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Abstract. We consider a mathematical model which describes the frictionless contact

between a viscoplastic body and an obstacle, the so-called foundation. The process is

quasistatic and the contact is modeled with normal compliance and unilateral constraint.

We provide a mixed variational formulation of the model which involves a dual Lagrange

multiplier, and then we prove its unique weak solvability. We also prove an estimate

which allows us to deduce the continuous dependence of the weak solution with respect

to both the normal compliance function and the penetration bound. Finally, we provide

a numerical validation of this convergence result.

1. Introduction. The aim of this paper is to study the behaviour of the weak solu-

tion of a contact problem for viscoplastic materials with a constitutive law of the form

σ̇ = Eε(u̇) + G(σ, ε(u)). (1.1)

In (1.1) and everywhere below u represents the displacement vector, σ and ε(u) denote

the stress tensor and the linearized stress tensor, respectively, E is the elasticity tensor

and G is a given constitutive function. Moreover, the dot above represents the derivative

with respect to the time variable.
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Various examples and mechanical interpretations in the study of viscoplastic materials

of the form (1.1) can be found in [4, 12] and the references therein. Displacement-

traction boundary value problems were considered in [12], both in the dynamic and

quasistatic case. Quasistatic frictionless and frictional contact problems for such kinds

of materials were studied in various works; see for instance [3,9,18,19] and the references

therein. In [18] a number of models of contact were stated and their variational analysis,

including existence and uniqueness results, was provided. The numerical analysis of

part of these models can be found in [9]; there, semi-discrete and fully discrete schemes

were considered, error estimates were obtained and convergence results were proved.

In [19], the contact was modeled with the Signorini condition in a form with a zero

gap function; an evolutionary mixed variational formulation to the problem involving a

Lagrange multiplier was derived, and the unique solvability of the model was obtained

by using arguments on saddle point theory and fixed point. In contrast, in [3] the

contact was modeled with normal compliance and unilateral constraint. This condition

was introduced in [13] and then used in a large number of papers; see the references in

[20]. It contains as a particular case both the normal compliance contact condition, the

Signorini condition without gap and the Signorini condition with a gap function, as well.

The results in [3] concern the unique solvability of the model and were obtained by using

arguments of history dependent variational inequalities; the behavior of the solution with

respect to the stiffness coefficient of the foundation was also studied and a convergence

result was proved; finally, a numerical validation of this convergence result was provided.

The present paper represents a continuation of [3]. Here, we consider the frictionless

contact problem with normal compliance and unilateral constraint studied in [3] and

we investigate the behavior of the weak solution with respect to the normal compliance

function and the penetration bound. This study was left open in [3] and requires a new

variational formulation, different from that considered in [3]. For this reason, after the

description of the contact problem, we derive a new variational formulation, similar to

that in [19], which involves a Lagrange multiplier. Then we provide the unique weak

solvability of the problem, which represents the first trait of novelty of this paper. The

second trait of novelty consists in the fact that we prove the continuous dependence of

the weak solution with respect to the normal compliance function and the penetration

bound. We also provide a numerical validation of this continuous dependence result,

which represents the third trait of novelty of this paper.

The rest of the paper is structured as follows. In Section 2 we introduce the notation

and some preliminary material. In Section 3 we describe the mechanical problem, list the

assumptions on the data and derive the mixed variational formulation of the problem.

Then, we state our main existence and uniqueness result, Theorem 3.1. The proof of the

theorem is given in Section 4. In Section 5 we prove a general estimate result, Theorem

5.1, which allows us to obtain the continuous dependence of the weak solution with

respect to both the normal compliance function and the penetration bound. Finally, in

Section 6 we present numerical simulation in the two-dimensional case, which validates

our continuous dependence result.
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2. Notation and preliminaries. Everywhere in this paper we denote by S
d the

space of second order symmetric tensors on R
d. The inner product and norm on R

d and

S
d are defined by

u · v = uivi , ‖v‖ = (v · v) 1
2 ∀u,v ∈ R

d,

σ · τ = σijτij , ‖τ‖ = (τ · τ ) 1
2 ∀σ, τ ∈ S

d.

Here and below the indices i, j, k, l run between 1 and d and, unless stated otherwise,

the summation convention over repeated indices is used.

Let Ω ⊂ R
d (d = 1, 2, 3) be a bounded domain with the boundary ∂Ω = Γ, assumed

to be Lipschitz continuous. We use the notation x = (xi) for a typical point in Ω∪Γ and

we denote by ν = (νi) the outward unit normal at Γ. Moreover, an index that follows a

comma represents the partial derivative with respect to the corresponding component of

the spatial variable, e.g. ui,j = ∂ui/∂xj . Everywhere in this paper we use the standard

notation for Sobolev and Lebesgue spaces associated to Ω and Γ and we send the reader

to [1, 8, 10] for more details on this topic. In addition, we consider the following spaces:

Q = { σ = (σij) : σij = σji ∈ L2(Ω) },
H1 = { u = (ui) : ε(u) ∈ Q },
Q1 = { σ ∈ Q : Divσ ∈ L2(Ω)d }.

Here and below ε and Div are the deformation and the divergence operators, respectively,

defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij,j).

The spaces Q, H1 and Q1 are real Hilbert spaces endowed with the canonical inner

products given by

(σ, τ )Q =

∫
Ω

σijτijdx,

(u,v)H1
= (u,v)L2(Ω)d + (ε(u), ε(v))Q,

(σ, τ )Q1
= (σ, τ )Q + (Divσ,Div τ )L2(Ω)d .

The associated norms on these spaces are denoted by ‖·‖Q, ‖·‖H1
and ‖·‖Q1

, respectively.

Also, recall that H1 = H1(Ω)d algebraically and topologically.

For an element v ∈ H1 we still write v for the trace of v, and we denote by vν and

vτ the normal and tangential components of v on Γ given by vν = v · ν, vτ = v − vνν.

Also, for a regular stress function σ we use the notation σν and στ for the normal and

the tangential traces, i.e. σν = (σν) · ν and στ = σν − σνν. Moreover, we recall the

following Green’s formula:∫
Ω

σ · ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ

σν · v da for all v ∈ H1. (2.1)

Let Γ1 be a measurable part of Γ such that meas (Γ1) > 0 and consider the space

V = {v ∈ H1(Ω)d : v = 0 on Γ1 }.
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It is well known that V is a real Hilbert space endowed with the inner product

(u,v)V =

∫
Ω

ε(u) · ε(v) dx

and the associated norm ‖ ·‖V , respectively. Completeness of the space (V, ‖ ·‖V ) follows
from the assumption meas(Γ1) > 0, which allows the use of Korn’s inequality. We also

recall that there exists c0 > 0 which depends on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V for all v ∈ V. (2.2)

Inequality (2.2) represents a consequence of the Sobolev trace theorem.

