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ON THE BEHAVIOR NEAR THE CREST 
OF WAVES OF EXTREME FORM 

C. J. AMICK AND L. E. FRAENKELI 

ABSTRACT. The angle </> which the free boundary of an extreme wave makes with the 
horizontal is the solution of a singular. nonlinear integral equation that does not fit 
(as far as we know) into the theory of compact operators on Banach spaces. It has 
been proved only recently that solutions exist and that (as Stokes suggested in 1880) 
these solutions represent waves with sharp crests of included angle 2'1T/3. In this 
paper we use the integral equation. known properties of solutions and the technique 
of the Mellin transform to obtain the asymptotic expansion 

h 

(0) <I>(s) = ~ + L ans~" + O(S~A) as s to. 
11=1 

to arbitrary order; the coordinate s is related to distance from the crest as measured 
by the velocity potential rather than by length. The first few (and probably all) of the 
exponents ILn are transcendental numbers. We are unable to evaluate the coefficients 
an explicitly. but define some in terms of global properties of </>. and the others in 
terms of earlier coefficients. It is proved in [8] that al < O. and follows here that 
a2 > O. The derivation of (*) includes an assumption about a question in number 
theory; if that assumption should be false. logarithmic terms would enter the series 
at very large values of n. 

1. Introduction. This paper concerns gravity waves, of permanent and extreme 
form, on the free surface of an ideal liquid, the flow being two-dimensional, 
irrotational, and in a vertical plane. By a wave of extreme form we mean one that is 
the "largest" member of a one-parameter family of such waves, and is characterized 
by a sharp crest of included angle 2'17/3, as shown in Figure l(a). The existence of 
such waves was conjectured by Stokes in 1880 and has been proved recently. (For a 
fuller account, see the introduction to [1].) 

Letting cp denote the local wave angle (that is, the angle which the free boundary 
makes with the horizontal; cp(s) = tan-1y'(x) in the notation of Figure 1), we shall 
seek the behavior as s ~ 0 of a solution cp of the equation 

(1.1) cp ( s) = .l 1" K ( s, t ) v ( t ) si~ cp ( t) dt, 
3 0 f~ v smcp 

0< s ~ '17, 
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FIGURE 1. Images by various conformal maps of one period of the flow domain, say - p, ~ x < jA, 
y < Y( x), for the case b = 1 of periodic waves in liquid of infinite depth. (a) The physical plane, that of 
~ = x + iv: (b) plane of the complex potential X = <It + i'l': (c) plane of ~ = pe"', showing the variable s 
in (1.1): (d) plane of w = II + it showing the variable ~ in (2.1). 
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BEHAVIOR NEAR THE CREST OF WAVES OF EXTREME FORM 275 

where 

K( ) 11 tan!s + tan!t s, t = - og 
'TT I tanh - tan!t I 

and 

v(t) = Hcos 2!t + bsin2!tr 1/ 2 

for some b E [0,1] which we regard as fixed henceforth. Here fr{ v sin <t> stands for 
fciv(u)sin<t>(u)du; such abbreviations will be used throughout the paper. Equation 
(1.1) refers only to waves of extreme form; the end-value of a parameter has already 
been chosen. The significance of the weighting function v is that v(s) = -ca<l> las, 
where C is a positive constant and <l> denotes the velocity potential; the constant b 
distinguishes the families mentioned earlier: b = ° corresponds to solitary waves (of 
infinite wavelength and in liquid of finite depth), b E (0,1) to periodic waves in 
liquid of finite depth, and b = 1 to periodic waves in liquid of infinite depth. 

By a solution of (1.1) we mean a function <t> satisfying the equation pointwise and 
such that 

(1.2) ° < <t>( s) < 'TT 12 on (0, 'TT), <t>( 'TT) = 0, <t> is real-analytic on 
(0, 'TT], and <t>(s) ~ 'TT16 as s ~ 0. 

Such solutions are now known to exist [1, 2, 3, 7, 13]. 
There have been many proposals for calculating the shape of the free boundary of 

an extreme wave by a combination of analytical and numerical methods (long lists of 
references are given in [5 and 14]). Such calculations were given a new direction by 
Grant [4], who sought the second term of an asymptotic expansion of z(X) for 
X ~ ° (here z = x + iy denotes the complex coordinate in the physical plane, and 
X = <l> + i'l' the complex potential), the first term being given by Stokes's corner 
flow. Grant pointed out that the second term must have an exponent that is 
irrational and" probably transcendental"; he concluded that" the structure near the 
corner is considerably more complicated than has been assumed in the past". 
Norman [9] contemplated terms beyond the two considered by Grant; inferred the 
nature of all the exponents; introduced the assumption that the numbers Pi' defined 
after (1.3) below, are linearly independent over the rationals; and established certain 
relationships between the coefficients of the series. (However, it seems that no 
coefficient after the first can be calculated by a merely local analysis.) Longuet-
Higgins and Fox [5, 6] used the exponents and functions arising in the work of 
Grant and Norman as one part of their theory of waves near an extreme one (the 
crest being smooth but of very large curvature). 

All these calculations were heuristic rather than rigorous; in particular, Grant [4] 
and Norman [9] were concerned only to find analytic functions z(X) that satisfy the 
nonlinear boundary condition of the problem in an asymptotic sense as <l> ~ 0. In 
this paper we proceed from (1.1) and (1.2) to prove that, subject to an assumption 
about a question in number theory to be explained presently, 

00 

(1.3) <t>(s) - ~ + L ans/Ln ass ~ 0. 
n~l 
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276 C J. AMICK AND L. E. FRAENKEL 

The exponents Il n depend on the positive zeros /31' /32' /33"'" with /3j < /3j+l' of 
/3 (1 + /3) - tan(/3'77" /2); the /3j are essentially the numbers discovered by Grant [4], 
and /31 = 0.8027, /32 = 2.9066. As Grant thought probable, and as we prove in the 
Appendix, each /3j is a transcendental number. Each exponent Il n is a finite linear 
combination, with positive integer coefficients, of numbers in the set {2, /31' /32" .. }, 
and contains at least one /3j. The Il n are ordered by Il n < Iln+l (as the symbol - of 
asymptoticity in (1.3) implies); the first few are /31' 2/31' 3/31' /31 + 2, /32' 4/31' 
2/31 + 2, /31 + /32,5/31,3/31 + 2,2/31 + /32'···· 

The assumption made in the derivation of (1.3) is stated precisely in §4; here we 
remark that it certainly holds if the set {I, /31' /32" .. } is linearly independent over 
the rationals. Moreover, numerical calculation indicates that the assumption is true 
for the first hundred of the slightly larger set of exponents arising in the derivation 
of (1.3). If the assumption should be false, then our method would still be 
applicable, but logarithmic terms an.jsl'''(logs)m"" with m n . j a positive integer, 
would enter the series at large values of n. 

We cannot evaluate the coefficients an in (1.3) when Iln E {/31,/32,/33""}; we 
define such coefficients by integrals involving the global behavior of </>. When 
Il n $. {/31' /32' /33"" }, the corresponding coefficient an is determined by the previ-
ous coefficients a1, ... , an-I; this agrees with Norman's results in [9]. The unplea-
sant possibility that all the an = 0 (not disproved in the present paper, although 
contrary to numerical evidence in [6 and 14]) is ruled out by McLeod's important 
result [8] that a 1 < 0, which is discussed further in Remark 2 before Theorem 3.3. It 
follows from this result and Theorem 3.3 that a 2 > O. 

