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Abstract Let S be a subset of R
d with finite positive Lebesgue measure. The Beer

index of convexity b(S) of S is the probability that two points of S chosen uniformly
independently at random see each other in S. The convexity ratio c(S) of S is the
Lebesgue measure of the largest convex subset of S divided by the Lebesgue measure
of S. We investigate the relationship between these two natural measures of convexity.
We show that every set S ⊆ R

2 with simply connected components satisfies b(S)

� α c(S) for an absolute constant α, provided b(S) is defined. This implies an affir-
mative answer to the conjecture of Cabello et al. that this estimate holds for simple
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polygons. We also consider higher-order generalizations of b(S). For 1 � k � d, the
k-index of convexity bk(S) of a set S ⊆ R

d is the probability that the convex hull of a
(k+1)-tuple of points chosen uniformly independently at random from S is contained
in S. We show that for every d � 2 there is a constant β(d) > 0 such that every
set S ⊆ R

d satisfies bd(S) � β c(S), provided bd(S) exists. We provide an almost
matching lower bound by showing that there is a constant γ (d) > 0 such that for
every ε ∈ (0, 1) there is a set S ⊆ R

d of Lebesgue measure 1 satisfying c(S) � ε and
bd(S) � γ ε

log2 1/ε
� γ

c(S)
log2 1/ c(S)

.

Keywords Beer index of convexity · Convexity ratio · Convexity measure · Visibility
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1 Introduction

For positive integers k and d and a Lebesgue measurable set S ⊆ R
d , we use λk(S)

to denote the k-dimensional Lebesgue measure of S. We omit the subscript k when it
is clear from the context. We also write “measure” instead of “Lebesgue measure”, as
we do not use any other measure in the paper.

For a set S ⊆ R
d , let smc(S) denote the supremum of the measures of convex

subsets of S. Since all convex subsets of R
d are measurable [11], the value of smc(S)

is well defined.Moreover, Goodman’s result [8] implies that the supremum is achieved
on compact sets S, hence it can be replaced by maximum in this case. When S has
finite positive measure, let c(S) be defined as smc(S)/λd(S). We call the parameter
c(S) the convexity ratio of S.

For two points A, B ∈ R
d , let AB denote the closed line segment with endpoints

A and B. Let S be a subset of R
d . We say that points A, B ∈ S are visible one from

the other or see each other in S if the line segment AB is contained in S. For a point
A ∈ S, we use Vis(A, S) to denote the set of points that are visible from A in S. More
generally, for a subset T of S, we use Vis(T, S) to denote the set of points that are
visible in S from T . That is, Vis(T, S) is the set of points A ∈ S for which there is a
point B ∈ T such that AB ⊆ S.

Let Seg(S) denote the set {(A, B) ∈ S × S : AB ⊆ S} ⊆ (Rd)2, which we call the
segment set of S. For a set S ⊆ R

d with finite positive measure and with measurable
Seg(S), we define the parameter b(S) ∈ [0, 1] by

b(S) := λ2d(Seg(S))

λd(S)2
.

If S is not measurable, or if its measure is not positive and finite, or if Seg(S) is not
measurable, we leave b(S) undefined. Note that if b(S) is defined for a set S, then c(S)

is defined as well.
Wecall b(S) theBeer indexof convexity (or justBeer index) of S. It canbe interpreted

as the probability that two points A and B of S chosen uniformly independently at
random see each other in S.
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1.1 Previous Results

The Beer index was introduced in the 1970s by Beer [1–3], who called it “the index of
convexity”. Beer was motivated by studying the continuity properties of λ(Vis(A, S))

as a function of A. For polygonal regions, an equivalent parameter was later inde-
pendently defined by Stern [19], who called it “the degree of convexity”. Stern was
motivated by the problem of finding a computationally tractable way to quantify how
close a given set is to being convex. He showed that the Beer index of a polygon P
can be approximated by a Monte Carlo estimation. Later, Rote [16] showed that for a
polygonal region P with n edges the Beer index can be evaluated in polynomial time
as a sum of O(n9) closed-form expressions.

Cabello et al. [6] have studied the relationship between the Beer index and the
convexity ratio, and applied their results in the analysis of their near-linear-time
approximation algorithm for finding the largest convex subset of a polygon. We
describe some of their results in more detail in Sect. 1.3.

1.2 Terminology and Notation

We assume familiarity with basic topological notions such as path-connectedness,
simple connectedness, Jordan curve, etc. The reader can find these definitions, for
example, in Prasolov’s book [15].

Let ∂S, S◦, and S denote the boundary, the interior, and the closure of a set S,
respectively. For a point A ∈ R

2 and ε > 0, let Nε(A) denote the open disc centered
at A with radius ε. For a set X ⊆ R

2 and ε > 0, let Nε(X) := ⋃
A∈X Nε(A). A

neighborhood of a point A ∈ R
2 or a set X ⊆ R

2 is a set of the form Nε(A) or
Nε(X), respectively, for some ε > 0.

A closed interval with endpoints a and b is denoted by [a, b]. Intervals [a, b] with
a > b are considered empty. For a point A ∈ R

2, we use x(A) and y(A) to denote the
x-coordinate and the y-coordinate of A, respectively.

A polygonal curve Γ in R
d is a curve specified by a sequence (A1, . . . , An) of

points of R
d such that Γ consists of the line segments connecting the points Ai and

Ai+1 for i = 1, . . . , n − 1. If A1 = An , then the polygonal curve Γ is closed. A
polygonal curve that is not closed is called a polygonal line.

A set X ⊆ R
2 is polygonally connected, or p-connected for short, if any two

points of X can be connected by a polygonal line in X , or equivalently, by a self-
avoiding polygonal line in X . For a set X , the relation “A and B can be connected
by a polygonal line in X” is an equivalence relation on X , and its equivalence classes
are the p-components of X . A set S is p-componentwise simply connected if every
p-component of S is simply connected.

A line segment in R
d is a bounded convex subset of a line. A closed line segment

includes both endpoints, while an open line segment excludes both endpoints. For two
points A and B in R

d , we use AB to denote the open line segment with endpoints A
and B. A closed line segment with endpoints A and B is denoted by AB.

We say that a set S ⊆ R
d is star-shaped if there is a point C ∈ S such that

Vis(C, S) = S. That is, a star-shaped set S contains a point which sees the entire S.

123



182 Discrete Comput Geom (2017) 57:179–214

P

(0, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (2n − 2, 1) (2n − 1, 1)
. . .

Fig. 1 A star-shaped polygon P with b(P) � 1
n − ε and c(P) � 1

n . The polygon P is a union of n
triangles (0, 0)(2i, 1)(2i + 1, 1), i = 0, . . . , n − 1, and of a triangle (0, 0)(0, δ)((2n − 1)δ, δ), where δ is
very small

Similarly, we say that a set S is weakly star-shaped if S contains a line segment 
 such
that Vis(
, S) = S.

1.3 Results

We start with a few simple observations. Let S be a subset of R
2 such that Seg(S)

is measurable. For every ε > 0, S contains a convex subset K of measure at least
(c(S) − ε)λ2(S). Two points of S chosen uniformly independently at random both
belong to K with probability at least (c(S) − ε)2, hence b(S) � (c(S) − ε)2. This
yields b(S) � c(S)2. This simple lower bound on b(S) is tight, as shown by a set S
which is a disjoint union of a single large convex component and a large number of
small components of negligible size.

It is more challenging to find an upper bound on b(S) in terms of c(S), possibly
under additional assumptions on the set S. This is the general problem addressed in
this paper.

As a motivating example, observe that a set S consisting of n disjoint convex
components of the same size satisfies b(S) = c(S) = 1

n . It is easy to modify this
example to obtain, for any ε > 0, a simple star-shaped polygon P with b(P) � 1

n − ε

and c(P) � 1
n , see Fig. 1. This shows that b(S) cannot be bounded from above by a

sublinear function of c(S), even for simple polygons S.
For weakly star-shaped polygons, Cabello et al. [6] showed that the above example

is essentially optimal, providing the following linear upper bound on b(S).

Theorem 1.1 [6, Thm. 5] For every weakly star-shaped simple polygon P, we have
b(P) � 18 c(P).

For polygons that are not weakly star-shaped, Cabello et al. [6] gave a superlinear
bound.
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Theorem 1.2 [6, Thm. 6] Every simple polygon P satisfies

b(P) � 12 c(P)
(
1 + log2

1

c(P)

)
.

Moreover, Cabello et al. [6] conjectured that even for a general simple
polygon P , b(P) can be bounded from above by a linear function of c(P).
(The question whether b(P) = O(c(P)) for simple polygons P was originally asked
by S. Cabello andM. Saumell, personal communication toG. Rote.) The next theorem,
which is the first main result of this paper, verifies this conjecture. Recall that b(S) is
defined for a set S if and only if S has finite positive measure and Seg(S) is measur-
able. Recall also that a set is p-componentwise simply connected if its p-components
are simply connected. In particular, every simply connected set is p-componentwise
simply connected.

Theorem 1.3 Every p-componentwise simply connected set S ⊆ R
2 whose b(S) is

defined satisfies b(S) � 180 c(S).

Clearly, every simple polygon satisfies the assumptions of Theorem 1.3. Hence we
directly obtain the following, which verifies the conjecture of Cabello et al. [6].

Corollary 1.4 Every simple polygon P ⊆ R
2 satisfies b(P) � 180 c(P).

The main restriction in Theorem 1.3 is the assumption that S is p-componentwise
simply connected. This assumption cannot be omitted, as shown by the set
S := [0, 1]2 � Q

2, where it is easy to verify that c(S) = 0 and b(S) = 1, see
Proposition 3.7.

A related construction shows that Theorem 1.3 fails in higher dimensions. To see
this, consider again the set S := [0, 1]2 � Q

2, and define a set S′ ⊆ R
3 by

S′ := {(t x, t y, t) : t ∈ [0, 1] and (x, y) ∈ S}.
Again, it is easy to verify that c(S′) = 0 and b(S′) = 1, although S′ is simply
connected, even star-shaped.

Despite these examples, we will show that meaningful analogues of Theorem 1.3
for higher dimensions and for sets that are not p-componentwise simply connected are
possible. The key is to use higher-order generalizations of the Beer index, which we
introduce now.

For k ∈ {1, . . . , d} and a set S ⊆ R
d , we define the set Simpk(S) ⊆ (Rd)k+1 by

Simpk(S) := {(A0, . . . , Ak) ∈ Sk+1 : Conv({A0, . . . , Ak}) ⊆ S},
where the operator Conv denotes the convex hull of a set of points. We call Simpk(S)

the k-simplex set of S. Note that Simp1(S) = Seg(S).

For k ∈ {1, . . . , d} and a set S ⊆ R
d with finite positive measure and with measur-

able Simpk(S), we define bk(S) by

bk(S) := λ(k+1)d(Simpk(S))

λd(S)k+1 .

123



184 Discrete Comput Geom (2017) 57:179–214

Note that b1(S) = b(S). We call bk(S) the k-index of convexity of S. We again leave
bk(S) undefined if S or Simpk(S) is non-measurable, or if the measure of S is not
finite and positive.

We can view bk(S) as the probability that the convex hull of k + 1 points chosen
from S uniformly independently at random is contained in S. For any S ⊆ R

d , we
have b1(S) � b2(S) � · · · � bd(S), provided all the bk(S) are defined.

We remark that the set S := [0, 1]d � Q
d satisfies c(S) = 0 and b1(S) = b2(S) =

· · · = bd−1(S) = 1, see Proposition 3.7. Thus, for a general set S ⊆ R
d , only the

d-index of convexity can conceivably admit a nontrivial upper bound in terms of c(S).
Our next result shows that such an upper bound on bd(S) exists and is linear in c(S).

Theorem 1.5 For every d � 2, there is a constant β = β(d) > 0 such that every set
S ⊆ R

d with bd(S) defined satisfies bd(S) � β c(S).

We do not know if the linear upper bound in Theorem 1.5 is best possible. We can,
however, construct examples showing that the bound is optimal up to a logarithmic
factor. This is our last main result.

Theorem 1.6 For every d � 2, there is a constant γ = γ (d) > 0 such that for every
ε ∈ (0, 1), there is a set S ⊆ R

d satisfying c(S) � ε and bd(S) � γ ε
log2 1/ε

, and in

particular, we have bd(S) � γ
c(S)

log2 1/ c(S)
.

The proof of Theorem 1.3 is given in Sect. 2. In Sect. 3, we will prove Theorems
1.5 and 1.6. We conclude, in Sect. 4, with some further remarks and a collection of
open problems.

2 Bounding the Mutual Visibility in the Plane

The goal of this section is to prove Theorem 1.3. Since the proof is rather long and
complicated, we first present a high-level overview of its main ideas.

Wefirst show that it is sufficient to prove the estimate fromTheorem1.3 for bounded
open simply connected sets. This is formalized by the next lemma, whose proof can
be found in Sect. 2.2.