Let Γ3 be a measurable part of Γ. We consider the Hilbert space

S = {w = v|Γ3
: v ∈ V },

where v|Γ3
denotes the restriction of the trace of the element v ∈ V to Γ3. Thus,

S ⊂ H1/2(Γ3;R
d), where H1/2(Γ3;R

d) is the space of the restrictions on Γ3 of traces on

Γ of functions of H1(Ω)d. The dual of the space S will be denoted by D and the duality

pairing between D and S will be denoted by 〈·, ·〉Γ3
. For more details on trace operators

and trace spaces we refer to [1, 10], for instance.

Let T be a positive real number. For every Banach space (X, ‖ · ‖X) we use the

notation C([0, T ];X) for the space of continuous functions defined on [0, T ] with values

on X. For a subset K ⊂ X we still use the symbol C([0, T ];K) for the set of continuous

functions defined on [0, T ] with values on K. It is well known that C([0, T ];X) is a real

Banach space with the norm

‖v‖C([0,T ];X) = max
t∈[0,T ]

‖v(t)‖X . (2.3)

Moreover, it is easy to check that for each ζ > 0 the map v 
→ ‖v‖ζ given by

‖v‖ζ = sup
t∈[0,T ]

‖v(t)‖X e−ζ t (2.4)

represents a norm on the space C([0, T ];X), which is equivalent to the canonical norm

‖ · ‖C([0,T ];X), defined by (2.3). The norm ‖ · ‖ζ is called the Bielecki norm. We conclude

from above that the space C([0, T ];X) endowed with the Bielecki norm ‖ ·‖ζ is a Banach

space, for each ζ > 0.

We end this section with an abstract existence and uniqueness result.

Let (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y , ‖ · ‖Y ) be two Hilbert spaces and consider a

nonlinear operator A : X → X, a bilinear form b : X × Y → R and a set Λ ⊂ Y which

satisfy the following conditions:

there exists mA > 0 such that (2.5)

(Au−Av, u− v)X ≥ mA‖u− v‖2X for all u, v ∈ X;

there exists LA > 0 such that (2.6)

‖Au−Av‖X ≤ LA ‖u− v‖X for all u, v ∈ X;

there exists Mb > 0 such that (2.7)

|b(v, μ)| ≤ Mb‖v‖X‖μ‖Y for all v ∈ X, μ ∈ Y ;
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there exists α > 0 such that (2.8)

inf
μ∈Y,μ �=0Y

sup
v∈X,v �=0X

b(v, μ)

‖v‖X‖μ‖Y
≥ α;

Λ is a closed convex unbounded subset of Y such that 0Y ∈ Λ. (2.9)

Note that conditions (2.5)–(2.6) show that A is a strongly monotone and Lipschitz

continuous operator. Moreover, conditions (2.7) and (2.8) show that the bilinear form b

is continuous and satisfies the so-called “inf-sup” condition, respectively.

With the data above we consider the following mixed variational problem.

Problem P0. For given f, h ∈ X, find u ∈ X and λ ∈ Λ such that

(Au, v)X + b(v, λ) = (f, v)X for all v ∈ X, (2.10)

b(u, μ− λ) ≤ b(h, μ− λ) for all μ ∈ Λ. (2.11)

In the study of problem (2.10)–(2.11) we have the following result.

Theorem 2.1. Assume (2.5)–(2.9). Then, there exists a unique solution (u, λ) ∈ X ×Λ

to Problem P0.

A proof of Theorem 2.1 can be found in [17]; see Theorem 5.2 therein. That proof is

based on arguments on saddle point theory which can be found in [5–7, 11], combined

with a fixed point technique. We shall use Theorem 2.1 in Section 4 of this paper in

order to prove the unique weak solvability of the viscoplastic frictionless contact problem

we introduce in the next section.

3. The model. We consider a viscoplastic body that occupies the bounded domain

Ω ⊂ R
d (d = 1, 2, 3), with the boundary ∂Ω = Γ partitioned into three disjoint measur-

able parts, Γ1, Γ2 and Γ3, such that meas Γ1 > 0. We assume that the boundary Γ is

Lipschitz continuous and we denote by ν its unit outward normal, defined almost every-

where. Let T > 0 and let [0, T ] be the time interval of interest. The body is clamped on

Γ1×(0, T ), and therefore the displacement field vanishes there. A volume force of density

f0 acts in Ω × (0, T ), surface tractions of density f2 act on Γ2 × (0, T ) and, finally, we

assume that the body is in contact with a deformable foundation on Γ3 × (0, T ). The

contact is frictionless and we model it with normal compliance and unilateral constraint.

Then, the classical formulation of the contact problem is the following.

Problem P. Find a displacement field u : Ω × [0, T ] → R
d and a stress field σ :

Ω× [0, T ] → S
d such that

σ̇ = Eε(u̇) + G(σ, ε(u)) in Ω× (0, T ), (3.1)

Divσ + f0 = 0 in Ω× (0, T ), (3.2)

u = 0 on Γ1 × (0, T ), (3.3)

σν = f2 on Γ2 × (0, T ), (3.4)
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uν ≤ g, σν + p(uν) ≤ 0,

(uν − g)(σν + p(uν)) = 0

}
on Γ3 × (0, T ), (3.5)

στ = 0 on Γ3 × (0, T ), (3.6)

u(0) = u0, σ(0) = σ0 in Ω. (3.7)

Here and below, in order to simplify the notation, we do not indicate explicitly the

dependence of various functions on the variables x or t. Equation (3.1) represents the

viscoplastic constitutive law of the material, already introduced in Section 1. Equation

(3.2) is the equilibrium equation, and we use it here since the process is assumed to

be quasistatic. Conditions (3.3) and (3.4) are the displacement and traction boundary

conditions, respectively, and condition (3.5) represents the normal compliance condition

with unilateral constraint, introduced in [13]. Recall that here g ≥ 0 is a given bound for

the penetration and p represents a given normal compliance function. Condition (3.6)

shows that the tangential stress on the contact surface, denoted στ , vanishes. We use

it here since we assume that the contact process is frictionless. Finally, (3.7) represents

the initial conditions in which u0 and σ0 denote the initial displacement and the initial

stress field, respectively.

In the study of the mechanical problem (3.1)–(3.7) we assume that the elasticity tensor

E , the nonlinear constitutive function G and the normal compliance function satisfy the

following conditions:⎧⎪⎪⎨
⎪⎪⎩

(a) E = (Eijkl) : Ω× S
d → S

d.

(b) Eijkl = Eklij = Ejikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.

(c) There exists mE > 0 such that

Eτ · τ ≥ mE‖τ‖2 for all τ ∈ S
d, a.e. in Ω,

(3.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) G : Ω× S
d × S

d → S
d.

(b) There exists LG > 0 such that

‖G(x,σ1, ε1)− G(x,σ2, ε2)‖
≤ LG (‖σ1 − σ2‖+ ‖ε1 − ε2‖)

for all σ1,σ2, ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(c) The mapping x 
→ G(x,σ, ε) is measurable on Ω,

for all σ, ε ∈ S
d.

