
Bull. Mater. Sci., Vol. 20, No. 1, February 1997, pp. 111-123. © Printed in India. 

On the ballistic performance of metallic materials 
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Abstract. The paper presents a ballistic performance index for metallic armour materials in 

terms of the commonly determined mechanical properties such as strength and modulus. The 

index is derived using an energy-balance approach, where the kinetic energy of the projectile is 

assumed to be absorbed by the elastic and the plastic deformation involved in the penetration 

process as well as the kinetic energy imparted to the target material during deformation. The 

derivation assumes two distinct stages to exist during the penetration of the projectile. At the 
striking face of the armour, the material is assumed to flow radially in a constrained 

deformation region but longitudinally at the rear surface leading to typically observed bulging 

of the armour without constraint. The index is validated using the available experimental and 

empirical data obtained in the case of small arm projectiles for an impact velocity of about 800 

m/sec. This index is expected to facilitate the development of metallic armour, since the 

number of the ballistic experiments can be reduced significantly and only the promising 

materials need to be considered. 
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1. Introduction 

The ballistic resistance of an armour material is normally characterized in terms of the 

reciprocal of the areal density of the target material that is required to arrest 

a particular type of projectile striking with a specific velocity. In such development 

activities, invariably, a large number of experiments are carried out for different alloy 

compositions and heat treatment processes. This is inevitable, since comprehensive 

knowledge does not exist about the correlation between the mechanical properties and 

the ballistic performance. Even an approximate correlation is expected to greatly 

facilitate the development of armour, since substantial knowledge on the mechanical 

properties is routinely available for various alloys. The aim of this paper is to arrive at 

such a ballistic index. For this purpose we have to take into account the various 

mechanisms that operate during the penetration of the projectile as well as the effect of 

various mechanical properties on the energy-absorption process. It is in this context, 

that the earlier investigations are first briefly reviewed. 

Various models have been used in the past in determining the energy absorbed by an 

armour in arresting a projectile. Taylor (1948a) established the work done by a projec- 

tile in penetrating a target, assuming a radial expansion of a cylindrical hole of diameter 

equal to that of the projectile under plane strain condition. Thompson (1955) improved 

the model of Taylor (1948a) by including the work done for dishing the material when 

struck by non-deforming projectiles. Averbuch and Bodner (1974) investigated the 

perforation of a plate by a non-deforming projectile, assuming a three-stage model. In 
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the first stage, the motion of the projectile is resisted by the radial plastic flow and the 

inertial resistance of the target material, while in the second stage, a plug is formed by 

shear failure resulting in the ejection of the plug in the last stage. A refined method of the 

above was presented by Ravid and Bodner (1983) in which a two-dimensional model is 

assumed with five stages of penetration, namely (i) dynamic plastic penetration, (ii) 

bulge formation, (iii) bulge advancement, (iv) plug formation and (v) the exit of the 

projectile. In an analysis of high speed impact, Tate (1977) used the constrained-plastic- 

flow approach. Backman and Goldsmith (1978) studied the dominant modes of failure 

that may occur during the process of penetration and perforation of various targets. 

Landkof and Goldsmith (1985) determined the energy absorbed in the perfo- 

ration of thin metallic targets by cylindro-conical projectiles based on a plastic hinge 

theory for studying the bending of the petals. A unified theory of penetration was 

proposed by James (1987) in which the theories of shaped charge jets and KE projectiles 

were integrated. In the perforation of aluminium plates with conical-nosed rods 

Forrestal et al (1987) considered the radial effects for computing the volume participa- 

ting in the elastic and plastic deformation. 

Although the mechanics of penetration has been studied extensively, only few have 

focused their attention on the effect of mechanical properties on the ballistic performance. 