The expansion (1.3) can be transformed and integrated to yield 

(1.4) as X -> 0, 

where the constant g is the gravitational acceleration, arg(ix) E [-'77"/2, '77"/2], and 
the coefficients bn are real. If the set {l, /31' /32' ... } is linearly independent over the 
rationals, then bn = 0 whenever the linear combination defining Iln contains a 
multiple of 2. The expansion (1.4) is then of the form proposed by Norman [9], if we 
interpret liberally certain tentative remarks in that paper (for example, that it is 
"possible to consider solutions ... corresponding to combinations of terms from 
several roots" of /3(1 + /3) = tan(/3'77"/2)). 

The plan of the paper is as follows. We begin §2 by making the transformation 
~ = tan!s, I/;(~) = </>(2 tan-l~) in order to obtain a kernel ka,1)) that is simpler 
than K(s, t). (Note that, in effect, we map the unit disk in the plane of ~ = pelS 
onto the half-plane {w = (J + i~: (J < O} by the conformal transformation w = 

(~ - 1)/(~ + 1).) Since </>(s) = I/;(tan!s), an asymptotic expansion of I/;(~) for 
~ -> 0 yields one of </>( s) for s -> O. The next step is less obvious; we cast the 
integral equation (2.1) for I/;(~) into a form, (2.10), that contains an elaborate 
nonlinearity but has the virtue of allowing us to construct the expansion of I/;(~) by 
an inductive process. To begin this process, we show that I/;(~) - '77"/6 = Oao:) for 
some a E 0, n 
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BEHAVIOR NEAR THE CREST OF WAVES OF EXTREME FORM 277 

In §3 we combine this preliminary estimate with the use of the Mellin transform 
to show first that 

(1.5) 

for any / E (PI' 1), and then that this result implies the improved approximation 

(1.6) tP(O = 7T/6 + Aiel + A2ef3l + o(~m) as ~ ~ 0 

for any m E (2P1' PI + I); here A2 is a known function of AI. 
The step from (1.5) to (1.6) points the way to the long inductive proof, in §4, of 

the main results of the paper, which appear in Theorem 4.5 and Corollaries 4.6 and 
4.7. The Appendix concerns some properties of the numbers /3j. 

2. Preliminary transformations and estimates. Under the transformation ~ = tanh, 
'T/ = tantt and tP(~) = </>(2 tan-1~) = </>(s), equation (1.1) becomes 

(2.1) tP(O = 1..3100 k(~,'T/) wj'T/)sin.tP~'T/) d'T/, 0 < ~ < 00, 
o 0 wsm 

where 

By a solution of (2.1) we mean a function tP satisfying (2.1) pointwise and such that 

o < tPa) < 7T/2 on (0, 00), tP(~) = O(~-l) as ~ ~ 00, 
tP is real-analytic on (0,00), and tP(~) ~ 7T/6 as ~ ~ o. (2.2) 

It is to be understood henceforth that ~ E (0, 00). Occasionally we set ~ = 0, with 
the implication that tP(O) = 7T/6 and tP E qo,oo) (even though in the original 
problem tP is an odd function on R \ {O}). 

Combining (2.1) and the formula [1, p. 197] 

1 100 1 7T 3" 0 k(~,'T/)-;;jd'T/ = 6' 
we obtain 

tP (~) - ~ = } 1000 k( t 'T/) dd'T/ log{ ~ f w sin tP } d'T/, 

for any constant C > O. Define 

(2.3) y(0=tP(0-7T/6, (Ey)('T/) = 2w('T/)sin{7T/6 + y('T/)}; 
then 

(2.4) 11 00 d { 1111 } yeo = 3" 0 k(~,'T/) d'T/log -;;j 0 Ey d'T/. 

Our next transformation of the equation is more elaborate; it involves the 
integrated kernel (used extensively in [1]) 

q ( t 'T/) = 1~ k ( t , 'T/) dt = 1.. {OOg ~ + 'T/ + 'T/ log I e ~ 'T/ 2 1 } , 

o 7T I~-'T/I 'T/ 
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278 C. J. AMICK AND L. E. FRAENKEL 

with 

_ 1 Ie - lj21 
q,,(tlj) - -log 2 ' 

'IT lj 

and the nonlinear operator F defined by 

(2.5a) (Fy)( lj) = log{ ~ 10" Ey} + lj(~Yl~ lj) - 1 

(2.5b) = :lj[ljIOg{~la1JEY}]. 
The function Fy is important throughout the paper; we note its behavior for lj ~ 0 
and for lj ~ 00. By definition (2.3), 

(2.6) (Ey)(lj) = 1 + V3y(lj) + O(y(lj)2 + lj2) as lj ~ 0, 
and it follows from either form of (2.5) that 

(2.7) (Fy)(lj) = V3y(lj) + O(y(lj)2+ lj2) aSlj~O. 

We claim that 

(2.8) 0 < f Ey ~ 1" Ey ~ const., 1 ~ lj < 00, 
o 0 

where the constant depends on y. The lower bound follows from (2.6), in which 
y(lj) ~ 0 as lj ~ 0, and because (Ey)a) > 0 on (0,00) by (2.2). For the upper 
bound we have 

by [3, p. 657], if bE (0,1], and by [2, Theorem 4.7(a)], for the case b = 0 of a 
solitary wave. Also, lj(EY)(lj) is bounded because w(lj) = O(lj-l) as lj ~ 00; hence 
(2.5a) and (2.8) show that 

(2.9) I(Fy)(lj) I ~ const.loglj, 2 ~ lj < 00. 
LEMMA 2.1. If'lT/6 + y is a solution of (2.1), then 

(2.10) 1100 y(O="3 o r(tlj)(Fy)(lj)dlj, o < ~ < 00, 

where 

_ l _ ~ Ie - lj21 
(2.11) ra,lj)--~q,,(tlj)--'lT~log lj2 

PROOF. With the notation (2.3), equation (2.1) becomes 
'IT 1100 (Ey)(lj) 6 + ya) = "3 0 k(t lj) fo" Ey dlj. 

Differentiation of this with respect to ~ is legitimate if the resulting integral is 
written as a Cauchy principal value; noting that ~k~a, lj) = -ljk"a, lj), and in-
tegrating by parts, we obtain 

(2.12) 
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BEHAVIOR NEAR THE CREST OF WAVES OF EXTREME FORM 279 

where the integral exists by the properties (2.2) of I/; == 'IT /6 + Y and because 
1/;'(1/) = 0(1/-1) as 1/ -> ° (see [7]). We add (2.4) and (2.12), refer to the definition 
(2.5a) of Fy, and integrate with respect to ~; there results 

11 00 d h(~)= 3" 0 q(t1/) d1/(FY)(1/) d1/. 

We may integrate by parts because (for fixed ~ E (0,00), as elsewhere) q(~, 1/) is 
O( 1/ log 1/1/) as 1/ --> 0, and is O( 1/-1) as 1/ --> 00, and because we have the estimates 
(2.7) and (2.9) for Fy. Accordingly, 

1100 
h(~) = -3 0 q'1(t1/)(FY)(1/)d1/, 

and this is (2.10). 

LEMMA 2.2. 1/ 'IT / 6 + y is a solution 0/ (2.1), then there exists an exponent a E (t, ~) 
such that ya) = Oaa) as ~ -> 0. 

