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Abstract. We study backward stochastic Riccati equations (BSREs) arising in quadratic optimal control problems
with infinite dimensional stochastic differential state equations. We allow the coefficients, both in the state equation
and in the cost, to be random. In such a context BSREs are backward stochastic differential equations living in a
non-Hilbert space and involving quadratic non-linearities. We propose two different notions of solutions to BSREs
and prove, for both of them, existence and uniqueness results. We also show that such solutions allow to perform the
synthesis of the optimal control. Finally we apply our results to the optimal control of a delay equation and of a wave
equation with random damping.

1. Introduction

Backward stochastic Riccati differential equations (BSREs) naturally arise in the study of stochastic optimal linear
quadratic control problems with stochastic coefficients.

The interest of proving existence and uniqueness results for such a class of equations was firstly addressed by
Bismut in [2]. It was clear from the beginning that to study those highly non-linear backward stochastic differential
equations was a challenging task, already in the finite dimensional case (see [3], [21] or the historical review in [12]).
The difficulty comes essentially from the fact that, in its general formulation, the BSRE involves quadratic terms
in both the unknowns (in particular in the, so called, ‘martingale’ term). Moreover the non linearity can be well
defined only in a subset of the space of non-negative matrices (where the equation naturally lives).

Several works followed the pioneering paper [2] (see [20] [12], [13], [14] [15]). In particular only very recently, in [22],
the proof of the existence and uniqueness of a solution of the BSRE was given in the general case corresponding to
a finite dimensional, linear quadratic problem with random coefficients and state and control-dependent noise. This
last result, somehow, completes the theory of finite dimensional BSREs. We remark that in all the above literature it
is clear that the treatment of the equation can not be solely based on general backward stochastic differential equation
techniques but needs to exploit the interplay between the Riccati equation and its control theoretic interpretation
(for results on general backward stochastic differential equation with quadratic nonlinearities see [11] and [17]).

On the other side several works, motivated by control of stochastic partial differential equations, have been
devoted to linear quadratic optimal control problems for infinite dimensional stochastic differential equations with
deterministic coefficients (see for instance [23] and references within). The corresponding Riccati equation is a
deterministic nonlinear ODE in a suitable space of symmetric, non-negative, Hilbert valued operators.

The present paper is, as far as we know, the first attempt to consider infinite dimensional BSREs. Such equations
naturally arise in several models; namely they appear in all the situations in which one has to perform the synthesis
of the optimal control for a linear quadratic problem having, as state equation, an infinite dimensional stochastic
evolution equation with random coefficients (see examples in Sections 9 and 10). We also underline that the study
of infinite dimensional BSREs introduces specific new difficulties in the theory of backward stochastic differential
equations. Namely these are non-linear backward stochastic differential equations that involve unbounded linear
terms and quadratic nonlinearities. Moreover, and this is the main difficulty, they naturally live in a non-Hilbertian
infinite dimensional space.

In order to separate difficulties we consider here only the case in which the non-linearity does not depend on the
’martingale term’ of the backward equation. In other words we consider the infinite dimensional analogue of the
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equation considered, in the finite dimensional case in [20]. We believe that, as we explain in the following, this case
already presents serious new difficulties.

To be more precise: in this paper we consider a quadratic optimal control problem for a system governed by the
following state equation:{

dy(t) = (Ay(t) + A](t)y(t) + B(t)u(t)) dt + C(t)y(t) dW (t) t ∈ [0, T ]
y(0) = x

(1.1)

In the above equation y is the state of the system and u is the control ; y has values in an Hilbert space H and u
has values in another Hilbert space U ; W is a cylindrical Ξ-valued Wiener process defined on a probability space
{Ω,F ,P}, where Ξ is a third Hilbert space. Expanding notation with respect to an orthonormal basis {fi : i ∈ N}
in Ξ we have C(t)y(t) dW (t) =

∑∞
i=1 Ci(t)y(t)dβi(t) where {βi : i ∈ N} := {(fi,W )Ξ : i ∈ N} is a family of standard

independent brownian motions.
We assume that the unbounded operator A : D(A) ⊂ H → H is independent of ω ∈ Ω and t ∈ [0, T ] and is

the infinitesimal generator of a C0-semigroup. On the contrary A], B and C are allowed to be random; namely
they are bounded, operator valued, stochastic processes that we assume to be predictable relatively to the filtration
F = {Ft : t ≥ 0} generated by W (this last condition is not restrictive see Remark 2.4).

Our purpose is to minimize, over all predictable controls u, the quadratic cost functional:

E
∫ T

0

(
|
√

S(s)y(s)|2H + |u(s)|2U
)

ds + E(PT y(T ), y(T ))H (1.2)

where S is a predictable stochastic processes and PT is a random variable both taking values in the set of linear,
symmetric, non negative and bounded operators from H into H.

If we define the stochastic value function by:

(P (t)x, x)H=̇ inf
u
EFt, y(t)=x

[∫ T

t

(
|
√

S(s)y(s)|2H + |u(s)|2U
)

ds + (PT y(T ), y(T ))H

]
(1.3)

then P solves, at least in a formal way, the following backward stochastic differential equation:



−dP (t) =
(
A∗P (t) + P (t)A + A∗] (t)P (t) + P (t)A](t)− P (t)B(t)B∗(t)P (t) + S(t)

)
dt

+Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)] dt + Q(t) dW (t) t ∈ [0, T ]

P (T ) = PT

(1.4)

We notice that the unknowns in (1.4) are the two processes P and Q (the second one is sometimes referred at as
martingale term). Process P has values in the cone Σ+(H) of bounded, non-negative, linear symmetric operators
in H and process Q in the space L2(Ξ, Σ(H)) of Hilbert-Schmidt operators from Ξ to the space Σ(H) of bounded,
linear symmetric operators in H. Moreover making again notation explicit we have

Tr
[
C∗(t)PC(t) + C∗(t)Q + QC(t)

]
=

∞∑

i=1

[
C∗i (t)PCi(t) + C∗i (t)(Qfi) + (Qfi)Ci(t)

]
.

The specificity of our situation resides in the fact that the above equation involves both the unbounded term
A∗P + PA and quadratic term PBB∗P . Moreover Σ(H) is not an Hilbert space, thus some essential tools in
stochastic calculus, commonly used in the theory of backward stochastic differential equations, such as the Kunita-
Watanabe martingale representation theorem, fail to hold. To overcome this difficulty one could try to compute the
operator valued random variables on the vectors of a basis and then apply classical representation results to each
component; but this procedure does not seem to allow the reconstruction of a suitable operator valued process Q.
The point is that, due to the presence of an unbounded term, we can not consider equation (1.4) in its classical sense.
Normally this leads to a mild formulation of the equations. Here, due to the difficulty of handling the martingale
representation term Q, this approach causes problems. As a matter of fact mild formulation requires to give sense to
the process like s → e(s−t)A∗Q(s)e(s−t)Ah, h ∈ H, while only the processes Q(·)h with h independent on t are well
defined.

For the same reason, in the generality considered here, it seems difficult to show uniqueness of weak solutions of
BSREs.

To cope with such a roadblock we propose the following strategy inspired by the notion of ‘strong solution’
for partial differential equations, see [1] or [16] and references therein. Roughly speaking the method consists in
considering first equations with more regular data an then defining the solution in the general case by a limiting
procedure.
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To carry on with this programm we devote a first part of the paper (up to section 5) to the case in which the
process S and the random variable PT (corresponding respectively to the running and final cost) take values in the
Hilbert space L2(H) of Hilbert-Schmidt operators H → H (see assumption A5). To start with we prove existence,
uniqueness and stability with respect to approximations of the solution to a class of infinite dimensional backward
stochastic differential equations with unbounded linear term and lipschitz nonlinearity, see Theorem 4.4. This result
is essentially included in [10] as far as existence and uniqueness is concerned (except that we find a slightly more
regular solution) while the part dealing with stability seems to be new and of independent interest.

The above general result is then applied to the affine Lyapunov equation:




−dP (t) = (A∗P (t) + P (t)A + Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)]) dt

+(A∗] (t)P (t) + P (t)A](t) + L(t)) dt + Q(t) dW (t) t ∈ [0, T ]

P (T ) = PT

(1.5)

when L is a given Hilbert-Schmidt valued predictable process.
Then by fixed point technique and a priory estimates (see also [20]) we are able to show that if S and PT take

values in the Hilbert space L2(H) then equation (1.4) has, in L2(H), a unique mild solution (P, Q). By that we
mean a pair of processes verifying P-a.s. for all t ∈ [0, T ]:

P (t) =
∫ T

t

e(s−t)A∗Tr
[
C∗(s)P (s)C(s) + C∗(s)Q(s) + Q(s)C(s)

]
e(s−t)A ds

+ e(T−t)A∗PT e(T−t)A +
∫ T

t

e(s−t)A∗Q(s)e(s−t)A dW (s) +
∫ T

t

e(s−t)A∗S(s)e(s−t)A ds (1.6)

+
∫ T

t

e(s−t)A∗ (
A∗] (s)P (s) + P (s)A](s)− P (s)B(s)B∗(s)P (s)

)
e(s−t)A ds

Moreover, we prove that, such a solution can be approximated by the classical solutions of the equations obtained
replacing A by its Yosida approximations. Once we have a solution to the Riccati equation it is easy to perform in
this Hilbertian framework, the standard synthesis of the optimal control: that is to verify that (P (0)x, x)H is the
optimal cost and that the unique optimal control u verifies the feedback law u(t) = −B∗(t)P (t)y(t)(see Theorem
5.14).

Hilbert-Schmidt assumption A5 is too restrictive in many of the concrete applications (see the Example in Section
10 and Remark 10.1) so it is necessary to complete the above mentioned programm in order to include in the theory
general running costs S and final conditions PT . In Section 6 we introduce the concept of generalized solutions of
(1.4). By this we mean limits (in a suitable sense) of solutions corresponding to Hilbert-Schmidt data S and PT .
We are able to prove, under fairly general assumptions, that a generalized solution, in the above sense, exists and is
unique (see Theorem 6.6). Notice that if existence of a generalized solution is somehow expected uniqueness seems a
more interesting result; its proof is largely based on the control-theoretic interpretation of equation (1.4). Moreover
we show that such a solution still allows to perform the synthesis of the optimal control as in the Hilbert-Schmidt case
(see again Theorem 6.6). We also notice that their control theoretic interpretation imply that generalized solutions
enjoy ‘strong continuity’ property (see Lemma 6.5).

In section 7 we prove that generalized solutions verify the following variation of constants formula

(P (t)x, x)H = (Lt,T PT x, x)H +
∫ T

t

(Lt,sS(s)x, x)H ds−
∫ T

t

(Lt,sP (s)B(s)B∗(s)P (s)x, x)H ds P− a.s. (1.7)

where Lt,s is the evolution operator corresponding to the Lyapunov equation (1.5) with L = 0. We are also able to
show that there exists a unique process P verifying (1.7). Thus (1.7) can be regarded as an alternative definition of
solution to the BSRE (1.4). We notice that in both the definitions of solution we propose only the P term in the
BSRE is characterized. This is natural by the point of view of control theory and, in any case, is enough to complete
the synthesis of the optimal control, see also Remark 6.3.

In section 9 and 10 we show that our general results can be applied to a variety of concrete examples. The first
example is a minimization of variance problem for a delay equation with a stochastic coefficient. The interest of
such example is that on one side it is extremely simple (and consequently applicable to a wide range of concrete
situations) on the other it is connected with financial applications. Namely it is a firs step towards a mean variance
hedging problem for a market with stochastic variance and memory effects. The second example is an optimal control
problem for a wave equation in random media. In this case a stochastic coefficient is introduced, in a realistic way,
assuming that the equation is subject to a stochastic damping due to the media. We notice that for the example in
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section 9 the Hilbert-Schmidt assumptions A5 is verified and we obtain mild solutions of the corresponding Riccati
equation. On the contrary for the example in section 9 the Hilbert-Schmidt assumptions A5 is never verified and we
have to use the concept of generalized solution of the Riccati equation.

2. Main Notation and Assumptions

By H, U and Ξ we will always indicate real separable Hilbert spaces.
If K is an Hilbert space its inner scalar product and norm will be denoted by (·, ·)K and | · |K omitting the K

when no confusion is possible.
For any Banach space E by B(E) we denote its Borel σ-field.
For any pair K1 and K2 of separable real Hilbert spaces we denote by L(K1,K2) the Banach space of linear

and bounded operators from K1 to K2 endowed by the norm |T |L(K1,K2) = sup{x∈K1,|x|K1=1} |Tx|K2 (as usual
L(H) = L(H, H)).

By Σ(H) we denote the subspace of all symmetric and bounded operators and by Σ+(H) the cone of Σ(H) that
contains all positive semidefinite operators.

L2(K, H) denotes the Hilbert space of Hilbert-Schmidt operators from K to H, endowed with the Hilbert-Schmidt
norm |T |2L2(K,H) =

∑∞
i=1 |Tei|2H ({ei : i ∈ N} being an orthonormal basis in K) and we set L2(H, H) = L2(H). Σ2(H)

is the subset of L2(H) that consists in all linear and symmetric operators and Σ+
2 (H) is the cone of Σ2(H) that

consists in all non negative operators.