Tabor (1948) considered the effective pressure to be three times the ultimate strength in 

his calculations. Effect of Young's modulus on shock loading in 2024 A1 was discussed by 

Sinha et al (1977). Tate (1977) assumed the flow strength to be three times that of the mea- 

sured yield strength. Woodward (1978) described the penetration of a conical projectile 

using the work done expressed in terms of the flow stress. Although, evaluation of the 

performance of the projectile on plate targets have been discussed in terms of the flow 

stress by many investigators (Bishop et a11945; Taylor 1948b; Woodward 1978; Corran 

et al 1983; Landkof and Goldsmith 1985; Forrestal 1986; Randin and Goldsmith 1988), 

quite a few have observed that merely increasing the mechanical strength does not lead to 

improved ballistic resistance (Bishop et al 1945; Thompson 1955; Recht 1964; Abbot 

1972; Wingrove and Wulf 1973; Tate 1977, 1980; Jane and Zukas 1978; Longcope and 

Forrestal 1983). This observation essentially contains significance of the other mecha- 

nical properties in influencing the ballistic resistance of the material. 

Since our focus is to understand the effect of commonly employed mechanical 

properties such as 3field strength, ultimate strength, percentage elongation and elastic 

modulus on the ballistic performance, we have adopted a different approach, although our 

energy-absorption model is broadly similar to the earlier ones. While earlier investigators 

focused their attention on the non-material parameters such as projectile and target 

geometry and the ballistic parameters such as velocity, our emphasis is on the material 

related ones. In addition, it should be noted that this exercise is not aimed at establishing 

the ballistic limit but establishing the ballistic quality of typical metallic armour materials. 

2. The model 

In this model, a target of finite thickness is divided into two regions as shown in 

figure la. At the striking face of the target, the region (I) is assumed to be in plane strain 

condition and the material flows only in the radial direction. At the other end (II), the 

material is assumed to bulge in the process of reducing the projectile velocity to zero. 

The relative widths of these two regions are computed by a typically observed velocity 
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Figure 1. Schematic diagram showing the penetration mechanism assumed in the moael. (a) 

Constrained (I) and unconstrained (II) regions and (b) elastic and plastic zones. 

decay of the projectile and this aspect is explained in § 2.1. The kinetic energy of the 

striking projectile is assumed to be absorbed mainly in three different modes, as shown 

in figure 1 b: (a) the elastic deformation of the material surrounding the projecule, (b) the 

plastic deformation of the material surrounding the projectile and (c) the kinetic energy 

imparted to the target material around the target-projectile interface. 

The total energy absorbed in each of the above cases is determined as the product of the 

energy absorbed per unit volume and the volume participating in the respective mode of 

deformation. The cylindrical volume that participates in each mode is computed using the 

distance covered by the elastic or the plastic wave, as the case may be, in the radial direction 

from the line of penetration as shown in figure lb. For computing the volume that 

participates in a specific deformation process, one has to consider the radial spread of the 

wave front, propagating from the target-projectile interface. When a conical-nosed 

projectile with a semi-nose angle of about 45 ° penetrates any homogeneous material with 

a velocity of v, it imparts a particle velocity of the same magnitude to the target material but 

in the radial direction. Since there is a gradual reduction of velocity with penetration, 

ideally, the particle velocity imparted also varies in a similar fashion. A rigorous approach 
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is indeed possible where the particle velocity is chosen depending on the location along the 

thickness of the target. However, this method needs numerical support and the ballistic 

index cannot be expressed in a simple and explicit form. Therefore, for the sake of simplicity 

we have assumed a constant representative particle velocity (v~) for the entire thickness of 

the target, equal to one half of the striking velocity, similar to the model presented by 

Taylor (1948a). 

2.1 Calculation o f  the relative widths o f  regions I and I I  

Let ~ and e2 be the fractional widths of regions I and II respectively. It is common 

practice to assume the retardation (v dv/dx) of the penetrating projectile to be 

a function of the velocity itself. While some investigators have expressed it as a linear 

function of momentum (my), some others have used the kinetic energy (1/2 my 2) instead. 

However, in the real case, it can be assumed to be a combination of these two and it can 

be expressed as, 

dv 
v-v- = - Av 3/2, (1) 

(Ix 

where v is the velocity and A is a constant parameter. 