PROOF. In this proof we abbreviate (FY)(1/) to Fy(1/), and similarly for other 
functions of the same kind. 

(i) For any c E (0,1], let ~ E (0, c] and rewrite (2.10) as 
1 c 

(2.13a) y(O = 310 r(t 1/)Fy( 1/) d1/ + Ry(t c), ° < ~ < c, 

where, in view of (2.7) and (2.9), 

(2.13b) IRy(~,c)1 =I~ ~oo r(t1/)Fy(1/)d1/1 

{ 211 Ie 211 00 ~ } < const. ~ ~ log ~ 1/ d1/ + ~ 1/2 log 1/ d1/ 

< const.{ foo log+- du + ~lOO 10~ 1/ d1/} 
c/~ u - 1 2 1/ 

~ < const.-, 
c 

where the constant depends on y but is independent of c. It is natural to define 

G y ( 1/) = 2 sin { 'IT / 6 + Y ( 1/)} - 1; 

then G/ 1/) - v'3 y( 1/) as 1/ --> ° and y( 1/) -> 0, and, by definition (2.3), 

Ey(1/) = w(1/){l + Gy(1/)} = 1 + Gy(1/) + 0(1/2 ) as 1/ --> 0. 

Moreover, we can so define Uy' ~, and Wy that 
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280 C. J. AMICK AND L. E. FRAENKEL 

then 

as 1/ ~ 0, 

and 

where (\( 1/) = O( 1/2 ) as 1/ ~ 0. 
Finally, define a linear operator L on the space qo, c] by 

( 2.15) ( LI ) ( ~) = ~ { r ( t 1/ ) [ { Vy ( 1/) - U/ 1/) - G y ( 1/ ) Uy ( 1/ ) } 

X ~ 10'1 Wyl+ W/1/)/(1/)] d1/, 

and the integral equation (2.13) becomes 

(2.16a) ° < ~ ~ c, 

where 

(2.16b) 

because 

(ii) For every e E (0, i], choose c = c(e) so small that 

this is possible by (2.14). For any a E [0,1) and any e E (0, H define the Banach 
space 

Xa = Xa(c(e)) = {IE C[O,c(e)]: 1I/IIa < oo}, 
where 

1I/IIa = sup ~-al/(O I. 
0< ~ < elf) 

Consider the linear operator L defined by (2.15); we wish to show that L maps 
Xa into itself, for e sufficiently small and for some a > ~, and that 

II L II(a) == sup II Lilia < 1. 
IE x. \{O} II Ilia 
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It is easy to show that Lf E qo, c(e)l when f E X"' and we estimate IlL/II" as 
follows. 

I(Lf)(g)l,;;; ~{(f)lr(t1))I[e(I:e) {'If I +(1 +e)lfl]d1) 

,;;; ~ (1 + e)llfll,,{'(f)lr(t1)) I( 1: a 1)" + 1)") d1) 

,;;; ~7T (1 + e)(1 + 1: a )llfll,,{X: tl lOg le;Z 1)21 11)"d1) 

= ~7T(I+e)(I+ l:a)llfll"g"1aocIIOgll~2u21Iu"dU, 

where ° < g ,;;; c( e). It follows that 

where 

= _1_{1°O log u 2 u"du + 2i1/1i 10gl- u 2 UadU}. 
{37T 0 11 - u2 1 0 u2 

The first of these two integrals is evaluated in §3, see (3.11a); in the second, we set 
u = l/x and integrate by parts; then 

(2.18) 

To obtain a simple majorant, replace x" by 1 in the last integral, which is then easily 
evaluated; thus 

1 { a7T 4 M } p,(a),;;; {3 tan-2 + -log(1 + v2) = r(a), say. 
3(I+a) 7T 

Now rn) < 0.82, r(t) > 1.16 and r'(a) > ° on (0,1); hence there exists a number 
a E n, t) such that p,(a),;;; r(a)';;; r(a) < 1 for all a E [0, al. If we choose e 
sufficiently small, then IILII(,,) < 1 for all a E [0, ill. 

(iii) With e and c = c(e) now fixed, the estimate (2.16b) of Sy may be written 
Sy(g) = O(g) as g ~ 0. Hence Sy E X" for all a E [0,1), and so the equation 
f(O = (Lf)(O + Sy(O has a unique solution f" E X" for each a E [0, ill. Since 
X" c Xo' these solutions are identical; in other words, f" = fo for all a E [0, ill 
because each f" E Xo. We know that y E Xo and satisfies (2.16a), whence y = fo E 

X" for all a E [0, ill. In particular, y E Xli' so that il may be chosen as the exponent 
in the statement of the lemma. 
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REMARK. A more careful treatment of the integral in (2.18) is not worthwhile, 
because we shall see from Lemmas 3.1 and 3.2 that the best possible exponent is the 
number /31 introduced after (1.3), so that 

1 /317T ----tan- = 1, 
/3(1 + /31) 2 

and the left-hand member of this equation corresponds to only the first term of p. (0:) 
in (2.18). 

3. The asymptotic expansion of H~) to three terms. Our observation in (2.7) that 
(Fy)( 1/) - /3 y( 1/) as 1/ ~ ° suggests that the integral equation (2.10) be written 

(3.1 ) ° < ~.::; 1, 

where 

From (2.7) and Lemma 2.2 we have 

(FY)(1/) - /3Y(1J) = O(1/2a) as 1J ~ 0, with 0: E (1, t), 
and it follows (by an estimate like (2.17) for the first integral in (3.2), and an 
estimate like (2.13b) for the second) that Py(~) = O(~) as ~ ~ 0. 

All the results to come will be consequences of (3.1) and (3.2). Our plan is to 
bootstrap from some expansion of I/;(~) for ~ ~ ° (at present, 7T /6 + O( ~a» to an 
estimate of p/~) (at present, O( 0), and then to derive a more complete expansion 
of I/;(~) from (3.1), regarded as a linear equation for y in which Py is "known". The 
proof by induction in §4 will follow this program to exhaustion; without the more 
explicit first steps in this section, it would probably be incomprehensible. 

The Mellin transform [12, p. 7] will be our main tool for analysis of (3.1). Let f be 
piecewise continuous on (0, (0), define cp(x, s) = xS-1f(x) for x > 0, where s = a 
+ it E C, and assume that cp(., s) E LI (0, 00) for a < a < b. Then, for s in this 
strip, we define the Mellin transform j of f by 

(3.3) j(s) = 100 xS-1f(x) dx; 
o 

we also write this as j(s) ;=' f(x). Note that j is analytic in the strip Res E (a, b). 
The inversion formula [12, p. 46] is 

(3.4) 
1 j("+;OO A 

f(x) = 27Ti ("-;00 x-sf(s) ds, a < C < b, 

at points of continuity of f. The product formula [12, p. 54] is 

(3.5) j(-s + A)g(s + B);=' x B 1000 UA+B-1f(u)g(xu) du, 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BEHAVIOR NEAR THE CREST OF WAVES OF EXTREME FORM 283 

provided that l(-s + A) and g(s + B) have a common strip of convergence. 
Finally, we record the following property [12, p. 118] of the Mellin transform. 

100 dx 
If IX"f(x)IP- < 00 for some a E (a,b) and some 

o x 
p E (1,2), then lea + i·) E L;(-oo, 00), where l/p + 1/p'= 1. 