The cylindrical Wiener Process
We fix a probability basis (Ω,F ,P). A cylindrical Wiener process with value in Ξ is a family W (t), t ≥ 0, of linear

mappings Ξ → L2(Ω) such that:
i) for every h ∈ Ξ, {W (t)h, t ≥ 0} is a real (continuous) Wiener process;
ii) for every h, k ∈ Ξ and t, s ≥ 0, E(W (t)h ·W (s)k) = (t ∧ s)(h, k)Ξ.

We denote by Ft its natural filtration augmented with the set N of P-null sets of F . As it is well known the filtration
Ft satisfies the usual conditions. By EFt we denote the conditional expectation with respect to Ft.

Finally by P we denote the predictable σ-field on Ω× [0, T ].

Some classes of stochastic process
Let K be any separable Hilbert space and let B(K) be its Borel σ-field on K. The following classes of processes will
be used in this work:

• Lp
P(Ω × [0, T ]; K), p ∈ [1, +∞] denotes the subset of Lp(Ω × [0, T ]; K), given by all equivalence classes

admitting a predictable version. This space is endowed with the natural norm

|Y |p
Lp
P(Ω×[0,T ];K)

= E
∫ T

0

|Ys|pK ds

Elements of this space are defined up to modification.
• Lp

P(Ω;L2([0, T ];K)) denotes the space of equivalence classes of processes Y , admitting a predictable version
such that the norm:

|Y |p
Lp
P(Ω;L2([0,T ];K))

= E
( ∫ T

0

|Ys|2K ds
)p/2

is finite. Elements of this space are defined up to modification.
• CP([0, T ];Lp(Ω; K)) denotes the space of K-valued processes Y such that Y : [0, T ] → Lp(Ω, K) is continuous

and Y has a predictable modification, endowed with the norm:

|Y |pCP([0,T ];Lp(Ω;K)) = sup
t∈[0,T ]

E|Yt|pK

Elements of CP([0, T ];Lp(Ω; K)) are identified up to modification.
• Lp

P(Ω;C([0, T ];K)) denotes the space of predictable processes Y with continuous paths in K, such that the
norm

|Y |p
Lp
P(Ω;C([0,T ];K))

= E sup
t∈[0,T ]

|Yt|pK
is finite. Elements of this space are defined up to indistinguishability.

Now let us consider the space L(H) of linear and bounded operators from a separable Hilbert space H to H.
Moreover it turns out that the σ-field generated by the operator norm in L(H) is too large. For instance if A
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generates a C0 semigroup the map t → etA is not even measurable with respect to such σ- field, see [5, pag. 23-24].
We are therefore led to introduce the σ-field:

LS = σ
{
{T ∈ L(H) : Tu ∈ A}, where u ∈ H and A ∈ B(H)

}

Following again [5] the elements of LS are called strongly measurable.

We notice that the maps P → |P |L(H) and (P, u) → Pu are measurable from (L(H),LS) to (R,B(R)) and from
(L(H)×H,LS ⊗ B(H)) to (H,B(H)) respectively.

Moreover LS is identical to the weak σ-field:

LS = σ
{
{T ∈ L(H) : (Tu, x)H ∈ A}, where u, x ∈ H and A ∈ B(R)

}

We define the following spaces:
• L∞P,S(Ω× [0, T ];L(H)) the space of essentially bounded, strongly measurable predictable processes Y : Ω×

[0, T ] → L(H). That is Y is measurable from (Ω× [0, T ],P) to (L(H),LS) and the real valued random valued
|Y |L(H) is in L∞(Ω× [0, T ];R). By |Y |L∞P,S(Ω×[0,T ];L(H)) we indicate the norm of |Y |L(H) in L∞(Ω× [0, T ];R).
Elements of this space are identified up to modification.

• L∞S (Ω,Ft; L(H)) is the space of measurable maps Y : (Ω,Ft) → (L(H),LS) such that |Y |L(H) is in L∞(Ω;R).
By |Y |L∞S (Ω;L(H)) we indicate the norm of |Y |L(H) in L∞(Ω;R).

• L1
P,S([0, T ]; L∞(Ω, L(H))) is the space of predictable, strongly measurable processes such that |Y |L(H) is in

L1([0, T ]; L∞(Ω;R)). By |Y |L1
P,S([0,T ];L∞(Ω,L(H))) we indicate the norm of |Y |L(H) in L1([0, T ];L∞(Ω;R)).

Elements of this space are identified up to modification.
We identically define, with trivial changes the spaces: L∞P,S(Ω × [0, T ]; Σ+(H)), L∞P,S(Ω × [0, T ]; L(U,H))),

L1
P,S([0, T ];L∞(Ω, Σ+(H))) and L∞S (Ω,Ft; Σ+(H)). Elements of these spaces are identified up to modification.

Statement of the problem and general assumptions on the coefficients
We consider the following infinite dimensional stochastic differential equation:{

dy(s) = (Ay(s) + A](s)y(s) + B(s)u(s)) ds + C(s)y(s) dW (s) s ∈ [t, T ]
y(t) = x

(2.1)

where y is an H valued process that represents the state of the system and is our unknown, u is the control and the
initial data x is in H. To stress its dependence on u, t and x we will denote the (mild, see Definition 3.1) solution
of equation (2.1) by yt,x,u when needed.

Our purpose is to minimize with respect to u the cost functional,

J(0, x, u) = E

[∫ T

0

(
(S(s)y0,x,u(s), y0,x,u(s))H + |u(s)|2U

)
ds + (PT y0,x,u(T ), y0,x,u(T ))H

]
(2.2)

We also introduce the following random variables, for t ∈ [0, T ]:

J(t, x, u) = EFt

[∫ T

t

(
(S(s)yt,x,u(s), yt,x,u(s))H + |u(s)|2U

)
ds + (PT yt,x,u(T ), yt,x,u(T ))H

]

We will work under the following general assumptions on A, B and C that will hold throughout the paper.

Hypothesis 2.1.
A1) A : D(A) ⊂ H → H is the infinitesimal generator of a C0 semigroup etA : H → H.
A2) We assume that A] ∈ L∞P,S(Ω× [0, T ];L(H)). We denote by MA]

a positive constant such that:

|A](t, ω)|L(U,H) ≤ MA]
, P− a.s. and for a.e. t ∈ (0, T ).

Moreover B ∈ L∞P,S(Ω× [0, T ];L(U,H)). We denote by MB a positive constant such that:

|B(t, ω)|L(U,H) ≤ MB , P− a.s. and for a.e. t ∈ (0, T ).

A3) We assume that C is of the form: C =
∑∞

i=1 Ci(·, fi)Ξ, where {fi : i ∈ N} is an orthonormal basis in Ξ.
Moreover we suppose that

Ci ∈ L∞P,S(Ω× [0, T ]; L(H)) and

( ∞∑

i=1

|Ci(t, ω)|2L(H)

)1/2

≤ MC , P−a.s. for a.e. t ∈ (0, T )

for a suitable positive constant MC .
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On S and PT we will need to play with two different sets of assumptions. We introduce both of them here
A4) S ∈ L1

P,S([0, T ];L∞(Ω;Σ+(H))) and PT ∈ L∞S (Ω,FT ; Σ+(H)).
A5) S ∈ L2

P(Ω× [0, T ]; Σ+
2 (H)) and PT ∈ L2(Ω,FT ; Σ+

2 (H)).
We introduce, for later use, the Yosida approximants of the unbounded operator A letting:

Ah = AJ(h, A) where J(h, A) = h(hI −A)−1, h : 1, 2, . . . .

We denote by MA a positive constant such that:

sup
t∈[0,T ]

|etAh |L(H) ≤ MA ∀h ∈ N and sup
t∈[0,T ]

|etA|L(H) ≤ MA (2.3)

Remark 2.2. If we set βi(t) := (fi,W (t))Ξ then {βi : i ∈ N} is a family of independent standard (real valued)
brownian motions. Moreover the term C(t)y(t)dW (t) can be rewritten as

∑∞
i=1 Ci(t)y(t) dβi(t).

Remark 2.3. In Section 9 we show that Assumptions A1)-A5) are satisfied by a general class of controlled stochastic
delay equations. In Section 10 we point out that for stochastic controlled partial differential equations assumptions
A1)-A4) are satisfied while A5) typically fails. We also notice that when H is finite dimensional A5) and A4) reduce
to the requirements S ∈ L2

P,S([0, T ]; L∞(Ω; Σ+(H))) and PT ∈ L∞S (Ω,FT ; Σ+(H)) which slightly generalize the
assumptions in [20] and [12], [13], [14] where S is uniformly bounded.

Remark 2.4. The fact that in the previous assumptions measurability and predictability has always been required
with respect to the filtration {Ft : t ≥ 0} generated by the noise {Wt : t ≥ 0} is not restrictive. Such a condition can
in fact be easily weakened by the following standard procedure.

Let Ξ̂ ⊃ Ξ be a larger separable Hilbert space and let {Ŵt : t ≥ 0} be a cylindrical Wiener process with values
in Ξ̂. Moreover let {f̂i : i ∈ N} an orthonormal basis in Ξ̂ with {f̂i : i ∈ N} ⊃ {̇fi : i ∈ N}. Finally let Ĉi = Ci if
fi ∈ Ξ, Ĉi = 0 if fi /∈ Ξ and Ĉ =

∑∞
i=1 Ĉi(·, f̂i)bΞ. If now we replace Ξ by Ξ̂, W by Ŵ and C by Ĉ equation (2.1) is

unchanged while in all the assumptions filtration {Ft : t ≥ 0} can be replaced by filtration {F̂t : t ≥ 0} generated by
Ŵ . In addition, in order to allow F0 to be non trivial there are no difficulties in letting the noise W to be defined
in [−ρ, +∞[, for some ρ > 0, instead that in [0, +∞[.

3. The state equation

This section is devoted to the state equation (2.1). We recall the well known notion of mild solution

Definition 3.1. Given x ∈ H and u ∈ L2
P(Ω × [t, T ];U), a mild solution of equation (2.1) is a process y ∈

L2
P(Ω× [t, T ]; H) such that, almost surely in Ω× [t, T ]:

y(s) = e(s−t)Ax +
∫ s

t

e(s−σ)A [A](σ)y(σ) + B(σ)u(σ)] dσ +
∫ s

t

e(s−σ)AC(σ)y(σ) dW (σ)

The following existence and uniqueness result is now well known.

Theorem 3.2. Assume A1)-A3). Given any x ∈ H and u ∈ L2
P(Ω × [t, T ];U)) problem (2.1) has a unique mild

solution y ∈ CP([t, T ];L2(Ω;H)). Moreover

sup
s∈[t,T ]

E|y(s)|2 ≤ C2

[
|x|2 + E

∫ T

t

|u(s)|2 ds
]

(3.1)

for a suitable constant C2 depending on T,MB ,MC MA]
and MA.

Finally if p > 2 and

E
( ∫ T

t

|u(s)|2 ds
) p

2
< ∞

then we have that y ∈ Lp
P(Ω;C([t, T ];H)) and:

E sup
s∈[t,T ]

|y(s)|p ≤ Cp

[
|x|p + E

( ∫ T

t

|u(s)|2 ds
) p

2
]

(3.2)

for some positive constant Cp depending on p, T, MB ,MC , MA and MA]
.

Proof. The argument is identical to the one included in [5][Theorem 7.4] and [7][Proposition 3.2]. The only difference
is that here the operators B and C are stochastic processes. Anyway, thanks to their boundedness stated in hypotheses
2.1, one can proceed exactly as in the above mentioned papers.

To stress dependence on the initial data and on the control we will, when necessary, denote the above solution by
yt,x,u.
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For all x ∈ H and u ∈ Lp
P(Ω;L2([t, T ]; U)), p ≥ 2 we also introduce the following family of approximating

problems, h ∈ N:
{

dyh(s) = (Ahyh(s) + A](s)yh(s) + B(s)u(s)) dt + C(s)yh(s) dW (s) s ∈ [t, T ]
y(t) = x

(3.3)

It is well known (see [5]) that, under the same hypotheses of Theorem 3.2, problem (3.3) has, for every h ∈ N, a
unique classical solution yh ∈ Lp

P(Ω; C([t, T ]; H)) that, when necessary, we will denote by yt,x,u
h .

The following stability result for the approximated problems holds:

Theorem 3.3. Assume that xh → x in H and uh → u in Lp
P(Ω;L2([t, T ]; U)), as h →∞. If p = 2, yt,xh,uh

h → yt,x,u

in CP([t, T ]; L2(Ω; H)). If p > 2, yt,xh,uh

h → yt,x,u in Lp
P(Ω;C([t, T ];H)).

Proof. The proof consists in a straightforward application of the parameter depending contraction argument (see,
for instance, [25][Theorem 10.1]). The case with p = 2 is treated also in [23][Theorem 1.1]. For the case p > 2 it is
enough to proceed as in [7][Proposition 3.2].

