[[�]], QL + {IW [L],−}L + �ΔL

)
,

where Oc(E) := O(E)⊗A(X)Ac(X) and Ac(X) is the space of compactly
supported differential forms on X. The corresponding local observables
supported in U ⊂ Σg are denoted by Obsqc(U).

Proposition 5.12. Let U ⊂ Σg be a disk. Then

H∗(Obsq(U)) ∼= H∗(Obsqc(U)) ∼= Jac(W )[[�]],

where Jac(W ) is the Jacobian ring of W .
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Proof. The strategy is completely parallel to Corollary 4.14. We just
need to observe that the cohomology of classical observables in the
twisted case is given by

H∗(A0,∗(X,∧∗TX), ∂̄ + dW�) or H∗(A0,∗
c (X,∧∗TX), ∂̄ + dW�),

both of which are canonically isomorphic to Jac(W ) (see [18]). q.e.d.

Now we define the correlation function of quantum observables. For
the Landau-Ginzburg model, notice that the “top fermion” π∗

2(Ω
2g−2
X )

can be defined in a similar way as in the untwisted case. Thus we can
define the correlation function of quantum observables via the BV inte-
gration in the spirit of Corollary 4.27 (also see there for the notations):

Definition 5.13. Let O be a quantum observable of the Landau-
Ginzburg B-model which is closed; then the correlation function of O is
defined as

〈O〉WΣg
:=

∫
X

(
(eI

W [∞]/�O
∣∣
H
)TF
/
π∗
2(Ω

2g−2
X )
) ∣∣∣

L
.

As a parallel to Theorem 4.29, we have

Proposition 5.14. Let {Ui} be disjoint disks on Σg. Let Ofi,Ui
∈

H∗(Obsqc(Ui)) be local observables associated to fi ∈ Jac(W ) by Propo-
sition 5.12. Then

〈Of1,U1 � · · · � Ofm,Um〉WΣg

=
∑

p∈Crit(W )

Resp

(
f1 · · · fm det(∂i∂jW )gdz1 ∧ · · · ∧ dzn∏

i ∂iW

)
,

where � is the local to global factorization product, and Resp is the
residue at the critical point p [13].

Proof. As in the non-twisted case, we can assume that m = 1 and
let f = f1 ∈ Jac(W ). Let Of [L] denote the corresponding quantum
observable and Of = lim

L→0
Of [L]. By the definition of the correlation

function, we have

〈Of [∞]〉WΣg
=

∫
X

(
(eI

W [∞]/�Of [∞]
∣∣
H
)TF /π∗

2(Ω
2g−2
X )
) ∣∣∣

L
.

Since X ⊂ Cn, we can choose the L∞ structure on gX such that li = 0
for all i ≥ 2. It is then clear that the RG flow of the classical interaction
of the B-model Icl has only tree parts. Furthermore, when restricted to
the subspace of harmonic fields, there is

I[∞]|H = Icl|H,
Wtree(P

L
0 , Icl, IW )|H = IW |H.
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It is then not difficult to see that the only terms in eI
W [∞]/� that will con-

tribute non-trivially to
(
(eI

W [∞]/�Of [∞]
∣∣
H
)TF /π∗

2(Ω
2g−2
Cn )
) ∣∣∣

L
are the

following:

(5.1)

In the first picture, the two harmonic 1-forms on Σg attached to the
tails must be dual to each other. Since dimC(H

1(Σg)) = 2g, the total
contribution of the first terms is

�−g·n (det(∂i∂jW ))g ⊗ π∗
2(Ω

2g
X ).

And the contribution of the second terms in equation (5.1) together with
the observable Of is, as in the computation of correlation functions in
the non-twisted B-model on P1, given by

�−n((Of � ΩX) ∧ ΩX)⊗ π∗
2(Ω

−2
X ).

All together, we have

〈Of [∞]〉WΣg
=�−(g+1)n

∫
X
(det(∂i∂jW ))g (Of � ΩX) ∧ ΩX

=�−(g+1)n ·
∑

p∈Crit(W )

Resp

(
f det(∂i∂jW )gdz1 ∧ · · · ∧ dzn∏

i ∂iW

)
,

where the last equality follows from [18, Proposition 2.5]. q.e.d.

Remark 5.15. This coincides with Vafa’s residue formula for topo-
logical Landau-Ginzburg models [26].