Lemma 2.1 Let α > 0 be a constant such that every bounded open simply connected
set T ⊆ R

2 satisfies b(T ) � α c(T ). It follows that every p-componentwise simply
connected set S ⊆ R

2 with b(S) defined satisfies b(S) � α c(S).

In the proof of Lemma 2.1, we first show that the set S can be reduced to a bounded
open set S′′ whose Beer index b(S′′) can be arbitrarily close to b(S) from below. This
is done by considering a part S′ of S that is contained in a sufficiently large disc and
by showing that all segments in S′ are in fact contained in the interior of S′, except for
a set of measure zero. The proof is then finished by choosing S′′ as the interior of S′
and by applying the assumption of the lemma to every p-component of S′′.

Suppose now that S is a bounded open simply connected set. We seek a bound of
the form b(S) = O(c(S)). This is equivalent to a bound of the form λ4(Seg(S)) =
O(smc(S)λ2(S)). We therefore need a suitable upper bound on λ4(Seg(S)).
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We first choose in S a diagonal 
 (i.e., an inclusion-maximal line segment in S),
and show that the set S � 
 is a union of two open simply connected sets S1 and S2
(Lemma 2.4). It is not hard to show that the segments in S that cross the diagonal 


contribute to λ4(Seg(S)) by at most O(smc(S)λ2(S)) (Lemma 2.8). Our main task is
to bound the measure of Seg(Si ∪ 
) for i = 1, 2. The two sets Si ∪ 
 are what we call
rooted sets. Informally, a rooted set is a union of a simply connected open set S′ and
an open segment r ⊆ ∂S′, called the root.

To bound λ4(Seg(R)) for a rooted set R with root r , we partition R into levels
L1, L2, . . ., where Lk contains the points of R that can be connected to r by a poly-
gonal line with k segments, but not by a polygonal line with k − 1 segments. Each
segment in R is contained in a union Li ∪ Li+1 for some i � 1. Thus, a bound of the
form λ4(Seg(Li ∪ Li+1)) = O(smc(R)λ2(Li ∪ Li+1)) implies the required bound
for λ4(Seg(R)).

We will show that each p-component of Li ∪ Li+1 is a rooted set, with the extra
property that all its points are reachable from its root by a polygonal line with at most
two segments (Lemma 2.5). To handle such sets, we will generalize the techniques
that Cabello et al. [6] have used to handle weakly star-shaped sets in their proof of
Theorem 1.1. We will assign to every point A ∈ R a set T(A) of measure O(smc(R)),
such that for every (A, B) ∈ Seg(R), we have either B ∈ T(A) or A ∈ T(B)

(Lemma 2.7). From this, Theorem 1.3 will follow easily.

2.1 Proof of Theorem 1.3 for Bounded Open Simply Connected Sets

First, we need a few auxiliary lemmas.

Lemma 2.2 For every positive integer d, if S is an open subset of R
d , then the set

Seg(S) is open and the set Vis(A, S) is open for every point A ∈ S.

Proof Choose a pair of points (A, B) ∈ Seg(S). Since S is open and AB is compact,
there is ε > 0 such that Nε(AB) ⊆ S. Consequently, for any A′ ∈ Nε(A) and
B ′ ∈ Nε(B), we have A′B ′ ⊆ S, that is, (A′, B ′) ∈ Seg(S). This shows that the set
Seg(S) is open. If we fix A′ = A, then it follows that the set Vis(A, S) is open. ��
Lemma 2.3 Let S be a simply connected subset of R

2 and let 
 and 
′ be line segments
in S. It follows that the set Vis(
′, S) ∩ 
 is a (possibly empty) subsegment of 
.

Proof The statement is trivially true if 
 and 
′ intersect or have the same supporting
line, or if Vis(
′, S) ∩ 
 is empty. Suppose that these situations do not occur. Let
A, B ∈ 
 and A′, B ′ ∈ 
′ be such that AA′, BB ′ ⊆ S. The points A, A′, B ′, B form
a (possibly self-intersecting) tetragon Q whose boundary is contained in S. Since S
is simply connected, the interior of Q is contained in S. If Q is not self-intersecting,
then clearly AB ⊆ Vis(
′, S). Otherwise, AA′ and BB ′ have a point D in common,
and every point C ∈ AB is visible in R from the point C ′ ∈ A′B ′ such that D ∈ CC ′.
This shows that Vis(
′, S) ∩ 
 is a convex subset and hence a subsegment of 
. ��

Now, we define rooted sets and their tree-structured decomposition, and we explain
how they arise in the proof of Theorem 1.3.
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A set S ⊆ R
2 is half-open if every point A ∈ S has a neighborhood Nε(A) that

satisfies one of the following two conditions:

1. Nε(A) ⊆ S,
2. Nε(A) ∩ ∂S is a diameter of Nε(A) splitting it into two subsets, one of which

(including the diameter) is Nε(A) ∩ S and the other (excluding the diameter) is
Nε(A) � S.

The condition 1 holds for points A ∈ S◦, while the condition 2 holds for points A ∈ ∂S.
A set R ⊆ R

2 is a rooted set if the following conditions are satisfied:

1. R is bounded,
2. R is p-connected and simply connected,
3. R is half-open,
4. R ∩ ∂R is an open line segment.

The open line segment R ∩ ∂R is called the root of R. Every rooted set, as the union
of a non-empty open set and an open line segment, is measurable and has positive
measure.

A diagonal of a set S ⊆ R
2 is a line segment contained in S that is not a proper

subset of any other line segment contained in S. Clearly, if S is open, then every
diagonal of S is an open line segment. It is easy to see that the root of a rooted set R
is a diagonal of R.

The following lemma allows us to use a diagonal to split a bounded open simply
connected subset of R

2 into two rooted sets. It is intuitively clear, and its formal proof
is postponed to Sect. 2.3.

Lemma 2.4 Let S be a bounded open simply connected subset of R
2, and let 
 be a

diagonal of S. It follows that the set S�
 has two p-components S1 and S2. Moreover,
S1 ∪ 
 and S2 ∪ 
 are rooted sets, and 
 is their common root.

Let R be a rooted set. For a positive integer k, the kth level Lk of R is the set of
points of R that can be connected to the root of R by a polygonal line in R consisting
of k segments but cannot be connected to the root of R by a polygonal line in R
consisting of fewer than k segments. We consider a degenerate one-vertex polygonal
line as consisting of one degenerate segment, so the root of R is part of L1. Thus
L1 = Vis(r, R), where r denotes the root of R. A k-body of R is a p-component of Lk .
A body of R is a k-body of R for some k. See Fig. 2 for an example of a rooted set
and its partitioning into levels and bodies.

We say that a rooted set P is attached to a set Q ⊆ R
2

� P if the root of P is
subset of the interior of P ∪ Q. The following lemma explains the structure of levels
and bodies. Although it is intuitively clear, its formal proof requires quite a lot of work
and can be found in Sect. 2.4.

Lemma 2.5 Let R be a rooted set and (Lk)k�1 be its partition into levels. It follows
that

1. R = ⋃
k�1 Lk ; consequently, R is the union of all its bodies;

2. every body P of R is a rooted set such that P = Vis(r, P), where r denotes the
root of P;
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r

RB ′ = B
A ′

A

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭d(A, r )

⎧⎨
⎩

d(B ) = d(B, r )

⎧⎨
⎩d(A )

Fig. 2 Example of a rooted set R partitioned into six bodies. The three levels of R are distinguished with
three shades of gray. The segment A′B′ ∪ {B′} is the base segment of AB

3. L1 is the unique 1-body of R, and the root of L1 is the root of R;
4. every j-body P of R with j � 2 is attached to a unique ( j − 1)-body of R.

Lemma 2.5 yields a tree structure on the bodies of R. The root of this tree is the
unique 1-body L1 of R, called the root body of R. For a k-body P of R with k � 2,
the parent of P in the tree is the unique (k − 1)-body of R that P is attached to, called
the parent body of P .

Lemma 2.6 Let R be a rooted set, (Lk)k�1 be the partition of R into levels, 
 be a
closed line segment in R, and k � 1 be minimum such that 
 ∩ Lk 
= ∅. It follows
that 
 ⊆ Lk ∪ Lk+1, 
 ∩ Lk is a subsegment of 
 contained in a single k-body P of
R, and 
 ∩ Lk+1 consists of at most two subsegments of 
 each contained in a single
(k + 1)-body whose parent body is P.

Proof The definition of the levels directly yields 
 ⊆ Lk ∪ Lk+1. The segment 


splits into subsegments each contained in a single k-body or (k + 1)-body of R. By
Lemma 2.5, the bodies of any two consecutive of these subsegments are in the parent-
child relation of the body tree. This implies that 
 ∩ Lk lies within a single k-body P .
By Lemma 2.3, 
 ∩ Lk is a subsegment of 
. Consequently, 
 ∩ Lk+1 consists of at
most two subsegments. ��

In the setting of Lemma 2.6, we call the subsegment 
 ∩ Lk of 
 the base segment
of 
, and we call the body P that contains 
 ∩ Lk the base body of 
. See Fig. 2 for an
example.

The following lemma is the crucial part of the proof of Theorem 1.3.

Lemma 2.7 If R is a rooted set, then every point A ∈ R can be assigned ameasurable
set T(A) ⊆ R

2 so that the following is satisfied:

1. λ2(T(A)) < 87 smc(R);
2. for every line segment BC in R, we have either B ∈ T(C) or C ∈ T(B);
3. the set {(A, B) : A ∈ R and B ∈ T(A)} is measurable.
Proof Let P be a body of R with the root r . First, we show that P is entirely contained
in one closed half-plane defined by the supporting line of r . Let h− and h+ be the
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two open half-planes defined by the supporting line of r . According to the definition
of a rooted set, the sets {D ∈ r : ∃ε > 0 : Nε(D) ∩ h− = Nε(D) ∩ (P � r)} and
{D ∈ r : ∃ε > 0 : Nε(D) ∩ h+ = Nε(D) ∩ (P � r)} are open and partition the entire
r , hence one of them must be empty. This implies that the segments connecting r to
P � r lie all in h− or all in h+. Since P = Vis(r, P), we conclude that P ⊆ h− or
P ⊆ h+.

According to the above, we can rotate and translate the set R so that r lies on the
x-axis and P lies in the half-plane {B ∈ R

2 : y(B) � 0}. For a point A ∈ R, we
use d(A, r) to denote the y-coordinate of A after such a rotation and translation of R.
We use d(A) to denote d(A, r) where r is the root of the body of A. It follows that
d(A) � 0 for every A ∈ R.

Let γ ∈ (0, 1) be a fixed constant whose value will be specified at the end of the
proof. For a point A ∈ R, we define sets

V1(A) := {B∈Vis(A, R) : |A′B ′|�γ |AB|, A∈Vis(r ′′, R), d(A′, r ′′)�d(B ′, r ′′)},
V2(A) := {B∈Vis(A, R) : |A′B ′|�γ |AB|, A /∈Vis(r ′′, R), d(A′, r ′′)�d(B ′, r ′′)},
V3(A) := {B ∈ Vis(A, R) : |A′B ′| < γ |AB|, |AA′| � |BB ′|},

where r ′′ denotes the root of the base body of AB and A′ and B ′ denote the endpoints of
the base segment of AB such that |AA′| < |AB ′|. For every A ∈ R, the sets V1(A),
V2(A), and V3(A) are pairwise disjoint. Moreover, we have A ∈ ⋃3

i=1Vi (B) or
B ∈ ⋃3

i=1Vi (A) for every line segment AB in R. If for some B ∈ ⋃3
i=1Vi (A) the

point A lies on r ′′, then we have B ∈ V1(A) and V1(A) ⊆ r ′′.
For the rest of the proof, we fix a point A ∈ R. We show that the union

⋃3
i=1Vi (A)

is contained in a measurable set T(A) ⊆ R
2 with λ2(T(A)) < 87 smc(R) that is a

union of three trapezoids. We let P be the body of A and r be the root of P . If P is a
k-body with k � 2, then we use r ′ to denote the root of the parent body of P .

Claim 1 V1(A) is contained in a trapezoid T1(A) with area 6γ −2 smc(R).

Let H be a point of r such that AH ⊆ R. Let T ′ be the r -parallel trapezoid of
height d(A) with bases of length 8 smc(R)

d(A)
and 4 smc(R)

d(A)
such that A is the center of the

larger base and H is the center of the smaller base. The homothety with center A and
ratio γ −1 transforms T ′ into the trapezoid T := A + γ −1(T ′ − A). Since the area of
T ′ is 6 smc(R), the area of T is 6γ −2 smc(R). We show that V1(A) ⊆ T . See Fig. 3
for an illustration.