4. Backward stochastic equations: stability with respect to approximations

In this section we prove, for later use, a result on the stability of a generic backward stochastic equation with
value in an real and separable Hilbert space K and lipschitz non-linearity. Beside the same hypotheses on the noise
introduced in the previous section, we are given:

(i) a positive number T > 0;
(ii) an unbounded operator G : D(G) ⊂ K → K and a sequence of bounded operators Gh : K → K:
(iii) a map ψ : [0, T ]× Ω×K × L2(Ξ,K) → K
(iv) a final data η ∈ L2(Ω,FT ,P;K).

We assume the following:

Hypothesis 4.1.
(1) G generates a C0-semigroup {etG : t ≥ 0} in K.
(2) There exist a constant MG such that:

sup
t∈[0,T ]

|etGh |L(H) ≤ MG ∀h ∈ N and sup
t∈[0,T ]

|etG|L(H) ≤ MG. (4.1)

(3) supt∈[0,T ]

∣∣etGhx− etGx
∣∣ → 0 for all x ∈ K.

(4) ψ is measurable from P ⊗ B(K)⊗ B(L2(Ξ,K)) to B(K) and E
∫ T

0
|ψ(s, 0, 0)|2K ds < +∞

(5) There exists a constant Mψ such that, P almost surely for almost every t ∈ [0, T ] the following holds for all
Y1, Y2 ∈ K, Z1, Z2 ∈ L2(Ξ,K)

|ψ(t, Y1, Z1)− ψ(t, Y2, Z2)|K ≤ Mψ

(|Y1 − Y2|K + |Z1 − Z2|L2(Ξ,K)

)
(4.2)

We consider the following backward stochastic equation:
{

dY (s) = −GY (s) ds− ψ(s, Y (s), Z(s)) ds− Z(s) dW (s) s ∈ [0, T ]
Y (T ) = η

(4.3)

and the following sequence of approximating problems
{

dYh(s) = −GhYh(s) ds− ψ(s, Yh(s), Zh(s)) ds− Zh(s) dW (s) s ∈ [0y, T ]
Yh(T ) = η

(4.4)

Definition 4.2. A mild solution of equation (4.3) is a couple of predictable processes (Y, Z) such that Y belongs to
L2
P(Ω, C([0, T ]; K)), Z belongs to L2

P(Ω× [0, T ];L2(Ξ; K)) and they verify for all t ∈ [0, T ]:

Y (t) =e(T−t)Gη +
∫ T

t

e(s−t)Gψ(s, Y (s), Z(s)) ds +
∫ T

t

e(s−t)GZ(s) dW (s) P− a.s. (4.5)

An identical definition is given for a mild solution of equation (4.4).

Remark 4.3. Being Gh bounded it is immediate to check that the couple (Yh, Zh) is a mild solution of equation (4.4)
if and only if it is a classical solution of (4.4) that is it verifies, for all t ∈ [0, T ],

Yh(t) =ηh +
∫ T

t

(GhYh(s) + ψ(s, Yh(s), Zh(s)) ds +
∫ T

t

Zh(s) dW (s) P− a.s. (4.6)
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The following result will be used in several occasions in the sequel. As far as the existence and uniqueness part is
concerned, is very similar to the one included in [10] (except from the fact that we obtain a more regular solution).
On the contrary the part dealing with stability with respect to approximations is new.

Theorem 4.4. Under Hypothesis 4.1 problem (4.3) has a unique mild solution (Y, Z). Moreover ∀h ∈ N, problem
(4.4) has a unique classical (equivalently mild) solution (Yh, Zh).

Finally:

lim
h→∞

E
(

sup
t∈[0,T ]

|Yh(t)− Y (t)|2K
)

= 0, lim
h→∞

E
∫ T

0

|Zh(s)− Z(s)|2L2(Ξ;K)ds = 0 (4.7)

Proof. Part I. Existence and uniqueness for a simplified equation
We consider the simplified equation:

Y (t) = e(T−t)Gη +
∫ T

t

e(s−t)GF (s) ds +
∫ T

t

e(s−t)GZ(s) dW (s) t ∈ [0, T ] (4.8)

with F ∈ L2
P(Ω × [0, T ];K). In [10] [Proposition 2.1] it is shown that the above equation admits a unique solution

(Y, Z) ∈ L2
P(Ω× [0, T ];K)× L2

P(Ω× [0, T ];L2(Ξ; K)) given explicitly by

Y (t) = e(T−t)G(EFtη) +
∫ T

t

e(s−t)G(EFtF (s)) ds (4.9)

Z(t) = −e(T−t)GV (t)−
∫ T

t

e(s−t)GL(t, s) ds (4.10)

where V and L verify,

EFtη = η −
∫ T

t

V (σ) dW (σ), 0 ≤ t ≤ T (4.11)

EFtF (s) = F (s)−
∫ s

t

L(σ, s) dW (σ), 0 ≤ t ≤ s ≤ T (4.12)

(existence and uniqueness of V and L is given by Kunita-Watanabe martingale representation result applied in the
Hilbert space K, see again [10]).

We now estimate such a solution in a suitable norm. For every β > 0:

E sup
t∈[0,T ]

e2βt|Y (t)|2K ≤ 2M2
G

[
E sup

t∈[0,T ]

e2βt
( ∫ T

t

EFt |F (σ)|K dσ
)2

+ E sup
t∈[0,T ]

e2βt|EFtη|2K
]

Since: (∫ T

t

|F (σ)|K dσ
)2

≤
∫ T

t

e−2βs ds

∫ T

t

e2βs|F (s)|2K ds ≤ e−2βt

2β

∫ T

t

e2βs|F (s)|2K ds

One gets that, thanks to Jensen and Doob inequalities:

E sup
t∈[0,T ]

e2βt
( ∫ T

t

EFt |F (s)|K ds
)2

≤ E sup
t∈[0,T ]

(
EFt sup

t∈[0,T ]

eβt

∫ T

t

|F (s)|K ds
)2

≤ 4E sup
t∈[0,T ]

e2βt
( ∫ T

t

|F (s)|K ds
)2

≤ 4
2β
E

∫ T

0

e2βs|F (σ)|2K ds

Thus we have, using again Doob inequality:

E sup
t∈[0,T ]

e2βt|Y (t)|2K ≤ 4M2
G

β
E

∫ T

0

e2βs|F (σ)|2K ds + 8M2
Ge2βTE|η|2K (4.13)

As far as Z is concerned we have:

|Z(t)|2L2(Ξ;K) ≤ 2M2
G

[
|V (t)|2L2(Ξ;K) +

e−2βt

2β

∫ T

t

e2βs|L(t, s)|2L2(Ξ;K) ds

]

Therefore:

E
∫ T

0

e2βt|Z(t)|2L2(Ξ;K) dt ≤ 2M2
G

[
E

∫ T

0

e2βt|V (t)|2L2(Ξ;K) dt +
1
2β
E

∫ T

0

∫ T

t

e2βs|L(t, s)|2L2(Ξ;K) ds dt
]

≤ 2M2
G

[
4e2βTE|η|2K +

1
2β
E

∫ T

0

e2βs

∫ s

0

|L(t, s)|2L2(Ξ;K) dt ds
]
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and we can conclude

E
∫ T

0

e2βt|Z(t)|2L2(Ξ;K) dt ≤ 2M2
G

[
4e2βTE|η|2K +

2
β

∫ T

0

e2βsE|F (s)|2K ds
]
. (4.14)

In an identical way we can prove that for all h ∈ N there exists a unique couple of processes (Yh, Zh) that belongs to
L2
P(Ω;C([0, T ]; K))× L2

P(Ω× [0, T ]; L2(Ξ; K)) verifying, for all t ∈ [0, T ]

Yh(t) = e(T−t)Ghη +
∫ T

t

e(s−t)GhF (s) ds +
∫ T

t

e(s−t)GhZh(s) dW (s) P-a.s. (4.15)

with F ∈ L2
P(Ω× [0, T ]; K).

Moreover Yh and Zh verify (4.13) and (4.14).

Part II. Stability with respect to approximations of the simplified equation
By (4.10), we have for a.e. t ∈ [0, T ]:

Zh(t)− Z(t) = −e(T−t)GhV (t) + e(T−t)GV (t)−
∫ T

t

e(s−t)GhL(t, s) ds +
∫ T

t

e(s−t)GL(t, s) ds P− a.e. (4.16)

with V ∈ L2
P(Ω× [0, T ];L2(Ξ; K)) and L ∈ L2

P(Ω× [0, T ]× [0, T ];L2(Ξ; K))
By the Dominated Convergence Theorem, we immediately have that:

lim
h→+∞

E
∫ T

0

|Zh(t)− Z(t)|2L2(Ξ;K) dt = 0 (4.17)

Now we consider the term Yh − Y . We have

Yh(t)− Y (t) =
[
e(T−t)Ghη − e(T−t)Gη

]
+ EFt

∫ T

t

[
e(s−t)GhF (s)− e(s−t)GF (s)

]
ds.

To estimate the first term of the right-hand side we can proceed as follows:

E sup
t∈[0,T ]

∣∣EFt [e(T−t)Ghη − e(T−t)Gη]
∣∣2
K
≤ E sup

t∈[0,T ]

(
EFt

∣∣e(T−t)Ghη − e(T−t)Gη
∣∣
K

)2

≤ E sup
t∈[0,T ]

(
EFt sup

t∈[0,T ]

∣∣e(T−t)Ghη − e(T−t)Gη
∣∣
K

)2 ≤ 4E
(

sup
t∈[0,T ]

∣∣[e(T−t)Ghη − e(T−t)Gη
]∣∣

K

)2

≤ 4E
(

sup
t∈[0,T ]

∣∣[e(T−t)Ghη − e(T−t)Gη
]∣∣2

K

)

Similarly, for the second:

E sup
t∈[0,T ]

∣∣∣∣∣E
Ft

[∫ T

t

e(s−t)GhF (s)− e(s−t)GF (s) ds

]∣∣∣∣∣

2

K

≤ E sup
t∈[0,T ]

(
EFt

∫ T

t

|e(s−t)GhF (s)− e(s−t)GF (s)|K ds

)2

≤ E sup
t∈[0,T ]

(
EFt

∫ T

0

sup
σ∈[0,T ]

|eσGhF (s)− eσGF (s)|K ds

)2

≤ 4E

(∫ T

0

sup
σ∈[0,T ]

|eσGhF (s)− eσGF (s)|K ds

)2

≤ 4 TE
∫ T

0

sup
σ∈[0,T ]

|eσGhF (s)− eσGF (s)|2K ds

Therefore we get that:

E sup
t∈[0,T ]

|Yh(t)− Y (t)|2K ≤ 8E

(
sup

t∈[0,T ]

|e(T−t)Ghη − e(T−t)Gη|2K
)

+ 8T E
∫ T

0

sup
σ∈[0,T ]

|eσGhF (s)− eσGF (s)|2K ds

By point (iii) in Hypothesis 4.1 and dominated convergence Theorem we can conclude:

E sup
t∈[0,T ]

|Yh(t)− Y (t)|2K → 0 (4.18)

Part III. Conclusion
We let, for β > 0 K(β) = L2

P(Ω, C([0, T ];K)) × L2
P(Ω × [0, T ]; L2(Ξ; K)) endowed with the norm (equivalent to

the natural one):

|(Y, Z)|2K(β) = E sup
t∈[0,T ]

e2βt|Y (t)|2 + E
∫ T

0

e2βs|Z(s)|2ds.
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Moreover we define a map Γ : K(β) → K(β) and a sequence of maps Γh : K(β) → K(β), h ∈ N letting Γ(Ŷ , Ẑ) =
(Y, Z) (resp. Γh(Ŷ , Ẑ) = (Yh, Zh)) where (Y, Z) (resp. (Yh, Zh)) is the solution of equation (4.8) (resp. (4.15)) with
F (s) = ψ(s, Ŷ (s), Ẑ(s)).

We notice that F belongs to L2
P(Ω× [0, T ]; K) thus the above definition is justified by part I of the present proof.

Moreover (4.13) and (4.14) immediately yield the following inequality holding for all (Ŷ , Ẑ), (Ỹ , Z̃) in K(β)

|Γ(Ŷ , Ẑ)− Γ(Ỹ , Z̃)|2K(β) ≤
4M2

GM2
ψ

β
|(Ŷ , Ẑ)− (Ỹ , Z̃)|2K(β)

and an identical formula holds (with the same constant) for Γh.
So we can conclude that, for β large enough, Γ and Γh are contractions in K(β). Clearly the unique fixed point

of Γ (resp. Γh) is the unique mild solution of equation (4.3) (resp. (4.4).
Finally by the parameter depending contraction principle, see [25][Theorem 10.1], relation (4.7) follows immedi-

ately if we prove that for all fixed (Ŷ , Ẑ) ∈ L2
P(Ω, C([0, T ];K))× L2

P(Ω× [0, T ]; L2(Ξ; K)) letting (Y, Z) = Γ(Ŷ , Ẑ)
and (Yh, Zh) = Γh(Ŷ , Ẑ) then

E sup
t∈[0,T ]

|Y (s)− Yh(s)|2 + E
∫ T

0

|Z(s)− Zh(s)|2ds → 0 as h →∞.

The above relation is an immediate consequence of (4.18) and (4.17) letting F (s) = ψ(s, Ŷ (s), Ẑ(s)) in part II of the
present proof.