Appendix A. Proof of Lemma 3.6

The propagator PL
ε on the upper half plane H with respect to the

hyperbolic metric is a 1-form on H × H, thus having a decomposition
under the isomorphism

A1(H×H) ∼=
(A1(H)⊗A0(H)

) ⊕ (A0(H)⊗A1(H)
)
,

where ⊗ denotes the completed tensor product. Let us call the projec-
tion into these two components by the (1, 0) and (0, 1) parts respec-
tively. There is a similar decomposition of the heat kernel kt into its
(2, 0), (0, 2), and (1, 1) parts. We will use zi = xi +

√−1yi, i = 1, 2 to
denote the coordinates on the two copies of H respectively. The prop-
agator will be denoted by PL

ε (z1, z2), where we have omitted its anti-
holomorphic dependence for simplicity, and similarly for the heat kernel
kt(z1, z2).
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By the fact that PL
ε (z1, z2) is a symmetric tensor in A∗(H)⊗A∗(H),

we only need to compute its (1, 0) part. For this, we apply the gauge
fixing operator d∗ to the (2, 0) part of the heat kernel which is given
explicitly by:

kscalart (z1, z2)
dx1dy1

y21
=

√
2

(4πt)
3
2

e−
1
4
t

∫ ∞

ρ

se−
s2

4t ds

(cosh s− cosh ρ)
1
2

dx1dy1
y21

.

Here kscalart (z1, z2) is the heat kernel of the Laplacian on smooth func-
tions, and ρ(z1, z2) denotes the geodesic distance between z1 and z2
given explicitly by

ρ(z1, z2) = arcosh

(
1 +

(x1 − x2)
2 + (y1 − y2)

2

y1y2

)
.

In particular, kscalart (z1, z2) = kscalart (ρ(z1, z2)) is a function of ρ. The
(1, 0) part of PL

ε is therefore given by (where dz1 is the de Rham differ-
ential, �1 is the Hodge star on the first copy of H)∫ L

ε
dt

(
�1dz1 �1 (k

scalar
t (z1, z2)

dx1dy1
y21

)

)
=

∫ L

ε
dt
(
�1dz1(k

scalar
t (ρ(z1, z2)))

)
=

∫ L

ε
dtf(ρ, t) (�1dz1 cosh(ρ(z1, z2)))

=

∫ L

ε
dtf(ρ, t) �1

(
2(x1 − x2)

y1y2
dx1 +

(y1 − y2)(y1 + y2)

y21y2
dy1

)
=

∫ L

ε
dtf(ρ, t)

(
2(x1 − x2)

y1y2
dy1 − (y1 − y2)(y1 + y2)

y21y2
dx1

)
for some f(ρ, t) clear from the context. By the symmetry property, the
full propagator is given by

PL
ε (z1,z2) =

∫ L

ε
f(ρ, t)dt

·
(
2(x1 − x2)

y1y2
(dy1 − dy2)− (y1 − y2)(y1 + y2)

y1y2

(
dx1
y1
− dx2

y2

))
.

The asymptotic property of f(ρ, t) in equation (3.3) follows from the
general property of heat kernels, or an explicit evaluation of f(ρ, t).

Appendix B. Some Feynman graph computations

Proof of Lemma 3.30. It is not difficult to see that the proof of the
lemma can be reduced to wheels with two vertices, and we will show that
the Feynman weights (3.18) associated to the trivalent wheel vanish. The
proof for other wheels with two vertices is similar.



468 Q. LI & S. LI

Let α1⊗g1 and α2⊗g2 be the inputs on the tails; the Feynman weight

(B.1)

is the evaluation of

PL
ε ⊗ (Kε −K0)⊗ (α1 ⊗ g1)⊗ (α2 ⊗ g2)

=

(
PL
ε ⊗

n∑
i=1

(Xi ⊗Xi +Xi ⊗Xi)

)

⊗
⎛⎝(Kε −K0)⊗

n∑
j=1

(Xj ⊗Xj +Xj ⊗Xj)

⎞⎠ ⊗ (α1 ⊗ g1)⊗ (α2 ⊗ g2)

under Icl ⊗ Icl. Here {Xi} denotes a basis of gX over AX (locally) and
{Xi} denotes the corresponding dual basis of g∨X . More explicitly, equa-
tion (B.1) is given by(∫

Σg×Σg

PL
ε (z1, z2)(Kε(z1, z2)−K0(z1, z2))α1α2

)(
〈l2(−),−〉 ⊗ 〈l2(−),−〉

)
(

n∑
i,j=1

(−Xi ⊗ g1 ⊗Xj ⊗Xj ⊗ g2 ⊗X i +Xj ⊗ g1 ⊗X i ⊗Xi ⊗ g2 ⊗Xj)

)
=0.

