
ON THE BEHAVIOR OF THE CONJUGATE-GRADIENT
METHOD ON ILL-CONDITIONED PROBLEMS

Anders FORSGREN∗

Technical Report TRITA-MAT-2006-OS1
Department of Mathematics
Royal Institute of Technology

January 2006

Abstract

We study the behavior of the conjugate-gradient method for solving a set of
linear equations, where the matrix is symmetric and positive definite with one
set of eigenvalues that are large and the remaining are small. We characterize
the behavior of the residuals associated with the large eigenvalues throughout
the iterations, and also characterize the behavior of the residuals associated with
the small eigenvalues for the early iterations. Our results show that the residuals
associated with the large eigenvalues are made small first, without changing
very much the residuals associated with the small eigenvalues. A conclusion is
that the ill-conditioning of the matrix is not reflected in the conjugate-gradient
iterations until the residuals associated with the large eigenvalues have been
made small.
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1. Introduction

A fundamental problem in linear algebra is the solution of a system of linear equa-
tions on the form Ax = b, where A is an n × n symmetric positive definite matrix
and b is an n-dimensional vector. From an optimization perspective, an equivalent
problem may be formulated as

minimize
x∈IRn

1
2xTHx + cTx, (1.1)

where H is an n × n symmetric positive definite matrix and c is an n-dimensional
vector. The unique solution to (1.1) is given by Hx = −c. Hence, by identifying
A = H and b = −c, the problems are equivalent.

If x∗ = −H−1c denotes the optimal solution to (1.1), we may write 1
2xTHx +

cTx = 1
2(x− x∗)TH(x− x∗)− 1

2x∗THx∗. If we let ξ = x− x∗ and consider a rotation
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2 The conjugate-gradient method on ill-conditioned problems

of the variables so that the Hessian becomes diagonal, i.e., H = diag(λ), where λ is
the vector of eigenvalues of H, (1.1) may equivalently be rewritten as

minimize
ξ∈IRn

1
2

n∑
i=1

λiξ
2
i , (1.2)

where the constant term 1
2x∗THx∗ has been ignored. Of course, x∗ is not known, and

hence ξ is not known. However, we will discuss properties of ξ, and the construction
is therefore convenient. We will throughout let the eigenvalues of H be ordered such
that λ1 ≥ λ2 ≥ . . . ≥ λn > 0.

The conjugate-gradient method is a well-known iterative method for solving
(1.2). At iteration k, it computes an approximate solution ξ(k) to (1.2) as the
minimizer of the objective function of (1.2) subject to the constraint that ξ − ξ(0)

belongs to the Krylov subspace spanned by Hξ(0), . . . ,Hkξ(0). There is a convenient
recurrence formula for recurring ξ(k+1) from ξ(k). For a thorough discussion on the
conjugate gradient method, see, e.g., Golub and Van Loan [10, Sections 10.2–10.3]
or Luenberger [16, Chapter 8]. The method was originally proposed by Hestenes
and Stiefel [15]. There is a rich literature on conjugate-gradient methods, see, e.g.,
Hestenes [13], Axelsson and Barker [2], Golub and O’Leary [9], Axelsson [1] and
Saad [18]. Further references are Faddeev and Faddeeva [6], Dahlquist, Eistenstat
and Golub [4], Hestenes [12], and Hestenes and Stein [14].

We are particularly interested in the situation where H has r large eigenvalues
and the remaining n − r eigenvalues are small. Our motivation is twofold: first,
interior methods [7, 8], where infinitely ill-conditioned matrices arise, and second,
radiation therapy optimization [3], where ill-conditioned systems arising from dis-
cretized Fredholm equations of the first kind arise. The conjugate-gradient method
is known to behave in a regularizing manner on such ill-conditioned linear equa-
tions, see, e.g., Squire [19], Hanke [11] and Vogel [20]. This is also related to partial
least-squares methods, see, e.g., Wold et al. [21] and Eldén [5].

We show that the components of the iterates associated with the the large eigen-
values, ξ

(k)
i , i = 1, . . . , r, are close to the iterates that are obtained if the conjugate-

gradient method is applied to the r-dimensional problem where only the residuals
associated with the r large eigenvalues are considered. In addition, we show that
the components of the early iterates associated with the small eigenvalues, ξ

(k)
i ,

i = r + 1, . . . , n, are close to the corresponding initial residual ξ
(0)
i , i = r + 1, . . . , n.

Broadly speaking, this means that the path of iterates is close to first satisfying
the partial least-squares problem associated with the large residuals without signifi-
cantly moving the small residuals, and then moving to reducing the small residuals.
An implication of this result is that if the large eigenvalues are of comparable mag-
nitude, the ill-conditioning of the problem caused by the small eigenvalues does not
appear in the early iterations. Although there is a rich literature on conjugate-
gradient methods, we are not aware of an analysis along the lines presented in our
paper. We allow the initial residuals to appear in our expressions, but consider exact
polynomials. This can be contrasted to “classical” bounds, e.g., the bounds given
in Axelsson and Barker [2, Chapter 1], based on Chebyshev polynomials.
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The paper is organized as follows: In Section 2 we give a brief background on the
conjugate-gradient method. Section 3 contains a review of relevant properties of the
polynomials associated with the conjugate-gradient method. In Section 4, we define
the conjugate-gradient problem associated with the large eigenvalues only. Section 5
contains the main results of the paper, the characterization of the iterates of the
conjugate-gradient method. In Section 6 we give a brief relation to the steepest-
descent method, and finally a summary is given in Section 7.