(3.6) 

To evaluate certain contour integrals arising from (3.4), and to state our theorems, 
we shall need the following lemma, a variant of which has already been given in [5] 
for a different purpose. The significance of the exponents /3j in the lemma is evident 
from the observation (a particular case of Lemma 4.2) that, if 13(1 + /3) = 

tan( /3'17 /2) and /3 > -1, then 

(3.7) 1 11 13 0 r(tll)TJPd1)=e+a(O, ° < ~ ~ 1, 

where a(~) is O(~) and real-analytic on [0,1), and contains only odd powers of ~ in 
its Taylor series about the origin. In other words, the linear integral operator in (3.1) 
leaves (he functions e J almost invariant, merely adding to them such functions a, and 
these latter turn out to be unimportant. 

LEMMA 3.1. The only zeros of 13(1 - s) + tan( S'17 /2) in the half-plane Re s < 1 
are simple zeros on the negative real axis. We denote such points by s = -/3), 
j = 1,2,3, ... , with /3) < /3)+l" Then /3) E (2j - 2, 2j - 1) for all j, and /3) = 2j -
1 + O(j-I) as j ~ 00 (the O-term is negative). Also, 

/31 "'" 0.8027, /32::::: 2.9066, /33::::: 4.9383. 

PROOF. Set s = 1 - 2z/'17 and z = x + iy; we have to solve 

(213 /'17)z + cotz = 0, x> 0, 

or equivalently, since no zero or pole of tan z is a solution, 

z tan z = -'17/213, x > 0. 
If this equation has a solution with y -=f. 0, then the imaginary part of the equation 
gives 

(sinh2y)/2y = -(sin2x)/2x, 
which is impossible (because (sinh2y)/2y > 1, while -(sin2x)j2x ~ ° for ° < x 
~ '17/2 and -(sin 2x )j2x < 1/'17 for x > '17/2). The remaining assertions now follow 
from elementary analysis of the points where the graphs of tan x and of -'17/213 x 
intersect, for x > 0. 

LEMMA 3.2. If t/; is a solution of (2.1), then 

t/;(~) = '17/6 + AI~Pl + O(e) as ~ -> 0, 
for some constant Al and any IE (/31,1). Here /31 is as in Lemma 3.1. 

PROOF. (i) Define 

g(~) = {y(~), 
0, 

° ~ ~ ~ 1, 
l<t 
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and 

° ~ ~ ~ 1, 

I<t 

so that (3.1) becomes 

o<~<oo, 

since the integrand is zero for 11 > 1, and both sides are zero for ~ > 1. Setting 
11 = ~u, we arrive at a form suitable for the Mellin transform: 

(3.8a) 1 roo 
g(~) = f3 Jo R(u)g(~u) du + he~, o<~<oo, 

where 

(3.8b) 1 11 - u 2 1 R(u) = reI, u) = --log 2 • 
'TT U 

Because of the plethora of notation, we emphasize that g is a truncated form of 
Y = I/; - 'TT /6, that h (g) is presumably of smaller order than g(g) as ~ --+ 0, and that 
the dependence of h on Y is now implicit. 

(ii) The term h(~) may be estimated as follows. Let a E (t, i) be the exponent in 
Lemma 2.2; then for ~ > 2 (and hence u ~ ~ when we set 11 = ~u) 

1 r1 Ih(OI ~ f3 Jo Ir(t1l)IIY(1I)l d 1l 

~ const. ~a f/~IIOg 11 ~2U211ua du 

l l/~ 1 
~ const. e log- u a du 

o u 

~ const. ~-llogt 

and for 1 ~ ~ ~ 2 the integral is bounded by a constant. Since p/O = O(~) as 
~ -> 0, we have 

(3.9) { const.~, 
Ih(~)1 ~ const.~-l(I + log~), 

° ~ ~ ~ 1, 
1 <~. 

It follows that h(s) exists and is analytic for -1 < (] < 1, where s = (] + it, and 
from (3.6) that 
(3.10) h((] + i·) E Lp'(-oo, 00) for all (] E (-1,1) and all p' > 2. 

(iii) To find the Mellin transform of the function R in (3.8), we recall that our 
original kernel in (2.1) was 
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and note from [12, p. 192], that (with s = 0 + it) 

100 1 S17 
o uS - 1k(l, u) du = -;tan 2' -1 < 0 < 1. 

Setting u = 1//g for fixed g E (0, (0), multipying both sides by gs, and then 
integrating with respect to g, we obtain 

100 gs+l S17 
o 1/s-1q(t1/)d1/ = s(s + 1) tan 2 , -1 < 0 < 1. 

We may integrate by parts because 1/Sq(g,1/) is O(1/0+110g 1/1/) as 1/ ~ 0, and is 
O( 1/0-1) as TJ ~ 00, and there results 

100 S gs+l S17 
- 0 TJq'l(t1/)dTJ = S + 1 tan 2 , -1 < 0 < 1. 

Set TJ = gu and s = z - 1; then 

1100 z- 11 11-u21d _1 (z-I)17 
- - U og 2 U - - tan 2 ' 17 0 U Z 

(3.11a) 0< Rez < 2, 

that is, 

(3.11b) RA ( ) _ 1 (z - 1)17 
Z - -;tan 2 ' 0< Rez < 2. 

(iv) We are now in a position to take the Mellin transform of the integral equation 
(3.8a). By Lemma 2.2, g(g) = O(ga) as g ~ 0, with a E (t ~); therefore g(s) exists 
and is analytic for 0 > -a. We have just shown that h(s) and R( -s + 1) exist and 
are analytic for -1 < 0 < 1. Hence, if -a < 0 < 1, we may apply the Mellin 
transform to (3.8a) and use the product formula (3.5) with A = 1 and B = 0: 

g(s) = (1/V3)R(1 - s )g(s) + h(s), -a < 0 < 1, 

or, equivalently, 

(3.12) 

where 

(3.13) 

g(s) - h(s) = Q(s)h(s), -a < 0 < 1, 

tan(s17/2) R(1 - s) 
Q(s) = 13 - R(1 - s) 13(1 - s) + tan(s17/2)' 

The inversion formula (3.4) gives, for all g E (0,00) \ {I}, 

(3.14) g(g) - h(g) = 2~i ~~~~oo g-sQ(s )h(s) ds, -a < C < 1. 

(v) Let g E (0,1), so that g(g) = y(O- Since h(g) = O(g) as g ~ 0, it suffices to 
show that the right-hand side of (3.14) behaves like A1g.Bl + O(g') for some constant 
Al and any I E (/31,1). We prove this by moving the path of integration as far to the 
left as our knowledge of h allows, and taking the residue at any pole of the integrand 
between the path in (3.14) and the new one. The details are as follows. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



286 C. J. AMICK AND L. E. FRAENKEL 

Given c E (-0:,1) and I E (PI' 1), define r M to be the (positively directed) 
rectangular contour with corners at c ± iM and -I ± iM for some large M > 0, and 
consider the contour integral 

1 1 A ~ ~-SQ(s }h(s} ds. 
7TI 'M 

The contribution of the horizontal parts (-I ~ (J ~ c, t = ± M) of r M tends to 
zero as M -> 00, because (a) I~-si = ~-(J with ° < ~ < 1; (b) the fact that tan(s7T/2) 
-> ±i as t -> ± 00 with (J fixed implies, in view of (3.13), that Q(s) = O(t-1); (c) 
the Riemann-Lebesgue lemma, applied to the definition integral (3.3) of h (s), shows 
that h (s) -> ° as t -> ± 00 with (J fixed. 