Proof of Lemma 3.31. We first prove the lemma for those cases where
n > 3. As in the proof of Lemma/Definition 3.23, we can replace Σg byH
with inputs compactly supported, and assume that γ is a trivalent wheel.
We still use the notation Kt for the heat kernel on H for convenience.
Without loss of generality, let us assume that the edge e connects the
vertices v1 and vn. Let αi ⊗ gi be the input on the vertex vi. We will
show that the following two limits exist and are the same:

(B.2) lim
ε→0

Wγ,e(P
L
ε ,Kε, Icl) = lim

ε→0
Wγ,e(P

L
ε ,K0, Icl).

The LHS of equation (B.2) is given explicitly by

Wγ,e(P
L
ε ,Kε, Icl)(α1, · · · , αn)

=

∫
z1,··· ,zn∈H

PL
ε (z1, z2) · · ·PL

ε (zn−1, zn)

·Kε(zn, z1)α1(z1, z̄1) · · ·αn(zn, z̄n)d
2z1 · · · d2zn

=

∫ L

t1,··· ,tn−1=ε
dt1 · · · dtn−1

∫
z1,··· ,zn∈H

d2z1 · · · d2zn
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d∗z1Kt1(z1, z2) · · · d∗zn−1
Ktn−1(zn−1, zn)Kε(zn, z1)α1 · · ·αn.

We claim that the integral
(B.3)∫
z1,··· ,zn∈H

d2z1 · · · d2znd∗Kt1(z1, z2) · · · d∗Ktn−1(zn−1, zn)Kε(zn, z1)α1 · · ·αn

is uniformly bounded by a function of t1, · · · , tn−1 which is integrable on
[0, L]n−1. Then equation (B.2) follows from the dominated convergence
theorem.

Proof of the Claim . By the asymptotic expansion (3.1) (3.3) of Kt

and PL
ε respectively, the leading term of the integral (B.3) is given by

(B.4)

1

(4π)n

∫
z1,··· ,zn∈H

n−1∏
k=1

b0(ρ(zk, zk+1))
1

ε
· a0(zn, z1)e−

ρ2(zn,z1)
4ε α1 · · · αn(

n−1∏
k=1

1

t2k
e
−

ρ2(zk,zk+1)

4tk

)
(
2(xk − xk+1)(dyk − dyk+1)−

y2k − y2k+1

ykyk+1

(
dxk
yk

− dxk+1

yk+1

))
.

We provide the estimates for the above leading term, while higher order
terms furnish a better convergence property.

We do the same change of coordinates as in the proof of Lemma/Definition
3.23, a procedure after which the integral (B.4) becomes a sum of inte-
grals of the following form:

(B.5)

∫
H
du0dv0

∫
R2n−2

du1dv1 · · · dun−1dvn−1Φ · 1
ε

(
n−1∏
k=1

uikk vjkk
t2k

)

· exp
(
−

n−1∑
i=1

u2i + v2i
4ti

− ρ2(zn, z1)

4ε

)
,

where

• for 1 � k � n − 1, the functions uikk vjkk arise from xk − xk+1 and
yk − yk+1, hence ik + jk ≥ 1;

• Φ is a smooth function on H×R2n−2 with compact support.

Now we only need to show that for each fixed (u0, v0) ∈ H, the following
integral is bounded above in absolute value by an integrable function of
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(t1, · · · , tn−1) on [0, L]n−1 independent of ε:
(B.6)∫

R2n−2

du1dv1 · · · dun−1dvn−1
1

ε

(
n−1∏
k=1

uikk vjkk
t2k

)

· exp
(
−

n−1∑
i=1

u2i + v2i
4ti

− ρ2(zn, z1)

4ε

)
.

We show this for the leading term of its Wick expansion. Notice that
for each fixed (u0, v0) ∈ H, the function

−
n−1∑
i=1

u2i + v2i
4ti

− ρ2(zn, z1)

4ε

takes its maximal value 0 at the critical point (u1, v1, · · · , un−1, vn−1) =
(0, · · · , 0). It is not difficult to see that the Hessian at the critical point
is the same as that of the function

−
n−1∑
i=1

u2i + v2i
4ti

−

(
n−1∑
i=1

ui

)2
+

(
n−1∑
i=1

vi

)2
4ε

.

Thus the leading term in the Wick expansion of equation (B.6) is the
same as that of the following integral:
(B.7)∫

R2n−2

du1dv1 · · · dun−1dvn−1
1

ε

·
(

n−1∏
k=1

uikk vjkk
t2k

)
· exp
(
−

n−1∑
i=1

u2i + v2i
4ti

− (
∑n−1

i=1 ui)
2 + (
∑n−1

i=1 vi)
2

4ε

)
,

which can be evaluated via Gaussian type integral. We rearrange the
coordinates on R2n−2 as

(u1, · · · , un−1, v1, · · · , vn−1),

and let t = (t1, · · · , tn−1). The matrix of the quadratic form in the
exponential is given by:

M(t, ε) =
1

4

(
A(t, ε) 0

0 A(t, ε)

)
,

in which

A(t, ε) =

⎛⎜⎜⎜⎝
1
t1
+ 1

ε
1
ε ... 1

ε
1
ε

1
t2
+ 1

ε ... 1
ε

...
...