2. Background

After k steps of the conjugate-gradient method, we obtain ξ(k) and α(k) from

minimize
ξ∈IRn,α∈IRk

1
2

n∑
i=1

λiξ
2
i

subject to ξi = ξ
(0)
i +

∑k
l=1 λl

iξ
(0)
i αl, i = 1, . . . , n,

(2.1)

as optimal solution and optimal value, respectively. This formulation is a convex
quadratic program, where the Krylov vectors ξ(0),Hξ(0), . . . ,Hkξ(0) appear explic-
itly.

Alternatively, the constraints ξi = ξ
(0)
i +

∑k
l=1 λl

iξ
(0)
i αl, i = 1, . . . , n, may be

viewed as to say that ξi = Pk(λi)ξ(0), where Pk(λ) is a kth degree polynomial in λ
such that Pk(0) = 1. This polynomial may be characterized in terms of its zeros
ζ ∈ IRk as Qk(λ, ζ), with

Qk(λ, ζ) =
k∏

l=1

(
1− λ

ζl

)
, (2.2)

where we will assume that ζ is ordered such that ζ1 ≥ ζ2 ≥ . . . ≥ ζk. Then, (2.1)
may equivalently be rewritten as

minimize
ξ∈IRn,ζ∈IRk

1
2

n∑
i=1

λiξ
2
i

subject to ξi = Qk(λi, ζ)ξ(0)
i , i = 1, . . . , n,

(2.3)

where the optimal solution is denoted by ξ(k) and ζ(k). Note that the formulations
(2.1) and (2.3) are equivalent, and we will make use of both.

We will denote by nn the number of iterations it takes for the conjugate-gradient
method to solve (1.2). The number nn equals the number of distinct eigenvalues
of H with nonzero initial residuals. Without loss of generality, the reader may
consider nn = n, but we use nn for the sake of completeness. Problems (2.1) and
(2.3) have unique solutions for 1 ≤ k ≤ nn, with the ordering of ζ in (2.3) such that
ζ1 ≥ ζ2 ≥ . . . ≥ ζk.

As mentioned in the introduction, we are interested in the situation when H has
r large eigenvalues and n − r small eigenvalues. We will throughout quantify this
situation by a scalar ε, ε ∈ (0, 1] such that λr+1 ≤ ελr. We will be interested in the
case when ε � 1, and our analysis applies when εr ≤ 1.



4 The conjugate-gradient method on ill-conditioned problems

λ ξ(0) ξ(1) ξ(2) ξ(3) ξ(4) ξ(5)

i = 1 2.0000 1.0000 -0.1733 0.0217 -0.0049 0.0000 0.0000
i = 2 1.5000 1.0000 0.1201 -0.0702 0.0236 -0.0000 -0.0000
i = 3 1.0000 1.0000 0.4134 0.0623 -0.0413 0.0001 -0.0000
i = 4 0.1000 1.0000 0.9413 0.8659 0.7647 -0.0108 0.0000
i = 5 0.0100 1.0000 0.9941 0.9862 0.9747 0.8793 -0.0000

Table 1: Iterates ξ(k), k = 0, . . . , 5, for problem with λ = (2, 1.5, 1, 0.1, 0.01)T and
ξ(0) = (1, 1, 1, 1, 1)T .

λ ξ(0) ξ(1) ξ(2) ξ(3) ξ(4) ξ(5)

i = 1 2.0000 1.0000 -0.1717 0.0181 -0.0001 0.0000 0.0000
i = 2 1.5000 1.0000 0.1212 -0.0642 0.0003 -0.0000 0.0000
i = 3 1.0000 1.0000 0.4141 0.0720 -0.0006 0.0000 0.0000
i = 4 0.0100 1.0000 0.9941 0.9864 0.9784 -0.0001 0.0000
i = 5 0.0001 1.0000 0.9999 0.9999 0.9998 0.9898 -0.0000

Table 2: Iterates ξ(k), k = 0, . . . , 5, for problem with λ = (2, 1.5, 1, 0.01, 0.0001)T

and ξ(0) = (1, 1, 1, 1, 1)T .

As a small illustrative example, consider the case where λ = (2, 1.5, 1, 0.1, 0.01)T

and ξ(0) = (1, 1, 1, 1, 1)T . Here, we have three “large” eigenvalues, and then a gap
between eigenvalue 3 and 4, and similarly a gap between eigenvalue 4 and 5. Table 1
shows the iterates ξ(k), k = 0, . . . , 5. The numerical results of this table, as well as
those presented in other tables and figures of this paper, have been obtained in
Matlab using double precision arithmetic. We notice that the first three iterations
are spent making the residuals associated with the three large eigenvalues small,
whereas that residuals associated with the small eigenvalues are not changed very
much. There is also a hierarchy here, in that we may consider four eigenvalues large
compared to the fifth one. Hence, the fourth iteration is spent making the fourth
residual small, without decreasing the fifth residual much.