(d) The mapping x 
→ G(x,0,0) belongs to Q,

(3.9)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) p : R → R+.

(b) There exists Lp > 0 such that

|p(r1)− p(r2)| ≤ Lp|r1 − r2| for all r1, r2 ∈ R.

(c) (p(r1)− p(r2))(r1 − r2) ≥ 0 for all r1, r2 ∈ R.

(d) p(r) = 0 for all r < 0.

(3.10)

We also assume that the body forces and tractions densities have the regularity

f0 ∈ C([0, T ];L2(Ω)d), f2 ∈ C([0, T ];L2(Γ2)
d), (3.11)
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and the initial data satisfy

u0 ∈ V, σ0 ∈ Q. (3.12)

Finally, we assume that

there exists θ̃ ∈ V such that θ̃ν = 1 a.e. on Γ3 (3.13)

where, recall, θ̃ν = θ̃ · ν.
We now turn to the variational formulation of Problem P. To this end, we use Riesz’s

representation theorem to define the operators L : V → V , P : V → V and the function

f : [0, T ] → V by equalities

(Lu, v)V =

∫
Ω

E ε(u) · ε(v) dx, (3.14)

(Pu,v)V =

∫
Γ3

p(uν)vν da, (3.15)

(f(t),v)V =

∫
Ω

f0(t) · v dx+

∫
Γ2

f2(t) · v da (3.16)

for all u, v ∈ V and t ∈ [0, T ]. Also, let b : V ×D → R denote the bilinear form defined

by

b(v, μ) = 〈μ,v〉Γ3
(3.17)

for all v ∈ V and μ ∈ D and consider the sets

K = {v ∈ V : vν ≤ 0 a.e. on Γ3 }, (3.18)

Λ = {μ ∈ D : 〈μ, v〉Γ3
≤ 0 ∀v ∈ K }. (3.19)

Using (3.11) it is easy to see that

f ∈ C([0, T ];V ). (3.20)

Moreover, by standard arguments it follows that the bilinear form b(·, ·) is continuous

and satisfies the “inf-sup” condition, i.e. there exists α > 0 such that

inf
μ∈D, μ�=0D

sup
v∈V, v �=0V

b(v,μ)

‖v‖V ‖μ‖D
≥ α. (3.21)

As a consequence of (3.21) we obtain that

sup
v∈V, v �=0V

b(v,μ)

‖v‖V
≥ α ‖μ‖D for all μ ∈ D. (3.22)

Assume now that u and σ are regular functions which verify (3.1)–(3.7) and let t ∈ [0, T ],

v ∈ V and μ ∈ Λ. Using Green’s formula (2.1) and (3.2) we have

(σ(t), ε(v))Q = (f0(t),v)L2(Ω)d +

∫
Γ

σ(t)ν · v da.

Then, using (3.3), (3.4) and (3.16) we obtain

(σ(t), ε(v))Q = (f(t),v)V +

∫
Γ3

σ(t)ν · v da,
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and, therefore, (3.6) yields

(σ(t), ε(v))Q = (f(t),v)V +

∫
Γ3

σν(t)vν da. (3.23)

Denote by β(t) and λ(t) the viscoplastic stress and the Lagrange multiplier given by

β(t) = σ(t)− Eε(u(t)), (3.24)

〈λ(t),v〉Γ3
= −

∫
Γ3

(σν(t) + p(uν(t)))vν da for all v ∈ V. (3.25)

Then, combining (3.23)–(3.25) and using notation (3.14), (3.15) and (3.17), we obtain

that

(Lu(t),v)V + (Pu(t),v)V + (β(t), ε(v))Q (3.26)

+b(v,λ(t)) = (f(t),v)V .

On the other hand, using (3.5), (3.18) and (3.19) we deduce that λ(t) ∈ Λ for all

t ∈ [0, T ]. Let λ ∈ Λ. Then, using assumption (3.13) and the definition (3.17) of the

bilinear form b, it is easy to see that

b(u(t),μ− λ(t)) = b(u(t)− gθ̃,μ− λ(t)) + b(gθ̃,μ− λ(t))

= 〈μ− λ(t),u(t)− gθ̃〉Γ3
+ b(gθ̃,μ− λ(t)),

and, therefore,

b(u(t),μ− λ(t)) = 〈μ,u(t)− gθ̃〉Γ3
− 〈λ(t),u(t)− gθ̃〉Γ3

+ b(gθ̃,μ− λ(t)). (3.27)

In addition, (3.5) and (3.13) imply that

u(t)− gθ̃ ∈ K, 〈λ(t),u(t)〉Γ3
= 〈λ(t), gθ̃〉Γ3

,

which show that

〈μ,u(t)− gθ̃〉Γ3
≤ 0, 〈λ(t),u(t)− gθ̃〉Γ3

= 0. (3.28)

We now combine (3.27) and (3.28) to deduce that

b(u(t),μ− λ(t)) ≤ b(gθ̃,μ− λ(t)). (3.29)

Finally, we integrate (3.1) with the initial condition (3.7) and use (3.24) to find that

β(t) =

∫ t

0

G(E ε(u(s)) + β(s), ε(u(s))) ds+ σ0 − Eε(u0). (3.30)

We now gather equalities (3.26), (3.30) and inequality (3.29) to obtain the following

variational formulation of the mechanical problem P.

Problem PV . Find a displacement field u : [0, T ] → V , a viscoplastic stress field

β : [0, T ] → Q and a Lagrange multiplier λ : [0, T ] → Λ such that, for all t ∈ [0, T ],

(Lu(t),v)V + (β(t), ε(v))Q + (Pu(t),v)V (3.31)

+b(v,λ(t)) = (f(t),v)V for all v ∈ V,

b(u(t),μ− λ(t)) ≤ b(gθ̃,μ− λ(t)) for all μ ∈ Λ, (3.32)
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β(t) =

∫ t

0

G(E ε(u(s)) + β(s), ε(u(s))) ds+ σ0 − Eε(u0). (3.33)

The unique solvability of Problem PV is given by the following result, that we state

here and prove in the next section.

Theorem 3.1. Assume (3.8)− (3.13). Then Problem PV has a unique solution (u, β,λ)

which satisfies

u ∈ C([0, T ];V ), β ∈ C([0, T ];Q), λ ∈ C([0, T ]; Λ). (3.34)

A triple of functions (u,β,λ) which satisfies (3.31)–(3.33) is called a weak solution to

Problem P. We conclude from Theorem 3.1 that, under the assumptions (3.8)− (3.13),

Problem P has a unique weak solution with regularity (3.34). Moreover, we note that,

once the weak solution is known, the stress field σ can be easily computed by using

equality (3.24). Also, using standard arguments, it can be shown that σ ∈ C([0, T ];Q1).

4. Proof of Theorem 3.1. The proof of Theorem 3.1 will be carried out in several

steps. To present it, throughout this section we assume that (3.8)–(3.13) hold. More-

over, we denote by c a positive generic constant which may depend on the data but is

independent on the time variable and whose value may change from place to place.