. . .
...

1
ε

1
ε ... 1

tn−1
+ 1

ε

⎞⎟⎟⎟⎠ .
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For convenience, we will also useM for the matrix M(t, ε). It is straight-
forward to check that

(B.8) det(M) =

(
1

4

)2(n−1)

·
(
t1 + · · · + tn−1 + ε

t1 · · · tn−1ε

)2
.

The standard trick of the Feynman integral implies that (B.7) equals

(B.9)

1√
detM

(
n−1∏
i=1

1

t2i

)
· 1
ε

∑(
M−1

α1,β1
· · ·M−1

αN ,βN

)
=

4n−1

t1 · · · tn−1(t1 + · · · + tn−1 + ε)
·
∑(

M−1
α1,β1

· · ·M−1
αN ,βN

)
,

where the sum is over all pairings of
∏n−1

k=1(u
ik
k vjkk ), andM−1

α,β ’s are entries

of the inverse matrix of M . N is an integer no less than (n− 1)/2.
We claim that on each region of the form

{(t1, t2, · · · , tn−1) ∈ [0, L]n−1 : 0 � tσ(1) � · · · � tσ(n−1) � L},
where σ ∈ Sn−1, equation (B.9) is uniformly bounded above in absolute
value by an integrable function. This claim finishes the proof of Lemma
3.31.

We will prove the claim for σ = id ∈ Sn−1; the proof for other σ’s
is similar. The following lemma provides an estimate of the entries of
M−1.

Lemma B.1. |M−1
i,j | � 4 ·min{ti, tj}.

Proof. There are two possibilities: i = j or i �= j. By symmetry, we
only need to consider M−1

1,1 and M−1
1,2 . We have

M−1
1,1 =det

⎛⎜⎜⎜⎝
1
t2

+ 1
ε

1
ε ... 1

ε
1
ε

1
t3
+ 1

ε ... 1
ε

...
...

. . .
...

1
ε

1
ε ... 1

tn−1
+ 1

ε

⎞⎟⎟⎟⎠ ·
(
t1 + · · · + tn−1 + ε

t1 · · · tn−1ε

)−1

· 4

=
t2 + · · ·+ tn−1 + ε

t2 · · · tn−1ε
·
(
t1 + · · ·+ tn−1 + ε

t1 · · · tn−1ε

)−1

· 4

=t1 · t2 + · · ·+ tn−1 + ε

t1 + · · ·+ tn−1 + ε
· 4 � 4t1

and

M−1
1,2 =det

⎛⎜⎜⎜⎝
1
ε

1
ε ... 1

ε
1
ε

1
t3

+ 1
ε ... 1

ε
...

...
. . .

...
1
ε

1
ε ... 1

tn−1
+ 1

ε

⎞⎟⎟⎟⎠ ·
(
t1 + · · ·+ tn−1 + ε

t1 · · · tn−1ε

)−1

· 4
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=
1

t3 · · · tn−1ε
·
(
t1 + · · · + tn−1 + ε

t1 · · · tn−1ε

)−1

· 4

=
t1t2

t1 + · · · + tn−1 + ε
· 4 � 4 ·min{t1, t2}.

q.e.d.

With Lemma B.1, we can give an estimate of
M−1

α1,β1
· · ·M−1

αN ,βN

t1 · · · tn−1(t1 + · · ·+ tn−1 + ε)
in (B.9): since 1 ∈ {α1, β1, · · · , αN , βN}, we can always find a subset

{l1, l2, · · · , lÑ} ⊂ {2, 3, · · · , n− 1}, Ñ ≤ (n − 1)/2, such that∣∣∣M−1
α1,β1

· · ·M−1
αN ,βN

∣∣∣
t1 · · · tn−1(t1 + · · ·+ tn−1 + ε)

�
1

tl1 · · · tlÑ
1

t1 + · · · + tn−1
.

It is straightforward to check that the function

1

tl1 · · · tlÑ
1

t1 + · · · + tn−1

is integrable on {(t1, · · · , tn−1) ∈ [0, L]n−1 : 0 � t1 � · · · � tn−1 � L} if
n � 4.

The only case left is when n = 3. Notice that the following Feynman
weight is non-trivial only if at least one αi is a 0-form.