Remark 4.5. As a byproduct of the previous argument we have the following estimate for the solution (Y, Z) of
equation (4.3).

|(Y,Z)|2K(β) ≤ Ĉ

[
e2βTE|PT |2Σ2(H) +

1
β

∫ T

0

e2βsE|ψ(s, 0, 0)|2Σ2(H)ds

]
(4.19)

holding for β large enough, depending on T , MG, Mψ, and for a suitable constant Ĉ, depending on T , MG.
To prove it just remark that, for β large enough, Γ is a 1/2 contraction in K(β). Since (Y,Z) = limn→∞Γn(0, 0)

we have |(Y, Z)|K(β) ≤ 2|Γ(0, 0)|K(β) and the claim follows by (4.14) and (4.13).
An identical estimate holds (with the same constant) for the solution (Yh, Zh) of the approximating equation (4.4).

Remark 4.6. Notice that although the semigroup generated by G is not, in general, a contraction semigroup and
ψ(·, 0, 0) is only in L2

P(Ω × [0, T ];K)), nevertheless Y has continuous trajectories. This is not true for standard
(forward) stochastic differential equations (that is when the initial datum is specified rather the final one). For
instance in Theorem 3.2 if u is in L2

P(Ω× [0, T ];K)) then y is only mean-square continuous.
The reason for such extra regularity of Y can be founded in relation (4.9), at least for the simplified equation.

Indeed in (4.9) it is clear that Y can be represented only by conditional expectations and deterministic convolutions.
In particular no stochastic convolution is involved in (4.9).

5. The Riccati Equation in the Hilbert-Schmidt case

The natural space in which the deterministic Riccati equation is studied is the space Σ(H) that is not an Hilbert
space. Thus (see the introduction) we initially consider the Riccati equation in the Hilbert space Σ2(H) of symmetric
and Hilbert-Schmidt linear operators in H.

5.1. The Lyapunov equation. We start from the linear part of the Riccati equation. Namely we consider the
Lyapunov equation:




−dP (t) = (A∗P (t) + P (t)A + A∗] (t)P (t) + P (t)A](t) + L(t)) dt + Q(t) dW (t)

+Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)] dt t ∈ [0, T ]

P (T ) = PT

(5.1)

Where, expliciting the notation with respect to the basis {fi : i ∈ N} of Ξ, for all P ∈ Σ2(H), and Q ∈ L2(Ξ, Σ2(H))

Tr
[
C∗(t)PC(t) + C∗(t)Q + QC(t)

]
=

∞∑

i=1

[
C∗i (t)PCi(t) + C∗i (t)(Qfi) + (Qfi)Ci(t)

]
.

In order to give a precise definition of the mild solution of equation (5.1) we introduce the family {etA : t ≥ 0} of
linear operators Σ(H) → Σ(H) letting:

etAX := etA∗XetA, t ≥ 0, X∈Σ(H)
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We notice that the above family is a semigroup of bounded operators in the sense that

etAesAX = e(t+s)AX, X ∈ Σ(H), t, s ≥ 0

but is not necessarily strongly continuous, in Σ(H), see also [1][Chapter 1]. On the other side if we restrict it to
Σ2(H) then it becomes a strongly continuous semigroup. Namely we have the following result (also concerning
approximations) that will considerably simplify our work:

Lemma 5.1. Under hypothesis A1) the family of linear operators {etA : t ≥ 0} is a strongly continuous semigroup
of bounded operators in Σ2(H).

Moreover for all X ∈ L2(H):

lim
h→∞

sup
t∈[0,T ]

|etA∗hXetAh − etA∗XetA|L2(H) = 0. (5.2)

Proof. We prove only continuity for t = 0. The proof of continuity in a generic t follows by semigroup law. Moreover
(5.2) is proved by an identical argument. We fix X ∈ L2(H) and a basis {ei : i ∈ N} in H. Clearly

∞∑

i=1

|etA∗XetAei −Xei|2H ≤ 2
∞∑

i=1

|etA∗XetAei − etA∗Xei|2H + 2
∞∑

i=1

|etA∗Xei −Xei|2H

We have to prove that both the above terms converge to 0 as t ↓ 0. As far as the second is concerned being:

|etA∗Xei −Xei|2H ≤ 2(M2
A + 1)|Xei|2H and

∞∑

i=1

|Xei|2H = |X|2L2(H) < +∞

the claim follows by dominated convergence theorem. As far as the first is concerned we have:
∞∑

i=1

|etA∗XetAei − etA∗Xei|2H ≤ M2
A

∞∑

i=1

|XetAei −Xei|2H = M2
A

∞∑

i=1

|X∗etA∗ei −X∗ei|2H

and the claim follows again by dominated convergence theorem.
Let us denote by A : D(A) ⊂ Σ2(H) → Σ2(H) the infinitesimal generator of the semigroup {etA : t ≥ 0} in

Σ2(H). Notice that
(AXx, y)H = (Xx, Ay)H + (XAx, y)H X ∈ D(A), x, y ∈ D(A)

We now assume that PT ∈ L2(Ω,FT ; Σ2(H)) and L ∈ L2
P(Ω× [0, T ]; Σ2(H)) and give the following definition of a

mild solution (P,Q) of equation (5.1) with values in Hilbert-Schmidt case. We need also the following approximations
to A.

Definition 5.2. We define a sequence of bounded operators An : Σ2(H) → Σ2(H) as follows:

AhX=̇A∗hX + XAh, X ∈ Σ2(H), h = 1, 2, . . .

Definition 5.3. A mild solution of problem (5.1) is a pair of processes

(P,Q) ∈ L2
P(Ω, C([0, T ]; Σ2(H)))× L2

P(Ω× [0, T ]; L2(Ξ;Σ2(H)))

that verifies for all t ∈ [0, T ]:

P (t) =e(T−t)A∗PT e(T−t)A +
∫ T

t

e(s−t)A∗ [
L(s) + A∗] (s)P (s) + P (s)A](s)

]
e(s−t)A ds

+
∫ T

t

e(s−t)A∗Tr
[
C∗(s)P (s)C(s) + C∗(s)Q(s) + Q(s)C(s)

]
e(s−t)A ds+ (5.3)

+
∫ T

t

e(s−t)A∗Q(s)e(s−t)A dW (s) P− a.s.

We also introduce the regularized versions of equation (5.1) corresponding to the ones we have introduced for the
state equation. Namely we consider




−dPh(t) =
(
A∗hPh(t) + Ph(t)Ah + A∗] (t)Ph(t) + Ph(t)A](t) + L(t)

)
dt

+Qh(t) dW (t) + Tr[C∗(t)Ph(t)C(t) + C∗(t)Qh(t) + Qh(t)C(t)] dt, t ∈ [0, T ]

P (T ) = PT

(5.4)
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where Ah are the Yosida approximants of A. The definition of mild solution for the above equation is obtained from
the one corresponding to equation (5.1) just by replacing A by Ah. Since Ah is bounded, mild solutions are classical
solutions, i.e. they satisfies P-a.s. for all t ∈ [0, T ]:

Ph(t) = PT +
∫ T

t

(
A∗hPh(s) + Ph(s)Ah + A∗] (s)Ph(s) + Ph(s)A](s) + L(s)

)
ds

+
∫ T

t

Tr[C∗(s)Ph(s)C(s) + C∗(s)Qh(s) + Qh(s)C(s)] ds +
∫ T

t

Qh(s) dW (s)

Theorem 5.4. Assume hypotheses A1)-A3). Moreover assume that PT ∈ L2
P(Ω,FT ; Σ2(H)) and L ∈ L2

P(Ω ×
[0, T ]; Σ2(H))).
Then problem (5.1) has a unique mild solution (P, Q) ∈ L2

P(Ω, C([0, T ]; Σ2(H))) × L2
P(Ω × [0, T ];L2(Ξ;Σ2(H))).

Moreover ∀h ∈ N, problem (5.4) has a unique classical solution (Ph, Qh) ∈ L2
P(Ω, C([0, T ]; Σ2(H))) × L2

P(Ω ×
[0, T ]; L2(Ξ; Σ2(H))).

Finally the following stability result holds:

lim
h→∞

E
(

sup
t∈[0,T ]

|Ph(t)− P (t)|2Σ2(H)

)
= 0, lim

h→∞
E

∫ T

0

|Qh(s)−Q(s)|2L2(Ξ;Σ2(H))ds = 0 (5.5)

Proof. The claim is a special case of Theorem 4.4, letting K = Σ2(H), G = A, Gh = Ah, η = PT and defining, for
all P ∈ Σ2(H), Q ∈ L2(Ξ, Σ2(H))

ψ(s, P,Q) = Tr[C∗(s)PC(s) + C∗(s)Q + QC(s)] + L(s) + A∗] (s)P + PA](s).

We have just to check that in this specific situation Hypothesis 4.1 holds, but this is a direct consequence of Hypotheses
A1)-A3) and of the fact that L ∈ L2

P(Ω× [0, T ]; Σ2(H))).

Remark 5.5. Remark 4.5 gives, in the present case, the following estimate for the solution (P, Q) of equation (5.1).

|(P,Q)|2K ≤ Ĉ

[
e2βTE|PT |2Σ2(H) +

1
β

∫ T

0

e2βsE|L(s)|2Σ2(H)ds

]
(5.6)

holding for β large enough, depending on T , MA, MA]
, MC , and for a suitable constant Ĉ, depending on T , MA,

MA]
.

An identical estimate holds (with the same constant) for the solution (Ph, Qh) of the approximating equation
(5.4).

The following result is a key step towards the fundamental relation (see Proposition 5.11). Moreover it gives useful
estimates on the solution to equation (5.1).

Theorem 5.6. Besides the hypotheses of Theorem 5.4 assume that PT belongs to L∞S (Ω,FT ; L(H)) and L belongs to
L1
P,S([0, T ];L∞(Ω;L(H))). Let (P, Q) be the unique mild solution to equation (5.1) and let yt,x,u be the mild solution

to equation (2.1). Then for all t ∈ [0, T ], x ∈ H, u ∈ L2
P(Ω× [0, T ];U) it holds, P-a.s.

(P (t)x, x) = EFt(PT yt,x,u(T ), yt,x,u(T )) + EFt

∫ T

t

[
(L(s)yt,x,u(s), yt,x,u(s))− 2(P (s)B(s)u(s), yt,x,u(s))

]
ds (5.7)

Moreover, for all t ∈ [0, T ]:

|P (t)|L(H) ≤ C2

[
|PT |L∞S (Ω;L(H)) +

∫ T

t

|L(s)|L∞S (Ω;L(H)) ds

]
P− a.s. (5.8)

where C2 is the positive constant depending only on T, MB ,MC ,MA, MA]
defined in (3.1).

Similarly if, for all h ∈ N, (Ph, Qh) is the unique solution of problem (5.4) and for all t ∈ [0, T ]:

|Ph(t)|L(H) ≤ C2

[
|PT |L∞S (Ω;L(H)) +

∫ T

t

|L(s)|L∞S (Ω;L(H)) ds

]
P− a.s.

Proof. The proof will be concluded in three steps. In the first we will prove (5.7) for u ∈ L6
P(Ω × [0, T ];U), then

we will prove estimate (5.8) and finally we will extend (5.7) to all the admissible controls.
First step. The following argument is simple but has some delicate points; thus we expose it here in all details. Let

yh = yt,x,u
h be the classical solution to (3.3). By Theorem 3.3 we know that yh ∈ L6

P(Ω, C([t, T ]; H)) and yh → yt,x,u

in L6
P(Ω, C([t, T ];H)) as h →∞.
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Let Ψ ∈ C2(H) with Ψ(y) = 1 for |y| ≤ 1, Ψ(y) = 0 for |y| ≥ 2 and Ψ(y) ∈ [0, 1], ∀y ∈ H. Differentiating by Itô
rule we obtain (we consider Ψ′ ∈ H, Ψ′′ ∈ L(H))

ds

[
Ψ(yh(s)/N) (Ph(s)yh(s), yh(s))

]
= N−1FN (s)ds + GN (s)dWs+

−Ψ(yh(s)/N)
[
(L(s)yh(s), yh(s))H − 2(Ph(s)B(s)u(s), yh(s))H

]
ds

(5.9)

Where:

FN (s) =
(
Ψ′(N−1yh(s)), [Ahyh(s) + A](s)yh(s) + B(s)u(s)]

)
H

(Ph(s)yh(s), yh(s))H

+2
∞∑

i=1

(
Ψ′(N−1yh(s)), Ci(s)yh(s)

)
H

(Ph(s)Ci(s)yh(s), yh(s))H

+
1

2N

∞∑

i=1

(
Ψ′′(N−1yh(s))Ci(s)yh(s), Ci(s)yh(s)

)
H

(Phyh(s), yh(s))H

+
∞∑

i=1

(
Ψ′(N−1yh(s)), Ci(s)yh(s)

)
H

(Qi
hyh(s), yh(s))H

GN (s)fi = 2Ψ(N−1yh(s))(Ph(s)Ci(s)yh(s), yh(s))H −Ψ(N−1yh(s))(Qi
h(s)yh(s), yh(s))H

+
1
N

(Ph(s)yh(s), yh(s))H(Ψ′(N−1yh(s)), Ci(s)yh(s))H ,

where Qi
h = Qhfi, with {fi}i∈N orthonormal basis of Ξ.