On integrating (1) for v = v o to vx, we get 

2 v o - = Ax,  (2) 

where v 0 is the striking velocity, vx the velocity of the projectile after penetrating a 

depth of x in the target in the direction of penetration. Determining the value of 

constant A by imposing v x = 0 for x = d (where d is the total thickness of the target), and 

then by rearranging (2), we get 

1 x/..v/~x x 
/--- = ~ = ct~, (3) 

x/Vo 

where ~ represents the fractional thickness needed to reduce the projectile velocity to 

vx. The first region (I) is assumed to extend up to a depth where the penetrating 

projectile just ceases to make a dent. The minimum stress required to produce 

the dent is about 2"6 times ~ry (Eichelberger 1956; Allen and Rogers 1961), where 

O'y is the yield stress of the material. Stress generated by a particle velocity v is 

(Kinslow 1970) 

--'= OV(V ~- Ce) , (4) 

where p the density, co the longitudinal speed of the elastic wave. Assuming the stress at 

the interface between I and II to be 2" 6 ~ry, we get 

P vl (vl + ce) = 2" 6 O'y, (5) 

where vl is the velocity of the projectile at the interface. On simplifying (5) for vl we get 

- pce + x/Ep 2 c z + 10" 4 pay] 
vl - 2 p (6) 
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Substituting v x for v x in (3) we get ~t 1 as, 

~ 1 = 1  V/~1 , 

and 

~2 ~ 1 --0[ 1. 
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(7) 

2.2 Elastic energy calculations 

The elastic energy absorbed in the constrained (I) and the unconstrained (II) regions are 

different and these have to be computed separately. 

2.2a Constrained zone: The material undergoes a bulk strain in region I. The energy 

per unit volume absorbed in this case is given by 

1 I-AV -12 
is) 

where K is the bulk modulus and AV/Vrepresents the volume strain. 

K = c~ p, (9) 

where c b is the bulk speed of the elastic wave. The volume strain can be shown to be 

a v  r~ 
- f f  = r-~' (t0) 

where r o is the radius of the projectile and r: the radial distance covered by the elastic 

wave front (figure lb). 

r e = (c b + va) t, (11) 

where v, is the representative particle speed as described in § 2 and t denotes time. 

r o = v a t. (12) 

Combining (9), (10), (11) and (12) and substituting in (8) we get the energy per unit 

volume as 

1 [-v.-]4 
=z P L?2 . j • (13) 

The cylindrical volume that participates in this deformation is 

= I-I(c  b + Va) 2 t 2 a id .  (14) 

Hence the total elastic energy absorbed in the constrained region (I) can be expressed as 

,IEL = TZt2 pdVaa [2(l ~ kb)21, (15) 

where k b is a dimensionless parameter defined as 

k b =--.Va (16) 
Cb 
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2.2b Unconstrained zone: The energy absorbed in region II is determined using 

a similar procedure followed in § 2.2a except that the appropriate energy per unit 

volume and the volume participation are considered. 

11-~-E 1 
Energy per unit volume = ~ , (17) 

where ay is the yield strength and E the elastic modulus. 

Volume participating in this deformation is 

='/I: (e e -31- Va) 2 t 2 0~ 2 d. (18) 

Hence the total elastic energy absorbed in the unconstrained region ( I I )  i s ,  

k (1 + ko)2]. 
*~r = ~t2 P dr2 [_ 2k~ (19) 

The elastic longitudinal wave speed 

c c = k~ , (20) 

where 

k , =  (1-23 ' )0  +7  ' 

where 3' is the Poisson's ratio of the material, and kj (Johnson 1972) and ke are 

dimensionless parameters given as 

kj 13/)2 ~a 
= a ; kc = - - .  

ay c e 

2.3 Plastic energy calculations 

The energy absorbed by the plastic deformation is also computed in a similar way as 

described in § 2.2a except that the elastic parameters are replaced by the plastic ones. In 

addition, it is to be noted that there is no need for calculating the energy absorbed by 

plastic flow for two regions separately, since we need to take only the plastic shear 

strain into account. 