If the gap between the large and the small eigenvalues is increased, the behavior
observed above is manifested more clearly. The iterates for the case when λ =
(2 1.5 1 0.01 0.0001)T and ξ(0) = (1 1 1 1 1)T , are given in Table 2. We notice that

λ ξ(0) ξ(1) ξ(2) ξ(3)

i = 1 2.0000 1.0000 -0.1717 0.0180 0.0000
i = 2 1.5000 1.0000 0.1212 -0.0641 0.0000
i = 3 1.0000 1.0000 0.4141 0.0721 -0.0000

Table 3: Iterates ξ(k), k = 0, . . . , 3, for problem with λ = (2, 1.5, 1)T and ξ(0) =
(1, 1, 1)T .
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the first three components of the residuals, corresponding to large eigenvalues, in
Tables 1 and 2 are similar. The tendency not to reduce the residuals corresponding
to the small eigenvalues is increased in Table 2, when the gap has been increased.

The case when the residuals associated with the small eigenvalues are ignored
entirely may be viewed as the limiting case when there is an infinite gap. If we in the
above example ignore the two smallest eigenvalues, we obtain a three-dimensional
problem with λ = (2 1.5 1)T and ξ(0) = (1 1 1)T . The iterates for this problem
are given in Table 3. Note that during the first three iterations, the first three
components of the iterates in Tables 1 and 2 are “close” to the iterates of Table 3,
whereas the last two components of the iterates in Tables 1 and 2 not reduced very
much.

λ ξ(0) ξ(1) ξ(2) ξ(3) ξ(4) ξ(5)

i = 1 2.0000 1.0000 -0.3242 0.3162 -0.0964 0.0003 0.0000
i = 2 1.5000 1.0000 0.0068 -0.5540 0.4646 -0.0020 0.0000
i = 3 1.0000 1.0000 0.3379 -0.7300 -0.8113 0.0052 -0.0000
i = 4 0.1000 10.0000 9.3379 7.0207 1.4241 -0.1078 -0.0000
i = 5 0.0100 10.0000 9.9338 9.6896 9.0454 8.7927 0.0000

Table 4: Iterates ξ(k), k = 0, . . . , 5, for problem with λ = (2, 1.5, 1, 0.1, 0.01)T and
ξ(0) = (1, 1, 1, 10, 10)T .

λ ξ(0) ξ(1) ξ(2) ξ(3) ξ(4) ξ(5)

i = 1 2.0000 1.0000 -0.1733 0.0225 -0.0072 0.0000 -0.0000
i = 2 1.5000 1.0000 0.1200 -0.0712 0.0341 -0.0000 -0.0000
i = 3 1.0000 1.0000 0.4133 0.0605 -0.0577 0.0000 0.0000
i = 4 0.0100 10.0000 9.9413 9.8614 9.7316 -0.0010 -0.0000
i = 5 0.0001 10.0000 9.9994 9.9986 9.9973 9.8978 0.0000

Table 5: Iterates ξ(k), k = 0, . . . , 5, for problem with λ = (2, 1.5, 1, 0.01, 0.0001)T

and ξ(0) = (1, 1, 1, 10, 10)T .

Note that the data for problem (1.2) is the eigenvalue vector λ and the initial
residual vector ξ(0). Hence, ξ(k) depends on λ as well as on ξ(0). The impact of a
small eigenvalue λi, i = r+1, . . . , n, is also affected by the size of the initial residual
ξ
(0)
i . In the examples above, we have chosen all residuals equal. If the initial residual

associated with a small eigenvalue is large, compared to the residuals associated
with the large eigenvalues, we envisage the impact of such a small eigenvalue/initial
residual pair to be larger. This is illustrated in Table 4, where the data is identical to
that of Table 1, except that the residuals associated with the two smallest eigenvalues
are made ten times larger. We see that the iterates in Table 4 do not have the
features of those of Table 1. The first three components of the iterates of Table 4 are
not particularly close to those of Table 3, and the last two components of the iterates
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of Table 4 are reduced significantly also in the early iterations. If the gap between
the large and small eigenvalues is increased, the behavior observed in Tables 1 and
2 is restored. This is demonstrated in Table 5, where the data is identical to that
of Table 2, except that the residuals associated with the two smallest eigenvalues
are made ten times larger. The purpose of this paper is to quantify this meaning of
closedness and non-reduction.