Let B be a point inV1(A). Using a similar approach to the one used by Cabello et
al. [6] in the proof of Theorem 1.1, we show that B ∈ T . Let A′B ′ be the base segment
of AB such that |AA′| < |AB ′|. Since B ∈ V1(A), we have |A′B ′| � γ |AB|,
A ∈ Vis(r ′′, R), and d(B, r ′′) � d(A, r ′′), where r ′′ denotes the root of the base level
of AB. Since A is visible from r ′′ in R, the base body of AB is the body of A and
thus A = A′ and r = r ′′. As we have observed, every point C ∈ {A} ∪ AB ′ satisfies
d(C, r) = d(C) � 0.

Let ε > 0. There is a point E ∈ AB ′ such that |B ′E | < ε. Since E lies on the
base segment of AB, there is F ∈ r such that EF ⊆ R. It is possible to choose F
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Fig. 3 Illustration for the proof of Claim 1 in the proof of Lemma 2.7

so that AH and EF have a point C in common where C 
= F, H . Let D be a point
of AH with d(D) = d(E). The point D exists, as d(H) = 0 � d(E) � d(A). The
points A, E, F, H form a self-intersecting tetragon Q whose boundary is contained
in R. Since R is simply connected, the interior of Q is contained in R and the triangles
ACE and CFH have area at most smc(R).

The triangle ACE is partitioned into triangles ADE and CDE with areas
1
2 (d(A) − d(D))|DE | and 1

2 (d(D) − d(C))|DE |, respectively. Therefore, we have
1
2 (d(A) − d(C))|DE | = λ2(ACE) � smc(R). This implies

|DE | � 2 smc(R)

d(A) − d(C)
.

For the triangle CFH , we have 1
2d(C)|FH | = λ2(CFH) � smc(R). By the simi-

larity of the triangles CFH and CDE , we have |FH | = |DE |d(C)/(d(E) − d(C))

and therefore

|DE | � 2 smc(R)

d(C)2
(d(E) − d(C)).

Since the first upper bound on |DE | is increasing in d(C) and the second is decreasing
in d(C), the minimum of the two is maximized when they are equal, that is, when
d(C) = d(A)d(E)/(d(A) + d(E)). Then we obtain |DE | � 2 smc(R)

d(A)2
(d(A) + d(E)).

This and 0 � d(E) � d(A) imply E ∈ T ′. Since ε can be made arbitrarily small and
T ′ is compact, we have B ′ ∈ T ′. Since |AB ′| � γ |AB|, we conclude that B ∈ T .
This completes the proof of Claim 1.

Claim 2 V2(A) is contained in a trapezoid T2(A)with area 3(1−γ )−2γ −2 smc(R).

We assume the point A is not contained in the first level of R, as otherwiseV2(A) is
empty. Let p be the r ′-parallel line that contains the point A and let q be the supporting
line of r . Let p+ and q+ denote the closed half-planes defined by p and q, respectively,
such that r ′ ⊆ p+ and A /∈ q+. Let O be the intersection point of p and q.

Let T ′ ⊆ p+ ∩ q+ be the trapezoid of height d(A, r ′) with one base of length
4 smc(R)

(1−γ )2d(A,r ′) on p, the other base of length 2 smc(R)

(1−γ )2d(A,r ′) on the supporting line of r ′,
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Fig. 4 Illustration for the proof of Claim 2 in the proof of Lemma 2.7

and one lateral side on q. The homothety with center O and ratio γ −1 transforms T ′
into the trapezoid T := O+γ −1(T ′ −O). Since the area of T ′ is 3(1−γ )−2 smc(R),
the area of T is 3(1− γ )−2γ −2 smc(R). We show thatV2(A) ⊆ T . See Fig. 4 for an
illustration.

Let B be a point ofV2(A). We use A′B ′ to denote the base segment of AB such that
|AA′| < |AB ′|. By the definition ofV2(A), we have |A′B ′| � γ |AB|, A /∈ Vis(r ′′, R),
and d(B, r ′′) � d(A, r ′′), where r ′′ denotes the root of the base body of AB. By
Lemma 2.6 and the fact that A /∈ Vis(r ′′, R), we have r ′ = r ′′. The bound d(A, r ′) �
d(B, r ′) thus implies A′ ∈ r ∩ p+ and B ∈ q+. We have d(C, r ′) = d(C) � 0 for
every C ∈ A′B ′.

Observe that (1 − γ )d(A, r ′) � d(A′, r ′) � d(A, r ′). The upper bound is trivial,
as d(B, r ′) � d(A, r ′) and A′ lies on AB. For the lower bound, we use the expression
A′ = t A + (1 − t)B ′ for some t ∈ [0, 1]. This gives us d(A′, r ′) = td(A, r ′) +
(1 − t)d(B ′, r ′). By the estimate |A′B ′| � γ |AB|, we have

|AA′| + |BB ′| � (1 − γ )|AB| = (1 − γ )(|AB ′| + |BB ′|).

This can be rewritten as |AA′| � (1 − γ )|AB ′| − γ |BB ′|. Consequently, |BB ′| � 0
and γ > 0 imply |AA′| � (1− γ )|AB ′|. This implies t � 1− γ . Applying the bound
d(B ′, r ′) � 0, we conclude that d(A′, r ′) � (1 − γ )d(A, r ′).

Let (Gn)n∈N be a sequence of points from A′B ′ that converges to A′. For every
n ∈ N, there is a point Hn ∈ r ′ such that GnHn ⊆ R. Since r ′ is compact, there is
a subsequence of (Hn)n∈N that converges to a point H0 ∈ r ′. We claim that H0 ∈ q.
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Suppose otherwise, and let q ′ 
= q be the supporting line of A′H0. Let ε > 0 be
small enough so that Nε(A′) ⊆ R. For n large enough, GnHn is contained in an
arbitrarily small neighborhood of q ′. Consequently, for n large enough, the supporting
line of GnHn intersects q at a point Kn such that GnKn ⊆ Nε(A′), which implies
Kn ∈ r ∩ Vis(r ′, R), a contradiction.

Again, let ε > 0. There is a point E ∈ A′B ′ such that |B ′E | < ε. Let D′ be
a point of q with d(D′, r ′) = d(E), and let δ > 0. There are points G ∈ A′B ′
and H ∈ r ′ such that G ∈ Nδ(A′) and GH ⊆ R ∩ Nδ(q). If δ is small enough,
then d(E) � d(A′, r ′) − δ � d(G) � d(A′, r ′). Let D be the point of GH with
d(D) = d(E). The point E lies on A′B ′ and thus it is visible from a point F ∈ r ′.
Again, we can choose F so that the line segments EF and GH have a point C in
common where C 
= F, H . The points E, F, H,G form a self-intersecting tetragon
Q whose boundary is in R. The interior of Q is contained in R, as R is simply
connected. Therefore, the area of the triangles CEG and CFH is at most smc(R).

The argument used in the proof of Claim 1 yields

|DE | � 2 smc(R)

d(G)2
(d(G) + d(E)) � 2 smc(R)

(d(A′, r ′) − δ)2
(d(A′, r ′) + d(E)).

This and the fact that δ (and consequently |D′D|) can be made arbitrarily small yield
|D′E | � 2 smc(R)

d(A′,r ′)2 (d(A′, r ′) + d(E)). This together with d(A′, r ′) � (1 − γ )d(A, r ′)
yield |D′E | � 2 smc(R)

(1−γ )2d(A,r ′)2 (d(A, r ′) + d(E)). Finally, from 0 � d(E) � d(A, r ′) it
follows that E ∈ T ′.

Since ε can be made arbitrarily small and T ′ is compact, we have B ′ ∈ T ′. Since
|A′B ′| � γ |AB| � γ |A′B|, we conclude that B ∈ T . This completes the proof of
Claim 2.

Claim 3 V3(A) is contained in a trapezoid T3(A)with area (4(1−γ )−2−1) smc(R).

By Lemma 2.3, the points of r that are visible from A in R form a subsegment
CD of r . The homothety with center A and ratio 2(1 − γ )−1 transforms the triangle
T ′ := ACD into the triangle T ′′ := A + 2(1 − γ )−1(T ′ − A). See Fig. 5 for an
illustration. We claim that V3(A) is a subset of the trapezoid T := T ′′

� T ′.
Let B be an arbitrary point of V3(A). Consider the segment AB with the base

segment A′B ′ such that |AA′| < |AB ′|. Since B ∈ V3(A), we have |A′B ′| < γ |AB|
and |AA′| � |BB ′|. This implies |AA′| � 1−γ

2 |AB| > 0 and hence A 
= A′ and
B /∈ P . From the definition of C and D, we have A′ ∈ CD. Since |AA′| � 1−γ

2 |AB|
and B /∈ P , we have B ∈ T .

The area of T is (4(1 − γ )−2 − 1)λ2(T ′). The interior of T ′ is contained in R, as
all points of the open segment CD are visible from A in R. The area of T ′ is at most
smc(R), as its interior is a convex subset of R. Consequently, the area of T is at most
(4(1 − γ )−2 − 1) smc(R). This completes the proof of Claim 3.

To put everything together, we set T(A) := ⋃3
i=1 Ti (A). Then, it follows that

⋃3
i=1Vi (A) ⊆ T(A) for every A ∈ R. Clearly, the set T(A) is measurable. Summing

the three estimates on areas of the trapezoids, we obtain
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Fig. 5 Illustration for the proof
of Claim 3 in the proof of
Lemma 2.7

A
A ′

B B ′

T ′

D

C

T r ′

λ2(T(A)) �
(
6γ −2 + 3(1 − γ )−2γ −2 + 4(1 − γ )−2 − 1

)
smc(R)

for every point A ∈ R. We choose γ ∈ (0, 1) so that the value of the coefficient is
minimized. For x ∈ (0, 1), the function x → 6x−2+3(1− x)−2x−2+4(1− x)−2−1
attains its minimum 86.7027 < 87 at x ≈ 0.5186. Altogether, we have λ2(T(A)) <

87 smc(R) for every A ∈ R.
It remains to show that the set {(A, B) : A ∈ R and B ∈ T(A)} is measurable. For

every body P of R and for i ∈ {1, 2, 3}, the definition of the trapezoidTi (A) in Claim i
implies that the set {(A, B) : A ∈ P and B ∈ Ti (A)} is the intersection of P×R

2 with
a semialgebraic (hence measurable) subset of (R2)2 and hence is measurable. There
are countably many bodies of R, as each of them has positive measure. Therefore,
{(A, B) : A ∈ R and B ∈ T(A)} is a countable union of measurable sets and hence is
measurable. ��

Let S be a bounded open subset of the plane, and let 
 be a diagonal of S that lies
on the x-axis. For a point A ∈ S, we define the set

S(A, 
) := {B ∈ Vis(A, S) : AB ∩ 
 
= ∅ and |y(A)| � |y(B)|}.

The following lemma is a slightly more general version of a result of Cabello et al. [6].

Lemma 2.8 Let S be a bounded open simply connected subset of R
2, and let 
 be its

diagonal. It follows thatλ2(S(A, 
)) � 3 smc(S) for every A ∈ S.

Proof We can assume without loss of generality that 
 lies on the x-axis. Using
an argument similar to the proof of Lemma 2.2, we can show that the set
{B ∈ Vis(A, S) : AB ∩ 
 
= ∅} is open. Therefore, S(A, 
) is the intersection of an
open set and the closed half-plane {(x, y) ∈ R

2 : y � −y(A)} or {(x, y) ∈ R
2 : y �

−y(A)}, whichever contains A. Consequently, the setS(A, 
) is measurable for every
A ∈ S.
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We clearly have λ2(S(A, 
)) = 0 for points A ∈ S � Vis(
, S). By Lemma
2.3, the set Vis(A, S) ∩ 
 is an open subsegment CD of 
. The interior T ◦ of the
triangle T := ACD is contained in S. Since T ◦ is a convex subset of S, we have
λ2(T ◦) = 1

2 |CD|·|y(A)| � smc(S). Therefore, every point B ∈ S(A, 
) is contained
in a trapezoid of height |y(A)| with bases of length |CD| and 2|CD|. The area of this
trapezoid is 3

2 |CD| · |y(A)| � 3 smc(S). Hence we have λ2(S(A, 
)) � 3 smc(S) for
every point A ∈ S. ��
Proof of Theorem 1.3 In view of Lemma2.1,we can assumewithout loss of generality
that S is a bounded open simply connected set. Let 
 be a diagonal of S.We can assume
without loss of generality that 
 lies on the x-axis.

According to Lemma 2.4, the set S � 
 has exactly two p-components S1 and S2,
the sets S1 ∪ 
 and S2 ∪ 
 are rooted sets, and 
 is their common root. By Lemma 2.7,
for i ∈ {1, 2}, every point A ∈ Si ∪ 
 can be assigned a measurable set Ti (A) so
that λ2(Ti (A)) < 87 smc(Si ∪ 
) � 87 smc(S), every line segment BC in Si ∪ 


satisfies B ∈ Ti (C) or C ∈ Ti (B), and the set {(A, B) : A ∈ Si ∪ 
 and B ∈ Ti (A)}
is measurable.