Let f be a compactly supported function on H. There are the fol-
lowing two possible configurations of the inputs on the graph up to
automorphisms:

︸ ︷︷ ︸
(1)

︸ ︷︷ ︸
(2)
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For configuration (1), we write the corresponding Feynman weight as
the sum of

(B.10)

∫
z1,z2,z3∈H

PL
ε (z1, z2) Kε(z2, z3) P

L
ε (z3, z1) · f(z2) α2 α3

and

(B.11)

∫
z1,z2,z3∈H

PL
ε (z1, z2)Kε(z2, z3) P

L
ε (z3, z1)·(f(z1)−f(z2)) α2 α3.

Here equation (B.10) actually vanishes since∫
z1∈H

PL
ε (z3, z1)P

L
ε (z1, z2) = 0,

which amounts to (d∗)2 = 0. The vanishing holds if we replace Kε by
K0. For (B.11), we claim that
(B.12)

lim
ε→0

∫
z1,z2,z3∈H

PL
ε (z1, z2)Kε(z2, z3)P

L
ε (z3, z1) · (f(z1)− f(z2))α2α3

= lim
ε→0

∫
z1,z2,z3∈H

PL
ε (z1, z2)K0(z2, z3)P

L
ε (z3, z1) · (f(z1)− f(z2))α2α3.

To prove the claim, we apply the same argument for the case of n � 4.
The leading term of (B.11) is similar to (B.9), except that the function
f(z1) − f(z2) in (B.11) contributes one more ui or vi than in (B.9) (so

N ≥ 2 when n = 3, hence Ñ = 0). Thus the leading term is bounded
above by a constant times

1

t1 + t2
,

which clearly has a finite integral on [0, L]× [0, L]. All together, we have

lim
ε→0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= lim

ε→0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
For configuration (2), a similar argument as above shows

lim
ε→0

∫
z1,z2,z3∈H

Kε(z1, z2)P
L
ε (z2, z3)P

L
ε (z3, z1) · (f(z1)− f(z2))α2α3

= lim
ε→0

∫
z1,z2,z3∈H

K0(z1, z2)P
L
ε (z2, z3)P

L
ε (z3, z1) · (f(z1)− f(z2))α2α3.

On the other hand,∫
z1,z2,z3∈H

Kε(z1, z2)P
L
ε (z2, z3)P

L
ε (z3, z1) · f(z2)α2(z2)α3(z3)
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= ±
∫
z2,z3∈H

PL
ε (z2, z3)P

ε+L
2ε (z3, z2)f(z2)α2(z2)α3(z3).

Then similar to Lemma/Definition 3.23, the above limit exists, and

lim
ε→0

∫
z2,z3∈H

PL
ε (z2, z3)P

ε+L
2ε (z3, z2)f(z2)α2α3

= lim
ε→0

∫
z2,z3∈H

PL
ε (z2, z3)P

L
ε (z3, z2)f(z2)α2α3

= lim
ε→0

∫
z1,z2,z3∈H

PL
ε (z2, z3)P

L
ε (z3, z1)K0(z1, z2)f(z2)α2α3.

Altogether we have

lim
ε→0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= lim

ε→0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Appendix C. One-loop anomaly

In this section, we give a general formula of the one-loop anomaly for
perturbative QFT in Costello’s formalism. Let E be the space of fields
of a perturbative QFT whose classical interaction is I ∈ O(E). Let PL

ε

denote the regularized propagator.
Let us first give an explicit description of the one-loop naive quanti-

zation I
(1)
naive[L]. Let Γ

Wheel denote the set of Feynman diagrams given
by wheels (without trees attached), which are the essential part of one-
loop diagrams requiring regularization by counter-terms. We fix a renor-
malization scheme which allows us to decompose any graph integral
uniquely into its “smooth part” and “singular part” in the sense of [5].
Let γ ∈ ΓWheel; we will write

Wγ(P
L
ε , I) = Wγ(P

L
ε , I)sm +Wγ(P

L
ε , I)sing(C.1)

for the corresponding decomposition [5, Theorem 9.5.1].

Lemma C.1. Let γ ∈ ΓWheel; then Wγ(P
L
ε , I)

sing is a local func-
tional on E independent of L.

Proof. Since ∂
∂LP

L
ε is a smooth kernel which does not depend on ε,

∂
∂LWγ(P

L
ε , I) behaves like a tree diagram. Therefore

lim
ε→0

∂

∂L
Wγ(P

L
ε , I) exists.



ON THE B-TWISTED MODEL AND CALABI-YAU GEOMETRY 475

Hence Wγ(P
L
ε , I)

sing is independent of the scale L. By [5, Theorem
9.3.1], Wγ(P

L
ε , I)

sing has a small L asymptotic expansion in terms of
local functionals. Since it does not depend on L, it follows that the
functional Wγ(P

L
ε , I)sing is local. q.e.d.