We start by solving the contact problem in the particular case when the viscoplastic

stress is known. To this end let η be an arbitrary element of the space C([0, T ];V ) and

consider the following auxiliary problem.

Problem P1
η . Find a displacement field uη : [0, T ] → V and a Lagrange multiplier

λη : [0, T ] → Λ such that, for all t ∈ [0, T ],

(Luη(t),v)V + (Puη(t),v)V + b(v,λη(t)) (4.1)

= (f(t)− η(t),v)V for all v ∈ V,

b(uη(t),μ− λη(t)) ≤ b(gθ̃,μ− λη(t)) for all μ ∈ Λ. (4.2)

In the study of Problem P1
η we have the following result.

Lemma 4.1. There exists a unique solution (uη, λη) of Problem P1
η which satisfies

uη ∈ C([0, T ];V ), λη ∈ C([0, T ]; Λ). (4.3)

Moreover, if (ui, λi) represents the solution of Problem P1
η for η = ηi ∈ C([0, T ];V ),

i = 1, 2, then there exists c > 0 such that

‖u1(t)− u2(t)‖V + ‖λ1(t)− λ2(t)‖D ≤ c ‖η1(t)− η2(t)‖V for all t ∈ [0, T ]. (4.4)

Proof. We use Theorem 2.1 with X = V, Y = D and Λ given by (3.19). To this end

we consider the operator A : V → V defined by

(Au,v)V = (Lu,v)V + (Pu,v)V for all u,v ∈ V. (4.5)

Using assumptions (3.8) and (3.10) as well as the trace inequality (2.2) it is easy to

see that A is a strongly monotone and Lipschitz continuous operator, i.e. it satisfies

conditions (2.5) and (2.6). On the other hand, we recall that the form b(·, ·) given by

(3.17) verifies conditions (2.7) and (2.8) and, clearly, condition (2.9) holds. We now use
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(4.5) and Theorem 2.1 to see that, at each moment t ∈ [0, T ], there exists a unique pair

(uη(t),λη(t)) ∈ X × Λ which satisfies (4.1)–(4.2).

In order to prove the regularity (4.3) of the solution (uη,λη), consider two elements

t1, t2 ∈ [0, T ]. We have

(Auη(t1),v)V + b(v,λη(t1)) = (f(t1)− η(t1),v)V , (4.6)

b(uη(t1),μ− λη(t1)) ≤ b(gθ̃,μ− λη(t1)), (4.7)

(Auη(t2),v)V + b(v,λη(t2)) = (f(t2)− η(t2),v)V , (4.8)

b(uη(t2),μ− λη(t2)) ≤ b(gθ̃,μ− λη(t2)), (4.9)

for all v ∈ V and μ ∈ Λ. We take v = uη(t2) − uη(t1) in (4.6), v = uη(t1) − uη(t2) in

(4.8) and add the corresponding equalities to obtain

(Auη(t1)−Auη(t2),uη(t2)− uη(t1))V (4.10)

+b(uη(t1)− uη(t2),λη(t2)− λη(t1))

= (f(t1)− f(t2),uη(t2)− uη(t1))V

+(η(t1)− η(t2),uη(t1)− uη(t2))V .

Next, we take μ = λη(t2) in (4.7), μ = λη(t1) in (4.9) and add the corresponding

inequalities to find

b(uη(t1)− uη(t2),λη(t2)− λη(t1)) ≤ 0. (4.11)

We now combine (4.10) and (4.11), and then use the strong monotonicity of the operator

A to see that

‖uη(t1)− uη(t2)‖V ≤ c (‖f(t1)− f(t2)‖V + ‖η(t1)− η(t2)‖V ). (4.12)

Moreover, we use (4.6), (4.8), the Lipschitz continuity of the operator A and (4.12) to

deduce that

b(v,λη(t1)− λη(t2))

≤ c (‖f(t1)− f(t2)‖V + ‖η(t1)− η(t2)‖V )‖v‖V for all v ∈ V.

This inequality combined with (3.22) yields

‖λη(t1)− λη(t2)‖D ≤ c (‖f(t1)− f(t2)‖V + ‖η(t1)− η(t2)‖V ). (4.13)

The regularity (4.3) is now a consequence of the inequalities (4.12) and (4.13), com-

bined with the regularity (3.20) of f and the assumption η ∈ C([0, T ];V ). We conclude

from above the existence of a solution to Problem P1
η which satisfies (4.3). The unique-

ness of the solution follows from the unique solvability of the system (4.1)–(4.2), at each

time moment t ∈ [0, T ], guaranteed by Theorem 2.1.

Now consider η1, η2 ∈ C([0, T ];V ) and denote by (ui, λi) the solution of Problem

P1
ηi

for i = 1, 2. Arguments similar to those used in the proof of (4.12) and (4.13) yield

to the inequalities

‖u1(t)− u2(t)‖V ≤ c ‖η1(t)− η2(t)‖V for all t ∈ [0, T ], (4.14)

‖λ1(t)− λ2(t)‖D ≤ c ‖η1(t)− η2(t)‖V for all t ∈ [0, T ]. (4.15)
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Inequalities (4.14) and (4.15) imply (4.4), which concludes the proof. �
In the next step we use the displacement field uη obtained in Lemma 4.1 to construct

the following auxiliary problem for the viscoplastic stress field.

Problem P2
η . Find a viscoplastic stress field βη : [0, T ] → Q such that

βη(t) =

∫ t

0

G(Eε(uη(s)) + βη(s), ε(uη(s))) ds+ σ0 − Eε(u0) (4.16)

for all t ∈ [0, T ].

In the study of this problem we have the following result.

Lemma 4.2. There exists a unique solution of Problem P2
η which satisfies

βη ∈ C([0, T ];Q). (4.17)

Moreover, if βi represents the solution of Problem P2
ηi

for η = ηi ∈ C([0, T ];V ), i = 1, 2,

then there exists c > 0 such that

‖β1(t)− β2(t)‖Q ≤ c

∫ t

0

‖η1(s)− η2(s)‖V ds for all t ∈ [0, T ]. (4.18)

Proof. Let Θη : C([0, T ];Q) → C([0, T ];Q) be the operator given by

Θη β(t) =

∫ t

0

G(Eε(uη(s)) + β(s), ε(uη(s)))ds+ σ0 − Eε(u0) (4.19)

for all β ∈ C([0, T ];Q) and t ∈ [0, T ]. Let t ∈ [0, T ] be given and consider two elements

β1, β2 ∈ C([0, T ];Q). Then, using the definition (4.19) and assumption (3.9) we obtain

‖Θη β1(t)−Θη β2(t)‖Q ≤ LG

∫ t

0

‖β1(s)− β2(s)‖Q ds. (4.20)

Let ζ > 0. We multiply the previous inequality by e−ζ t. Then, after some elementary

calculus, we find that

‖Θη β1 −Θη β2‖ζ ≤ LG
ζ
‖β1 − β2‖ζ ,

where, recall, ‖ ·‖ζ represents the Bielecki norm on the space C([0, T ];Q); see (2.4). Now

choosing ζ > LG it follows that Θη is a contraction on the Banach space C([0, T ];Q).