We set S(A) := Ti (A) ∪ S(A, 
) for every point A ∈ Si with i ∈ {1, 2}. We set
S(A) := T1(A) ∪ T2(A) for every point A ∈ 
 = S � (S1 ∪ S2). Let

S := {(A, B) : A ∈ S and B ∈ S(A)} ∪ {(B, A) : A ∈ S and B ∈ S(A)} ⊆ (R2)2.

It follows that the set S is measurable.
Let AB be a line segment in S, and suppose |y(A)| � |y(B)|. Then either A and B

are in distinct p-components of S � 
 or they both lie in the same component Si with
i ∈ {1, 2}. In the first case, we have B ∈ S(A), since AB intersects 
 andS(A, 
) ⊆
S(A). In the second case, we have B ∈ Ti (A) ⊆ S(A) or A ∈ Ti (B) ⊆ S(B).
Therefore, we have Seg(S) ⊆ S. Since both Seg(S) and S are measurable, we have

λ4(Seg(S)) � λ4(S) � 2
∫

A∈S
λ2(S(A)),

where the second inequality is implied by Fubini’s Theorem. The bound λ2(S(A)) �
90 smc(S) implies

λ4(Seg(S)) � 2
∫

S
90 smc(S) = 180 smc(S)λ2(S).

Finally, this bound can be rewritten as b(S) = λ4(Seg(S))λ2(S)−2 � 180 c(S). ��

2.2 Proof of Lemma 2.1

In this section, we prove Lemma 2.1, which reduces the general setting of Theorem 1.3
to the case that S is a bounded open simply connected subset of R

2.
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Lemma 2.9 Let S ⊆ R
2 be a set whose b(S) is defined. For every ε > 0, there is a

bounded set S′ ⊆ S such that λ(S′) � (1 − ε)λ(S) and b(S′) � b(S) − ε. Moreover,
if S is p-componentwise simply connected, then so is S′.

Proof Let B be an open ball in R
2 centered at the origin. Consider the sets S′ = S∩ B

and S0 = S� B partitioning the set S. Fix the radius of B large enough, so that S0 has
measure at most ελ(S)/2. We claim that S′ has the properties stated in the lemma.

Clearly λ(S′) � (1 − ε/2)λ(S) > (1 − ε)λ(S). Moreover, Seg(S′) = Seg(S) �(
(S0 × S) ∪ (S × S0)

)
, and hence Seg(S′) is measurable and we have λ4(Seg(S′)) �

λ4(Seg(S)) − ελ(S)2. Therefore,

b(S′) = λ4(Seg(S′))
λ4(S′ × S′)

� λ4(Seg(S′))
λ4(S × S)

� λ4(Seg(S)) − ελ(S)2

λ4(S × S)
= b(S) − ε,

as claimed. It is clear from the construction that if S is p-componentwise simply
connected, then so is S′. ��
Lemma 2.10 Let S ⊆ R

2 be a bounded p-componentwise simply connected measur-
able set withmeasurable segment set. Then λ4(Seg(S)�Seg(S◦)) = 0. In other words,
all the segments in S are in fact contained in S◦, except for a set of measure zero.

Proof Let B denote the set Seg(S) � Seg(S◦), that is, B is the set of segments in
S containing at least one point of ∂S. Note that B is measurable, since Seg(S) is
measurable by assumption and Seg(S◦) is an open set by Lemma 2.2, hence it is
measurable as well.

Let AB be a segment contained in S, and let C be a point of AB. We say that C is
an isolated boundary point of the segment AB, if C ∈ ∂S, but there is an ε > 0 such
that no other point of AB ∩ Nε(C) belongs to ∂S.

We partition the set B into four parts as follows:

B| := {(A, B) ∈ B : A = B or AB is a vertical segment},
B� := {(A, B) ∈ B � B| : A is an isolated boundary point of AB},
B� := {(A, B) ∈ B � (B| ∪ B�) : B is an isolated boundary point of AB},
B• := B � (B| ∪ B� ∪ B�).

We claim that each of these sets has measure zero. For B|, this is clear, since B| is
a subset of {(A, B) ∈ R

2 × R
2 : A = B or AB is a vertical segment}, which clearly

has λ4-measure zero.
Consider now the setB�. We first argue that it is measurable. For a set α ⊆ [0, 1]

and a pair of points (A, B), define AB[α] := {t B + (1 − t)A : t ∈ α}, and let
S(α) be the set {(A, B) ∈ R

2 × R
2 : AB[α] ⊆ S◦}. In particular, if α = [0, 1] then

AB[α] = AB andS(α) = Seg(S◦). If α is a closed interval, then AB[α] is a segment,
and it is not hard to see thatS(α) is an open set, and, in particular, it is measurable. If α
is an open interval, say α = (s, t) ⊆ [0, 1], thenS(α) = ⋂

n∈N
S([s+n−1, t−n−1]),

and hence S(α) is measurable as well. We then see that
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B� = B ∩ (∂S × S) ∩
( ⋃

n∈N

S((0, n−1))
)
,

showing thatB� ismeasurable.An analogous argument shows thatB� ismeasurable,
and hence B• is measurable as well.

In the rest of the proof, we will use two basic facts of integral calculus, which we
now state explicitly.

Fact 1 (see [17, Lem. 7.25 and Thm. 7.26]) Let X,Y ⊆ R
d be two open sets, and let

σ : X → Y be a bijection such that both σ and σ−1 are continuous and differentiable
on X and Y , respectively. Then, for any X0 ⊆ X, the set X0 is measurable if and only
if σ(X0) is measurable. Moreover, λ(X0) = 0 if and only if λ(σ(X0)) = 0.

Fact 2 (Fubini’s Theorem, see [17, Thm. 8.12]) Let M ⊆ R
k × R


 be a measurable
set. For x ∈ R

k , define Mx := {y ∈ R

 : (x, y) ∈ M}. Then, for almost every x ∈ R

k ,
the set Mx is λ
-measurable, and

λk+
(M) =
∫

x∈Rk
λ
(Mx ).

Let us prove that λ4(B�) = 0. The basic idea is as follows: suppose that we have
fixed a non-vertical line L and a point B ∈ L . It can be easily seen that there are at
most countablymany points A ∈ L such that (A, B) ∈ B�. Since a line L with a point
B ∈ L can be determined by three parameters, we will see that B� has λ4-measure
zero.

Let us describe this reasoning more rigorously. Let La,b denote the line {(x, y) ∈
R
2 : y = ax + b}. Define a mapping σ : R

4 → R
2 × R

2 as follows: σ(a, b, x, x ′) =
(A, B), where A = (x, ax + b) and B = (x ′, ax ′ + b). In other words, σ(a, b, x, x ′)
is the pair of points on the line La,b whose horizontal coordinates are x and
x ′, respectively. For every non-vertical segment AB, there is a unique quadru-
ple (a, b, x, x ′) with x 
= x ′, such that σ(a, b, x, x ′) = (A, B). In particular, σ

is a bijection from the set {(a, b, x, x ′) ∈ R
4 : x 
= x ′} to the set {(A, B) ∈

R
2 × R

2 : A, B not on the same vertical line}.
Define B̂� = σ−1(B�). Note that σ satisfies the assumptions of Fact 1, and

therefore B̂� is measurable. Moreover, λ4(̂B�) = 0 if and only if λ4(B�) = 0.
For a fixed triple (a, b, x ′) ∈ R

3, let Xa,b,x ′ denote the set {x ∈R : (a, b, x, x ′)∈B̂�}.
We claim that Xa,b,x ′ is countable. To see this, choose a point x ∈ Xa,b,x ′ and define
(A, B) := σ(a, b, x, x ′). Since (A, B) ∈ B�, we know that A is an isolated boundary
point of AB, which implies that there is a closed interval β ⊆ R of positive length
such that β ∩ Xa,b,x ′ = {x}. This implies that Xa,b,x ′ is countable and thus of measure
zero.

Since B̂� is measurable, we can apply Fubini’s Theorem to get

λ4(̂B�) =
∫

(a,b,x ′)∈R3
λ1(Xa,b,x ′).

Therefore λ4(̂B�) = 0 as claimed. A similar argument shows that λ4(̂B�) = 0.
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It remains to deal with the set B•. We will use the following strategy: we will fix
two parallel non-horizontal lines L1, L2, and study the segments orthogonal to these
two lines, with one endpoint on L1 and the other on L2. Roughly speaking, our goal is
to show that for “almost every” choice of L1 and L2, there are “almost no” segments
of this form belonging toB•.

Let L ′
a,b denote the (non-horizontal) line {(ay + b, y) : y ∈ R}. Let us say that a

pair of distinct points (A, B) has type (a, b, c), if A ∈ L ′
a,b, B ∈ L ′

a,c, and the segment

AB is orthogonal to L ′
a,b (and therefore also to L ′

a,c). The value a is then called the
slope of the type t = (a, b, c).

Note that every pair of distinct points (A, B) defining a non-vertical segment has
a unique type (a, b, c), with b 
= c. Define a mapping τ : R

4 → R
2 × R

2, where
τ(a, b, c, y) is the pair of points (A, B) of type (a, b, c) such that A = (ay + b, y).
Note that τ is a bijection from the set {(a, b, c, y) ∈ R

4 : b 
= c} to the set
{(A, B) ∈ R

2 × R
2 : A, B not on the same vertical line}. We can easily verify that

τ satisfies the assumptions of Fact 1.
Define B̃• = τ−1(B•). From Fact 1, it follows that B̃• is measurable, and

λ4(B•) = 0 if and only if λ4(B̃•) = 0. For a type t = (a, b, c) ∈ R
3, define

Yt = {y ∈ R : (a, b, c, y) ∈ B̃•}. Furthermore, for a set α ⊆ [0, 1], define B•(α) =
B• ∩ S(α), B̃•(α) = τ−1(B•(α)), and Yt (α) = {y ∈ R : (a, b, c, y) ∈ B̃•(α)}. In
our applications, α will always be an interval (in fact, an open interval with rational
endpoints), and in such case we already know thatB•(α) is measurable, hence B̃•(α)

is measurable.
By Fubini’s Theorem, we have

λ4(B̃•) =
∫

a∈R

∫

(b,c)∈R2
λ1(Y(a,b,c)), (*)

and Yt is measurable for all t ∈ R
3 up to a set of λ3-measure zero. An analogous

formula holds for B̃•(α) and Yt (α) for any open interval α ⊆ [0, 1] with rational
endpoints. Since there are only countably many such intervals, and a countable union
of sets of measure zero has measure zero, we know that there is a set T0 ⊆ R

3 of
measure zero, such that for all t ∈ R

3
� T0 the set Yt is measurable, and moreover for

any rational interval α the set Yt (α) is measurable as well.
Our goal is to show that there are at most countably many slopes a ∈ R for

which there is a (b, c) ∈ R
2 such that λ1(Y(a,b,c)) > 0. From (*) it will then follow

that λ̃4(B•) = 0. To achieve this goal, we will show that to any type t for which
λ1(Yt ) > 0, we can assign a set Rt ⊆ ∂S of positive λ2-measure (the region of t),
so that if t and t ′ have different slopes and if Yt and Yt ′ both have positive measure,
then Rt and Rt ′ are disjoint. Since there cannot be uncountably many disjoint sets of
positive measure, this will imply the result.

Let us fix a type t = (a, b, c) ∈ R
3

� T0 such that λ1(Yt ) > 0. Let us say that an
element y ∈ Yt is half-isolated if there is an ε > 0 such that [y, y + ε] ∩ Yt = {y} or
[y − ε, y] ∩ Yt = {y}. Clearly, Yt has at most countably many half-isolated elements.
Define Y ∗

t := {y ∈ Yt : y is not half-isolated}. Of course, λ1(Y ∗
t ) = λ1(Yt ). See Fig. 6

for an illustration.

123



Discrete Comput Geom (2017) 57:179–214 197

L ′
a,b

L ′
a,c

A 2

A 1

B 2

B 1

S

y2 ∈ Y ∗
t

y1 ∈ Yt

Fig. 6 An illustration for the proof of Lemma 2.10. The element y1 of Yt is half-isolated while y2 is not

Choose y ∈ Y ∗
t , and define (Ay, By) := τ(a, b, c, y). We claim that Ay By ∩ S◦

is either empty or a single interval. Let us choose any two points C, D ∈ Ay By ∩
S◦. We will show that the segment CD is inside S◦. For ε > 0 small enough, the
neighborhoods Nε(C) and Nε(D) are subsets of S. Since y is not half-isolated in
Yt , we can find two segments P, Q ∈ B• of type t that intersect both Nε(C) and
Nε(D), with Ay By being between P and Q. We can then find a closed polygonal
curve Γ ⊆ P ∪ Q ∪ Nε(C) ∪ Nε(D) whose interior region contains CD. Since S is
p-componentwise simply connected, we see that CD ⊆ S◦. Therefore, Ay By ∩ S◦ is
indeed an interval.