Since h(s) is analytic for -1 < (J < 1, we conclude from (3.13) and Lemma 3.1 
that the only singularity of ~-sQ(s)h(s), with -1 < (J < 1, is a simple pole at 
s = -Pl' Accordingly, 

2~i{~~~~~ - f~~~~~ ~-sQ(s)h(s}ds} 

(3.15) 

and so 

(3.16) 

We bound this last integral (without the factor e/27T) by means by Holder's 
inequality, noting that Q(-I + i· ) E L 3/ 2(-00, (0) because Q(s) = O(t-1) as t -> 

± 00, and that h( -I + i . ) E L 3 ( -00,(0) by (3.10). As we remarked earlier, the 
desired result now follows, because g(O = y(~) for ~ ~ 1 and h(O = O(~) as 
~ -> 0. 

REMARKS. 1. As was to be expected from (3.1) and (3.7), we cannot evaluate the 
coefficient Al in Lemma 3.2; in (3.15) we have defined it in terms of the global 
behavior of y. 

2. McLeod [8] has observed that the logarithm in the integral equation (2.4) is 
always less than its leading term for '/) -> 0: by (2.3), 

log{ ~ f EY} < ~ f Y for all'/) > 0, 

and has deduced thereby that Al < 0. This result has two important consequences 
for the present theory, as follows. (a) As was mentioned in the introduction, the fact 
that Al i= ° ensures that our asymptotic approximations to yare not identically 
zero. (b) Lemma 3.2 and analysis of the equation that results from differentiation of 
(2.1) imply that ~lj;'a) = A1P1~fJl + Oal); therefore, the result Al < ° is consistent 
with Stokes's conjecture (see [1, pp. 194 and 199]) that the profile of an extreme 
wave is strictly convex between the crest and the trough, in other words, that lj; (~) is 
decreasing on (0, (0). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BEHA VIOR NEAR THE CREST OF WAVES OF EXTREME FORM 287 

The earlier numerical calculations in [6] (equation (2.10), with the value B = 0.l31 
on p. 776) and in [14, Table 1] are in accord with McLeod's result; they give hI > ° 
in (1.4), which corresponds to Al < 0. 

3. The term A 2ePI in our next result has a character quite different from that of 
AI~PI; instead of arising from (3.7), it arises from terms that are essentially squares 
of the first perturbation, and so A2 is determined uniquely by AI. 

THEOREM 3.3. If I/; is a solution of (2.1), then 

1/;(0 = 7T/6 + AIgtJI + A 2ePl + o(~m) as ~ ~ 0, 

for any m E (2f31' f31 + I). Here AI' f31 and I are as in Lemma 3.2, so that IE (f3I' 1), 
and 

PROOF. We shall use the notation in the proof of Lemma 3.2, and shall begin by 
showing that the previous estimate (3.9) of h can be sharpened, by means of the 
result of Lemma 3.2, to 

(3.17a) 

(3.17b) 

h(~) = CI~ + C2ePl + O(~Pl+/), ° ~ ~ ~ 1, 

Ih(~)1 ~ const.~-I(1 + logO, 1 <~, 

where CI is a constant of no interest, because ultimately it will drop out of the 
integral equation, and C2 is a constant that is known in terms of AI. With this 
estimate in hand, we can move the path of integration in (3.14) further to the left 
than was possible before. Taking due account of the poles of the integrand between 
the path in (3.14) and the new one, we shall obtain the result of the theorem. 

(i) Let ~ E (0,1]. A straightforward calculation gives the following. 

( E y )( 1/) = 2 w ( 1/ ) sin { 7T / 6 + Y ( 1/ ) } 

= 1 + y'3 y( 1/) - 1A?1/2P1 + O( 1/PI +/), 

(Fy)( 1/) - y'3 y( 1/) = log{ ~ f EY} + 1/(tT/Yl~ 1/) - 1 - y'3 y( 1/) 

4 + 8f31 + f3t 2 2P (P +/) = - AI1/ 1 + 0 1/ 1 • 

2(1 + f31)2 

Since 2f31 and f31 + I are not odd positive integers, Lemmas 4.2 and 4.3 yield 

where the constant Co will be a part of CI (and is therefore of no interest), and 

(4 + 8f31 + f3t)(tanf317T )A? 
C2 = - . 

6(1 + f31)\1 + 2f31) 
(3.19) 
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The other term in the definition (3.2) of p/ T/) is 

(3.20) ~ ~oo r(t T/)(Fy)( T/) dT/ = - 3~~ ~oo 10g( 1 - ;,: )(FY)( T/) dT/ 

_ J.... 00 ek - 1 joo (FY)(T/) 
- 3 L k 2k dT/, 

'7Tk~l 1 T/ 

where the integral is O(k- 1 ) as k -+ 00, so that the series converges for ~ :s;; l. 
Equations (3.18) and (3.20) imply that 

py(O = C1~ + C2eP1 + O(e l +'), 
and thus prove (3.I7a), while (3.17b) is a previous estimate. 

(ii) Define 

and h2 = h - hI' Then, for a> -1, 

° :s;; ~ :s;; 1, 
I<t 

• C1 C2 
hI (s) = s + 1 + s + 2/31 ' 

while h2(s) exists and is analytic for -/31 - I < a < 1, and h2 (a + i· ) E 

Lp'(-oo, 00) for all a E (-/31 -1,1) and all p' > 2. The obvious analytic (more 
precisely, meromorphic) continuations of hI and h into the strip of convergence of 
h 2 will also be denoted by hI and h, respectively. 

We can now proceed from (3.14) as in the proof of Lemma 3.2, step (v), except 
that now we move the path of integration to a = -m for any m E (2/31' /31 + I), and 
collect the residues of the poles of ~-sQ(s)h(s) at s = -/31' -1 and -2/31' Since 
Q(-l) = -1, there results 

g(~) - h(O = A1~PI - C1~ + C2Q(-2/31H 2PI 
~m 00 

+-2 f ~-itQ(-m+it)h(-m+it)dt; 
'7T -00 

the last integral is bounded as before since hI (-m + i . ) and h 2 (-m + i . ) are both 
in L 3( -00,00). Substituting for ha) from (3.17a), we have 

y(O = A1~PI + C2 {Q(-2/31) + IH 2P I + o(~m) as ~ ~ 0, 
where C2 is given by (3.19) and Q( -2/31) by (3.13). 

4. The asymptotic expansion of t/; ( ~) to any number of terms. 
4.1. Notation. Let No = {O, 1, 2, ... }, N = {I, 2, 3, ... }, and B = {/31' /32' /33' ... }, 

where the numbers /3j are as in Lemma 3.1. We shall prove in the Appendix that the 
/3j are transcendental numbers. 