By the algorithm in [5], Wγ(P
L
ε , I)

sing is the counter-term associated
to γ, and

lim
ε→0

Wγ(P
L
ε , I)sm exists.

The following proposition now follows easily from the Feynman diagram
analysis and the regularization process described in [5].

Proposition C.2. The one-loop naive quantization is given by

I
(1)
naive[L] = lim

ε→0

∑
γ1∈trees,v∈V (γ1),γ2∈ΓWheel

Wγ1,v(P
L
ε , I,Wγ2(P

L
ε , I)

sm),

where the summation is over all connected tree diagrams γ1 with a spec-
ified vertex v, and a wheel diagram γ2. Wγ1,v(P

L
ε , I,Wγ2(P

L
ε , I)sm) is

the Feynman graph integral on γ1, where we put I on those vertices not
being v, put Wγ2(P

L
ε , I)

sm on the vertex v, and put PL
ε on all internal

edges.

Pictorially,

(C.2) I
(1)
naive[L] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Remark C.3. In the above picture, we are taking the sum of weights

of all one-loop graphs.

Let

(Q+ �ΔL) e
I
(0)
naive[L]/�+I

(1)
naive[L] = (O1[L] +O(�))eI

(0)
naive[L]/�+I

(1)
naive[L],

where O1[L] is the leading term in the �-expansion. By the construction
in [5, Chapter 5], O1[L] is the anomaly for solving the quantum master
equation at the one-loop. Moreover, O1[L] satisfies a version of classical
renormalization group flow, and

O1 := lim
L→0

O1[L]

exists as a local functional. Our goal is to give a formula for computing
O1 in terms of graphs.
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Let

ICT (ε) =
∑

γ∈ΓWheel

Wγ(P
L
ε , I)sing

denote the one-loop counter-terms. Proposition C.2 can be formally
written as [5]

eI
(0)
naive[L]/�+I

(1)
naive[L]+O(�) = lim

ε→0
e
� ∂

∂PL
ε eI/�−ICT (ε).

Therefore

(O1[L] +O(�))eI
(0)
naive[L]/�+I

(1)
naive[L]+O(�)

=(Q+ �ΔL) lim
ε→0

e
� ∂

∂PL
ε eI/�−ICT (ε) = lim

ε→0
e
� ∂

∂PL
ε (Q+ �Δε) e

I/�−ICT (ε)

= lim
ε→0

e
� ∂

∂PL
ε

(
�−1({I, I}ε − {I, I}0) + ΔεI

−QICT (ε)− {I, ICT (ε)}ε +O(�)
)
eI/�−ICT (ε).

It follows that

O1[L] = lim
ε→0

( ∑
γ:one-loop connected,

v∈V (γ)

Wγ,v(P
L
ε , I, {I, I}ε − {I, I}0)

+
∑

γ:tree,v∈V (γ)

Wγ,v(P
L
ε , I,ΔεI −QICT (ε)− {I, ICT (ε)}ε)

)

(C.3)

Lemma C.4.

QICT (ε) =− {I, ICT (ε)}0 +
∑

γ∈ΓWheel ,�E(γ)>1,
e∈E(γ)

Wγ(P
L
ε ,Kε −K0, I)

sing

+ (ΔεI)
sing.

Proof. It is easy to see that Q preserves the decomposition (C.1);
hence

QICT (ε) = Q

⎛⎝ ∑
γ∈ΓWheel

Wγ(P
L
ε , I)

sing

⎞⎠ =
∑

γ∈ΓWheel

(QWγ(P
L
ε , I))

sing.

By the identity (Q⊗ 1 + 1⊗Q)PL
ε = Kε −KL and the classical master

equation,⎛⎝ ∑
γ∈ΓWheel

QWγ(P
L
ε , I)

⎞⎠
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=−
⎧⎨⎩I, ∑

γ∈ΓWheel

Wγ(P
L
ε , I)

⎫⎬⎭
0

−
∑

γ∈ΓWheel ,�E(γ)>1,
e∈E(γ)

Wγ(P
L
ε ,K0, I)

−
∑

γ∈ΓWheel ,e∈E(γ)

Wγ(P
L
ε ,KL −Kε, I)

=−
⎧⎨⎩I, ∑

γ∈ΓWheel

Wγ(P
L
ε , I)

⎫⎬⎭
0

+
∑

γ∈ΓWheel ,�E(γ)>1,
e∈E(γ)

Wγ(P
L
ε ,Kε −K0, I)

+ ΔεI −
∑

γ∈ΓWheel ,e∈E(γ)

Wγ(P
L
ε ,KL, I).

Since the last term is smooth as ε→ 0, it follows that

QICT (ε) =− {I, ICT (ε)}0
+

∑
γ∈ΓWheel ,�E(γ)>1,

e∈E(γ)

Wγ(P
L
ε ,Kε −K0, I)

sing + (ΔεI)
sing.

q.e.d.