Since ∂S is a closed set, we know that for every y ∈ Y ∗
t , the set Ay By ∩ ∂S is

closed as well. Moreover, neither Ay nor By are isolated boundary points of Ay By ,
because then (Ay, By) would belong to B� or B�. We conclude that Ay By ∩ ∂S is
either equal to a single closed segment of positive length containing Ay or By , or it
is equal to a disjoint union of two closed segments of positive length, one of which
contains Ay and the other contains By .

For an integer n ∈ N, define two sets Y�
t (n) and Y�

t (n) by

Y�
t (n) := {y ∈ Y ∗

t : Ay By[(0, n−1)] ⊆ ∂S} and
Y�
t (n) := {y ∈ Y ∗

t : Ay By[(1 − n−1, 1)] ⊆ ∂S}.

Note that these sets are measurable: for instance, Y�
t (n) is equal to Y ∗

t �
(⋃

α Yt (α)
)
,

where we take the union over all rational intervals α intersecting (0, n−1). Moreover,
we have Y ∗

t = ⋃
n∈N

(Y�
t (n) ∪ Y�

t (n)). It follows that there is an n such that Y�
t (n)

or Y�
t (n) has positive measure. Fix such an n and assume, without loss of generality,

that λ1(Y
�
t (n)) is positive. Define the region of t , denoted by Rt , by

123



198 Discrete Comput Geom (2017) 57:179–214

Rt :=
⋃

y∈Y�
t (n)

Ay By
[
(0, n−1)

]
.

The set Rt is a bijective affine image of Y�
t (n) × (0, n−1), and in particular it is

λ2-measurable with positive measure. Note that Rt is a subset of ∂S.
Consider now two types t, t ′ ∈ R

3
� T0 with distinct slopes, such that both Yt and

Yt ′ have positive measure. We will show that the regions Rt and Rt ′ are disjoint.
For contradiction, suppose there is a point C ∈ Rt ∩ Rt ′ . Let AB and A′B ′ be

the segments containing C and having types t and t ′, respectively. Fix ε > 0 small
enough, so that none of the four endpoints A, B, A′, B ′ lies in Nε(C). Since Y ∗

t has
no half-isolated points of Yt , we know thatB• has segments of type t arbitrarily close
to AB on both sides of AB, and similarly for segments of type t ′ close to A′B ′. We can
therefore find four segments P, Q, P ′, Q′ ∈ B• � {AB, A′B ′} with these properties:
– P and Q have type t , and P ′ and Q′ have type t ′.
– AB is between P and Q (i.e., AB ⊆ Conv(P ∪ Q)) and A′B ′ is between P ′
and Q′.

– Both P and Q intersect both P ′ and Q′ inside Nε(C).

We see that the four points where P ∪ Q intersects P ′ ∪ Q′ form the vertex set
of a parallelogram W whose interior contains the point C . Moreover, the boundary
of W is a closed polygonal curve contained in S. Since S is p-componentwise simply
connected, W is a subset of S and C belongs to S◦. This is a contradiction, since all
points of Rt (and Rt ′ ) belong to ∂S.

We conclude that Rt and Rt ′ are indeed disjoint. Since there cannot be uncountably
many disjoint sets of positive measure in R

2, there are at most countably many values
a ∈ R for which there is a type t = (a, b, c) with λ1(Yt ) positive. Consequently, the
right-hand side of (*) is zero, and so λ4(B•) = 0, as claimed. ��
Proof of Lemma 2.1 Observe that the inequalities b(S) � α c(S) and λ4(Seg(S)) �
α smc(S)λ2(S) are equivalent. Call a set S bad if Seg(S) is measurable and b(S) >

α c(S) or equivalently λ4(Seg(S)) > α smc(S)λ2(S). To prove the lemma,we suppose
for the sake of contradiction that there exists a bad p-componentwise simply connected
set S ⊆ R

2 of finite positive measure.
By Lemma 2.9, for each ε > 0, there is a bounded p-componentwise simply

connected set S′ ⊆ S such that λ2(S′) � (1 − ε)λ2(S) and b(S′) � b(S) − ε. In
particular, such a set S′ satisfies c(S′) � c(S)/(1− ε). Hence, for ε small enough, the
set S′ is bad.

Let S′′ be the interior of S′. By Lemma 2.10, λ4(Seg(S′′)) = λ4(Seg(S′)). Clearly,
λ2(S′′) � λ2(S′) and smc(S′′) � smc(S′), and therefore S′′ is bad as well.

Note that S′′ is p-componentwise simply connected. Since S′′ is an open set, all
its p-components are open as well. In particular, S′′ has at most countably many
p-components. Let C be the set of p-components of S′′. Each T ∈ C is a bounded
open simply connected set, and therefore cannot be bad. Therefore,

λ4(Seg(S
′′)) =

∑

T∈C
λ4(Seg(T )) �

∑

T∈C
α smc(T )λ2(T ) � α smc(S′′)λ2(S′′),
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Fig. 7 Removing self-intersections and intersections between adjacent polygonal lines

showing that S′′ is not bad. This is a contradiction. ��

2.3 Proof of Lemma 2.4

Here we prove Lemma 2.4, which says that every bounded open simply connected
subset of R

2 can can be split by a diagonal into two rooted sets.

Lemma 2.11 Let S be a bounded open simply connected subset of R
2, and let 
 be a

diagonal of S. Let h− and h+ be the open half-planes defined by the supporting line
of 
. It follows that the set S � 
 has exactly two p-components S1 and S2. Moreover,
for every point A ∈ 
 and every neighborhoodNε(A) ⊆ S, we haveNε(A)∩h− ⊆ S1
and Nε(A) ∩ h+ ⊆ S2.

Proof Notice first that any p-component of an open set is also open. This implies that
any path-connected open set is also p-connected, and therefore every open simply
connected set is p-connected as well.

Let A ∈ 
, and let Nε(A) be a neighborhood of A contained in S. We choose
arbitrary points B ∈ Nε(A) ∩ h− and C ∈ Nε(A) ∩ h+. Suppose for a contradiction
that S � 
 has a single p-component. Then there exists a polygonal curve Γ in S � 


with endpoints B and C . Let  ⊆ S be the closed polygonal curve Γ ∪ BC . We can
assume that the curve  is simple using a local redrawing argument. See Fig. 7.

The curve  separates R
2 into two regions. The closure 
 of the diagonal 
 is a

closed line segment that intersects  in exactly one point. It follows that one endpoint
of 
 is in the interior region of . Since the endpoints of 
 do not belong to S, this
contradicts the assumption that S is simply connected.

Now, we show that the set S � 
 has at most two p-components. For a point
D ∈ 
, let Nε(D) be a neighborhood of D in S. The set Nε(D) ∩ h− is contained
in a unique p-component S1 of S � 
, and Nε(D) ∩ h+ is contained in a different
p-component S2. Choose another point E ∈ 
 with a neighborhood Nε′(E) ⊆ S. We
claim thatNε′(E)∩h− also belongs to S1. To see this, note that since DE is a compact
subset of the open set S, it has a neighborhood Nδ(DE) which is contained in S.
Clearly,Nδ(DE)∩h− is p-connected and therefore belongs to S1, henceNε′(E)∩h−
belongs to S1 as well. An analogous argument can be made for the half-plane h+ and
the p-component S2.

Since for every p-component S′ of S�
, there is a point A ∈ 
 and a neighborhood
Nε(A) ⊆ S such that Nε(A) ∩ S′ 
= ∅, we see that S1 and S2 are the only two
p-components of S � 
. ��
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Proof of Lemma 2.4 By Lemma 2.11, the set S � 
 has of exactly two p-components
S1 and S2. It remains to show that S1 ∪ 
 and S2 ∪ 
 are rooted sets.

Since S1 and S2 are p-connected, S1 ∪ 
 and S2 ∪ 
 are p-connected as well. To
show that S1 ∪ 
 and S2 ∪ 
 are simply connected, choose a Jordan curve Γ in, say,
S1 ∪ 
, and let Z be the interior region of Γ . Suppose for a contradiction that Z is
not a subset of S1 ∪ 
. Since S is simply connected, we have Z ⊆ S. Hence there is a
point A ∈ Z ∩ S2. Since both S2 and Z are open, we can assume that A does not lie
on the supporting line of 
. Let AB be the minimal closed segment parallel to 
 such
that B ∈ Γ . Then B belongs to S1, A belongs to S2, and yet A and B are in the same
p-component of S � 
. This contradiction shows that S1 ∪ 
 and S2 ∪ 
 are simply
connected.

As subsets of the bounded set S, the sets S1∪
 and S2∪
 are bounded. Lemma 2.11
and the fact that Si is open imply that the set Si ∪ 
 is half-open and Si ∩ ∂Si = 
 for
i ∈ {1, 2}. Therefore, the sets S1 ∪ 
 and S2 ∪ 
 are rooted, and 
 is their root. ��

2.4 Proof of Lemma 2.5

Here we prove Lemma 2.5, which explains the tree structure of rooted sets. For this
entire section, let R be a rooted set and (Lk)k�1 be the partition of R into levels. We
will need several auxiliary results in order to prove Lemma 2.5.

For disjoint sets S, T ⊆ R
2, we say that the set S is T -half-open if every point

A ∈ S has a neighborhood Nε(A) that satisfies one of the following two conditions:

1. Nε(A) ⊆ S,
2. Nε(A) ∩ ∂S is a diameter of Nε(A) splitting it into two subsets, one of which

(including the diameter) is Nε(A) ∩ S and the other (excluding the diameter) is
Nε(A) ∩ T .

The only difference with the definition of S being half-open is that we additionally
specify the “other side” of the neighborhoods Nε(A) for points A ∈ S ∩ ∂S in the
condition 2. A rooted set R is T -half-open if and only if it is attached to T according
to the definition of attachment from Sect. 2.

Lemma 2.12 The set L1 is (R2
� R)-half-open and L1 ∩ ∂L1 = R ∩ ∂R.

Proof We consider two cases for a point A ∈ L1. First, suppose A ∈ L1 ∩ ∂R. It
follows that A has a neighborhoodNε(A) that satisfies the condition 2 of the definition
of a half-open set. By the definition of L1, the same neighborhood Nε(A) satisfies
the condition 2 for L1 being an (R2

� R)-half-open set. In particular, A ∈ ∂L1. Since
R ∩ ∂R ⊆ L1 by the definition of L1, we have R ∩ ∂R ⊆ L1 ∩ ∂L1.

Now, suppose A ∈ L1 ∩ R◦. Let B be a point of the root of R such that AB ⊆
R. We have AB � {B} ⊆ R◦, as otherwise the point t ′A + (1 − t ′)B for t ′ :=
sup{t ∈ [0, 1] : At + (1 − t)B ∈ AB ∩ ∂R} would contradict the fact that R is half-
open. There is a family of neighborhoods {NεC (C)}C∈AB such that all NεD (D) with
D ∈ AB � {B} satisfy the condition 1 and NεB (B) satisfies the condition 2 for R
being half-open. Since AB is compact, there is a finite set X ⊆ AB such that AB ⊆⋃

C∈X NεC/2(C). Hence Nε(AB) ⊆ ⋃
C∈X NεC (C), where ε := minC∈X εC/2. It
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follows thatNε(AB)∩ ∂R is an open segment Q containing B but not A and splitting
Nε(AB) into two subsets, one of which (including Q) is Nε(AB) ∩ R and the other
(excluding Q) is Nε(AB) � R. Let ε′ be the minimum of ε and the distance of A
to the line containing Q. It follows that Nε′(A) ⊆ Nε(AB) ∩ R. Therefore, for
every A′ ∈ Nε′(A), we have A′B ⊆ R, hence Nε′(A) ⊆ L1. It also follows that
L1 ∩ ∂L1 ⊆ R ∩ ∂R. ��

We say that a set P ⊆ R is R-convex when the following holds for any two points
A, B ∈ P: if AB ⊆ R, then AB ⊆ P .

Lemma 2.13 The set L1 is R-convex.

Proof This follows directly from Lemma 2.3. ��
A branch of R is a p-component of

⋃
k�2 Lk .

Lemma 2.14 Every branch of R is R-convex.

Proof Let P be a branch of R, and let A, B ∈ P be such that AB ⊆ R. Since R is half-
open, it follows that AB ⊆ R◦. Suppose AB � P . It follows that AB∩ L1 
= ∅. Since
L1 is (R2

� R)-half-open (Lemma 2.12) and R-convex (Lemma 2.13), we see that
AB ∩ L1 is an open segment A′B ′ for some A′, B ′ ∈ AB. It follows that A′, B ′ ∈ P .