Plastic energy absorbed per unit volume, which is the area under a typical bilinear 

stress-strain curve, is expressed as 

= O'y8 + I E p 8  2 , (21) 

where ay is the yield stress, e the plastic strain and Ep the plastic modulus. Volume 

participating in the deformation is 

: 7[ (Cp + /3a) 2 t 2 d. (22) 

Hence the total energy due to the plastic deformation is 

VPLd'I'U = lzt2 P dv4 1 1 + + (23) 
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where 
2 Va 

kj = p va kp = va Ep = cp 2 p and e = - -  
~pp~ O'y Co 4- V a 

2.4 Kinetic energy imparted to the material 

The kinetic energy imparted to the target material is significant only in the plastic zone 

and turns out to be negligible in the purely elastic zone. Since the particle velocity 

imparted to the target material is v~, as discussed in § 2.2, the kinetic energy imparted 

per unit volume to the target material is, 

2 
=½PV a • 

The volume that participates in this process is same as that given in (22) and therefore 

the total kinetic energy imparted to the target material is 

where 

~i,'¢ = m pdva 1 + , 

Cp 

(24) 

3. The ballistic performance index 

The total energy absorbed by all the three modes [-from (15), (19), (23) and (24)] is 

~/ = 1 ,l# 11 --I- dl TM Ib TM (25) 
qlEL + ~'EL -- VPL + ~'KE" 

The total energy absorbed per unit areal density (pd) is 

• + 
pd 2(1 + k02 kj 

+ ~ ( 1  +~p)2]. (26) 

In (26), it can be seen that the terms inside the square bracket exclusively correspond to 

the mechanical properties and the velocity of interest, making it ideally suitable for 

characterizing the ballistic quality. Thus the ballistic merit can be expressed as, 

[ Ot 1 + ke)2 k~ 1(1 ~p) 1 

= 2 ( l + k b )  2 +  2(1 2kj + +2k  

1( 
+ ~  1 +  . (27) 

On the right hand side of (27) the first two terms represent the elastic components, the 

third and the fourth represent the plastic components and the last term corresponds to 

the kinetic energy component. Since all the terms appearing on the right hand side of 

(27) are dimensionless parameters, ff is also a dimensionless parameter. In all our 
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Table 1. Material properties*. 

Density (p) Yield strength Tensile strength 

Material ( kg.m- 3) (ay (Mpa)) (a~ (Mpa)) % Elongation 

Lead 11340 15 38 50 

Copper 8940 275 372 20 

Mild steel 7800 325 691 35 

Aluminium 2720 130 217 20 

Steel-A 7800 1068 1210 11 

Ti-alloy 4550 990 1050 15 

Magnesium 1760 200 310 15 

A1-2024 2770 345 565 17 

Steel-B 7800 1610 1860 12 

A1-7049 2790 455 585 11 

*These values are taken from Metals Handbook (1993), Smithells (1983) and Madhu (1994) 

results, we have normalized this index with respect to that of mild steel for a quick 

appraisal of the ballistic quality. 

4. Validation and discussion 

For testing the usefulness of the proposed index, we considered ballistic performance 

of ten materials listed in table 1. The experimental data pertaining to Mild steel, 

Aluminum, Steel-A, Steel-B and A1-7049 were obtained from the published results of 

Madhu (1994), Dikshit and Sundararajan (1992) and Dixit et al (1995). In the case 

of lead, copper, magnesium, A1-2024 and Ti-aUoy, we used THOR(1961, 1963) 

empirical equation to determine the ballistic performance, which is of the form, 

vs = 10 c (h)" m~ (sec0) r v~, (28) 

where vs is the projectile striking velocity in fps, h, the target thickness in inches, m s, the 

weight of the original shot in grains, 0, the angle of obliquity of the impact and c, ~, I~, % 

~. are the material constants for THOR equation. 