As it can be easily verified E
∫ T

t
|FN (s)|ds ≤ const., ∀N ∈ N. Moreover, since Ψ(N−1y) = 0 and Ψ′(N−1y) = 0 if

|y| > 2N we have, for all N ∈ N
∞∑

i=1

E
∫ T

t

|GN (s)fi|2Hds ≤ c2N
4

{
M2

CE
∫ T

t

sup
s∈[t,T ]

‖Ph(s)‖2L(H) ds + E
∫ T

t

‖Qh(s)‖2Σ2(H) ds

}
< +∞

where c2 is a positive universal constant.
Finally (Lyh, yh)H and (PhBu, yh) belong to L1

P(Ω× [t, T ],R) and Ψ(yh(s)/N) converges to 1 P-a.s., for all s.
Thus first integrating in [t, T ] and then computing conditional expectation with respect to Ft (EFt) and finally

letting N → 0 relation (5.9) becomes

(Ph(t)x, x)H = EFt(PT yh(T ), yh(T ))H + EFt

∫ T

t

[(L(s)yh(s), yh(s))H − 2(Ph(s)B(s)u(s), yh(s))H ] ds

and the claim follows letting h → +∞ thank to (3.3) and (5.4).
Second step. The following L∞ bound for the L(H) norm of the mild solution to equation (5.1) will be important

in the approach to the (nonlinear) Riccati equation. In the finite dimensional case a similar result is proved, by a
slightly different argument in [20]. Here there is our proof. From the first step we know that for all x ∈ H, P-a.s.

(P (t)x, x) = EFt(PT yt,x,0(T ), yt,x,0(T ))− EFt

∫ T

t

(L(s)yt,x,0(s), yt,x,0(s))ds (5.10)

consequently

|(P (t)x, x)| ≤ |PT |L∞S (Ω;L(H))EFt |yt,x,0(T )|2 +
∫ T

t

|L(s)|L∞S (Ω;L(H))EFt |yt,x,0(s)|2ds

Since yt,x,0(s), s > t is independent on Ft the previous relation reads

|(P (t)x, x)| ≤ |PT |L∞S (Ω;L(H))E|yt,x,0(T )|2 +
∫ T

t

|L(s)|L∞S (Ω;L(H))E|yt,x,0(s)|2ds

and by estimate (3.1) for u ≡ 0

|(P (t)x, x)| ≤ C2|PT |L∞S (Ω;L(H)) + C2

∫ T

t

|L(s)|L∞S (Ω;L(H))ds; ∀x∈H, |x| ≤ 1, P− a.s.

and the claim holds being H separable. The same estimate holds true also for every |(Ph(t)x, x)|, since the constant
C2 does not depend on h.
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Third step For a general u ∈ L2
P(Ω × [0, T ]; U) we choose a sequence um → u such that um is bounded and

um → u in L2
P(Ω × [0, T ]; U). By Theorem 3.3, yt,x,um → yt,x,u in CP([t, T ]; L2(Ω; H)) and, by the second step,

P ∈ L∞P,S(Ω× [0, T ]y;L(H)). Moreover:

∣∣∣EFt

∫ T

t

(L(s)yt,x,um(s), yt,x,um(s))H − (L(s)yt,x,u(s), yt,x,u(s))H ds
∣∣∣

≤
[
( sup
s∈[t,T ]

E|yt,x,um(s)|2)1/2 + ( sup
s∈[t,T ]

E|yt,x,u(s)|2)1/2
](

sup
s∈[t,T ]

E|yt,x,um(s)− yt,x,u(s)|2
)1/2

∫ T

t

|L(s)|L∞S (Ω,H) ds

Thus we can pass relation (5.7) to the limit as m →∞ obtaining the claim.

5.2. Existence of a unique solution for the Riccati equation and the synthesis of the optimal control.

In this section we prove the existence of a unique mild solution for the Riccati equation :




−dP (t) = (A∗P (t) + P (t)A + Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)]) dt

−(P (t)B(t)B∗(t)P (t)−A∗] (t)P (t)− P (t)A](t)− S(t)) dt + Q(t) dW (t) t ∈ [0, T ]

P (T ) = PT

(5.11)

under assumptions A1)-A5).
The presence of a quadratic nonlinear term imposes the following approach (classical when dealing with the Riccati

equation see [23]) in solving the problem: first we will find a local solution then we will prove some a-priori estimate
for the solution to guarantee the existence of a global solution. The method we use to prove the a-priori bound is
based on the so called fundamental relation, see Proposition 5.11 and uses, in an essential way, the control-theoretic
interpretation of the Riccati Equation.

We start extending the notion of mild solution given in section 5.1:

Definition 5.7. Fix T0 ∈ [0, T ]. A mild solution for problem (5.11), considered in [T0, T ] is a pair (P,Q) with

P ∈ L2
P(Ω, C([T0, T ]; Σ2(H))) ∩ L∞P,S(Ω;C([T0, T ]; Σ+(H))), Q ∈ L2

P(Ω× (T0, T ); L2(Ξ;Σ2(H)))

such that for all t ∈ [T0, T ]:

P (t) =
∫ T

t

e(s−t)A∗Tr
[
C∗(s)P (s)C(s) + C∗(s)Q(s) + Q(s)C(s)

]
e(s−t)A ds

+ e(T−t)A∗PT e(T−t)A +
∫ T

t

e(s−t)A∗ [
S(s) + A∗] (s)P (s) + P (s)A](s)

]
e(s−t)A ds (5.12)

+
∫ T

t

e(s−t)A∗Q(s)e(s−t)A dW (s)−
∫ T

t

e(s−t)A∗P (s)B(s)B∗(s)P (s)e(s−t)A ds P− a.s.

Proposition 5.8 (Local Existence). Under hypotheses A1)-A5) there exists a δ ∈]0, T ] such that problem (5.11) has
a unique mild solution in the interval [T − δ, T ]

Proof. To simplify the notation we will set

|PT |L∞S (Ω;L(H)) = MP |S|L1
P,S([0,T ];L∞(Ω;L(H))) = MS ,

We choose r > C2(MP + MS) and δ such that C2[MP + r2δM2
B + MS ] ≤ r

We define:

B(r) = {P ∈ L2(Ω; C([T − δ, T ]; Σ2(H))) : sup
t∈[T−δ,T ]

|P (t, ω)|L(H) ≤ r P− a.e.}

endowed with the norm

|P |2β = E sup
t∈[T−δ,T ]

e2βt|P (t)|2Σ2(H)
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On B(r) we construct the map Λ : B(r) → B(r) letting Λ(K) = P , where (P,Q) is the unique solution to equation
(5.1) (in [T − δ, T ]) with L = −KBB∗K that is :

P (t) =
∫ T

t

e(s−t)A∗Tr
[
C∗(s)P (s)C(s) + C∗(s)Q(s) + Q(s)C(s)

]
e(s−t)A ds

+
∫ T

t

e(s−t)A∗S(s)e(s−t)A ds + e(T−t)A∗PT e(T−t)A +
∫ T

t

e(s−t)A∗Q(s)e(s−t)A dW (s)

−
∫ T

t

e(s−t)A∗ [
A∗] (s)P (s) + P (s)A](s)−K(s)B(s)B∗(s)K(s)

]
e(s−t)A ds

We claim that the map Λ is a contraction in B(r).
First of all we check that it maps B(r) into itself. By Theorem 5.4 (applied in [T − δ, T ]) we know that Λ(K) ∈

L2
P(Ω × [T − δ, T ]; Σ2(H))). So it is enough to show that for all t ∈ [T − δ, T ] it holds |Λ(K)(t)|L(H) ≤ r P-a.s..

Thanks to (5.8) we have that P-a.s.:

|Λ(K)(t)|L(H) ≤ C2[|PT |L∞S (Ω,L(H)) +
∫ T

T−δ

(|K(s)B(s)B∗(s)K(s)|L∞S (Ω,L(H)) + |S(s)|L∞S (Ω,L(H))) ds]

≤ C2[MP + r2δM2
B + MS ] ≤ r

Moreover by (4.19) for all K1 and K2 in B(r) (since (4.19) is stated in the whole [0, T ] we should, to be precise,
extend K1(s) = K2(s) = 0 for s < T − δ)

|Λ(K2)− Λ(K1)|2β ≤
Ĉ

β

∫ T

T−δ

e2βsE|K2BB∗K2 −K1BB∗K1|2Σ2(H)ds

Since |Ki|Σ2(H) ≤ r, i = 1, 2, P-a.s. for all t ∈ [T − δ, T ] the above relation gives

|Λ(K2)− Λ(K1)|2β ≤
Ĉ

β
r2M4

B

∫ T

T−δ

e2βsE|K2 −K1|2Σ2(H)ds

Therefore, if β is large enough, Λ is a contraction in B(r). If P is its unique fixed point the mild solution (P, Q) of
(5.1) with L = −PBB∗P is the unique mild solution of (5.11).

Clearly local uniqueness of the solution immediately implies global uniqueness

Corollary 5.9 (Global Uniqueness). Let (Pi, Qi), i = 1, 2 be two mild solutions of the Riccati equation (5.11) in
the interval [T0, T ] for some T0 ∈ [0, T ). Then P1(t) = P2(t), P-a.s. for all t ∈ [T0, T ] and Q1(t) = Q2(t), P-a.s. for
almost all t ∈ [T0, T ].

Remark 5.10. The length δ of the interval on which the mild solution of the Riccati equation exists depends only
on T , MA, MA]

, MB , MC , |S|L1
P,S([0,T ];L∞(Ω;L(H)) and |PT |L∞S (Ω;L(H)). Thus to extend the solution to the whole

[0, T ] it is sufficient to establish an a-priori bounds for the L∞(Ω;L(H)) norm of the P part of any local solution,
independently on the length of the interval in which it is defined.

This will be done using the following consequence of Theorem 5.6. The next relation also has an obvious control-
theoretic interpretation and will be essential in performing the synthesis of the optimal control:

Proposition 5.11 (Fundamental Relation). Assume A1)- A5) and let (P, Q) be the mild solution of (5.11) in an
interval [T0, T ]. Then, ∀t ≥ T0, x ∈ H u ∈ L2

P(Ω× [t, T ];U) it holds:

(P (t)x, x)H = J(t, x, u)− EFt

∫ T

t

|u(s) + B∗P (s)yt,x,u(s)|2H ds (5.13)

Proof. We start noticing that, by definition, (P,Q) is a mild solution of the Lyapunov equation (5.1) with L =
−PBB∗P + S. Thus by (5.7):

(P (t)x, x) = EFt(PT yt,x,u(T ), yt,x,u(T )) + EFt

∫ T

t

|
√

S(s)yt,x,u(s)|2Hds

−EFt

∫ T

t

[
(yt,x,u(s), [P (s)B(s)B∗(s)P (s) + S(s)]yt,x,u(s))H + 2(P (s)B(s)u(s), yt,x,u(s))H

]
ds.

Then the claim follows just adding and subtracting EFt
∫ T

t
|u(s)|2Uds.

Proposition 5.12 (Positivity and a-priori estimate). Let (P, Q) be the mild solution to (5.11) in [T0, T ], then:
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(1) for every t ∈ [T0, T ] and x ∈ H, (P (t)x, x)H ≥ 0 P− a.s.,
(2) for every t ∈ [T0, T ], |P (t)|L(H) ≤ C2[MP + MS ] P− a.s.

where C2 is the constant defined in Theorem 3.2.

Proof. If we apply (5.13) to u ≡ 0 we obtain for all x ∈ H with |x|H ≤ 1 and for all t ∈ [T0, T ]:

(P (t)x, x)H = EFt(PT yt,x,0(T ), yt,x,0(T ))H + EFt

∫ T

t

|
√

S(s)yt,x,0(s)|2H ds

≤ |PT |L∞S (Ω,L(H))E|yt,x,0(T )|2H +
∫ T

t

|S(s)|L∞S (Ω,L(H))E|yt,x,0(s)|2H ds

and by (3.1):

(P (t)x, x)H ≤ C2[|PT |L∞S (Ω;L(H)) + |S|L1
P,S([0,T ];L∞(Ω;L(H)))] P− a.s. ∀x : |x|H ≤ 1 (5.14)

Then consider the following closed loop equation, starting at a certain instant t ≥ T0 with an arbitrary initial data
x ∈ H: {

dy(r) = [Ay(r) + A](r)y(r)−B(r)B∗(r)P (r)y(r)] dr + C(r)y(r) dW (r)
y(t) = x

(5.15)

Notice that if we replace A] by A] −BB∗P then assumptions of Theorem 3.2 still hold. Thus there exists a unique
solution y ∈ Lp

P(Ω, C([t, T ]; H)) for every p ≥ 2. Applying then the fundamental relation (5.13) to u = −B∗Py and
consequently to yt,x,ū = y we get

(P (t)x, x)H = EFt(PT y(T ), y(T ))H + EFt

∫ T

t

[|
√

S(r)y(r)|2H + |B∗(r)P (r)y(r)|2H ] dr (5.16)

thus (P (t)x, x)H ≥ 0, P-a.s. for all x ∈ H and this together with (5.14) gives the claim.