There is a simple polygonal line in P connecting A′ with B ′, which together with
A′B ′ forms a Jordan curve Γ in R. Now, let C ∈ A′B ′. Since C ∈ L1, there is a
point D on the root of R such that CD ⊆ R. Since A′, B ′ /∈ L1, D does not lie on
the supporting line of A′B ′. Extend the segment DC beyond C until hitting ∂R at a
point C ′. Here we use the fact that R is bounded. Since R is simply connected, the
entire interior region of Γ is contained in R, so the points D and C ′ both lie in the
exterior region of Γ . However, since Γ ∩ L1 = A′B ′, the line segment DC ′ crosses
Γ at exactly one point, which is C . This is a contradiction. ��
Lemma 2.15 The set L1 and every branch of R are p-connected and simply con-
nected.

Proof Let P be the set L1 or a branch of R. It follows directly from the definitions
of L1 and a branch of R that P is p-connected. To see that P is simply connected,
let Γ be a Jordan curve in P , A be a point in the interior region of Γ , and BC be an
inclusion-maximal open line segment in the interior region of Γ such that A ∈ BC . It
follows that B,C ∈ Γ and BC ⊆ R, as R is simply connected. Since B,C ∈ P and
P is R-convex (Lemmas 2.13 and 2.14), we have A ∈ P . ��
Lemma 2.16 Every branch of R is L1-half-open.

Proof Let P be a branch of R. It is enough to check the condition 1 or 2 for P being
L1-half-open for points in ∂P ∩ P . Let A ∈ ∂P ∩ P . Since R is half-open, A has a
neighborhoodNε(A) that satisfies the condition 1 or 2 for S being half-open. It cannot
be 2, as then A would lie on the root of R and thus in L1. Hence Nε(A) ⊆ R.

Since L1 is (R2
� R)-half-open (Lemma 2.12) and R-convex (Lemma 2.13) and

A /∈ L1, the setNε(A) ∩ L1 lies entirely in some open half-plane h whose boundary
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line passes through A. The set Nε(A) � h is p-connected and contains A, so it lies
entirely within P . The set Nε(A) ∩ h is disjoint from P . Indeed, if there was a point
B ∈ Nε(A) ∩ h ∩ P , then by the R-convexity of P (Lemma 2.14), the convex hull
of Nε(A) � h and B would lie entirely within P and would contain A in its interior,
which would contradict the assumption that A ∈ ∂P . It follows that Nε(A) ∩ ∂P is
an open segment that partitions Nε(A) into two half-discs, one of which (including
Nε(A) ∩ ∂P) isNε(A) ∩ P .

We show that Nε(A) ∩ ∂P ⊆ ∂L1. Suppose to the contrary that there is a point
A′ ∈ Nε(A)∩∂P�L1. It follows that A′ has a neighborhoodNε′(A′) ⊆ Nε(A)�L1.
SinceNε′(A′) is p-connected and contains a point of P , it lies entirely within P . This
contradicts the assumption that A′ ∈ ∂P .

SinceNε(A)∩∂P ⊆ ∂L1, there is a point B ∈ Nε(A)∩L1. Let A′ ∈ Nε(A)∩∂P .
Since L1 is (R2

� R)-half-open and R-convex and A /∈ L1, there is a point C ∈ A′B
such that CB � {C} ⊆ L1 while A′C is disjoint from L1. The latter implies that
A′C ⊆ P , as A′ ∈ P . Hence C = A′. This shows the whole triangle T spanned by
Nε(A) ∩ ∂P and B excluding the open segment Nε(A) ∩ ∂P is contained in L1.

Since A lies in the interior ofNε(A) ∩ (P ∪ T ), it has a neighborhoodNε′(A) that
lies entirely within Nε(A) ∩ (P ∪ T ). This neighborhood witnesses the condition 2
for P being L1-half-open. ��
Lemma 2.17 Let P be a branch of R. If A0, A1 ∈ P ∩ ∂P, then A0A1 ⊆ R.

Proof Let A0, A1 ∈ P ∩ ∂P . By Lemma 2.16, P is L1-half-open, hence there are
B0, B1 ∈ L1 such that A0B0�{A0} ⊆ L1 and A1B1�{A1} ⊆ L1. There is a polygonal
line Γ1 in P connecting A0 with A1, and a polygonal line Γ2 in L1 connecting B0
with B1. These polygonal lines together with the line segments A0B0 and A1B1 form
a closed polygonal curve Γ in R. We can assume without loss of generality that Γ is
simple (see Fig. 7) and that the x-coordinates of A0 and A1 are equal to 0. We also
assume that no two vertices of Γ except A0 and A1 have the same x-coordinates.

We color the points of Γ ∩ L1 red and the points of Γ ∩ P blue. For convenience,
we assume that A0 and A1 have both colors. Let Z denote the interior region delimited
by Γ including Γ itself. Since R is simply connected, we have Z ⊆ R.

Let x1 < · · · < xn be the x-coordinates of all vertices of Γ . We use [n] to denote
the set of indices {1, . . . , n}. Since the x-coordinates of A0 and A1 are zero, there is
j ∈ [n] such that x j = 0. For i ∈ [n], we let 
i be the vertical line {xi } × R. Since the
x-coordinates of the vertices of Γ � {A0, A1} are distinct, there is at most one vertex
of Γ on 
i for every i ∈ [n]� { j}. For i ∈ [n], the intersection of Z with 
i is a family
of closed line segments with endpoints from Γ ∩ 
i . Some of the segments can be
trivial, that is, consisting of a single point, and some segments can contain a point of
Γ in their interior.

For i ∈ [n] and a point A ∈ Γ ∩
i , we say that a point B is a left neighbor of A if B
lies on Γ ∩ 
i−1 and AB ⊆ Γ . Similarly, B is a right neighbor of A if B ∈ Γ ∩ 
i+1
and AB ⊆ Γ . Note that every point A ∈ Γ ∩ 
i has exactly two neighbors and if
A /∈ {A0, A1}, then the neighbors of A have the same color as A. We distinguish two
types of points of Γ ∩ 
i . We say that a point A ∈ Γ ∩ 
i is one-sided if it either has
two right or two left neighbors. Otherwise, we say that A is two-sided. That is, A is
two-sided if it has one left and one right neighbor. See Fig. 8.
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Fig. 8 Situation in the proof of Lemma 2.17. Here A is a left neighbor of C and B is a left neighbor of D.
The points B, C , and D are two-sided, the points A and E are one-sided

Note that every one-sided point is a vertex of Γ and that one-sided points from
Γ ∩ 
i are exactly the points of Γ ∩ 
i that either form a trivial line segment or that
are contained in the interior of some line segment of Z ∩ 
i . Consequently, every line
segment in Z ∩ 
i contains at most one point of Γ in its interior.

For 2 � i � n andC, D ∈ 
i ∩Γ , letCD be a line segment in Z∩
i whose interior
does not contain a point of Γ with a left neighbor. Let A and B be left neighbors of C
and D, respectively, such that there is no left neighbor of C and D between A and B
on 
i−1. Since no point between A and B on 
i−1 can have a right neighbor, we have
AB ⊆ Z ∩
i−1 and A, B,C, D are vertices of a trapezoid whose interior is contained
in Z . An analogous statement holds for right neighbors of C and D provided that the
interior of CD does not contain a point of Γ with a right neighbor.

Claim Let i ∈ [n]� { j}, and let C and D be points of Γ ∩
i satisfying CD ⊆ Z ∩
i .
Then C and D have the same color.

First, we will prove the claim by induction on i for all i < j . The claim clearly
holds for i = 1, as Z ∩ 
1 contains only a single vertex of Γ . Fix i with 1 < i < j
and suppose that the claim holds for i − 1. Let C, D ∈ Γ ∩ 
i be points satisfying
CD ⊆ Z ∩ 
i . We show that C and D have the same color. Obviously, we can assume
that the line segment CD is non-trivial. Assume first that the points C and D are
two-sided.

Suppose the interior of CD does not contain a point of Γ with a left neighbor. Let
A, B ∈ Γ ∩
i−1 be the left neighbors ofC and D, respectively. Then AB ⊆ Z ∩
i−1.
Thus A and B have the same color by the induction hypothesis. SinceC, D /∈ {A0, A1},
the points A and C have the same color as well as the points B and D. This implies
that C and D have the same color too. If there is a point E of Γ in the interior of CD,
then it follows from R-convexity of P (Lemma 2.14) and L1 (Lemma 2.13) that E
has the same color as C and D.

Now, suppose the interior of CD contains a point E of Γ with a left neighbor.
We have already observed that there is exactly one such point on CD. We also know
that E has two left neighbors. The points C and E with their left neighbors A and B,
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respectively, where there is no left neighbor of E between A and B on 
i−1, form a
trapezoid in Z such that AB ⊆ Z ∩ 
i−1. From induction hypothesis A and B have
the same color which implies that C and E have the same color as well. Similarly, D
and E have the same color which implies that C and D have the same color as well.

The case where either C or D is one-sided is covered by the previous cases. The
same inductive argument but in the reverse direction shows the claim for all i with
j < i � n. This completes the proof of the claim.
Now, consider the inclusion-maximal line segment CD of Z ∩ 
 j that contains A0.

We can assume that either C and D are two-sided. Suppose for a contradiction that A1
is not contained in CD. If CD is trivial, that is, C = D = A0, then A0 is one-sided
and its neighbors A and B have different colors, as Γ changes color in A0. This is
impossible according to the claim, since we have AB ⊆ Z ∩ 
i−1 or AB ⊆ Z ∩ 
i+1.
Therefore CD is non-trivial.

First, we assume that A0 is an endpoint of CD, say C = A0. Then A0 is two-sided.
By symmetry, we can assume that the left neighbor A of A0 and the left neighbor B
of D have different colors. If there is no point of Γ with a left neighbor in the interior
of A0D, then AB ⊆ Z ∩ 
i−1. This is impossible according to the claim. If there is
a point E ∈ Γ with a left neighbor in the interior of A0D, then we can use a similar
argument either for the line segment A0E or for ED, as the neighbors of E have the
same color. The last case is when A0 is an interior point of CD. Since Γ does not
change color in C nor in D, we apply the claim to one of the line segments A0C ,
A0D, and CD and show, again, that none of the cases is possible. Altogether, we have
derived a contradiction.

Therefore, A0 and A1 are contained in the same line segment of Z ∩ 
i . This
completes the proof, as Z ⊆ R. ��
Lemma 2.18 For every branch P of R, the set P ∩ ∂P is an open segment.

Proof Let P be a branch of R. First, we show that the set P ∩ ∂P is convex. Let
A0, A1 ∈ P ∩ ∂P . By Lemma 2.17, we have A0A1 ⊆ R. It follows that A0A1 is
disjoint from the root of R and thus is contained in R◦. By compactness, A0A1 has a
neighborhood Nε(A0A1) contained in R◦. Since P is L1-half-open by Lemma 2.16,
there are B0, B1 ∈ Nε(A0A1)∩ L1 such that A0B0 � {A0} ⊆ L1 and A1B1 � {A1} ⊆
L1. For t ∈ [0, 1], let At = (1 − t)A0 + t A1 and Bt = (1 − t)B0 + t B1. We have
At ∈ A0A1 and Bt ∈ B0B1, hence At , Bt ∈ Nε(A0A1), for all t ∈ [0, 1]. Now, it
follows from the R-convexity of P (Lemma 2.14) and L1 (Lemma 2.13) that At ∈ P
and At Bt � {At } ⊆ L1, hence At ∈ P ∩∂P , for all t ∈ [0, 1]. This shows that P ∩∂P
is convex.

If P ∩ ∂P had three non-collinear points, then they would span a triangle with
non-empty interior contained in P ∩ ∂P , which would be a contradiction. Since R is
bounded, the set P ∩ ∂P is a line segment. That it is an open line segment follows
directly from Lemma 2.16. ��
Lemma 2.19 For every j � 2, every p-component P of

⋃
k� j Lk is a rooted set

attached to L j−1. Moreover, for k � 1, the kth level of P is equal to L j−1+k ∩ P.

Proof The proof proceeds by induction on j . For the base case, let P be a p-component
of

⋃
i�2 Li , that is, a branch of R. It follows from Lemmas 2.15, 2.16 and 2.18 that P
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is a rooted set attached to L1. Let 
 be the root of P , and let (L ′
k)k�1 be the partition of

P into levels.We prove that L ′
k ⊆ ⋃k+1

i=1 Li and Lk+1∩P ⊆ ⋃k
i=1 L

′
i for every k � 1.