An elaborate notation is needed for the exponents in various series that we shall 
construct, because (a) the nonlinearity in (2.1), and the presence of the weighting 
function w there, cause the exponents in the expansion of t/; to form a fairly 
complicated sequence, (b) further exponents enter, and finally depart, during the 
course of the construction. 
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In what follows (m 1, ... , mr+1) is a multi-index: m i E No for i = 1, ... , r + 1 
and r is any element of N. Define 

A = {ml/31 + ... +mr/3r + m r+12: m1 + ... +mr + mr+l ;;:, I}; 

since A is a countable set, we may write A = {AI' A2 , A3""} with Aj < Aj + 1. The 
first few numbers A j are 

/31,2/31,2,3/31' /31 + 2, /32,4/31,2/31 + 2, /31 + /32,4,5/31,3/31 + 2,2/31 + /32' .... 

The following subsets of A will be needed: 
Ap = {ml/31 + ... +mr/3r + mr+12: m1 + ... +mr ;;:, I}, 

so that A = Ap U {2, 4, 6, ... }, and 
A3 = {2} U {ml/31 + ... +mr/3r + mr+12: m1 + ... +mr + mr+1 ;;:' 2}, 

so that A = A3 U B. Thus each element of Ap involves at least one of the /3j; we 
expect the exponents in the expansion of I/; to be in Ap. The exponents in A3 arise 
if, for example, we combine three series as follows: form the product of two series 
with exponents in A and add a series with exponents in {2, 4, 6, ... }. 

Truncated subsets will be denoted by 

Ap( n) = {Aj E Ap: Aj < An} = {Aj E Ap: J < n }, 

A3(n)= {AjEA3: J<n}, B(n)= {/3jEB:/3j<A n }· 

4.2. Bootstrapping from y to Py. We now prove that a given expansion of y, with 
exponents in Ap(n), implies an expansion of Py with exponents in A3(N) U 
{I, 3, 5, ... }, where N;;:, n + 1. This will allow us to improve the given approxima-
tion to y by the method that we used to pass from Lemma 3.2 to Theorem 3.3. We 
shall prove in Theorem 4.5 that, if A3(N) () B(N) = 0, then y has an expansion 
with exponents in the larger set Ap(N). Hence, if A3 () B = 0 (which is a 
number-theoretic problem addressed in the Appendix), then y has an infinite 
asymptotic expansion with exponents in Ap. 

We begin by expanding the function Fy - /3 y in the definition (3.2) of Py ; then 
we establish two basic properties of the linear integral operator in (3.1) and in the 
first term of Py. The second term of Py has a very simple expansion. Combining these 
results, we obtain the expansion of Py ' for a given expansion of y. 

LEMMA 4.1. Suppose that, for certain constants Ai' 

(4.1) L AiTJA, + O( TJI-') as TJ ~ 0, 
A,EAp(n) 

where An < P. < An+l and p. + /31 $. A U {l, 3, 5, ... }. Define N = N(n, p.) by 

AN = max{Aj E A: Aj < p. + /31}' 

(Since An+l < An + /31 < P. + /31' we have N(n, p.) ;;:, n + 1.) Then 

(4.2) (FY)(TJ)-/3Y(TJ) = L BjTJA/+O{TJI-'+Pl) aSTJ~O, 
A,EA 3 (N) 

where the coefficients Bj depend only on the Ai in (4.1). 
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PROOF. Again we abbreviate (Fy )('r,) to F/ TJ), and similarly for other functions of 
the same kind. We have 

where 
00 

w{ TJ) = (1 + TJ2fl/2(1 + bTJ2r 1/ 2 = 1 + L Ck TJ 2k , say, for TJ < l. 
k~l 

Define two new operators Hand J by 

(4.3) Hy{TJ) = Ey(TJ) -1 -/3Y(TJ) 

and 

= w ( TJ )( cos Y ( 1)) - 1 + /3 [ sin y ( TJ) - y ( TJ ) ]} 

+ { w( TJ) - 1}{ 1 + /3 y( TJ) }, 

11'1 Jy (TJ) = - { Ey - 1}. 
TJ 0 

Let us now restrict attention to those TJ, say TJ :!( TJo, for which IJy( TJ) I :!( !. Then 

Fy ( TJ) = ddTJ [TJ log {I + Jy ( TJ ) } 1 

whence 

Although this may seem a very involved formula, it provides a good way of 
expanding Fy( 1) - /3 y( 1), given an expansion of y( TJ)· 

Equation (4.3) yields 

(4.5) H)TJ) = {I + k~l CkTJ 2k }{_;; + ~; - ... +/3[-;~ + ;; - ... ]} 
00 

+ L C kTJ 2k {1 + /3 y( TJ)} 
k~l 

L DjTJAI + o( TJI'+Pl)' 
\EA 3(N) 

where the constants Dj depend only on the Ai in (4.1) (and on the Ck ). Consider 
now the remaining terms on the right of (4.4). Since 
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equation (4.5) ensures that the expansion of Jy has exponents in A, and hence that 
the expansion of 

m ;;. 2, 

has exponents in A 3. Since {3 y + H y , and hence Jy , are known with error O( 1J1l.), it 
follows that Jy'" and Jy"'-l{{3y + HJ are known with error O(1JIl.+f31) for m;;. 2. 
We apply these two conclusions to the terms in (4.4) that follow H y , and the lemma 
is proved. 

LEMMA 4.2. For ~ E (0,1) andp > -1, 

tan( p'IT /2) CP + .!. ;, ek - 1 { } 
1 c;; L... ( ) if P tE 1 , 3, 5, . .. , + P 'IT k~l k 1 + p - 2k 

2 CPI 1 2~P 
( ) '" og t. + 

'IT 1 + P c;; 'IT(1 + p f 
1 ek - 1 

+ - L ( ) if P E {1, 3, 5, ... } . 
'IT kEN\{(1+p)/2} k 1 + p - 2k 

PROOF. Denote the integral by I/~), and define 

o < ~ <'( 1, 
1 <~, 

so that ~/s) = l/(s + p) for (J > -po Then 

IpU) = 1000 r(t1J)</>p(1J)d1J (0 < ~ < 1) 

= 100 r(l, U)</>p(~u) du 
o 

~ R (1 - s) ~p ( s ) for - min { p, I} < (J < 1, 

where we have used the product rule, the notation r(l, u) = R( u), and the statement 
in (3.11b) that R(l - s) exists and is analytic for -1 < (J < 1. By the inversion 
formula and (3.11b), 

Ip(~) = ~ f+'oo ~-s tan(s'IT/2) ds, 
2m (,-'00 (s - l)(s + p) - min { p, I} < C < 1. 

Consider the integral (of this integrand) around the (positively directed) rectangular 
contour with corners at c ± i2n and -2n ± i2n; here n E N. On the parts (J = -2n, 
It I <'( 2n, and -2n <'( (J <'( c, t = ±2n of this path, Itan(s'IT/2)I is bounded; hence the 
integrand is O(lsl- 2 ) there, and the contribution of these three sides tends to zero as 
n -4 00. Accordingly, I/~) equals the sum of the residues at poles with (J < c. If 
p tE {I, 3, 5, ... }, these are simple poles at s = -p and s = -1, -3, -5, ... ; if p E 

{l, 3, 5, ... }, there is a double pole at s = -p, and simple poles at s = -(2k - 1), 
kEN \ {(I + P )/2}. Evaluating the residues, we obtain the result of the lemma. 
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LEMMA 4.3. If P E (2m + 1,2m + 3) for some m E No and If(1/)1 ~ const.1/P, 
then, for ~ E (0,1), 

1 1 m+l ek - 1 1 1 r(t1/)f(1/)d1/ = -;; L -k-l f(1/h- 2k d1/ + O(F). 
o k~l 0 

PROOF. We have 

The assumption that If(1/)1 ~ const. 1/P, in which p is not an odd integer, ensures 
that the first, third, and fourth integrals in this expression are, respectively, O(F), 
O(F- 2k +1) with p> 2k - 1, and O(~p-2k+1) with p < 2k - 1; the fourth is 
O(~p-2k+1/k) as ~ ~ ° and k ~ 00. This proves the lemma. 