In all the cases, we have used the results corresponding to a projectile striking 

velocity of about 800 m/sec. The material properties and the constants used in THOR 

equations are presented in tables 1 and 2 respectively. While the calculations of ~1, ~2, 

ke, kb, kv, and kj are simple and straight-forward, it is not the case with kp. Preferably, the 

speed of the plastic wave should be determined using the slope of the true stress- 

strain curve, but if such data is not available one can determine using the following 

equation 

or  

o u* = au[1 + % elongation/lO0], 

oo* = o0/(1 -reduction in area). 

The plastic modulus can be determined as, 

(~*- %) x 100. 
Ep = % elongation 

(29) 

(30) 

(31) 
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Table 2. Material constants used for THOR equation. 

119 

Material C ~ 13 "/ iv 

Lead 1-999 9-499 -0"502 0,655 0.818 

Copper 2.785 0.678 - 0-730 0.846 0.802 

Magnesium 6.904 1.092 - 1.170 1.050 - 0:087 

AI-2024 7,047 1"029 - 1.072 1.251 - 0" 139 

Ti-alloy 6,292 1.103 - 1.095 1.369 0' 167 
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Figure 2. Validation of the ballistic performance index using avadable experimental and 

empirical results. 

For calculating the bulk modulus we have used the standard equation 

E 
K 

3(1 - 2 

where 3' is the Poisson's ratio. 

In figure 2, we have compared the normalized ballistic index with the reciprocal areal 

density required to provide immunity against a specific threat for a wide range of 

metallic materials. For lead, the experimental ballistic performance is 0"32 and it is 

virtually an order of magnitude smaller than that of the aluminum alloy or steel and 

this variation has been accurately predicted by the index. In addition, even for the 

alloys of same parent metal, the index can grade the ballistic merit with a reasonable 

accuracy. 
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Figure 3. Computed ballistic performance index as a function of striking velocity of the 

projectile for different materials. 

Figure 3 describes the computed index for four different materials shown as a func- 

tion of the striking velocity. It is interesting to note that the materials such as Al-alloy 

become superior to steel-B at higher velocities, which is an observed experimental fact 

(Ramakrishnan 1986). Therefore, the index may find its use in developing even 

composite metallic armour, where the weight and dimension of the armour can 

be minimized for a given striking velocity. Another interesting observation is 

with regard to how the projectile energy is absorbed partly by the deformation 

mode (elastic and plastic) and partly by the kinetic energy mode. These results are 

given in figure 4 (a to d) for four different materials. While Ti-alloy and Steel-B 

show a high cut-off velocity, Al-alloy and mild steel show low cut-off velocities. 

Using this diagram, it is possible to arrive at a judgement on the efficacy of improv- 

ing mechanical properties of materials for the purpose of improving the ballistic 

performance for any specific striking velocity. For instance, figure 4 dearly indicates 

that on improving the mechanical properties of Al-aUoy even by a factor of two 

would result in an improved performance to a much less extent for a velocity of 

about 2500 m/see. On the other hand, the relevance of the mechanical properties 

of Ti-alloy is significant even at high velocities. 

5. Summary 

The paper deduces a ballistic performance index for metallic armour materials in 

terms of the mechanical properties such as strength and modulus. The index is derived 

using an energy-balance approach where the kinetic energy of the projectile is assumed 

to be absorbed by the elastic and the plastic deformation involved in the penetration 

process as well as the kinetic energy imparted to the target material during the 

deformation. The index is validated using the available experimental and empirical 

data obtained in the case of a small arm projectile for an impact velocity of about 
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800 m/sec. The index is useful in estimating the ballistic quality of the metallic material 

with reasonable accuracy. 
The index is given by 

oq 4- ot 2 (1 + k©) 2 kv 
dp= 2 ( l + k b )  2 2k 2 + . 1 + 

1+ 

where el  and e2 are the fractional widths of the constrained and the unconstrained 
zones respectively, these are computed using (3). The non-dimensional parameters ke, 
kp, k b, k~, and kj, can be computed as described in (16), (20) and (23). In all the cases v~ 
is one half of the striking velocity of the projectile. 
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Figure 4. Fraction of the deformation and kinetic energy components. (a) Steel A, (b) Mild 

steel, (c) Ti-alloy and (d) aluminium. 
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