Rather than looking at a table of residuals, we may view the iterates in terms of
the polynomials Q(k)(λ, ζ(k)). Figure 1 shows to the left the polynomials Q(k)(λ, ζ(k)),
k = 1, . . . , 5, for the example problem with λ = (2, 1.5, 1, 0.1, 0.01)T and ξ(0) =
(1, 1, 1, 1, 1)T . The right part of Figure 1 shows the polynomials Q(k)(λ, ζ(k)),
k = 1, . . . , 3, for the problem with λ = (2, 1.5, 1)T and ξ(0) = (1, 1, 1)T . Note

Figure 1: Left: Polynomials Q(k)(λ, ζ(k)), k = 1, . . . , 5, as a function of λ, for
problem with λ = (2, 1.5, 1, 0.1, 0.01)T and ξ(0) = (1, 1, 1, 1, 1)T . Right: Polynomials
Q(k)(λ, ζ(k)), k = 1, . . . , 3, as a function of λ, for problem with λ = (2, 1.5, 1)T and
ξ(0) = (1, 1, 1)T .

that the small eigenvalues have little effect on the three first polynomials in the five-
dimensional example, whereas polynomials four and five have increasing oscillations
and amplitude. The fifth polynomial does not even fit in the window. As we would
expect from the discussion above, the first three polynomials to the left and to the
right are “similar”. Note that the ill-conditioning of the five-dimensional problem
does not appear in the first three iterations, since the iterates are close to those of
the well-conditioned three-dimensional example problem.

3. Properties of the polynomials

In this section, we review some well-known properties of the polynomials Q(k)(λ, ζ)
and their zeros ζ(k) that will be useful in our analysis. The first lemma shows how
ζ
(k)
l , l = 1, . . . , k, may be expressed as a convex combination of the eigenvalues λi,

i = 1, . . . , n.
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Lemma 3.1. Let ξ(k) and ζ(k) denote the optimal solution to (2.3). Then, for all
k, it holds that

ζ
(k)
l =

n∑
i=1

(λiξ
(0)
i (Qk\l(λi, ζ

(k))))2∑n
j=1(λjξ

(0)
j (Qk\l(λj , ζ(k))))2

λi, l = 1, . . . , k,

where

Qk\l(λ, ζ) =
k∏

m=1
m6=l

(
1− λ

ζm

)
.

In particular, λn ≤ ζ
(k)
l ≤ λ1, l = 1, . . . , k.

Proof. We may eliminate ξ from (2.3) and write the objective function as

f(ζ) = 1
2

n∑
i=1

λi(Qk(λi, ζ)ξ(0)
i )2. (3.1)

Since ζ(k) is the global minimizer, which is guaranteed to exist by the equivalence
to the quadratic program (2.1), it must hold that ∂f(ζ(k))/∂ζl = 0, l = 1, . . . , k.
Differentiation of (3.1) gives

∂f(ζ)
∂ζl

= − 1
ζ2
l

n∑
i=1

(
1− λi

ζl

)
λ2

i (Qk\l(λi, ζ)ξ(0)
i )2, (3.2)

Hence, by the condition ∂f(ζ(k))/∂ζl = 0, (3.2) gives

ζ
(k)
l =

n∑
i=1

(λiξ
(0)
i (Qk\l(λi, ζ

(k))))2∑n
j=1(λjξ

(0)
j (Qk\l(λj , ζ(k))))2

λi, l = 1, . . . , k, (3.3)

giving the required expression for ζ(k). Since (3.3) gives ζ
(k)
l as a convex combination

of the λis, it follows that λn ≤ ζ
(k)
l ≤ λ1.

The convex combination provided by Lemma 3.1 is not very helpful in general,
since the weights for one zero involves the other zeros. However, we get an explicit
expression for ζ

(1)
1 .

Corollary 3.1. Let ξ(1) and ζ(1) denote the optimal solution to (2.3) for k = 1.
Then,

ζ
(1)
1 =

∑n
j=1 λ3

j (ξ
(0)
j )2∑n

j=1 λ2
j (ξ

(0)
j )2

, and ξ
(1)
i =

1−
λi
∑n

j=1 λ2
j (ξ

(0)
j )2∑n

j=1 λ3
j (ξ

(0)
j )2

 ξ
(0)
i , i = 1, . . . , n.

The behavior of Qk(λ, ζ) as a function of λ, when λ is smaller than all the zeros
ζ
(k)
l , l = 1, . . . , k, is of fundamental importance in our analysis. The following lemma

gives the required properties, decreasing and convex. See Figure 1 for illustrative
examples of polynomials.
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Lemma 3.2. For a fixed ζ ∈ IRk, with ζ1 ≥ ζ2 ≥ . . . ≥ ζk > 0, let Qk(λ, ζ) be
defined by (2.2). Then, Qk(λ, ζ) is convex and decreasing as a function of λ for
λ ∈ [0, ζk]. In particular, for λ ∈ [0, ζk],

1− λ
k∑

l=1

1
ζl
≤ Qk(λ, ζ) ≤ 1− λ

ζk
.