Theorem C.5. The one-loop anomaly O1 is given by

O1 = lim
ε→0

∑
γ∈ΓWheel ,e∈E(γ)

Wγ(P
L
ε ,Kε −K0, I)

sm + (ΔεI)
sm.

Proof. The term∑
γ:one-loop connected,

v∈V (γ)

Wγ,v(P
L
ε , I, {I, I}ε − {I, I}0)

in equation (C.3) can be expressed as the sum of the following two types
of Feynman weights:

(C.4)

In the left picture Kε −K0 is labeled on the wheel (the red edge) while
in the right picture it is labeled on the external tree. It is not difficult
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to see that the right picture, together with the term∑
γ:tree,v∈V (γ)

Wγ,v(P
L
ε , I, {I, ICT (ε)}0 − {I, ICT (ε)}ε)

contributes

whose limit vanishes as ε → 0. The theorem then follows easily from
equation (C.3), Lemma C.4, and O1 = lim

L→0
O1[L] (which kills all external

trees).
q.e.d.

Equation 3.17 is now a graphic expression of Theorem C.5.

Appendix D. Chevalley-Eilenberg complex vs de Rham
complex of jet bundles

The main objective of this section is to give an explicit description of
the isomorphism in Proposition 3.35. We will also review modules over
L∞ algebras and the corresponding Chevalley-Eilenberg differential for
the purpose of our discussion.

L∞ algebras and their modules. Let us first recall the definition of
L∞ algebras.

Definition D.1. Let A be a commutative differential graded algebra
and let A� denote the underlying graded algebra. A curved L∞ algebra
over A consists of a locally free finitely generated graded A�-module V ,
together with a cohomological degree 1 and square zero derivation:

d : ŜymA�(V ∨[−1])→ ŜymA�(V ∨[−1])
such that the derivation d makes ŜymA�(V ∨[−1]) into a dga over the
dga A. Here V ∨ denotes the A�-linear dual of V . We can decompose the
derivation d into components:

dn : V ∨[−1]→ Symn
A�(V

∨[−1]), n ≥ 0.

The structure maps of the curved L∞ algebra V are defined by dualizing
dn with a degree shift:

ln := d∗n : ∧nV [n− 2]→ V.
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The components dn of the derivation d can be represented by the fol-
lowing “corollas,” which should be read from bottom to top: the bottom
line denotes the input of dn and the top lines denote the outputs.

Modules over L∞ algebras are defined in a similar fashion:

Definition D.2. Let A and V be the same as in Definition D.1. An
A�-module M is called a module over the L∞ algebra V if there is a
differential

dM : ŜymA�(V ∨[−1])⊗A� M → ŜymA�(V ∨[−1]) ⊗A� M

making ŜymA�(V ∨[−1])⊗A� M a dg-module over ŜymA�(V ∨[−1]).
It is clear from the definition that the differential dM is determined

by its components

(dM )n : M → Symn
A�(V

∨[−1])⊗A� M,

which we represent by the following picture:

Example D.3. M = V ∨ has a naturally induced structure of an L∞-
module over V . We define the map dM by the following composition:

(D.1)
M = V ∨ → V ∨[−1] dV−→ ŜymA�(V ∨[−1])

ddR−→ ŜymA�(V ∨[−1]) ⊗ V ∨ = ŜymA�(V ∨[−1])⊗M.
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This differential can be represented as follows:

where the green lines denote the module M , and the black lines de-

note the components in ŜymA�(V ∨[−1]). Notice that the only difference
between dM and dV is that there are green lines in the graphical repre-
sentation of dM . Thus it is clear that the identity d2M = 0 follows from
d2V = 0, and that the effect of the operator ddR in equation (D.1) is
exactly “picking out the green line.”

Example D.4. N = V . We define the differential dN by the following
graphics:

(D.2)

where the downward “elbow”

in equation (D.2) denotes the evaluation map

〈−,−〉 : V ⊗ V ∨ → A�

and the reversed “elbow” denotes the coevaluation map.
Again, d2N = 0 follows from the identity d2V = 0.

Proof of Proposition 3.35. Let X be a complex manifold, and let gX
be the curved L∞ algebra over A = AX encoding the complex geometry
of X. By the construction of gX , there is an isomorphism of cochain
complexes

ρ∗ :
(
AX ⊗OX

JetholX (OX), dDX

)
∼→ (C∗(gX), dCE) .
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We have the following proposition:

Proposition D.5. The extension of the map (3.27) over AX :

g
∨
X [−1] ∼= AX ⊗OX

Ω1
X

∂dR◦T−→ AX ⊗OX
JetholX (Ω1

X)

gives rise to an isomorphism of cochain complexes

T̃ :
(
C∗(gX)⊗ g

∨
X [−1], dCE

) ∼→
(
AX ⊗OX

Jet hol
X (Ω1

X), dDX

)
.