LEMMA 4.4. Let the hypotheses in Lemma 4.1 hold, let {odd} denote the set 
{I, 3, 5, ... } of odd positive integers, and let 2P - 1 be the largest odd integer less 
than Jl + 131. Then, as ~ ~ 0, 

p 

(4.6) Py(~) = L Ekek - 1 + 
k~l 

where 

(4.7) 

but the coefficients Ek are defined in terms of the global behavior of Y (and not merely 
in terms of the previous A i and Bj ). 

REMARK. In (4.6), the set A 3 (N) () {odd} is probably empty for all N, but, if it is 
not, the exponents in it cause no complication (in contrast to any exponents that 
there may be in the set A3(N) () B(N) to be considered presently), because the 
logarithmic terms in (4.6) will be cancelled when we compute the corresponding 
expansion of y. 

PROOF. Recall from (3.2) that 
(4.8) 

p/O = ~ f r(t1/){(FY)(1/) - Y]Y(1/)} d1/ + ~ ~oo r(t1/)(FY)(1/)d1/, 
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and observe that, for g E (0,1), 

(4.9) ~oo r(t1/)(FY)(lJ)d1/ = _ :g~OO 10g(1- ~:)(FY)(1/)d1/ 

1 00 g2k-l 00 

= - L -k-j (FY)(1/)1/- 2k d1/, 
7T k=l 1 

where the last integral is O( k -1) as k ~ 00 because (Fy )( 1/) = O(log 1/) as 1/ ~ 00. 

For the first integral in (4.8), we apply Lemma 4.2 to the terms Bj 1/\ in (4.2), and 
Lemma 4.3 to the O-term there, recalling that J.L + /31 is not an odd integer. The 
terms of form ck g2k - 1 (where kEN and Ck = O(k- 2 ) as k ~ 00) that result from 
the Bj1/A, in (4.2), from the O-term there and from (4.9) are all collected in the first 
sum of (4.6) if 2k - 1 < J.L + /31 (so that k:( P) or in the O-term of (4.6) if 
2k - 1 > J.L + /31. In the second sum of (4.6) we have replaced A3(N)\ {odd} by 
A 3 (N) \ N because (4.7) shows that Fj = 0 when Aj is an even integer. 

4.3. The expansion of y. Lemma 4.4 provides a generalization of step (i) in the 
proof of Theorem 3.3, and we are now ready to generalize step (ii). To avoid a 
conceivable but highly improbable complication, we make 

ASSUMPTION A(N). The sets A3(N) and B(N) are disjoint. 
The reason for this will be explained after the proof of Theorem 4.5. We have 

verified Assumption A(N) numerically for N:( 100, and conjecture that it is true 
for all N. 

THEOREM 4.5. If the hypotheses of Lemma 4.1 and Assumption A(N) hold, then 

y(g) = L Aje, + O(e) as g ~ 0, 
AJ ElI.f3(N) 

for some p E (A N' AN + 1). Here a new coefficient A j' with j such that A j E A f3( N) \ 
Af3(n), is determined by the previous coefficients Ai' with i such that Ai E A f3 (n), if 
and only if Aj tE B(N). 

PROOF. Again we use the notation in the proof of Lemma 3.2. In view of (4.6), we 
define 

1 + L GeJlog-} g 
AJE lI. 3 (N)n {odd} 

if 0 :( g :( 1, 

o if 1 < g, 
and h2 = h - hI. Accordingly, h 2(g) = py(O - h1(g) if g:( 1, and h 2(O = 

O(g-llog g) as g ~ 00, by (3.9). The smallest exponent in hl(g) is 1; hence, for 
(J> -1, 
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while h2 (s) exists and is analytic for -/l - /31 < IJ < 1, and h2 (IJ + i . ) E 
L p '( -00,00) for all IJ E (-/l - /31,1) and all p' > 2. The obvious analytic (more 
precisely, meromorphic) continuations of hI and h into the strip of convergence of 
h 2 will also be denoted by hI and h, respectively. 

Let ~ E (0,1). We proceed from (3.14) and move the path of integration to IJ = -p 

for any p E (A N' /l + /31); the remarks, in the proof of Lemma 3.2, regarding the 
contribution of paths t = ± M remain valid when the I there is replaced by P, and 
~-sQ(s)h(s) has no singularities for IJ E (-/l - /31' -AN). There are four sets of 
poles between the original path of integration (IJ = c) and the new one (IJ = -p); we 
consider one set at a time. 

(a) The points s = 1 - 2k, k E {l, 2, ... , P}, are simple poles of hI' and, since 
Q(l - 2k) = -1, 

p 

L residues = - L Ek~2k-1. 

(a) 

(b) The points s = -A j' where A J E A 3( N) \ N, are simple poles of hI and are 
not poles of Q by Assumption A(N), so that 

L residues = 
(b) 

L FjQ( -AJeJ • 

Aj E/'3(N)\N 

(c) The points s = -A j , where Aj E A3(N) n {odd}, are double poles of hI' and 

Lresidues= - L Gj{e'IOgt + ~'IT(1 +AJ~A'}. 
(e) A,EA 3 (N)(){odd} 

(d) The points s = -A j , where Aj E B(N), are simple poles of Q and distinct 
from those of hI by Assumption A(N), so that 

L residues = L Hje, , 
(d) AJEB(N) 

where 

(4.10) 

Since ~ E (0,1), we have g(~) = y(~) and h(~) = pya); equation (3.14) yields 

y(~) = Py(~) + L residues + 2~i i~~~~oo ~-sQ(s )h(s) ds. 

We substitute for Py(~) from (4.6) and for the residues, noting that the terms 
Eke k -\ and those containing 10g(1/~), in (4.6) are cancelled by the residues; there 
results 
(4.11) 

y(~) = L Fj{l + Q{-AJ}e, - ~'IT L Gj {l + AJe, 
\EA 3 (N)\N AJ EA 3(N)(){odd} 

+ L Hje, + ~foo ~-itQ(_p + it)h(-p + it)dt + O(e+ P1 ), 
A ER(N) 2'17 -00 , 
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where Q(-p + i· ) E L 3/ 2(-00, (0), because Q(-p + it) = O(t-l) as t --> ± 00, and 
h( -p + i . ) E L 3 ( -00,00), so that the integral (without the factor e /2'17") is bounded, 
by Holder's inequality. 

We claim that all the exponents Aj in (4.11) belong to A/iN). Indeed, if 
Aj E A \ Af3, then Aj E {2, 4, 6, ... }, and this is impossible in (4.11) because there 
Aj $. N or Aj E {odd} or Aj E B. Since in (4.11) each Aj ~ AN' it follows that 
Aj E Af3(N). 

Comparison with (4.1) shows that in (4.11) the coefficient of {'l must equal Aj 
whenever Aj E A f3 (n). Consider the coefficient of {'l when Aj E A f3 (N)\A f3 (n); if 
A j $. B( N), then (4.7) and Lemma 4.1 show that the coefficient is determined by the 
previous Ai; if Aj E B(N), then (4.10) shows that the coefficient is not so de-
termined. Of course, we relabel this new coefficient A j in either case. 