Proof. We have

∂Qk(λ, ζ)
∂λ

= −
k∑

l=1

1
ζl

k∏
m=1
m6=l

(
1− λ

ζm

)
, (3.4a)

∂2Qk(λ, ζ)
∂λ2

=
k∑

l=1

k∑
m=1

1
ζlζm

k∏
p=1

p 6=l,m

(
1− λ

ζp

)
. (3.4b)

It follows from (3.4b) that ∂2Qk(λ, ζ)/∂λ2 is nonnegative for λ ∈ [0, ζk], and hence
Qk(λ, ζ) is convex as a function of λ for λ ∈ [0, ζk]. For λ ∈ [0, ζk], this convexity
implies that

Qk(λ, ζ) = Qk

((
1− λ

ζk

)
0 +

λ

ζk
ζk, ζ

)
≤
(

1− λ

ζk

)
Qk(0, ζ) +

λ

ζk
Qk(ζk, ζ) =

(
1− λ

ζk

)
,

where the identities Qk(0, ζ) = 1 and Qk(ζk, ζ) = 0 have been used, thereby verifying
the upper bound on Qk(λ, ζ) for λ ∈ [0, ζk]. In addition, the convexity implies that

Qk(λ, ζ) ≥ Qk(0, ζ) +
∂Qk(0, ζ)

∂λ
λ = 1− λ

k∑
l=1

1
ζl

,

giving the required lower bound on Qk(λ, ζ) for λ ∈ [0, ζk].

4. A relaxed problem for the early iterations

The basis for our analysis is to consider the conjugate-gradient problem that arises
when only the r large eigenvalues are considered and eigenvalues r + 1 through n
are disregarded. For iteration k, this means considering the optimization problem

minimize
ξ∈IRr,α∈IRk

1
2

r∑
i=1

λiξ
2
i

subject to ξi = ξ
(0)
i +

∑k
l=1 λl

iξ
(0)
i αl, i = 1, . . . , r,

(4.1)

where we denote the optimal solution by ξ̄
(k)
i , i = 1, . . . , r, and ᾱ(k). We will denote

by nr the first iteration k for which (4.1) has optimal value zero. We have previously



4. A relaxed problem for the early iterations 9

talked about early iterations. This can now be made precise, and we will refer to
iterations k, for which 0 ≤ k ≤ nr, as early iterations.

Given ξ̄
(k)
i , i = 1, . . . , r, and ᾱ(k), that solve (4.1) for a given k, 0 ≤ k ≤ nr, we

may define

ξ̄
(k)
i = ξ

(0)
i +

k∑
l=1

λl
iξ

(0)
i ᾱ

(k)
l , i = r + 1, . . . , n, (4.2)

so as to obtain ξ̄(k) as an n-dimensional vector. Equivalently, we may consider the
optimization problem

minimize
ξ∈IRn,α∈IRk

1
2

r∑
i=1

λiξ
2
i

subject to ξi = ξ
(0)
i +

∑k
l=1 λl

iξ
(0)
i αl, i = 1, . . . , n,

(4.3)

which is equivalent to solving (4.1) and then using (4.2). Hence, we obtain ξ̄(k) and
ᾱ(k) as the optimal solution of (4.3). Equivalently, we may write

minimize
ξ∈IRn,ζ∈IRk

1
2

r∑
i=1

λiξ
2
i

subject to ξi = Qk(λi, ζ)ξ(0)
i , i = 1, . . . , n,

(4.4)

where we analogously denote the optimal solution by ξ̄(k) and ζ̄(k). We prefer the
n-dimensional formulation given by (4.3), rather than combining (4.1) and (4.2),
since (2.1) and (4.3) have the same feasible sets. For a given feasible point to (2.1)
and (4.3), the objective function value of (2.1) is at least as large as the objective
function value of (4.3), and this means that (4.3) is a relaxation of (2.1).

In order to quantify how close the iterates of the initial problem (2.1) are to
the iterates of the relaxed problem (4.3), we start by showing that the difference
between the residuals associated with the small eigenvalues, ξ̄

(k)
i , and the initial

residual ξ
(0)
i , i = r + 1, . . . , n, is small. This is a consequence of only considering

the large eigenvalues in the minimization problem. The following lemma shows
that if λr+1 ≤ ελr, then the difference between ξ̄

(k)
i and ξ

(0)
i is bounded by kε for

k = 1, . . . , nr and i = r + 1, . . . , n. This is a key result to showing properties of ξ(k)

later in the paper.

Lemma 4.1. Assume that λr+1 ≤ ελr, and let ξ̄(k) together with ζ̄(k) be optimal
solution to (4.4). Then, for k = 1, . . . , nr and i = r + 1, . . . , n,

ξ
(0)
i ≥ ξ̄

(k)
i ≥ (1− kε)ξ(0)

i , if ξ
(0)
i ≥ 0,

ξ
(0)
i ≤ ξ̄

(k)
i ≤ (1− kε)ξ(0)

i , if ξ
(0)
i ≤ 0.

Proof. Let k be an iteration such that k ≤ nr. Since (4.4) is a conjugate-gradient
problem that only concerns eigenvalues λi, i = 1, . . . , r, and k ≤ nr, it follows that
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ζ̄(k) is unique, given the ordering ζ̄
(k)
1 ≥ ζ̄

(k)
2 ≥ . . . ≥ ζ̄

(k)
k , and Lemma 3.1 shows

that ζ̄
(k)
l ≥ λr, l = 1, . . . , k. Moreover,

ξ̄
(k)
i = Qk(λi, ζ̄

(k))ξ(0)
i , i = 1, . . . , n.