Consequently, there exists a unique element βη ∈ C([0, T ];Q) such that Θηβη = βη and,

moreover, βη is the unique solution of Problem P2
η .

Now consider η1, η2 ∈ C([0, T ];V ) and, for i = 1, 2, denote uηi
= ui, βηi

= βi. Let

t ∈ [0, T ]. Using (4.16) we have

β1(t) =

∫ t

0

G(Eε(u1(s)) + β1(s), ε(u1(s))) ds+ σ0 − Eε(u0),

β2(t) =

∫ t

0

G(Eε(u2(s)) + β2(s), ε(u2(s))) ds+ σ0 − Eε(u0).

These equalities combined with assumptions (3.8) and (3.9) imply that

‖β1(t)− β2(t)‖Q

≤ c
(∫ t

0

‖u1(s)− u2(s)‖V ds+

∫ t

0

‖β1(s)− β2(s)‖Q ds
)
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and, taking into account (4.4), yield

‖β1(t)− β2(t)‖Q

≤ c
(∫ t

0

‖η1(s)− η2(s)‖V ds+

∫ t

0

‖β1(s)− β2(s)‖Q ds
)
.

Using now a Gronwall inequality we deduce that (4.18) holds, which concludes the proof

of the lemma. �
We now introduce the operator Θ : C([0, T ];V ) → C([0, T ];V ) which maps every

element η ∈ C([0, T ];V ) to the element Θη ∈ C([0, T ];V ) defined as follows: for each

η ∈ C([0, T ];V ) and for each moment t ∈ [0, T ], Θη(t) is the unique element in V which

satisfies the equality

(Θη(t),v)V = (βη(t), ε(v))Q for all v ∈ V. (4.21)

Recall that here βη represents the viscoplastic stress obtained in Lemma 4.2.

We proceed with the following property of the operator Θ.

Lemma 4.3. The operator Θ has a unique fixed point η∗ ∈ C([0, T ];V ).

Proof. Let η1, η2 ∈ C([0, T ];V ), denote βi = βηi
, i = 1, 2, and let t ∈ [0, T ]. Using

(4.21) we have

(Θη1(t)−Θη2(t),v)V = (β1(t)− β2(t), ε(v))Q for all v ∈ V

which shows that

‖Θη1(t)−Θη2(t)‖V ≤ ‖β1(t)− β2(t)‖Q.
Next, using estimate (4.18) we deduce that

‖Θη1(t)−Θη2(t)‖V ≤ c

∫ t

0

‖η1(s)− η2(s)‖V ds. (4.22)

Finally, we use inequality (4.22) and an argument similar to that used in the proof of

Lemma 4.2, based on the Bielecki norm, to conclude the proof. �
We are now in a position to provide the proof of Theorem 3.1.

Proof. Let η∗ be the fixed point of the operator Θ introduced in (4.21) and denote

u∗ = uη∗ , λ∗ = λη∗ , β∗ = βη∗ . We shall prove that the triple (u∗,β∗,λ∗) satisfies the

system (3.31)–(3.33), for all t ∈ [0, T ].

Let t ∈ [0, T ]. First, we use (4.1) for η = η∗ to write

(Lu∗(t),v)V + (Pu∗(t),v)V + (η∗(t),v)V + b(v,λ∗(t)) = (f(t),v)V for all v ∈ V,

and, since

(η∗(t),v)V = (Θη∗(t),v)V = (β∗(t), ε(v))Q for all v ∈ V,

we obtain

(Lu∗(t),v)V + (Pu∗(t),v)V + (β∗(t), ε(v))Q

+b(v,λ∗(t)) = (f(t),v)V for all v ∈ V,

which shows that (3.31) holds. Now taking η = η∗ in (4.2) we obtain that (3.32)

holds and, since β∗ is a solution of Problem P2
η∗ , we deduce that (3.33) is satisfied, too.

Consequently, the triple (u∗,β∗,λ∗) is a solution of Problem PV . Finally, the regularity
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(3.34) follows from Lemmas 4.1–4.2 and, therefore, we conclude the existence part of the

theorem.

To prove the uniqueness part we consider two solutions (ui,βi,λi) of Problem PV

which satisfy (3.34) for i = 1, 2. Let t ∈ [0, T ]; we use (3.31), (3.32) and arguments

similar to those used in the proof of the inequalities (4.12) and (4.13) to obtain

‖u1(t)− u2(t)‖V ≤ c ‖β1(t)− β2(t)‖Q, (4.23)

‖λ1(t)− λ2(t)‖D ≤ c ‖β1(t)− β2(t)‖Q. (4.24)

On the other hand, from (3.33), (3.9) and (3.8) we find that

‖β1(t)− β2(t)‖Q (4.25)

≤ c
(∫ t

0

‖u1(s)− u2(s)‖V ds+

∫ t

0

‖β1(s)− β2(s)‖Q ds
)
.

We now substitute (4.23) in (4.25) to deduce that

‖β1(t)− β2(t)‖Q ≤ c

∫ t

0

‖β1(s)− β2(s)‖Q ds,

and, using a Gronwall argument, we find that β1(t) = β2(t). The uniqueness part of

the theorem is now a straight consequence of the inequalities (4.23) and (4.24), which

concludes the proof. �

5. A convergence result. In this section we study the behavior of the solution with

respect to a perturbation of the normal compliance function p and the bound g. To this

end, we assume in what follows that (3.8)–(3.13) hold and we denote by (u,β,λ) the

solution of Problem PV obtained in Theorem 3.1. Also, for each ρ > 0 let gρ ≥ 0 and

consider a function pρ which satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) pρ : R → R+.

(b) There exists Lρ
p > 0 such that

|pρ(r1)− pρ(r2)| ≤ Lρ
p|r1 − r2| for all r1, r2 ∈ R.

(c) (pρ(r1)− pρ(r2))(r1 − r2) ≥ 0 for all r1, r2 ∈ R.

(d) pρ(r) = 0 for all r < 0.

(5.1)

We use the Riesz representation theorem to define the operator P ρ : V → V by equality

(P ρu,v)V =

∫
Γ3

pρ(uν)vν dΓ for all u, v ∈ V. (5.2)

Then, we consider the following perturbation of the variational problem PV .

Problem Pρ
V 1. Find a displacement field uρ : [0, T ] → V , a viscoplastic stress field

βρ : [0, T ] → Q and a Lagrange multiplier λρ : [0, T ] → Λ such that, for all t ∈ [0, T ],

(Luρ(t),v)V + (βρ(t), ε(v))Q + (P ρuρ(t),v)V (5.3)

+b(v,λρ(t)) = (f(t),v)V for all v ∈ V,

b(uρ(t),μ− λρ(t)) ≤ b(gρθ̃,μ− λρ(t)) for all μ ∈ Λ, (5.4)
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βρ(t) =

∫ t

0

G(E ε(uρ(s)) + βρ(s), ε(uρ(s))) ds+ σ0 − Eε(u0). (5.5)

It follows from Theorem 3.1 that Problem Pρ
V has a unique solution (uρ,βρ,λρ) with

the regularity expressed in (3.34). Now consider the following assumption on the normal

compliance functions pρ and p:

there exists G : R+ → R+ such that (5.6)

|pρ(r)− p(r)| ≤ G(ρ)(|r|+ 1) for all r ∈ R and ρ > 0.