We summarize the content of the section in the following result:

Theorem 5.13. Assume A1)-A5). Problem (5.11) has a unique mild solution (P, Q) with the following regularity:
P ∈ L2

P(Ω;C([0, T ]; Σ+
2 (H))) ∩ L∞P,S(Ω;C([0, T ]; Σ+(H))) and Q ∈ L2

P(Ω× [0, T ];L2(Ξ;Σ2(H))).

Proof. The a priori estimate in Proposition 5.12 allows us to apply the local existence result in Proposition 5.8
recursively in time intervals of fixed length (see also Remark 5.10), to obtain a global solution of equation (5.11).
Indeed, let M̃P = C2(MP + MS), then it is enough to choose r̃ such that r̃ > C2(M̃P + MS) and δ̃ such that:

C2[M̃P + r̃2δ̃M2
B + MS ] ≤ r̃

Then we can iterate the procedure in [T − nδ̃, T − (n − 1)δ̃] for a finite number of n ≥ 1 until we cover the whole
interval [0, T ].

Now we are ready to solve the finite horizon problem in a standard way:

Theorem 5.14. Fix T > 0 and x ∈ H. Then:
(1) There exists a unique optimal control. That is a unique control ū ∈ L2

P(Ω× [0, T ]; U) such that:

J(0, x, ū) = inf
u∈L2

P(Ω×[0,T ];U)
J(0, x, u)

(2) If ȳ is the mild solution of the state equation corresponding to ū (that is the optimal state) then ȳ satisfies
the closed loop equation{

dsȳ(s) = [Aȳ(s) + A](s)ȳ(s)−B(s)B(s)∗P (s)ȳ(s)] ds + C(s)ȳ(s) dW (s)
ȳ(0) = x

(5.17)

(3) The following feedback law holds P-a.s. for almost every s.

ū(s) = −B∗(s)P (s)ȳ(s). (5.18)

(4) The optimal cost is given by EJ(0, x, ū) = E(P (0)x, x)H , for all x ∈ H.

Proof. Let (P, Q) be the unique mild solution to Riccati equation (5.11). Relation (5.13) becomes

J(0, x, u) = (P (0)x, x)H + E
∫ T

0

|u(s) + B∗P (s)yt,x,u(s)|2 ds

Thus J(0, x, u) ≥ (P (0)x, x)H for all u ∈ L2
P(Ω× [0, T ]; U) and the equality holds if and only if (5.18) holds, that is

if and only if y solves (5.17) and u = ū.
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6. The general case

In order to get rid of assumption A5) we introduce the following new notion of solution:

Definition 6.1. A process P ∈ L∞P,S(Ω × [0, T ]; Σ+(H)), is a generalized solution if there exists a sequence
(SN , PN , QN ) where:

(i) SN ∈ L1
P,S([0, T ];L∞(Ω;Σ+(H)) ∩ L2

P(Ω × [0, T ]; Σ2(H)) and there exists a positive function c∈L1([0, T ])
such that |SN (t)|L(H) ≤ c(t), for all N ∈ N, P-a.s. for a.e. t ∈ [0, T ].

(ii) the pair (PN , QN ) is a mild solution to the Riccati equation (5.11) in the space of Hilbert Schmidt operators,
with forcing term SN and final data PN

T = PN (T ). Namely (PN , QN ) is the unique mild solution of:



−dPN (t) = (A∗PN (t) + PN (t)A + Tr[C∗(t)PN (t)C(t) + C∗(t)QN (t) + QN (t)C(t)]) dt

+(A∗] (t)P
N (t)+PN (t)A](t)−PN (t)B(t)B∗(t)PN (t)+SN (t)) dt + QN (t) dW (t), t ∈ [0, T ],

PN (T ) = PN
T

such that:
(iii) for all x ∈ H:

SN (t, ω)x → S(t, ω)x in H P a.s. for a.e. t ∈ [0, T ]
(iv) for every t ∈ [0, T ] and for all x ∈ H:

PN (t, ω)x → P (t, ω)x in H P a.s.

Remark 6.2. Although in the definition the value of P (t) seem determined for a.e. t, point (iv) in the definition
implies that there exists a version such that for all t ∈ [0, T ] and for all x ∈ H the value of P (t)x is determined
P-a.s.. Actually we will show extra regularity property for the generalized solution if evaluated at a vector x ∈ H.

Remark 6.3. In the previous definition only the process P in the Riccati equation is characterized. By one side this
is natural for control theory since Q is nor involved in the expression for the optimal cost neither in the expression
for the optimal feedback law (see Theorem 6.6). On the other side it is a general feature of backward stochastic
differential equations that the martingale representation term is only an auxiliary variable that can be determined
computing the joint quadratic variation between the other unknown process and the noise, see [18].

We start by showing some regularity properties of the generalized solutions:

Lemma 6.4. Every generalized solution fulfills the fundamental relation, i.e. for all t ∈ [0, T ], for all x ∈ H and for
all u ∈ L2

P(Ω× [0, T ]; U):

(P (t)x, x)H = J(t, x, u)− EFt

∫ T

t

|u(s) + B∗(s)P (s)y(s)|2 ds P− a.s. (6.1)

Proof. At each fixed N the pair (PN , QN ) is the mild solution of the Riccati equation, therefore by Proposition
5.11, we have that for all t ∈ [0, T ] and x ∈ H:

(PN (t)x, x)H = EFt(PN
T y(T ), y(T ))H + EFt

∫ T

t

[|
√

SN (s)y(s)|2 + |u(s)|2] ds

− EFt

∫ T

t

|u(s) + B∗(s)PN (s)y(s)|2 ds P− a.s.

Now, we have to pass to the limit as N →∞ in the identity. We notice that if we show that the right-hand side
converges in mean to

EFt(PT y(T ), y(T ))H + EFt

∫ T

t

[|
√

S(s)y(s)|2 + |u(s)|2] ds− EFt

∫ T

t

|u(s) + B∗(s)P (s)y(s)|2 ds

then the proof is completed just by choosing a subsequence on which convergence occurs P a.s..
Coming now to the proof of convergence, considering for instance the second term, by Jensen inequality it is

enough to show that

lim
N→∞

E|
∫ T

t

((S − SN )(s)y(s), y(s))Hds| = 0.

Applying a first time dominated convergence theorem we get E|((S − SN )(t)y(t), y(t))H | → 0 for all fixed s ∈ [t, T ].
Then we notice that

E|((S − SN )(s)y(s), y(s))H | ≤ 2c(s)E|y(s)|2
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where the map c is in L1([0, T ]) and the map s → E|y(s)|2 is in C([0, T ];R). Thus we can apply a second time
dominated convergence theorem to obtain the claim. Since the other terms can be treated in an identical way the
proof is completed.

Lemma 6.5. Let P (t) be any generalized solution, then P (t)x ∈ CP([0, T ];Lp(Ω;H)) for all x ∈ H and for all p ≥ 2.

Proof. We have to prove that, for all x ∈ H, limr→t E|[P (r)− P (t)]x|pH = 0 or, what is equivalent

lim
r→t

E|(P (r)x, x)H − (P (t)x, x)H |p = 0 ∀x ∈ H

Let us consider the state equation corresponding to u = 0, then for all x ∈ H the following holds P− a.s.:

(P (t)x, x)H = EFt(PT y(T ), y(T ))H + EFt

∫ T

t

|
√

S(s)y(s)|2 ds− EFt

∫ T

t

|B∗(s)P (s)y(s)|2 ds

We set yt,x = yt,x,0 we recall that yt,x ∈ Lp
P(Ω;C([0, T ];H)) for all p ≥ 2 (see. [7][Proposition 3.2]). Moreover the

map (t, x) → yt,x(·) is continuous from [0, T ]×H to Lp
P(Ω;C([0, T ];H)), see again [7][Proposition 3.3].

Taking all these facts into account, we have that, for all 0 ≤ t ≤ r ≤ T :

E|(P (r)x, x)H − (P (t)x, x)H |p ≤ c(p)E|EFr (PT y(T ), y(T ))H − EFt(PT y(T ), y(T ))H |p (6.2)

+ E|EFr

∫ T

r

|
√

S(s)yr,x(s)|2H ds− EFt

∫ T

t

|
√

S(s)yt,x(s)|2H ds|p

+ E|EFr

∫ T

r

|B∗(s)P (s)yr,x(s)|2H ds− EFt

∫ T

t

|B∗(s)P (s)t,xy(s)|2H ds|p

Being PT ∈ L∞S (Ω,FT ,P, L(H)) and consequently (PT y(T ), y(T ))H ∈ Lp(Ω,FT ,P,R), for all p ∈ [2,∞[ by the
Kunita-Watanabe martingale representation Theorem there exists a process Z in Lp

P(Ω;L2([0, T ]; Ξ∗)) such that:
∣∣EFr (PT y(T ), y(T ))H − EFt(PT y(T ), y(T ))H

∣∣ =
∣∣∣∣
∫ t

r

Z(s) dW (s)
∣∣∣∣

Now fix τ ∈ [0, T ] by Burkholder-Davies-Gundy inequalities and the Dominated Convergence Theorem we get that:

lim
r↑τ, t↓τ

E|EFr (PT y(T ), y(T ))H − EFt(PT y(T ), y(T ))H |p = lim
r↓τ, t↑τ

E
∣∣∣
∫ r

t

Z(s) dW (s)
∣∣∣
p

(6.3)

≤ lim
r↓τ, t↑τ

E
( ∫ r

t

|Z(s)|2Ξ∗ ds
)p/2

= 0

Let us consider the second term at the right hand side in (6.2):

lim
r↓τ, t↑τ

E|EFr

∫ T

r

|
√

S(s)yr,x(s)|2H ds− EFt

∫ T

t

|
√

S(s)yt,x(s)|2H ds|p (6.4)

≤ lim
r↓τ, t↑τ

E|EFr

∫ T

r

|
√

S(s)yr,x(s)|2H ds− EFr

∫ T

t

|
√

S(s)yt,x(s)|2H ds|p

+ lim
r↓τ, t↑τ

E|[EFr − EFt ]
∫ T

t

|
√

S(s)yt,x(s)|2H ds|p

Setting yr,x(s) = x for s ∈ [t, r] splitting first the above expression and then applying Jensen inequality we get:

lim
r↓τ, t↑τ

E|EFr

∫ T

r

|
√

S(s)yr,x(s)|2H ds− EFr

∫ T

r

|
√

S(s)yt,x(s)|2H ds + EFr

∫ r

t

|
√

S(s)yt,x(s)|2H ds|p

≤ c(p)[ lim
r↓τ, t↑τ

E|
∫ T

r

(|
√

S(s)[yr,x(s)− yt,x(s)]|2H) ds|p + lim
r↓τ, t↑τ

E|EFr

∫ r

t

|
√

S(s)yt,x(s)|2H ds|p]

≤ C(T, p, MS) lim
r↓τ, t↑τ

∫ T

t

E sup
s∈[t,T ]

(|[yr,x(s)− yt,x(s)]|2p
H ) ds + C(T, p) lim

r↓τ, t↑τ
E

∫ r

t

|
√

S(s)yt,x(s)|2p
H ds]

Therefore by the Dominated Convergence Theorem we get that:

lim
r↓τ, t↑τ

E|EFr

∫ T

r

|
√

S(s)yr,x(s)|2H ds− EFr

∫ T

t

|
√

S(s)yt,x(s)|2H ds|p = 0

The second term at the right hand side of (6.4) can be treated like the term EFr (PT y(T ), y(T ))H in (6.3). The third
term in (6.2) follows identically as the second term in (6.2).

This conclude the proof of the Lemma.
Now we can state the main result of the paper:
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Theorem 6.6. Assume that hypotheses A1)-A4) hold true.
Then there exists a unique generalized solution of problem (5.11).

Moreover we have the following characterization of the optimal control: fix T > 0 and x ∈ H, then:
(1) there exists a unique control u ∈ L2

P(Ω× [0, T ]; U) such that:

J(0, x, u) = inf
u∈L2

P(Ω×[0,T ];U)
J(0, x, u)

(2) If y is the mild solution of the state equation corresponding to u (that is the optimal state), then y is the
unique mild solution to the closed loop equation:{

dy(r) = [Ay(r) + A](r)y(r)−B(r)B∗(r)P (r)y(r)] dr + Cy(r) dW (r)
y(0) = x

(6.5)

(3) The following feedback law holds P-a.s. for almost every s.

u(s) = −B∗(s)P (s)y(s). (6.6)

(4) The optimal cost is given by J(0, x, u) = (P (0)x, x)H .