Let A ∈ L ′
k . It follows that there is a polygonal line Γ with k line segments

connecting A to a point B ∈ 
. Moreover, since there is no shorter polygonal line
connecting A to 
, the last line segment of Γ is not parallel to 
. Since P is L1-half-
open (Lemma 2.16), there is a neighborhoodNε(B) that is split by 
 into two parts, one
of which is a subset of L1. LetC be a point inNε(B)∩L1 such that BC is an extension
of the last line segment of Γ . Since C ∈ L1, there is a point D on the root of R such
thatCD ⊆ L1. The polygonal line Γ extended by BC andCD forms a polygonal line
with k+1 line segments connecting A to the root of R. This shows that L ′

k ⊆ ⋃k+1
i=1 Li .

Now, let A ∈ Lk+1 ∩ P . It follows that there is a polygonal line Γ with k + 1 line
segments connecting A to the root of R. Since L1 is an open subset of R (Lemma 2.12)
and P is a p-component of R � L1, there is a point B ∈ Γ such that the part of Γ

between A and B (inclusive) is contained in P and is maximal with this property. It
follows that B ∈ 
. Since B /∈ L1, the part of Γ between A and B consists of at most
k segments. This shows that Lk+1 ∩ P ⊆ ⋃k

i=1 L
′
i .

We have thus proved that L ′
k ⊆ ⋃k+1

i=1 Li and Lk+1∩P ⊆ ⋃k
i=1 L

′
i for every k � 1.

To conclude the proof of the base case, we note that a straightforward induction shows
that L ′

k = Lk+1 ∩ P for every k � 1.
For the induction step, let j � 3, and let P be a p-component of

⋃
i� j Li . Let Q

be the branch of R containing P . Let (L ′
k)k�1 be the partition of Q into levels. As we

have proved for the base case, we have L ′
k = Lk+1 ∩ Q for every k � 1. Hence P is

a p-component of (
⋃

i� j Li ) ∩ Q = ⋃
i� j−1 L

′
i . By the induction hypothesis, P is a

rooted set attached to L ′
j−2 ⊆ L j−1. Moreover, for k � 1, the kth level of P is equal

to L ′
j−2+k ∩ P = L j−1+k . This completes the induction step and proves the lemma. ��

Proof of Lemma 2.5 The statement 1 is a direct consequence of the definition of a
rooted set, specifically, of the condition that a rooted set is p-connected.

For the proof of the statement 2, let P be a j-body of R. If j = 1, then P = L1 =
Vis(r, R) = Vis(r, L1), where r is the root of R, and by Lemmas 2.12 and 2.15, L1
is rooted with the same root r . Now, suppose j � 2. Let Q be the p-component of⋃

k� j Lk containing P . By Lemma 2.19, Q is a rooted set and L j ∩ Q is the first
level of Q. Since P ⊆ L j ∩ Q, the definition of the first level yields P = L j ∩ Q =
Vis(r, Q) = Vis(r, P), where r is the root of Q. By Lemma 2.12, P is a rooted set
with the same root r .

Lemma 2.12 and the fact that L1 is p-connected directly yield the statement 3.
Finally, for the proof of the statement 4, let P be a j-body of R with j � 2. Let Q be

the p-component of
⋃

k� j Lk containing P . As we have proved above, Q is a rooted
set and P is the first level of Q and shares the root with Q. Moreover, by Lemma 2.19,
Q (and hence P) is attached to L j−1. The definition of attachment implies that P is
attached to a single p-component of L j−1, that is, a single ( j − 1)-body of R. ��

3 General Dimension

This section is devoted to the proofs of Theorems 1.5 and 1.6. In both proofs, we use
the operator Aff to denote the affine hull of a set of points.
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3.1 Proof of Theorem 1.5

Let T = (B0, B1, . . . , Bd) be a (d + 1)-tuple of distinct affinely independent points
in R

d . We say that a permutation B0, B1, . . . , Bd of T is a regular permutation of T
if the following two conditions hold:

1. the segment B0B1 is the diameter of T ,
2. for i = 2, . . . , d−1, the point Bi has themaximumdistance toAff({B0, . . . , Bi−1})

among the points Bi , Bi+1, . . . , Bd .

Obviously, T has at least two regular permutations due to the interchangeability of B0
and B1. The regular permutation Bi0 , Bi1 , . . . , Bid with the lexicographically minimal
vector (i0, i1, . . . , id) is called the canonical permutation of T .

Let T be a (d + 1)-tuple of distinct affinely independent points in R
d , and let

B0, B1, . . . , Bd be the canonical permutation of T . For i = 1, . . . , d − 1, we define
Boxi (T ) inductively as follows:

1. Box1(T ) := B0B1,
2. for i = 2, . . . , d − 1, Boxi (T ) is the box containing all the points

P ∈ Aff({B0, B1, . . . , Bi }) with the following two properties:
– the orthogonal projection of P to Aff({B0, B1, . . . , Bi−1}) lies in Boxi−1(T ),
– the distance of P to Aff({B0, B1, . . . , Bi−1}) does not exceed the distance of

Bi to Aff({B0, B1, . . . , Bi−1}),
3. Boxd(T ) is the box containing all the points P ∈ R

d such that the orthogonal
projection of P to Aff({B0, B1, . . . , Bd−1}) lies in Boxd−1(T ) and

λd(Conv({B0, B1, . . . , Bd−1, P})) � λd(S) c(S).

The definition of Boxd(T ) is independent of Bd , so we can define Boxd(T � {Bd})
by

Boxd(T � {Bd}) := Boxd(T ).

It is not hard to see that this gives us a proper definition of Boxd(T−) for every d-tuple
T− of d distinct affinely independent points in R

d .

Lemma 3.1 1. For i = 1, . . . , d − 1, the box Boxi (T ) contains the orthogonal
projection of any point of T to Aff({B0, B1, . . . , Bi−1}).

2. If Conv(T ) ⊆ S then Boxd(T ) contains the point Bd .

Proof We prove the statement 1 by induction on i . First, let i = 1. Then the segment
Box1(T ) must contain every point A j ∈ T since otherwise one of the segments B0A j

and B1A j would be longer than the segment B0B1. Further, if a point A j ∈ T satisfies
the statement 1 for a parameter i ∈ {1, . . . , d − 2} then it also satisfies the statement 1
for the parameter i + 1 since otherwise A j 
= Bi+1 and A j should have been chosen
for Bi+1.

The statement 2 follows from the fact that Conv(T ) ⊆ S implies λd(Conv(T )) �
smc(S) = λd(S) c(S). ��
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For i = 1, . . . , d − 1, let di be the distance of Bi to Aff({B0, B1, . . . , Bi−1}).
In particular, d1 is the diameter of T . The following observation follows from the
definition of the canonical permutation of T and from the construction of the boxes
Boxi (T ).

Observation 3.2 1. The (d−1)-dimensionalmeasure of the simplexConv(T�{Bd})
is equal to d1d2 . . . dd−1/(d − 1)!.

2. The sides of Boxd(T ) have lengths d1, 2d2, . . . , 2dd−1, and
d!

d1d2...dd−1
λd(S) c(S).

Proof of Theorem 1.5 To estimate bd(S), we partition Simpd(S) into the following
d + 2 subsets:

X := {T ∈ Simpd(S) : T is affinely dependent},
Yi := {T = (A0, . . . , Ad) ∈ Simpd(S) : T is affinely independent, and Ai is the last

element of the canonical permutation of T },
for i = 0, . . . , d.

We point out that T is considered to be affinely dependent in the above definitions of
X and Yi also in the degenerate case when some point of S appears more than once
in T . We have λd(d+1)(X) = 0. Let i ∈ {0, . . . , d}. The set Yi is a subset of the set

Y ′
i := {T = (A0, . . . , Ad) ∈ Sd+1 : T � {Ai } is affinely independent and we have

Ai ∈ Boxd(T � {Ai })}.

By Observation 3.2.2, λd(Boxd(T � {Ai })) is equal to z := 2d−2d!λd(S) c(S) for
every set T � {Ai } appearing in the definition of Y ′

i . Therefore, by Fubini’s Theorem,
the set Y ′

i is λd(d+1)-measurable and, moreover,

λd(d+1)(Y
′
i ) = (λd(S))d z = (λd(S))d+12d−2d! c(S).

Thus,

bd(S) = λd(d+1)(Simpd(S))

λd(S)d+1

�
λd(d+1)(X) + ∑d

i=0 λd(d+1)(Y ′
i )

λd(S)d+1 = 2d−2(d + 1)! c(S).

This completes the proof of Theorem 1.5. ��

3.2 Proof of Theorem 1.6

In the following, we make no serious effort to optimize the constants. As the first step
towards the proof of Theorem 1.6, we show that if we remove an arbitrary n-tuple of
points from the open d-dimensional box (0, 1)d , then the d-index of convexity of the
resulting set is of order Ω( 1n ).
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Lemma 3.3 For every positive integer n and every n-tuple N of points from (0, 1)d ,
the set S := (0, 1)d � N satisfies bd(S) � 1/2n.

Proof Let S and N = {B1, . . . , Bn} be the sets from the statement and let 0 be the
origin. We use Sd−1∗ to denote the set of (d − 1)-tuples (A1, . . . , Ad−1) ∈ Sd−1

that satisfy the following: for every B ∈ N the points A1, . . . , Ad−1, B are affinely
independent and Aff({A1, . . . , Ad−1, B}) ∩ (N ∪ {0}) = {B}. Note that the set Sd−1∗
is measurable and λd(d−1)(Sd−1∗ ) = 1. If h is a hyperplane in R

d that does not contain
the origin, we use h− and h+ to denote the open half-spaces defined by h such that
0 ∈ h−.

Let (A1, . . . , Ad−1) ∈ Sd−1∗ . For a point B ∈ N , we let hA1,...,Ad−1,B be the
hyperplane determined by the d-tuple (A1, . . . , Ad−1, B). Since (A1, . . . , Ad−1) ∈
Sd−1∗ , we see that hA1,...,Ad−1,B satisfies hA1,...,Ad−1,B ∩ N = {B} and that it does not
contain the origin. Therefore the half-spaces h−

A1,...,Ad−1,B
and h+

A1,...,Ad−1,B
are well

defined.
For every (d−1)-tuple (A1, . . . , Ad−1) ∈ Sd−1∗ , we split the set S into 2n pairwise

disjoint open convex sets that are determined by the hyperplanes hA1,...,Ad−1,B for
B ∈ N . This is done by induction on n. For n = 1, we set P1(A1, . . . , Ad−1) :=
S ∩ h−

A1,...,Ad−1,B1
and P2(A1, . . . , Ad−1) := S ∩ h+

A1,...,Ad−1,B1
. Suppose we have

split the set S into sets Pi (A1, . . . , Ad−1) for 1 � i � 2(n − 1) and n � 2.
Consider the hyperplane hA1,...,Ad−1,Bn . Since for every k ∈ {1, . . . , n − 1} the inter-
section hA1,...,Ad−1,Bk ∩ hA1,...,Ad−1,Bn is the affine hull of A1, . . . , Ad−1, we see that
hA1,...,Ad−1,Bn � Aff({A1, . . . , Ad−1}) is contained in two sets Pi (A1, . . . , Ad−1)

and Pj (A1, . . . , Ad−1) for some 1 � i < j � 2(n − 1). We restrict these sets to
their intersection with the half-space h−

A1,...,Ad−1,Bn
and set P2n−1(A1, . . . , Ad−1) and

P2n(A1, . . . , Ad−1) as the intersection of h+
A1,...,Ad−1,Bn

with Pi (A1, . . . , Ad−1) and
Pj (A1, . . . , Ad−1), respectively. See Fig. 9 for an illustration.

Since none of the sets Pi (A1, . . . , Ad−1) contains a point from N , it can be
regarded as an intersection of (0, 1)d with open half-spaces. Therefore every set
Pi (A1, . . . , Ad−1) is an open convex subset of S. Let P(A1, . . . , Ad−1) be the
set S �

(⋃
B∈N hA1,...,Ad−1,B

)
. Clearly, λd(P(A1, . . . , Ad−1)) = 1. Since the

sets Pi (A1, . . . , Ad−1) form a partitioning of P(A1, . . . , Ad−1), we also have∑2n
i=1 λd(Pi (A1, . . . , Ad−1)) = 1.
For i = 1, . . . , 2n, we let Ri be the subset of Sd−1∗ × S2 defined as

Ri := {(A1, . . . , Ad+1) ∈ Sd−1∗ × S2 : Ad , Ad+1 ∈ Pi (A1, . . . , Ad−1)},

and we let R := ⋃2n
i=1Ri . The sets Ri are pairwise disjoint and it is not difficult to

argue that these sets are measurable. If a (d + 1)-tuple (A1, . . . , Ad+1) is contained
in Ri for some i ∈ {1, . . . , 2n}, then (A1, . . . , Ad+1) is contained in Simpd(S), as
Pi (A1, . . . , Ad−1)∪ (Aff({A1, . . . , Ad−1})∩ S) is a convex subset of S. Therefore, to
find a lower bound for bd(S) = λd(d+1)(Simpd(S)), it suffices to find a lower bound
for λd(d+1)(R), becauseR is a subset of Simpd(S). By Fubini’s Theorem, we obtain
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A 1
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B 1
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B 3
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P4P2

Fig. 9 The inductive splitting of S = (0, 1)2 � N with respect to the point A1. The points B1, B2, B3 of
N are denoted as empty circles and we use a shorthand Pi for Pi (A1)

λd(d+1)(Ri ) =
∫

(A1,...,Ad+1)∈Sd−1∗ ×S2

[
(A1, . . . , Ad+1) ∈ Ri

]

=
∫

(A1,...,Ad−1)∈Sd−1∗

( ∫

(Ad ,Ad+1)∈S2
[
Ad , Ad+1 ∈ Pi (A1, . . . , Ad−1)

])

=
∫

(A1,...,Ad−1)∈Sd−1∗
λd(Pi (A1, . . . , Ad−1))

2,

where [φ] is the characteristic function of a logical expression φ, that is, [φ] equals 1
if the condition φ holds and 0 otherwise. For the measure of R we then derive

λd(d+1)(R) =
2n∑

i=1

λd(d+1)(Ri ) =
∫

(A1,...,Ad−1)∈Sd−1∗

2n∑

i=1

(
λd(Pi (A1, . . . , Ad−1)

)2
.