In particular, for i = r + 1, . . . , n, λi ≤ λr ≤ ζ̄
(k)
l . Let i be an index such that

r + 1 ≤ i ≤ n. Then, Lemma 3.2 gives

1 ≥ Qk(λi, ζ̄
(k)) ≥

(
1− λi

k∑
l=1

1

ζ
(k)
l

)
≥
(

1− k
λi

λr

)
≥ (1− kε). (4.5)

Consequently, since ξ̄
(k)
i = Qk(λi, ζ̄

(k))ξ(0)
i , (4.5) gives ξ

(0)
i ≥ ξ̄

(k)
i ≥ (1 − kε)ξ(0)

i if
ξ
(0)
i ≥ 0 and ξ

(0)
i ≤ ξ̄

(k)
i ≤ (1− kε)ξ(0)

i if ξ
(0)
i ≤ 0, as required.

5. A characterization of the iterates

This characterization of the residuals ξ̄
(k)
i associated with the small eigenvalue in-

dices i = r + 1, . . . , n allows us to give an explicit bound on the difference between
ξ
(k)
i − ξ̄

(k)
i for the large eigenvalue indices i = 1, . . . , r. This shows how the iterates

ξ
(k)
i follow the iterates ξ̄

(k)
i for i = 1, . . . , k for the early iterations, and then remain

small for the remaining iterations.

Theorem 5.1. Assume that λr+1 ≤ ελr and εnr ≤ 1. Let ξ(k) together with ζ(k)

be optimal solution to (2.3) and, for k ≤ nr, let ξ̄(k) together with ζ̄(k) be optimal
solution to (4.4). Then,

r∑
i=1

(ξ(k)
i − ξ̄

(k)
i )2 ≤ ε

n∑
i=r+1

(ξ(0)
i )2, k = 1, . . . , nr,

r∑
i=1

(ξ(k)
i )2 ≤ ε

n∑
i=r+1

(ξ(0)
i )2, k = nr + 1, . . . , nn.

Proof. Note initially that ξ
(k)
i , i = 1, . . . , n, is uniquely determined for k ≤ nn,

since it is the solution to a conjugate-gradient quadratic program. For the same
reason ξ̄

(k)
i , i = 1, . . . , r, is uniquely determined for k ≤ nr. First let k ≤ nr. Note

that (4.3) is a relaxation of (2.1), and that (2.1) and (4.3) have the same feasible
sets. Hence, since ξ(k) is optimal to (2.1) and ξ̄(k) is optimal to (4.3), we conclude
that

1
2

r∑
i=1

λi(ξ̄
(k)
i )2 ≤ 1

2

r∑
i=1

λi(ξ
(k)
i )2 ≤ 1

2

n∑
i=1

λi(ξ
(k)
i )2 ≤ 1

2

n∑
i=1

λi(ξ̄
(k)
i )2. (5.1)

Consequently, Lemma 4.1 in conjunction with λi ≤ ελr, i = r + 1, . . . , n, applied to
(5.1), give

1
2

r∑
i=1

λi(ξ̄
(k)
i )2 ≤ 1

2

r∑
i=1

λi(ξ
(k)
i )2 ≤ 1

2

r∑
i=1

λi(ξ̄
(k)
i )2 + 1

2ελr

n∑
i=r+1

(ξ(0)
i )2. (5.2)
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A Taylor-series expansion of the objective function of (4.3) around ξ̄(k) gives

1
2

r∑
i=1

λi(ξ
(k)
i )2 = 1

2

r∑
i=1

λi(ξ̄
(k)
i )2 +

r∑
i=1

λiξ̄
(k)
i (ξ(k)

i − ξ̄
(k)
i ) + 1

2

r∑
i=1

λi(ξ
(k)
i − ξ̄

(k)
i )2. (5.3)

Since (4.3) is an equality-constrained quadratic program to which ξ̄(k) is optimal
and ξ(k) is feasible, we conclude that

r∑
i=1

λiξ̄
(k)
i (ξ(k)

i − ξ̄
(k)
i ) = 0. (5.4)

Consequently, a combination of (5.2), (5.3) and (5.4) gives

r∑
i=1

λi(ξ
(k)
i − ξ̄

(k)
i )2 ≤ ελr

n∑
i=r+1

(ξ(0)
i )2. (5.5)

Since λi ≥ λr, i = 1, . . . , r, it follows from (5.5) that

r∑
i=1

(ξ(k)
i − ξ̄

(k)
i )2 ≤ ε

n∑
i=r+1

(ξ(0)
i )2, (5.6)

as required.
Now let nr + 1 ≤ k ≤ nn. Then, upon observing that the conjugate-gradient

method yields decreasing values of the objective function and ξ̄
(nr)
i = 0, i = 1, . . . , r,

we obtain the inequalities analogous to (5.1) as

1
2

r∑
i=1

λi(ξ
(k)
i )2 ≤ 1

2

n∑
i=1

λi(ξ
(k)
i )2 ≤ 1

2

n∑
i=1

λi(ξ
(nr)
i )2 ≤ 1

2

n∑
i=r+1

λi(ξ̄
(nr)
i )2. (5.7)

In addition, we apply Lemma 4.1 in conjunction with λi ≥ λr, i = 1, . . . , r, and
λi ≤ ελr, i = r + 1, . . . , n, to (5.7), which gives

1
2λr

r∑
i=1

(ξ(k)
i )2 ≤ 1

2ελr

n∑
i=r+1

(ξ(0)
i )2. (5.8)

Consequently, (5.8) gives

r∑
i=1

(ξ(k)
i )2 ≤ ε

n∑
i=r+1

(ξ(0)
i )2, (5.9)

as required. The complete result is now given by (5.6) and (5.9).