Then, we have the following estimate, which represents the main result in this section.

Theorem 5.1. Assume (3.8)–(3.13), (5.1) and (5.6). Then there exists c > 0 which

depends on Ω, Γ1, Γ3, E , G, f0, f2, g, p, u0, σ0 and T , but does not depend on ρ, such

that

‖uρ − u‖C([0,T ];V ) + ‖βρ − β‖C([0,T ];Q) + ‖λρ − λ‖C([0,T ];D) (5.7)

≤ c (G(ρ) + 1)
[
(G(ρ) + 1)|gρ − g|+G(ρ)

]
.

Proof. Let t ∈ [0, T ]. Below we denote by c a positive generic constant that may

depend on Ω, Γ1, Γ3, E , G, f0, f2, g, p, u0, σ0 and T , but does not depend on ρ and t,

and whose value may change from line to line.

First, we test in (3.31) and (5.3) with v = uρ(t)−u(t). Then we subtract the resulting

equalities to obtain

(Luρ(t)− Lu(t),uρ(t)− u(t))V = b(uρ(t)− u(t),λ(t)− λρ(t)) (5.8)

+(βρ(t)− β(t), ε(u(t))− ε(uρ(t)))Q + (P ρuρ(t)− Pu(t),u(t)− uρ(t))V .

A similar argument based on inequalities (3.32), (5.4) and the definition (3.17) yields

b(uρ(t)− u(t),λ(t)− λρ(t)) ≤ 〈λ(t)− λρ(t), (gρ − g)θ̃〉Γ3
. (5.9)

We now combine (5.8) and (5.9) and use the monotonicity of the operator P ρ to see that

(Luρ(t)− Lu(t),uρ(t)− u(t))V ≤ 〈λ(t)− λρ(t), (gρ − g)θ̃〉Γ3
(5.10)

+(βρ(t)− β(t), ε(u(t))− ε(uρ(t)))Q + (P ρu(t)− Pu(t),u(t)− uρ(t))V .

Next, taking into account assumption (5.6), we find that

|(P ρu(t)− Pu(t),u(t)− uρ(t))V | ≤
∫
Γ3

G(ρ)(|uν(t)|+ 1)|uρ
ν(t)− uν(t)| da.

Therefore, by using (2.2), after some elementary calculus we obtain that

|(P ρu(t)− Pu(t),u(t)− uρ(t))V | ≤ cG(ρ)(‖u(t)‖V + 1)‖uρ(t)− u(t)‖V .

This inequality shows that

|(P ρu(t)− Pu(t),u(t)− uρ(t))V | ≤ cG(ρ)‖uρ(t)− u(t)‖V , (5.11)

where c depends on u and, therefore, on the data of Problem P. Consequently, combining

(5.10) and (5.11) we find that

(Luρ(t)− Lu(t),uρ(t)− u(t))V ≤ c
[
‖λρ(t)− λ(t)‖D |gρ − g| (5.12)
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+‖βρ(t)− β(t)‖Q‖uρ(t)− u(t)‖V +G(ρ)‖uρ(t)− u(t)‖V
]
.

Also, subtracting (5.3) and (3.31) yields

b(v,λρ(t)− λ(t)) + (Luρ(t)− Lu(t),v)V + (βρ(t)− β(t), ε(v))Q

+(P ρuρ(t)− Pu(t),v)V = 0 for all v ∈ V

and, therefore,

b(v,λρ(t)− λ(t)) ≤ c
(
‖uρ(t)− u(t)‖V ‖v‖V + ‖βρ(t)− β(t)‖Q‖v‖V (5.13)

+‖P ρuρ(t)− Pu(t)‖V ‖v‖V
)

for all v ∈ V.

Note that the definition of the operators P ρ and P , assumption (5.6) and the continuity

of the trace operator, (2.2), show that

|(P ρuρ(t)− Puρ(t),v)V ‖ ≤ cG(ρ)(‖uρ(t)‖V + 1)‖v‖V for all v ∈ V,

which imples that

‖P ρuρ(t)− Puρ(t)‖V ≤ cG(ρ)(‖uρ(t)‖V + 1).

Using this inequality and the Lipschitz continuity of the operator P we deduce that

‖P ρuρ(t)− Pu(t)‖V ≤ ‖P ρuρ(t)− Puρ(t)‖V + ‖Puρ(t)− Pu(t)‖V
≤ cG(ρ)(‖uρ(t)‖V + 1) + c ‖uρ(t)− u(t)‖V
≤ cG(ρ)(‖uρ(t)− u(t)‖V + ‖u(t)‖V + 1) + c ‖uρ(t)− u(t)‖V .

Then, since ‖u(t)‖V ≤ ‖u‖C(0,T ];V ) ≤ c, we find that

‖P ρuρ(t)− Pu(t)‖V ≤ c
[
G(ρ)‖uρ(t)− u(t)‖V +G(ρ) + ‖uρ(t)− u(t)‖V

]
. (5.14)

Combining (5.13) and (5.14) we obtain that

b(v,λρ(t)− λ(t)) ≤ c
[
‖uρ(t)− u(t)‖V + ‖βρ(t)− β(t)‖Q

]
‖v‖V

+c
[
G(ρ)‖uρ(t)− u(t)‖V +G(ρ) + ‖uρ(t)− u(t)‖V

]
‖v‖V for all v ∈ V.

Now using (3.22) we find that

‖λρ(t)− λ(t)‖D ≤ c
[
(G(ρ) + 1)‖uρ(t)− u(t)‖V + ‖βρ(t)− β(t)‖Q +G(ρ)

]
(5.15)

and, moreover,

‖λρ − λ‖C([0,T ];D) ≤ c [(G(ρ) + 1)‖uρ − u‖C([0,T ];V ) (5.16)

+‖βρ − β‖C([0,T ];Q) +G(ρ)
]
.

Next, we use (3.8) and (3.14) to write

(Luρ(t)− Lu(t),uρ(t)− u(t))V ≥ mE‖uρ(t)− u(t)‖2V ,

and we combine this inequality with (5.12) and (5.15) to see that

‖uρ(t)− u(t)‖2V ≤ c
[
(G(ρ) + 1)‖uρ(t)− u(t)‖V |gρ − g|

+‖βρ(t)− β(t)‖Q|gρ − g|+G(ρ)|gρ − g|
+‖βρ(t)− β(t)‖Q‖uρ(t)− u(t)‖V +G(ρ)‖uρ(t)− u(t)‖V

]
.
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Now using the elementary inequality

ab ≤ a2

2α
+

αb2

2
for all α > 0, a, b ∈ R

with a convenient choice of α, we obtain that

‖uρ(t)− u(t)‖2V (5.17)

≤ c
[
|gρ − g|2 + ‖βρ(t)− β(t)‖2Q +G2(ρ)|gρ − g|2 +G2(ρ)

]
.