Proof. We divide the proof in three steps.
First step: existence of a generalized solution We fix a complete orthonormal basis {ei : i ∈ N} in H and introduce,

for each N ∈ N, the finite dimensional projections ΠN : H → H : v → ∑N
i=1(v, ei)Hei. For each N ∈ N we define at

(t, ω) fixed:

ΠNPT (ω)ΠN = PN
T (ω) and SN (t, ω) =

{
ΠNS(t, ω)ΠN |S(t, ω)|L(H) ≤ N
0 |S(t, ω)|Σ(H) > N

(6.7)

First of all we notice that, from their definition PN
T ∈ Σ+

2 (H), P-a.s., for all N ∈ N and that for all x ∈ H,
(PN

T x, x)H ↗ (PT x, x)H , P-a.s.. Again from their definition it follows that SN (t, ω) ∈ Σ+
2 (H), for all N ∈ N and

that for all x ∈ H, (SN (t)x, x)H ↗ (S(t)x, x)H , P-a.s. for a.e. t ∈ [0, T ]. Moreover |SN (t)|Σ(H) ≤ |S(t)|Σ(H)P-a.s.
for a.e. t ∈ [0, T ], so in particular (i) and (iii) in definition 6.1 are verified. The pair (PN

T , SN ) will become the data
of the following approximating problems:




−dPN (t) = (A∗PN (t) + PN (t)A + A∗] (t)P
N (t) + PN (t)A](t)− PN (t)B(t)B∗(t)PN (t)) dt

+SN (t)dt + Tr[C∗(t)PN (t)C(t) + C∗(t)QN (t) + QN (t)C(t)] dt + QN (t) dW (t) t ∈ [0, T ]

PN (T ) = PN
T

(6.8)

We notice that the above equation satisfies the assumptions of Theorem 5.13. Thus for each fixed N ∈ N there
exists a mild solution (PN , QN ) with PN ∈ L2

P(Ω;C([0, T ]; Σ+
2 (H)))∩L∞P,S(Ω; C([0, T ]; Σ+(H))) and QN ∈ L2

P(Ω×
[0, T ]; L2(Ξ; Σ2(H))). Notice that PN has strongly continuous trajectories so the final condition PN (T ) = PN

T , P-.a.s.
is attained.

Points (i)-(iii) in definition 6.1 are satisfied by construction we only have to show that (iv) holds true.
We fix t ∈ [0, T ], by Theorem 5.14:

(PN (t)x, x)H = inf{JN (t, x, u) : u ∈ L2
P(Ω× [0, T ]; U)}

where

JN (t, x, u) = EFt

∫ T

t

[∣∣∣
√

SN (s)yt,x,u(s)
∣∣∣
2

H
+ |u(s)|2

]
ds +

∣∣∣
√

PN
T yt,x,u(T )

∣∣∣
2

Clearly at each u ∈ L2
P(Ω× [0, T ];U) fixed, we have that, for every t ∈ [0, T ] and x ∈ H the sequence {JN (t, x, u) :

N ∈ N} is P-a.s. non decreasing. Moreover it is bounded by J(t, x, u) < +∞ P-a.s.. Thus the sequence of random
variables (PN (t)x, x)H = infu∈L2

P(Ω×[0,T ];U) JN (t, x, u) is non decreasing as well. Since it is P-a.s. bounded it has a
limit. It lasts to show that this limit is actually of the form (P (t)x, x)H with P ∈ L∞P,S(Ω× [0, T ]; Σ+(H)).

Let D=̇{xi}i∈N be a dense subset of H, then we can find a subset Ω0 ⊂ Ω, with P (Ω0) = 1, such that for every
xi ∈ D, ∃ limN→+∞(PN (t)xi, xi)H , for every ω ∈ Ω0. Thus we define the limit φ(t, xi, xi) as follows:

φ(t, xi, xi) =
{

limN→+∞(PN (t)xi, xi)H ∀xi ∈ D if ω ∈ Ω0

0 ∀xi ∈ D if ω /∈ Ω0

For every ω ∈ Ω0 the quadratic functional φ(t, xi, xi) defines a continuous, positive semidefinite, quadratic form on
a dense subset, indeed thanks to (5.8) one has the following uniform bound, modifying if necessary Ω0:

|φ(t, xi, xi)| ≤ sup
N∈N

|PN (t)|Σ(H)|xi|2H ≤ C2(Mp + Ms)|xi|2H ∀ω ∈ Ω0
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therefore φ(t, xi, xi) can be extended to the whole H × H, by density. Moreover, by the Riesz Theorem we can
associate to this quadratic form, a linear, bounded symmetric and positive semidefinite operator P (t), such that for
every t ∈ [0, T ]:

φ(t, x, y) = (P (t)x, y)H ∀ω ∈ Ω0, ∀x, y ∈ H

And the following uniform bound is valid for all t ∈ [0, T ]:

|P (t)|L(H) ≤ C2[MP + MS ] ∀ω ∈ Ω0 (6.9)

The process P is by construction predictable and strongly measurable. Finally, being the operators positive and
symmetric the weak convergence imply also the strong convergence, for all t ∈ [0, T ] we have that

|PN (t)x− P (t)x|H → 0 ∀ω ∈ Ω0, ∀x ∈ H (6.10)

This concludes the proof of the first step since (6.10) implies (iv) in the definition 6.1 .

Second step: characterization of the optimal control By Lemma 6.4 we know that any generalized solution verifies
(6.1), in particular for t = 0 we have that:

J(0, x, u) = (P (0)x, x)H + E
∫ T

0

|u(s) + B∗(s)P (s)yt,x,u(s)|2 ds

Thus J(0, x, u) ≥ (P (0)x, x)H for all u ∈ L2
P(Ω× [0, T ];U) and the equality holds if and only if (6.6) holds, that is

if and only if y solves (6.5) and u = u. This completely characterize the optimal control. We notice that existence
and uniqueness of a solution to the closed loop equation (6.5) is guaranteed since the assumptions of Theorem 3.2
are satisfied if A] is replaced by A] −BB∗P .

Third step: uniqueness of the generalized solution
Let P1 and P2 be two generalized solutions. We choose ū = −B∗P1ȳ where ȳ solves (6.5) with P replaced by

P1. By the fundamental relation (6.1) and the characterization of the optimal control proved above we immediately
have:

(P1(t)x, x)H = J(t, x, ū) = (P2(t)x, x)H + EFt

∫ T

t

|ū(s) + B∗(s)P2(s)ȳ(s)|2 ds P-a.s.

Thus (P1(t)x, x)H ≥ (P2(t)x, x)H P-a.s.. The claim follows repeating the argument choosing P2 instead of P1 and
repeating the argument.

Remark 6.7. The idea of regularizing the data and then defining a generalized notion of solution is rather classical
in the PDE context, see for instance the definition of “strong solution” in [16] an in [1] and the references therein,
although it seems the first time that is used in the context of the Riccati equation.

Remark 6.8. If assumptions A1)-A5) in Hypothesis 2.1 hold then comparing relation (6.1) and relation (5.13) we
immediately deduce that generalized solutions of (5.11) are mild solutions of (5.11) (see Section 5 for definition of
mild solutions) and viceversa. On the contrary, when A5) fails, generalized solutions still exist, and are unique, while
mild solutions can not be defined.

7. Generalized solutions and variation of constant formula

The aim of this section is to give a further characterization of the generalized solution just defined. To this
purpose we notice that the state equation defines an evolution operator in a suitable sense and we recover a variation
of constant formula for the value function. The main ingredient is the fundamental relation (6.1) that, on one hand
is verified by the generalized solution and on the other hand will turn out to be essential to define the evolution
operator.

Definition 7.1. Assume A1)-A3) and consider the state equation starting from x at time t ∈ [0, T ] and with control
u = 0 namely: {

dy(s) = (Ay(s) + A](s)y(s)) ds + C(s)y(s) dW (s) s ∈ [t, T ]
y(t) = x

We denote by yt,x its mild solution and define the family of maps Lt,σ : L∞S (Ω,Fσ; Σ(H)) → L∞S (Ω,Ft; Σ(H)) for
0 ≤ t ≤ σ ≤ T , in the following way. For every V ∈ L∞S (Ω,Fσ; Σ(H)) we define,

(Lt,σV x, x)H = EFt(V yt,x(σ), yt,x(σ))H . (7.1)

We collect some properties for the evolution operator Lt,σ, that can be easily deduced from its definition:

Lemma 7.2. The family of operators {Lt,σ : 0 ≤ t ≤ σ ≤ T} has the following properties:
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(1) for every 0 ≤ t ≤ σ ≤ T Lt,σ is a linear and bounded operator,

Lt,σ : L∞S (Ω,Fσ; Σ(H)) → L∞S (Ω,Ft; Σ(H))

(2) for every 0 ≤ t ≤ r ≤ σ ≤ T one has that:

Lt,σ = Lt,r ◦ Lr,σ P− a.s.

(3) fixed V ∈ L∞S (Ω,Fσ; Σ(H)), x ∈ H and σ in [0, T ] the map t → (Lt,σV x, x)H belongs to CP([0, T ];Lp(Ω,R)),
for all p ≥ 2 .

Proof.
(1) We have that:

sup
x∈H,|x|H≤1

|(Lt,σV x, x)H = sup
x∈H,|x|H≤1

|EFt(V yt,x(σ), yt,x(σ))H | ≤

≤ |V |L∞S (Ω,Fσ ;L(H)) sup
x∈H,|x|H≤1

E|yt,x(σ)|2H ≤ C2|V |L∞S (Ω,Fσ;L(H))

(2) the proof follows form the semigroup property of the solution yt,x(σ) and the property of conditional expec-
tations with respect to the filtration Ft.

(3) the proof is identical to the one of Lemma 6.5.

We notice that the fundamental relation (6.1), evaluated at u = 0, can be rewritten in terms of the evolution
operator and reads as follows, for all t ∈ [0, T ] and all x ∈ H:

(P (t)x, x)H =

= EFt(PT y(T ), y(T ))H + EFt

∫ T

t

|
√

S(s)y(s)|2 ds− EFt

∫ T

t

|B∗(s)P (s)y(s)|2 ds (7.2)

= (Lt,T PT x, x)H +
∫ T

t

(Lt,sS(s)x, x)H ds−
∫ T

t

(Lt,sP (s)B(s)B∗(s)P (s)x, x)H ds P− a.s.

This relation suggest a new characterization for a solution of (5.11):

Definition 7.3. A variation of constants solution to problem (5.11) is a map P ∈ L∞P,S((0, T ) × Ω;Σ+(H)) such
that, ∀x ∈ H, ∀p ≥ 1, Px ∈ CP([0, T ]; Lp(Ω;H)) and the following variation of constant formula is verified, P-a.s.:

(P (t)x, x)H

= (Lt,T PT x, x)H +
∫ T

t

(Lt,sS(s)x, x)H ds−
∫ T

t

(Lt,sP (s)B(s)B∗(s)P (s)x, x)H ds
(7.3)

We can prove existence and uniqueness of such solutions:

Theorem 7.4. Assume A1)-A4) then there exists a unique solution of problem (5.11) in the sense of definition 7.3.

Proof. We already know that the generalized solution defined in the previous section verifies (7.3) and it is regular
enough to be a solution in the sense of definition 7.3. It lasts to prove the uniqueness of the solution in this class.
Let P1 and P2 be two solutions in the sense of 7.3 and denote by P̄ their difference P̄ (t) = P1(t)− P2(t). Then the
following holds, for all t ∈ [0, T ] and x ∈ H, P− a.s:

(P̄ (t)x, x)H =
∫ T

t

(Lt,sP2(s)B(s)B∗(s)P̄ (s)x, x)H +
∫ T

t

(Lt,sP (s)B(s)B∗(s)P1(s)x, x)H ds

Therefore, for every t ∈ [0, T ] we have that:

|P (t)|L(H) = sup
x∈H,|x|H≤1

(P (t)x, x)H ≤

≤ sup
x∈H,|x|H≤1

∫ T

t

(Lt,sP2(s)B(s)B∗(s)P (s)x, x)H +
∫ T

t

(Lt,sP (s)B(s)B∗(s)P1(s)x, x)H ds ≤

≤ C

∫ T

t

|P (s)|L(H) ds P− a.s

where C depends on C2,MB , |P1|L∞P,S(Ω×[0,T ];L(H)) and |P2|L∞P,S(Ω×[0,T ];L(H))

Applying the Gronwall Lemma to s → |P (s)|L∞(Ω,Fs,L(H))we get that P1(t) = P2(t), P-a.s. for all t ∈ [0, T ].

21



Remark 7.5. Since the solution of definition 7.3 is also the unique generalized solution it is obvious that it allows the
synthesis of optimal controls as in Theorem 6.6.

8. Non-homogeneous problem

As in [13] we consider a simple generalization of our original control problem that enlarges the set of applicability
of our abstract results.

We fix η ∈ L2(Ω,FT ,P, H) and ν ∈ L2
P(Ω× [0, T ],H) and instead of J(0, x, u) we minimize

Ĵ(0, x, u) = E
∫ T

0

(
(S(s)(y0,x,u(s)− ν(s)), (y0,x,u(s)− ν(s)))H + |u(s)|2U

)
ds

+E(PT (y0,x,u(T )− η), (y0,x,u(T )− η))H

We assume that A1)-A4) in Hypothesis 2.1 hold and let P be the unique generalized solution of the Riccati equation
(5.11). Moreover (p, q) with p in L2

P(Ω, C([0, T ];H)) and q in L2
P(Ω, L2([0, T ];L2(Ξ,H))) is the unique mild solution

of the backward equation:



dp(s) =
(−A∗p(s)−A∗] (s)p(s) + P (s)B(s)B∗(s)p(s)− Tr[C∗(s)q(s)]

)
ds

−S(s)ν(s)ds + q(s)dW (s) s ∈ [0, T ]
p(T ) = PT η

(8.1)

where expliciting notation with respect to the usual basis {fi : i ∈ N} in Ξ

Tr[C∗(s)q(s)] =
∞∑

i=1

C∗i (s)(q(s), fi).