Similarly, we may now obtain a result that bounds the difference ξ
(k)
i − ξ̄

(k)
i also

for the small eigenvalue indices i = r + 1, . . . , n during the early iterations. This
bound, however, is not as explicit as the bound for the large eigenvalue indices.
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Theorem 5.2. Assume that λr+1 ≤ ελr and εnr ≤ 1. Let ξ(k) together with ζ(k)

be optimal solution to (2.3) and, for k ≤ nr, let ξ̄(k) together with ζ̄(k) be optimal
solution to (4.4). Further, let Ξ(0)

L = diag(ξ(0)
1 , . . . , ξ

(0)
r ), let ξ

(0)
S = (ξ(0)

r+1, . . . , ξ
(0)
n )T ,

and let V
(k)
L be the r × k matrix with element ij given by

(V (k)
L )ij =

(
λi

λ1

)j

.

Then, for k = 1, . . . , nr,

|ξ(k)
i − ξ̄

(k)
i | ≤ k1/2ε3/2‖ξ(0)

S ‖
σk(Ξ

(0)
L V

(k)
L )

|ξ(0)
i |, i = r + 1, . . . , n,

where σk(Ξ
(0)
L V

(k)
L ) denotes the kth singular value of the matrix Ξ(0)

L V
(k)
L .

Proof. A combination of (2.1) and (4.3) gives

ξ
(k)
i − ξ̄

(k)
i = ξ

(0)
i

(
k∑

l=1

λl
i(α

(k)
l − ᾱ

(k)
l )

)
, i = 1, . . . , n. (5.10)

We may normalize (5.10) so that

ξ
(k)
i − ξ̄

(k)
i = ξ

(0)
i

 k∑
j=1

(
λi

λ1

)j

(λj
1α

(k)
j − λj

1ᾱ
(k)
j )

 , i = 1, . . . , n. (5.11)

If we let β(k) ∈ IRk have components β
(k)
j = (λj

1α
(k)
j − λj

1ᾱ
(k)
j ), j = 1, . . . , k, we may

rewrite (5.11) as

ξ
(k)
i − ξ̄

(k)
i = ξ

(0)
i

 k∑
j=1

(
λi

λ1

)j

β
(k)
j

 , i = 1, . . . , n. (5.12)

Written in block form for components i = 1, . . . , r, (5.12) takes the form

ξ
(k)
L − ξ̄

(k)
L = Ξ(0)

L V
(k)
L β(k), (5.13)

where ξ
(k)
L is the k-dimensional vector with components ξ

(k)
i , i = 1, . . . , k. Taking

norms in (5.13) gives

‖ξ(k)
L − ξ̄

(k)
L ‖ ≥ σk(Ξ

(0)
L V

(k)
L )‖β(k)‖. (5.14)

Note that σk(Ξ
(0)
L V

(k)
L ) > 0, since k ≤ nr, and hence (5.14) gives an upper bound

for β(k). Furthermore, if we use (5.14) for i = r + 1, . . . , n in (5.12), upon observing
that λi/λ1 ≤ ε ≤ 1, taking norms and using the Cauchy-Schwartz inequality, we
obtain

|ξ(k)
i − ξ̄

(k)
i | ≤ |ξ(0)

i |k1/2ε‖β(k)‖ ≤ k1/2ε‖ξ(k)
L − ξ̄

(k)
L ‖

σk(Ξ
(0)
L V

(k)
L )

|ξ(0)
i |. (5.15)
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Theorem 5.1 gives ‖ξ(k)
L − ξ̄

(k)
L ‖ ≤ ε1/2‖ξ(0)

S ‖, which inserted into (5.15) gives

|ξ(k)
i − ξ̄

(k)
i | ≤ k1/2ε3/2‖ξ(0)

S ‖
σk(Ξ

(0)
L V

(k)
L )

|ξ(0)
i |,

as required.

Note that the matrix Ξ(0)
L V

(k)
L of Theorem 5.2 is nonsingular for k ≤ nr, but since

V
(k)
l has Vandermonde structure, we expect the smallest singular value Ξ(0)

L V
(k)
L to

become small as k increases.
We may now combine Lemma 4.1 and Theorem 5.2, to show that ξ

(k)
i is close to

ξ
(0)
i for k = 1, . . . , nr and i = r + 1, . . . , n for ε sufficiently small.