On the other hand, using equalities (3.33) and (5.5) together with assumptions (3.9)

and (3.8), we deduce that

‖βρ(t)− β(t)‖Q ≤ c

∫ t

0

(
‖uρ(s)− u(s)‖V + ‖βρ(s)− β(s)‖Q

)
ds,

and, therefore, using the Gronwall argument we obtain that

‖βρ(t)− β(t)‖Q ≤ c

∫ t

0

‖uρ(s)− u(s)‖V ds. (5.18)

This inequality also shows that

‖βρ(t)− β(t)‖2Q ≤ c

∫ t

0

‖uρ(s)− u(s)‖2V ds. (5.19)

Combining (5.17) with (5.19) we have

‖uρ(t)− u(t)‖2V ≤ c
[
|gρ − g|2 +G2(ρ)|gρ − g|2 +G2(ρ)

]
+c

∫ t

0

‖uρ(s)− u(s)‖2V ds.

Again using the Gronwall inequality yields

‖uρ(t)− u(t)‖2V ≤ c
[
|gρ − g|2 +G2(ρ)|gρ − g|2 +G2(ρ)

]
,

and, using the elementary inequality√
a2 + b2 + c2 ≤ a+ b+ c for all a, b, c ∈ R+

we find that

‖uρ(t)− u(t)‖V ≤ c
[
|gρ − g|+G(ρ)|gρ − g|+G(ρ)

]
. (5.20)

Since t was arbitrarily fixed in [0, T ] inequality (5.20) shows that

‖uρ − u‖C([0,T ];V ) ≤ c
[
(G(ρ) + 1)|gρ − g|+G(ρ)

]
. (5.21)

Next, using (5.20) and (5.18) we deduce that

‖βρ − β‖C([0,T ];Q) ≤ c
[
(G(ρ) + 1)|gρ − g|+G(ρ)

]
. (5.22)

Finally, substituting (5.21) and (5.22) in (5.14) we obtain that

‖λρ − λ‖C([0,T ];D) ≤ c (G(ρ) + 1)[(G(ρ) + 1)|gρ − g|+G(ρ)]. (5.23)

Inequality (5.7) is now a consequence of inequalities (5.21)–(5.23). �
As a direct consequence of Theorem 5.1 we have the following convergence result.
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Fig. 1. Physical setting.

Corollary 5.2. Assume (3.8)–(3.13), (5.1) and (5.6) and, moreover, assume that

gρ → g, G(ρ) → 0 as ρ → 0. (5.24)

Then the solution (uρ,λρ,βρ) of Problem Pρ
V converges to the solution (u,λ,β) of

Problem PV , i.e.

uρ → u in C([0, T ];V ), βρ → β in C([0, T ];Q), λρ → λ in C([0, T ];D),

as ρ → 0.

In addition to the mathematical interest, the convergence result in Corollary 5.2 is

important from the mechanical point of view, since it shows that the weak solution of

the viscoplastic contact problem P depends continuously on both the normal compliance

function and the penetration bound.

6. Numerical validation. This section is devoted to the numerical validation of the

convergence result obtained in Corollary 5.2. Details on the numerical approximation of

Problems PV and Pρ
V can be found in [3]. Here we restrict ourselves to recall that for

the numerical treatment of the contact conditions we use the penalized method for the

compliance contact combined with the augmented Lagrangean approach for the unilateral

constraint. To this end, we consider additional fictitious nodes for the Lagrange multiplier

in the initial mesh. The construction of these nodes depends on the contact element used

for the geometrical discretization of the interface Γ3. In the case of the numerical example

presented below, the discretization is based on a “node-to-rigid” contact element, which

is composed by one node of Γ3 and one Lagrange multiplier node. More details about

the discretization step and the numerical method can be found in [2, 14–16,21].
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For the numerical simulations we consider the physical setting depicted in Figure 1.

There, Ω = (0, L1)× (0, L2) ⊂ R
2 with L1, L2 > 0 and

Γ1 = {0} × [0, L2], Γ2 = ({L1} × [0, L2]) ∪ ([0, L1]× {L2}), Γ3 = [0, L1]× {0}.

The domain Ω represents the cross-section of a three-dimensional deformable body sub-

jected to the action of tractions in such a way that a plane stress hypothesis is assumed.

On the part Γ1 = {0} × [0, L2] the body is clamped and, therefore, the displacement

field vanishes there. Vertical tractions act on the part [0, L1] × {L2} of the boundary,

and the part {L1} × [0, L2] is traction-free. No body forces are assumed to act on the

body during the process. The body is in frictionless contact with an obstacle on the part

Γ3 = [0, L1]× {0} of the boundary.

We model the material’s behavior with a constitutive law of the form (3.1) in which

the elasticity tensor E satisfies

(Eτ )αβ =
Eκ

1− κ2
(τ11 + τ22)δαβ +

E

1 + κ
ταβ for all τ = (ταβ), 1 ≤ α, β ≤ 2, (6.1)

where E is the Young modulus, κ the Poisson ratio of the material and δαβ denotes the

Kronecker symbol. Moreover, in order to facilitate the numerical implementation, we

assume that G(σ, ε(u)) = Cε(u), where the tensor C satisfies

(Cτ )αβ = γ1(τ11 + τ22)δαβ + γ2ταβ for all τ = (ταβ), 1 ≤ α, β ≤ 2. (6.2)

For the computations below we use the following data:

L1 = 2m, L2 = 1m, T = 1s,

E = 1000N/m2, κ = 0.3, γ1 = 1N/m2, γ2 = 2N/m2,

f0 = (0, 0)N/m2, f2 =

{
(0, 0)N/m on {2} × [0, 1],

(0,−300)N/m on [0, 2]× {1},

p(s) = cνs+, g = 0.04m, cν = 110N/m2,

pρ(s) = (cν − ρ) s+, gρ = g + ρ.

Here s+ represents the positive part of s, i.e. s+ = max {s, 0}. Note that, obviously,

conditions (5.6) and (5.24) are satisfied. The problem is discretized in 3728 elastic finite

elements and 128 contact elements. The total number of degrees of freedom is equal to

4192 and the duration of the time step is k = 0.01s.

Our results are presented in Figures 2–6 and are described in what follows.

First, the deformed configuration as well as the contact interface forces corresponding

to Problem PV , at the final time t = 1s, are plotted in Figure 2. We recall that the

contact follows a normal compliance condition as far as the penetration is less than the

bound g = 0.04m and, when this bound is reached, it follows a unilateral condition. In

the zoom depicted in Figure 2 we can see that a large proportion of the contact nodes

are in the status of unilateral contact, since the complete flattening of the asperities of

size g = 0.04m was reached. Note also that the contact nodes on the left extremity of

the boundary Γ3 remain in the status of contact with normal compliance.
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zo
om

unilateral contactnormal compliance

Fig. 2. Deformed mesh and contact interface forces at t = 1s.