Since the function x → x2 is convex, we can apply Jensen’s inequality and bound the
last term from below by

∫

(A1,...,Ad−1)∈Sd−1∗
2n

(∑2n
i=1 λd(Pi (A1, . . . , Ad−1))

2n

)2 = 1

2n
.

��
The next step in the proof of Theorem 1.6 is to find a convenient n-tuple N of

points from (0, 1)d whose removal produces a set with sufficiently small convexity
ratio. We are going to find N using a continuous version of the well-known Epsilon
Net Theorem [9]. Before stating this result, we need some definitions.

Let X be a subset of R
d and let U be a set system on X . We say that a set

T ⊆ X is shattered by U if every subset of T can be obtained as the intersection of
some U ∈ U with T . The Vapnik-Chervonenkis dimension (or VC-dimension) ofU ,
denoted by dim(U ), is the maximum n (or ∞ if no such maximum exists) for which
some subset of X of cardinality n is shattered by U .

LetU be a system of measurable subsets of a set X ⊆ R
d with λd(X) = 1, and let

ε ∈ (0, 1) be a real number. A set N ⊆ X is called an ε-net for (X,U ) if N ∩U 
= ∅
for every U ∈ U with λd(U ) � ε.
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Theorem 3.4 [13, Thm. 10.2.4] Let X be a subset of R
d with λd(X) = 1. Then for

every system U of measurable subsets of X with dim(U ) � v, v � 2, there is a
1
r -net for (X,U ) of size at most 2vr log2 r for r sufficiently large with respect to v.

To apply Theorem 3.4, the VC-dimension of the set system U has to be finite.
However, it is known that the VC-dimension of all convex sets inR

d is infinite (see e.g.
[13, p. 238]). Therefore, instead of considering convex sets directly, we approximate
them by ellipsoids.

A d-dimensional ellipsoid in R
d is an image of the closed d-dimensional unit ball

under a nonsingular affine map. A convex body inR
d is a compact convex subset ofR

d

with non-empty interior. The following result, known as John’s Lemma [10], shows
that every convex body can be approximated by an inscribed ellipsoid.

Lemma 3.5 [13, Thm. 13.4.1] For every d-dimensional convex body K ⊆ R
d , there

is a d-dimensional ellipsoid E with the center C that satisfies

E ⊆ K ⊆ C + d(E − C).

In particular, we have λd(K )/dd � λd(E).

As the last step before the proof of Theorem 1.6, we mention the following fact,
which implies that the VC-dimension of the system E of d-dimensional ellipsoids in
R
d is at most

(d+2
d

)
.

Lemma 3.6 [13, Prop. 10.3.2] Let R[x1, . . . , xd ]�t denote the set of real polynomials
in d variables of degree at most t , and let

Pd,t = {{x ∈ R
d : p(x) � 0} : p ∈ R[x1, . . . , xd ]�t

}
.

Then dim(Pd,t ) �
(d+t

d

)
.

Proof of Theorem 1.6 Suppose we are given ε > 0 which is sufficiently small with
respect to d. We show how to construct a set S ⊆ R

d with λd(S) = 1 satisfying
c(S) � ε and

bd(S) � 1

8
(d+2

d

)
dd

· ε

log2 1/ε
.

Without loss of generality we assume that ε = dd/r for some integer r � 2d2d .
Consider the open d-dimensional box (0, 1)d and the system E � (0, 1)d of

d-dimensional ellipsoids in (0, 1)d . Since the restriction of E to (0, 1)d does not
increase the VC-dimension, Lemma 3.6 implies dim(E � (0, 1)d) �

(d+2
d

)
.

If we set n := 2
(d+2

d

)
r�log2 r�, then, by Theorem 3.4, there is a 1

r -net N for the
system ((0, 1)d ,E � (0, 1)d) of size n, having r sufficiently large with respect to d.
Let S be the set (0, 1)d � N . Clearly, we have λd(S) = 1.

Suppose K is a convex subset of (0, 1)d with λd(K ) > ε. Since the measure of K is
positive, we can assume that K is a convex body of measure at least ε. By Lemma 3.5,
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the convex body K contains a d-dimensional ellipsoid E with λd(E) � ε/dd = 1
r .

Therefore E ∩ N 
= ∅. Since we have E ⊆ K and N ∩ S = ∅, we see that K is not a
subset of S. In other words, we have c(S) � ε.

By Lemma 3.3, we have bd(S) � 1
2n . According to the choice of n and r , the term

1
2n is bounded from below by

1

4
(d+2

d

)
r log2 2r

= ε

4
(d+2

d

)
dd log2 (2dd/ε)

� 1

8
(d+2

d

)
dd

· ε

log2 1/ε
,

where the last inequality follows from the estimate 2dd � 1/ε. This completes the
proof of Theorem 1.6. ��

It is a natural questionwhether the bound for bd(S) in Theorem 1.6 can be improved
to bd(S) = Ω(c(S)). In the plane, this is related to the famous problem of Danzer and
Rogers (see [5,14] and Problem E14 in [7]) which asks whether for given ε > 0 there
is a set N ′ ⊆ (0, 1)2 of size O( 1

ε
) with the property that every convex set of area ε

within the unit square contains at least one point from N ′.
If this problem was to be answered affirmatively, then we could use such a set N ′

to stab (0, 1)2 in our proof of Theorem 1.6 which would yield the desired bound for
b2(S). However it is generally believed that the answer is likely to be nonlinear in 1

ε
.

3.3 A Set with Large k-Index of Convexity and Small Convexity Ratio

Proposition 3.7 For every integer d � 2, the set S := [0, 1]d �Q
d satisfies c(S) = 0

and bk(S) = 1 for every positive integer k < d.

Proof Since Q
d is countable and λd([0, 1]d) = 1, we have λd(S) = 1. Every

convex subset K of [0, 1]d with positive d-dimensional measure contains an open
d-dimensional ball B with positive diameter, as there is a (d + 1)-tuple of affinely
independent points of K . Since Q

d is a dense subset of R
d , we see that B ∩ Q

d 
= ∅
and thus c(S) = 0.

It remains to estimate bk(S). By Fubini’s Theorem, we have

bk(S) =
∫

(B1,...,Bk )∈Sk
λd({A ∈ S : Conv({B1, . . . , Bk, A}) ⊆ S})

λd(S)k+1 .

If A is a point of S such that Conv({B1, . . . , Bk, A}) is not contained in S, then A
is a point of the affine hull Aff({B1, . . . , Bk, Q}) of B1, . . . , Bk and some Q ∈ Q

d .
Therefore, bk(S) is at least

∫

(B1,...,Bk )∈Sk
λd

([0, 1]d) − λd
(⋃

Q∈Qd Aff({B1, . . . , Bk, Q}))

λd(S)k+1 .

A countable union of affine subspaces of dimension less than d has d-dimensional
measure zero and we already know that λd(S) = 1 = λd([0, 1]d), hence bk(S) = 1.

��
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4 Other Variants and Open Problems

We have seen in Theorem 1.3 that a p-componentwise simply connected set S ⊆ R
2

whose b(S) is defined satisfies b(S) � α c(S), for an absolute constant α � 180.
Equivalently, such a set S satisfies smc(S) � b(S)λ2(S)/180.

By a result of Blaschke [4] (see also Sas [18]), every convex set K ⊆ R
2 contains

a triangle of measure at least 3
√
3

4π λ2(K ). In view of this, Theorem 1.3 yields the
following consequence.

Corollary 4.1 There is a constant α > 0 such that every p-componentwise simply
connected set S ⊆ R

2 whose b(S) is defined contains a triangle T ⊆ S of measure at
least α b(S)λ2(S).

A similar argument works in higher dimensions as well. For every d � 2, there is a
constant β = β(d) such that every convex set K ⊆ R

d contains a simplex of measure
at least βλd(K ) (see e.g. Lassak [12]). Therefore, Theorem 1.5 can be rephrased in
the following equivalent form.

Corollary 4.2 For every d � 2, there is a constant α = α(d) > 0 such that every set
S ⊆ R

d whose bd(S) is defined contains a simplex T ofmeasure at least α bd(S)λd(S).

What can we say about sets S ⊆ R
2 that are not p-componentwise simply con-

nected? First of all, we can consider a weaker form of simple connectivity: we call a
set S p-componentwise simply �-connected if for every triangle T such that ∂T ⊆ S
we have T ⊆ S. We conjecture that Theorem 1.3 can be extended to p-componentwise
simply �-connected sets.

Conjecture 4.3 There is an absolute constant α > 0 such that every p-componentwise
simply �-connected set S ⊆ R

2 whose b(S) is defined satisfies b(S) � α c(S).

What does the value of b(S) say about a planar set S that does not satisfy even aweak
form of simple connectivity? As Proposition 3.7 shows, such a set may not contain
any convex subset of positive measure, even when b(S) is equal to 1. However, we
conjecture that a large b(S) implies the existence of a large convex set whose boundary
belongs to S.

Conjecture 4.4 For every ε > 0, there is a δ > 0 such that if S ⊆ R
2 is a set

with b(S) � ε, then there is a bounded convex set C ⊆ R
2 with λ(C) � δλ(S) and

∂C ⊆ S.

Theorem 1.3 shows that Conjecture 4.4 holds for p-componentwise simply con-
nected sets, with δ being a constant multiple of ε. It is possible that even in the general
setting of Conjecture 4.4, δ can be taken as a constant multiple of ε.

Motivated by Corollary 4.1, we propose a stronger version of Conjecture 4.4, where
the convex set C is required to be a triangle.

Conjecture 4.5 For every ε > 0, there is a δ > 0 such that if S ⊆ R
2 is a set with

b(S) � ε, then there is a triangle T ⊆ R
2 with λ(T ) � δλ(S) and ∂T ⊆ S.
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Note that Conjecture 4.5 holds when restricted to p-componentwise simply con-
nected sets, as implied by Corollary 4.1.

We can generalize Conjecture 4.5 to higher dimensions and to higher-order indices
of convexity. To state the general conjecture, we introduce the following notation: for
a set X ⊆ R

d , let
(X
k

)
be the set of k-element subsets of X , and let the set Skelk(X)

be defined by

Skelk(X) :=
⋃

Y∈( X
k+1)

Conv(Y ).

If X is the vertex set of a d-dimensional simplex T = Conv(X), then Skelk(X) is
often called the k-dimensional skeleton of T . Our general conjecture states, roughly
speaking, that sets with large k-index of convexity should contain the k-dimensional
skeleton of a large simplex. Here is the precise statement.

Conjecture 4.6 For every k, d ∈ N such that 1 � k � d and every ε > 0, there is
a δ > 0 such that if S ⊆ R

d is a set with bk(S) � ε, then there is a simplex T with
vertex set X such that λd(T ) � δλd(S) and Skelk(X) ⊆ S.

Corollary 4.2 asserts that this conjecture holds in the special case of k = d � 2,
since Skeld(X) = Conv(X) = T . Corollary 4.1 shows that the conjecture holds for
k = 1 and d = 2 if S is further assumed to be p-componentwise simply connected. In
all these cases, δ can be taken as a constant multiple of ε, with the constant depending
on k and d.

Finally, we can ask whether there is a way to generalize Theorem 1.3 to higher
dimensions, by replacing simple connectivity with another topological property. Here
is an example of one such possible generalization.

Conjecture 4.7 For every d � 2, there is a constant α = α(d) > 0 such that if
S ⊆ R

d is a set with bd−1(S) defined whose every p-component is contractible, then
bd−1(S) � α c(S).

A modification of the proof of Theorem 1.5 implies that Conjecture 4.7 is true for
star-shaped sets S.
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