Corollary 5.1. Assume that λr+1 ≤ ελr and εnr ≤ 1. Let ξ(k) together with
ζ(k) be optimal solution to (2.3). Further, let Ξ(0)

L = diag(ξ(0)
1 , . . . , ξ

(0)
r ), let ξ

(0)
S =

(ξ(0)
r+1, . . . , ξ

(0)
n )T , and let V

(k)
L be the r × k matrix with element ij given by

(V (k)
L )ij =

(
λi

λ1

)j

.

Then, for k = 1, . . . , nr and i = r + 1, . . . , n,(
1 +

k1/2ε3/2‖ξ(0)
S ‖

σk(Ξ
(0)
L V

(k)
L )

)
ξ
(0)
i ≥ ξ

(k)
i ≥

(
1− kε− k1/2ε3/2‖ξ(0)

S ‖
σk(Ξ

(0)
L V

(k)
L )

)
ξ
(0)
i , if ξ

(0)
i ≥ 0,

(
1 +

k1/2ε3/2‖ξ(0)
S ‖

σk(Ξ
(0)
L V

(k)
L )

)
ξ
(0)
i ≤ ξ

(k)
i ≤

(
1− kε− k1/2ε3/2‖ξ(0)

S ‖
σk(Ξ

(0)
L V

(k)
L )

)
ξ
(0)
i , if ξ

(0)
i ≤ 0,

where σk(Ξ
(0)
L V

(k)
L ) denotes the kth singular value of the matrix Ξ(0)

L V
(k)
L .

This means that we have characterized ξ
(k)
L as close to ξ̄

(k)
L for k = 1, . . . , nr,

and ξ
(k)
L as close to zero for k = nr + 1, . . . , nn, where ξ

(k)
L = (ξ(k)

1 , . . . , ξ
(k)
r )T and

ξ̄
(k)
L = (ξ̄(k)

1 , . . . , ξ̄
(k)
r )T . In addition, we have characterized ξ

(k)
i as close to ξ

(0)
i

for i = r + 1, . . . , n and k = 1, . . . , nr. This gives the desired characterization of
initially minimizing the residuals associated with the large eigenvalues whereas not
decreasing much the residuals associated with the small eigenvalues.

6. Relationship to the steepest-descent method

As a remark, we also briefly review the steepest descent method in a polynomial
framework. Steepest descent uses a more “greedy” approach, in that a minimization
over a one-dimensional subspace is carried out at each iteration. The steepest-
descent method may be viewed as a conjugate-gradient method which is restarted
every iteration. Here we obtain ξ(k) and ζk as the optimal solution to the problem

minimize
ξ∈IRn,ζ∈IR

1
2

n∑
i=1

λiξ
2
i

subject to ξi =
(

1− λi

ζ

)
ξ
(k−1)
i , i = 1, . . . , n,

(6.1)
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which has the closed-form solution

ζ(k) =
∑n

j=1 λ3
j (ξ

(k−1)
j )2∑n

j=1 λ2
j (ξ

(k−1)
j )2

, and (6.2a)

ξ
(k)
i =

(
1− λi

ζ(k)

)
ξ
(k−1)
i =

k∏
l=1

(
1− λi

ζ(l)

)
ξ
(0)
i , i = 1, . . . , n, (6.2b)

see Corollary 3.1. This means that steepest descent forms polynomials by adding
one zero at the time, and not changing the zeros that have already been obtained.
Hence, (6.2) generates polynomials in the same fashion as the conjugate-gradient
method, but they are only optimal in this “greedy” sense. Consequently, finite
termination is not obtained, in general. Figure 2 shows the first ten polynomials
generated by steepest descent for the example problem with λ = (2, 1.5, 1, 0.1, 0.01)T

and ξ(0) = (1, 1, 1, 1, 1)T .

Figure 2: First ten polynomials generated by the steepest-descent method for prob-
lem with λ = (2, 1.5, 1, 0.1, 0.01)T and ξ(0) = (1, 1, 1, 1, 1)T .

7. Summary and discussion

We have characterized the path of iterates for the conjugate-gradient method ap-
plied to a system of linear equations when the n × n positive-definite symmetric
matrix involved is ill-conditioned in the sense that it has r large eigenvalues and
the remaining n − r eigenvalues small. The components associated with the large
eigenvalues, ξ

(k)
i , i = 1, . . . , r, are close to the iterates that are obtained if the

conjugate-gradient method is applied to the r-dimensional problem where only the
residuals associated with the r large eigenvalues are considered. In addition, we
have shown that the components of the early iterates associated with the small
eigenvalues, ξ

(k)
i , i = r +1, . . . , n, are close to the corresponding initial residual ξ

(0)
i ,

i = r + 1, . . . , n. An implication of this result is that if the large eigenvalues are
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of comparable magnitude, the ill-conditioning of the problem caused by the small
eigenvalues does not appear in the early iterations.

Further research would be directed towards solving ill-conditioned systems aris-
ing in interior methods using preconditioned conjugate-gradient methods. Also, we
are interested in quasi-Newton methods for nonlinear optimization problems with
ill-conditioned Hessians. The research presented in this paper is of interest for
quasi-Newton methods, since quasi-Newton methods are equivalent to a conjugate-
gradient method when solving (1.1) if exact linesearch is used [17].
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