1e-081e-071e-061e-050,00010,0010,010,1110100
 ρ

1e-06

1e-05

0,0001

0,001

0,01

0,1

1

10

100

||u~ρ  -
 u~ || 

 +
 ||

β∼ ρ  -
 β∼ || 

+
 ||

λ∼ρ  -
 λ∼ || 

Fig. 3. First numerical validation of the convergence result in Corol-
lary 5.2.
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ρ = 10E+2 ρ = 

ρ = ρ = 

1

10E−2 10E−4

Fig. 4. Deformed meshes and contact interface forces at t = 1s for
ρ = 102, ρ = 1, ρ = 10−2 and ρ = 10−

4
.
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Fig. 5. Second numerical validation of the convergence result in
Corollary 5.2.

Next, we denote by (ũρ, β̃
ρ
, λ̃

ρ
) and (ũ, β̃, λ̃) the discrete solutions of the contact

Problems Pρ
V and PV , respectively. We compute a sequence of numerical solutions cor-

responding to Problem Pρ
V for eleven successive values of ρ from 100 to 10−8. Then, in
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Fig. 6. Deformed meshes and contact interface forces at t = 1s for

g = 1, g = 10−2, g = 10−4 and g = 10−
6
.

Figure 3 we present the numerical estimations of the difference

‖ũρ − u‖+ ‖β̃
ρ
− β̃‖+ ‖λ̃

ρ
− λ̃‖

at the time t = 1 s, for various values of the parameter ρ. Here ‖ · ‖ represents the

corresponding discrete L2-norm. It results from Figure 3 that this difference converges to

zero when ρ tends to zero, which represents a first numerical validation of the convergence

result obtained in Corollary 5.2. To highlight this study, in Figure 4 we plot four deformed

meshes and the associated contact forces at t = 1s, corresponding to Problem Pρ
V for

ρ = 102, 1, 10−2 and 10−4, respectively. One can see that for ρ = 102 all the contact

nodes are in contact with normal compliance contact, whereas at ρ = 10−4 two-third of

the contact nodes are in unilateral contact, since the complete flattening of the asperities

of size g = 0.04m was reached.

Next, we denote by (ũg
1, β̃

g

1, λ̃
g

1) the discrete solution of the contact Problem PV with

g > 0 and let (ũ2, β̃2, λ̃2) be the discrete solution of the contact Problem PV with

g = 0. We compute a sequence of numerical solutions corresponding to Problem PV for

eleven positive values of g from 100 to 10−8. Then, in Figure 5 we present the numerical

estimations of the difference

‖ũg
1 − ũ2‖+ ‖β̃

g

1 − β̃2‖+ ‖λ̃
g

1 − λ̃2‖
at the time t = 1 s, for various values of the parameter g > 0. It results from here

that this difference converges to zero when g tends to zero, which represents a second
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validation of the convergence result obtained in Corollary 5.2. To highlight this study,

in Figure 6 we plot four deformed meshes and the associated contact forces at t = 1s,

for g = 1, 10−2, 10−4 and 10−6, respectively. One can see that for g = 1 all the contact

nodes are in contact with normal compliance, whereas at g = 10−6 all the contact nodes

are in the Signorini unilateral contact without gap, i.e. with g = 0.
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[13] J. Jarušek and M. Sofonea, On the solvability of dynamic elastic-visco-plastic contact problems,
ZAMM Z. Angew. Math. Mech. 88 (2008), no. 1, 3–22, DOI 10.1002/zamm.200710360. MR2376989
(2009b:74077)

[14] H. B. Khenous, P. Laborde and Y. Renard, On the discretization of contact problems in elastody-
namics, Lecture Notes in Applied Computational Mechanics 27 (2006), 31–38.

[15] H. B. Khenous, J. Pommier, and Y. Renard, Hybrid discretization of the Signorini problem with
Coulomb friction. Theoretical aspects and comparison of some numerical solvers, Appl. Numer.

Math. 56 (2006), no. 2, 163–192, DOI 10.1016/j.apnum.2005.03.002. MR2200937 (2006i:74055)
[16] T. A. Laursen, Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfa-

cial Phenomena in Nonlinear Finite Element Analysis, Springer-Verlag, Berlin, 2002. MR1902698
(2003e:74050)

[17] A. Matei and R. Ciurcea, Contact problems for nonlinearly elastic materials: weak solv-
ability involving dual Lagrange multipliers, ANZIAM J. 52 (2010), no. 2, 160–178, DOI
10.1017/S1446181111000629. MR2832610 (2012h:74066)

[18] M. Shillor, M. Sofonea, and J. Telega, Models and Variational Analysis of Quasistatic Contact,
Lecture Notes in Physics 655, Springer, Berlin Heidelberg, 2004.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=0450957
http://www.ams.org/mathscinet-getitem?mr=0450957
http://www.ams.org/mathscinet-getitem?mr=1141048
http://www.ams.org/mathscinet-getitem?mr=1141048
http://www.ams.org/mathscinet-getitem?mr=2995754
http://www.ams.org/mathscinet-getitem?mr=691135
http://www.ams.org/mathscinet-getitem?mr=691135
http://www.ams.org/mathscinet-getitem?mr=1463151
http://www.ams.org/mathscinet-getitem?mr=1463151
http://www.ams.org/mathscinet-getitem?mr=1115205
http://www.ams.org/mathscinet-getitem?mr=1115205
http://www.ams.org/mathscinet-getitem?mr=0463994
http://www.ams.org/mathscinet-getitem?mr=0463994
http://www.ams.org/mathscinet-getitem?mr=775683
http://www.ams.org/mathscinet-getitem?mr=775683
http://www.ams.org/mathscinet-getitem?mr=1935666
http://www.ams.org/mathscinet-getitem?mr=1935666
http://www.ams.org/mathscinet-getitem?mr=1422506
http://www.ams.org/mathscinet-getitem?mr=1244578
http://www.ams.org/mathscinet-getitem?mr=1244578
http://www.ams.org/mathscinet-getitem?mr=2376989
http://www.ams.org/mathscinet-getitem?mr=2376989
http://www.ams.org/mathscinet-getitem?mr=2200937
http://www.ams.org/mathscinet-getitem?mr=2200937
http://www.ams.org/mathscinet-getitem?mr=1902698
http://www.ams.org/mathscinet-getitem?mr=1902698
http://www.ams.org/mathscinet-getitem?mr=2832610
http://www.ams.org/mathscinet-getitem?mr=2832610


ON THE BEHAVIOR OF THE SOLUTION OF A VISCOPLASTIC CONTACT PROBLEM 647

[19] M. Sofonea and A. Matei, A mixed variational formulation for the Signorini frictionless problem in
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