Moreover existence and uniqueness of a mild solution to equation (8.1) is guaranteed by Theorem 4.4 whose assump-
tions are easily verified.

The following is the analogue of Theorem 6.6:

Theorem 8.1. Assume that hypotheses A1)-A4) hold true, then:
(1) there exists a unique control u ∈ L2

P(Ω× [0, T ]; U) such that:

Ĵ(0, x, u) = inf
u∈L2

P(Ω×[0,T ];U)
Ĵ(0, x, u)

(2) If y is the mild solution of the state equation corresponding to u (that is the optimal state), then y is the
unique mild solution to the closed loop equation:{

dy(r) = [Ay(r) + A](r)y(r)−B(r)B∗(r)P (r)y(r) + B(r)B∗(r)p(r)] dr + Cy(r) dW (r)
y(0) = x

(8.2)

(3) The following feedback law holds P-a.s. for almost every s.

u(s) = −B∗(s)P (s)y(s) + B∗(s)p(s). (8.3)

(4) The optimal cost is given by

Ĵ(0, x, u) = (P (0)x, x)H − 2(p(0), x)H + E(PT η, η)H + E
∫ T

0

(
(S(s)ν(s), ν(s))H − |B∗(s)p(s)|2H

)
ds.

Proof. Let (ph, qh) ∈ L2
P(Ω;C([0, T ]; H))× L2

P(Ω;L2([0, T ]; L2(Ξ,H))), h = 1, 2, ... be the unique classical solution
of the backward equation:




dp(s) =
(−A∗hph(s)−A∗] (s)ph(s) + P (s)B(s)B∗(s)ph(s)− Tr[C∗(s)qh(s)]

)
ds

−S(s)ν(s)ds + qh(s)dW (s) s ∈ [0, T ]
p(T ) = PT η

(8.4)

We proceed as in the proof of Theorem 5.6. Namely we choose Ψ ∈ C2(H) with Ψ(y) = 1 for |y| ≤ 1, Ψ(y) = 0 for
|y| ≥ 2 and Ψ(y) ∈ [0, 1], ∀y ∈ H. Then we differentiate by Itô rule dΨ(N−1yh(s))(ph(s), yh(s))H . We integrate in
[0, T ], and compute the mean value. Finally we let N → +∞ to obtain:

E(PT η, yh(T ))H = (p(0), x)H + E
∫ T

0

(P (s)B∗(s)B(s)ph(s), yh(s))Hds

+E
∫ T

0

(u(s), B∗(s)ph(s))H − (S(s)ν(s), yh(s))H) ds
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Letting h →∞ we get by Theorems 3.3 and 4.4

E(PT η, y(T ))H = (p(0), x)H + E
∫ T

0

(P (s)B∗(s)B(s)p(s), y(s))Hds

+E
∫ T

0

(u(s), B∗(s)p(s))H − (S(s)ν(s), y(s))H) ds

Thus by easy computations

Ĵ(0, x, u) = E
∫ T

0

|u(s) + B∗(s)P (s)y(s)−B∗(s)p(s)|2 ds

+(P (0)x, x)H − 2(p(0), x)H + E(PT η, η)H + E
∫ T

0

[
(S(s)ν(s), ν(s))H − |B∗(s)p(s)|H

]
ds.

The above relation completes the proof (notice that existence and uniqueness of the mild solution of equation 8.2
can be proved exactly as for existence and uniqueness of the mild solution of equation 2.1).

9. Example: minimal variance problem for a stochastic equation with delay and random
volatility

We consider the controlled stochastic differential equation with memory effects:



dξ(t) =
[∫ 0

−1

ξ(t + θ) a(dθ) + r(t)u(t)
]

dt +
d∑

i=1

σi(t)ξ(t)dβi
t , t ∈ [0, T ]

ξ(0) = µ0, ξ(θ) = ν0(θ), for a.e. θ ∈ (−1, 0),

(9.1)

where µ0 ∈ Rn, ν0 ∈ L2((−1, 0);Rn) , (Ω, E ,P) is a complete probability space, {βi
t : t ≥ 0, i = 1, ..., d} are

independent standard brownian motions defined in Ω. Moreover Ft denotes the σ-algebra generated by {βi
σ, σ ∈

[0, t], i = 1, .., d} and augmented with the sets of F with P-measure zero (see Remark 2.4 to see how this requirement
can be relaxed, and notice that for some i = 1, ..., d, σi can be null).

We assume that a is a L(Rn,Rn)-valued finite measure on [−1, 0], r : [0, T ] × Ω → L(Rd,Rn) is bounded and
predictable stochastic process and that σi : [0, T ]×Ω → L(Rn,Rn) are bounded and predictable stochastic processes,
i = 1, ..., d.

We also consider the following cost functional of minimal variance type:

J(0, µ0, ν0, u) = E
∫ T

0

|u(τ)|2Rddτ + E(k(ξ(T )− ζ), (ξ(T )− ζ))Rn

where k ∈ L∞(Ω,FT ,P; Σ+(Rn)) and ζ ∈ L2(Ω,FT ,P;Rn).
Our purpose is to minimize J(0, µ0, ν0, u) over all predictable controls u : [0, T ]× Ω → Rd.
Following [4] and [6] we set H = Rn × L2((−1, 0);Rn),

D(A) =
{(

µ
ν

)
∈ H : ν ∈ W 1,2((−1, 0);Rn) and ν(0) = µ

}
, A

(
µ
ν

)
=

( ∫ 0

−1
ν(θ)a(dθ)

dν
dθ

)
.

It is proved in [9], among other places, that A generates a strongly continuous semigroup in H (see also [6]). Moreover
if we set U = Rd and for t ∈ [0, T ], µ ∈ Rn, ν ∈ L2((−1, 0);Rn), u ∈ Rd,

x =
(

µ0

ν0

)
, B(t)u =

(
r(t)u

0

)
, Ci(t)

(
µ
ν

)
=

(
σi(t)µ

0

)
,

PT

(
µ
ν

)
=

(
k(t)µ

0

)
, η =

(
ζ
0

)
, y(τ) =

(
ξ(τ)
ξτ (·)

)

where xτ (θ) = x(θ + τ), τ ≥ 0, θ ∈ [−1, 0].
Then equation (9.1) is equivalent (see [4] and [6][Chapter 10]) to





dy(τ) = (Ay(τ) + Buτ ) dτ +
d∑

i=1

Ci(τ)y(τ)dβi
τ , τ ∈ [0, T ],

y(0) = y0.

Moreover the cost functional becomes:

Ĵ(0, x, u) = E
∫ T

0

|u(τ)|2Rdds + E
∣∣∣
√

PT (y(T )− η)
∣∣∣
2

H
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Moreover it is easy to verify that Hypothesis 2.1 A1)-A5) hold. Thus Theorem 8.1 can be applied to obtain the
synthesis of the optimal control. We notice that in this case the Riccati equation has a unique mild solution in the
sense clarified by Definition 5.3.

Remark 9.1. We believe that the present example is interesting in his own because of its simplicity. Notice that the
model is finite dimensional but the presence of a simple delay term and of the stochastic coefficient σ immediately
requires to use backward stochastic Riccati equations in infinite dimensional spaces.

In addition it can be regarded as a first step towards realistic financial applications of the theory. Namely
in [14] (see also [26]) the authors showed that the mean variance hedging problem for a (incomplete) Black and
Scholes market with stochastic volatility can be treated as a singular linear quadratic control problem with stochastic
coefficients. The solution of such problem requires to prove existence and uniqueness of the solution of a backward
stochastic Riccati equation in finite dimensions. On the other side in [8] it was pointed out that memory effects can
be introduced in the market model describing the evolution of the share prices by a delay equation. Thus the present
example can be seen as a contribution towards the solution of the mean variance hedging problem for a market with
stochastic volatility and memory effects. To deal with the realistic formulation of the problem it would be necessary
to allow control dependent noise and singular costs. This complicates the form of the Riccati equation and requires
careful mixing of the techniques developed in this paper to deal with infinite dimensional stochastic Riccati equations
and of the ones developed in [14] and [24] to deal with singular control problems and control dependent noise. This
will be the topis of a future work.

10. Example: Optimal control for a wave equation in random media with stochastic damping

In order to show that our general results can be applied to concrete controlled stochastic PDEs arising in appli-
cations we consider a stochastic wave equation with diffused control. We assume that the system is evolving in a
random media and this influences its evolution in two ways: through a stochastic force of elastic type (the term∑∞

i=1 ci(t, ζ)ξ(t, ζ)dβi(t) below) and through a stochastic damping (the term µ(t, ζ)∂tξ(t, ζ)dt below). Notice that in
this model it is natural to introduce the stochastic coefficient µ, moreover although only one coefficient is stochastic
the use of backward stochastic Riccati equations is necessary to solve the optimal control problem.

We consider the state equation



dt∂tξ(t, ζ) = ∆ζξ(t, ζ)dt + b(t, ζ)u(t, ζ)dt + µ(t, ζ)∂tξ(t, ζ)dt +
∞∑

i=1

ci(t, ζ)ξ(t, ζ)dβi(t), ζ ∈ D, t ∈ [0, T ],

ξ(t, ζ) = 0, ζ∈∂D, t∈ [0, T ],

ξ(0, ζ) = x0(ζ), ∂tξ(0, ζ) = v0(ζ) ζ ∈ D,
(10.1)

and the cost functional

J(0, x, u) = E
∫ T

0

∫

D

[
κ1(t, ζ)ξ2(t, ζ) + κ2(t, ζ)

(
∂ξ

∂t
(t, ζ)

)2
]

dζ dt + E
∫ T

0

∫

D
u2(t, ζ)dζ dt

E
∫

D

[
π1(ζ)ξ2(T, ζ) + π2(ζ)

(
∂ξ

∂t
(T, ζ)

)2
]

dζ.

(10.2)

In the above formulae D ⊂ Rd is a bounded domain with regular boundary. By B(D) we denote the Borel σ-field in
D.

Moreover {βi : i = 1, 2...} are independent standard (real valued) brownian motions defined on (Ω,F ,P). We set
Ft = σ{βi(s) : s ∈ [0, t], i = 1, 2...} and denote by P the predictable σ-field in Ω× [0, T ].

On the coefficients we assume the following:
(1) µ is a bounded measurable process defined on ([0, T ]×Ω)×D endowed with the σ-field P⊗B(D) with values

in R+ (with Borel σ-field).
(2) b, κ1, κ2 and ci, i = 1, 2, .. are bounded measurable maps [0, T ] × D → R. We assume that κ1 and κ2 have

values in R+.
(3) There exists a constant M > 0 such that:

∑∞
i=1 |ci(t, ζ)|2 ≤ M for a.e. t ∈ [0, T ] and a.e. ζ ∈ D

(4) π1 and π2 are bounded measurable maps D → R+.

Following, for instance, [1] we set:
(1) H = H1

0 (D)× L2(D), U = L2(D)
(2) W (t) =

∑∞
i=1 fiβi(t) where {fi : i = 1, 2, ...} is an orthonormal basis in an arbitrary separable real Hilbert

space Ξ
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(3) D(A) =
[
H2(D) ∩H1

0 (D)
]×H1

0 (D) and
(

A

(
ξ
v

))
(ζ) =

(
v(ζ)

∆ζξ(ζ)

)
,

(
ξ
v

)
∈ D(A),

(
A](t)

(
ξ
v

))
(ζ) =

(
0

µ(t, ζ)ξ(ζ)

)
,

(
ξ
v

)
∈ H

(4) (B(t)u)(ζ) =
(

0
b(t, ζ)u(ζ)

)
,

(
Ci(t)

(
ξ
v

))
(ζ) =

(
0

ci(t, ζ)ξ(ζ)

)

(5)
(

S(t)
(

ξ
v

))
(ζ) =

(
κ1(t, ζ)ξ(ζ)
κ2(t, ζ)v(ζ)

)
,
(

PT (t)
(

ξ
v

))
(ζ) =

(
π1(ζ)ξ(ζ)
π2(ζ)v(ζ)

)
, x =

(
x0

v0

)

With this setting the state equation (10.1) is equivalent to (2.1) and the cost (10.2) is equivalent to (2.2). Moreover
it is easy to verify that assumptions Hypothesis 2.1 A1)-A4) are verified. So in this case we can apply the results
in Theorem 6.6 to obtain existence of a unique solution of the Riccati equation both in the “generalized” sense of
Definition 6.1 and in the “variation of constants” sense of Definition 7.3. Moreover such a solution allows to perform
the synthesis of the optimal control as it is stated in Theorem 6.6.

Remark 10.1. Notice that assumption A5) is in general not satisfied, take, for instance, κ2 ≡ 1 or π2 ≡ 1.
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