REMARK. Assume that the hypotheses of Lemma 4.1 hold but that Assumption 
A(N) is false, for some particular nand N(n, /L). Then there exists an exponent 
Am E A3(N) n B(N), and Q(s)h(s) has a double pole at s = -Am' This causes the 
term with j = m in (4.11) to be replaced by Fm{'m(a + b log 1/~), where a, bare 
constants and b =F 0. At the Nth stage (and perhaps earlier), the hypothesis (4.1), 
with n replaced by N(n, /L), must be modified to include the logarithmic term; at 
still later stages, higher and higher powers of logarithms accrue in the process of 
expanding Fy - 13 y. 

COROLLARY 4.6. If t/; is a solution of (2.1) and A3 n B = 0, then 

(4.12) t/;(g) - ~ + L Aj{'1 as ~ --> ° 
AjE I\fJ 

in the sense of an asymptotic expansion: 

for all n E N. 

'17" t/;(g) - - -
6 L Aj{'l = o( {'n) 

\El\fJ(n) 

as ~ --> 0, 

COROLLARY 4.7. If A3 n B = 0, then the complex coordinate z = x + iy is related 
to the complex potential X = <I> + i'lr by 

(4.13) z(X) - _ig- 1/ 3 ( ~iX f/3{1 + L Kj{iX) A/ } as X --> 0, 
AlE I\fJ 

where the constant g is the gravitational acceleration, arg(ix) E [-'17"/2,'17"/2], and the 
coefficients K j are real. If the set {I} U B is linearly independent over the rationals, 
then the sum in (4.13) is only over exponents in 

Af3.o = {mlf31 + ... +m r f3r: m 1 + ... +m r ;;:> I}; 

in other words, K j = ° whenever Aj E Af3 \ Af3,o, 

PROOF. On the image 'Ir = ° of the free boundary, we have 

(4.14) ~ = -a<l>{1 + k~l Ck<l>2k} , a> 0, 
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where a and Ck are constants, and the series converges for sufficiently small values 
of IIPI. Define 8(IP) = "'(HIP»; it is a basic hypothesis in the derivation of (1.1) that 
x and 8 are odd functions of IP, while y is even. Accordingly, (4.12) and (4.14) 
imply that 

(4.15) 

for certain coefficients Bj (which are not those in (4.2». Moreover, it follows from 
the boundary condition of the basic problem (or, equivalently, from (1.1), from the 
fact that 8(IP) is the boundary value of Imlog(dz/dX), and from suitable choice of 
the additive constant in Re loge dz/dx» that 

(4.16) IP E [-c, c) \ { 0 }, 'I' = 0, 

for some constant c> O. Using (4.15) in this formula, we obtain (4.13) for z(IP) 
(that is, for arg(ix) = -7T/2 or 7T/2); that the K j are real follows from the 
symmetry. 

To prove that the asymptotic series for z(X) in (4.13) is the only appropriate 
extension (into the half-plane 'I' < 0) of the series for z( IP), we let h denote the 
difference between two such extensions to finitely many terms. It then suffices to 
prove the following: if heX) is analytic and bounded in D = {X: 0 < Ixl ::::; c, 
-7T/2 ::::; arg(ix) ::::; 7T/2}, and if, for some constant Jl > 0, we have h(IP) = O(IIPIIL) 
as IP ~ 0 (with arg(iIP) = -7T/2 or 7T/2), then heX) = O(lxllL) as X ~ 0 in D. Now 
this follows from application of the Phragmen-Lindelof theorem [11, p. 176] to the 
function f defined by f(x) = X-lLh(X); a suitable auxiliary function is w(X) = 

exp{ _(iX)-1/2}. 
It remains to prove that, if the set {I} U B is linearly independent over the 

rationals, then K j = 0 whenever II. j E A/3 \ A/3.o' Suppose that 

z(IP) = _ig-1/3(tiIP)2/3{ 1 + bl(ilP)"1 + ... +bn(iIP)"" + k(iIP)A + O(IIPn}, 

where 0 < a l < ... < an < II. < Jl, each aj E A/3,O and II. E A/3 \ A/3,o' We know, 
from our construction by way of (4.16), that this approximation may be differenti-
ated term by term, and that the exact function z(IP) satisfies the boundary condition 
of the basic problem. Then a slight variant of a calculation by Norman [9, p. 262] 
shows that, under the foregoing hypothesis, the coefficient k = O. Repeated applica-
tion of this argument proves the result. 

Appendix. On the numbers f3j' We recall that f3j denotes the jth positive root of 
/3(1 + f3) = tan(f37T/2); its simplest properties were noted in Lemma 3.1. We now 
probe a little deeper. 

LEMMA A.I. Each number f3j is transcendental. 

PROOF. We abbreviate f3j to f3 for any fixed j E N. It was shown by Grant [4, p. 
260], albeit somewhat tersely, that f3 is irrational. To prove it transcendental, assume 
the contrary: that f3 is an algebraic irrational number. The equation of which f3 is a 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BEHAVIOR NEAR THE CREST OF WAVES OF EXTREME FORM 

root may be written 

(A.I) ei'TTfl = 1 + iV3(I + P) 
1 - iV3 (1 + P) . 

297 

Here the right-hand side is an algebraic number (because P is one, and the algebraic 
numbers form a field), so, therefore, is the left-hand side. In other words, (-1) fl is an 
algebraic number. But this contradicts the Gelfond-Schneider theorem [10, p. 761, 
which states that a b is transcendental whenever a is algebraic (and neither 0 nor 1) 
and b is algebraic and irrational. 

REMARK. In Corollary 4.6 we assumed that the sets 

A3 = {2} U {m1Pl + ... +mrPr + mr+ 12: m l + .. , +mr + mr+ 1 ~ 2} 

and B = {PI' P2' P3""} are disjoint. It is clear that the truth of this assumption 
would be implied by the truth of the following, very natural 

CONJECTURE. The set {1} U B is linearly independent ouer the rationals. 
(That is, if Xl"'" X k are distinct elements of {I} U B, and a l , ... , a k are rational 

numbers, then 2:~~1 anxn = 0 implies that a l = .,. = a k = 0.) Unfortunately, our 
only result in this direction is the following. 

THEOREM A.2. If j =1= k, then the set {I, Pi' Pk } is linearly independent ouer the 
rationals. 

PROOF. Assume the contrary: then there exist integers p, q, and r, not all zero, 
such that PPj + qPk = r. Neither p nor q can be zero; we may suppose that r ~ 0; 
then at least one of p and q must be positive, say p > O. Now 

by (A.I); since Pk = (r - pP)/q, we have 

(A.2) (-I)'{I- iV3(I + PJr{I- iV3 (I + r-/Pi )} q 

{ ( r - PP )} q = {I + iV3 (1 + PJ r 1 + iV3 1 + q j 

Suppose that q > 0; expanding both sides of (A.2), and rearranging the result, we 
obtain 

where PI and P2 are polynomials with (real) rational coefficients, and Pi is real. 
Hence each polynomial is zero, which makes Pi an algebraic number and thus 
con tradicts Lemma A.l. 

If q < 0, we rewrite (A.2) to have positive exponents p and -q on both sides, and 
argue as before. 
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