Proof. It is clear from the definition of T̃ that the following diagram
commutes:

(D.3) C∗(gX)

(ρ∗)−1

��

ddR �� C∗(gX)⊗ g
∨
X [−1]

T̃
��

AX ⊗OX
JetholX (OX)

∂dR �� AX ⊗OX
JetholX (Ω1

X).

Here ddR is the de Rham differential of the algebra C∗(gX), and we
have identified C∗(gX) ⊗ g

∨
X [−1] with 1-forms. Consider the following

diagram:

AX ⊗OX
JetholX (Ω1

X)

dDX

��

AX ⊗OX
JetholX (OX)

∂dR��

dDX

��

C∗(gX )⊗ g
∨
X [−1]

dCE

��

T̃

����������������
C∗(gX )

dCE

��

ddR

��
(ρ∗)−1

��������������

AX ⊗OX
JetholX (Ω1

X) AX ⊗OX
JetholX (OX)

∂dR��

C∗(gX )⊗ g
∨
X [−1]

T̃

����������������
C∗(gX )

ddR

��
(ρ∗)−1

��������������

It is straightforward to check that all the squares commute except the
left vertical one:

• The commutativity of the top and the bottom squares follows from
(D.3).

• The front vertical square commutes by the definition of the
Chevalley-Eilenberg differential on C∗(gX)⊗ g

∨
X [−1].

• The commutativity of the back vertical square follows from the
fact that ∂dR and dDX

commute with each other.
• The right vertical square commutes by the definition of gX .

Since ddR is surjective, a simple diagram chase shows the commutativity
of the left vertical square, which implies that the Chevalley-Eilenberg
differential dCE on C∗(gX)⊗ g

∨
X [−1] is identified with dDX

on AX ⊗OX

JetholX (Ω1
X) under T̃ . q.e.d.
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Now we prove the following proposition:

Proposition D.6. Let K be the smooth homomorphism

K : TX → C∞(X) ⊗OX
JetholX (TX [−1])

such that

(D.4) v(α) = 〈K(v), T (α)〉,
for all α ∈ Ω1

X , v ∈ TX . Then the extension of K over C∗(gX) ∼=
AX ⊗OX

JetholX (OX):

K̃ : C∗(gX)⊗ gX → AX ⊗OX
JetholX (TX [−1])

is an isomorphism of cochain complexes. In particular, dDX
◦ K̃ = K̃ ◦

dCE.

Proof. It is obvious from equation (D.4) that K̃ is both injective

and surjective. We now show that K̃ commutes with differentials. After
translating equation (D.2) into homomorphisms, it is clear that the
Chevalley-Eilenberg differential dCE on C∗(gX) ⊗ gX is given by the
following composition:

gX
id⊗coev

�� gX ⊗ g
∨
X ⊗ gX

id⊗dCE⊗id
�� gX ⊗ g

∨
X ⊗ C∗(gX)⊗ gX

ev⊗id⊗id
�� C∗(gX)⊗ gX .

We pick local holomorphic coordinates {zi} on X. The image of {∂̃zi}
under dCE is given by

∂̃zi → ∂̃zi ⊗ d̃zj ⊗ ∂̃zj → ∂̃zi ⊗ (T̃−1 ◦ dDX
◦ T̃ )(d̃zj)⊗ ∂̃zj

→ 〈∂̃zi , (T̃−1 ◦ dDX
◦ T̃ )(d̃zj)〉 ⊗ ∂̃zj .

We have the following identities:

〈∂̃zi , (T̃−1 ◦ dDX
◦ T̃ )(d̃zj)〉 ⊗ ∂̃zj

(1)
= 〈K̃(∂̃zi), (dDX

◦ T̃ )(d̃zj)〉 ⊗ ∂̃zj

(2)
= 〈(dDX

◦ K̃)(∂̃zi), T̃ (d̃z
j)〉 ⊗ ∂̃zj

(3)
= 〈(K̃−1 ◦ dDX

◦ K̃)(∂̃zi), d̃z
j〉 ⊗ ∂̃zj

= (K̃−1 ◦ dDX
◦ K̃)(∂̃zi),

where the identities (1) and (3) follow from equation (D.4) and identity
(2) follows from the fact that dDX

is a derivation with respect to the
pairing 〈−,−〉. q.e.d.

It is clear that the wedge product of the map K̃ gives the desired iso-
morphism in Proposition 3.35.
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