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Abstract

We find an unifying approach to the analytic representation of the domain bounded by

a generalized Pascal snail. Special cases as the Pascal snail, Both leminiscate, conchoid

of the Sluze and a disc are included. The behaviour of functions related to generalized

Pascal snail is studied.
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1 The analytic representation of the Pascal snail

For −1 ≤ α ≤ 1, −1 ≤ β ≤ 1, αβ �= ±1, and 0 ≤ γ < 1 let Lα,β,γ denote the

complex valued mapping

Lα,β,γ (z) =
(2 − 2γ )z

(1 − αz) (1 − βz)
=

∞
∑

n=1

Bn zn =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(2 − 2γ )

∞
∑

n=1

(

αn − βn

α − β

)

zn, α �= β;

(2 − 2γ )

∞
∑

n=1

nαn−1zn, α = β,

(1.1)
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where z ∈ D = {z ∈ C : |z| < 1}. We note that Lα,β,γ maps D onto a domain

D(α, β, γ ) whose boundary is a given by

∂D(α, β, γ ) =
{

w = u + iv :
(

2(1 − γ )u + (α + β)(u2 + v2)
)2

(1 + αβ)2

+
4(1 − γ )2v2

(1 − αβ)2
− (u2 + v2)2 = 0

}

.

Indeed, for z = eiθ , with θ ∈ [0, 2π), we obtain

L(z) :=
z

(1 − αz) (1 − βz)
=

eiθ
(

1 − αe−iθ
) (

1 − βe−iθ
)

∣

∣1 − αeiθ
∣

∣

2 ∣
∣1 − βeiθ

∣

∣

2

=
(1 + αβ) cos θ − (α + β) + i(1 − αβ) sin θ

(1 + α2 − 2α cos θ)
(

1 + β2 − 2β cos θ
) , −1 ≤ α, β ≤ 1. (1.2)

Let u = u(θ) = ℜ
{

L
(

eiθ
)}

and v = v(θ) = ℑ
{

L
(

eiθ
)}

. Then

u =
(1 + αβ) cos θ − (α + β)

(1 + α2 − 2α cos θ)
(

1 + β2 − 2β cos θ
) ,

v =
(1 − αβ) sin θ

(1 + α2 − 2α cos θ)
(

1 + β2 − 2β cos θ
) . (1.3)

Hence, u, v satisfy the equation

(

u + (α + β)(u2 + v2)
)2

(1 + αβ)2
+

v2

(1 − αβ)2
− (u2 + v2)2 = 0 (αβ �= ±1). (1.4)

Therefore Lα,β,γ maps the unit circle onto a curve (cf. [4,5])

(

2(1 − γ )u + (α + β)(u2 + v2)
)2

(1 + αβ)2
+

4(1 − γ )2

(1 − αβ)2
v2 = (u2 + v2)2 (αβ �= ±1),

(1.5)

or

(

u2 + v2 −
2(1 − γ )(α + β)

(1 − α2)(1 − β2)
u

)2

=
4(1 − γ )2(1 + αβ)2

(1 − α2)2(1 − β2)2
u2

+
4(1 − γ )2(1 + αβ)2

(1 − α2)(1 − β2)(1 − αβ)2
v2, (1.6)

that is generalization of the Pascal snail (see Figs. 1 and 2).

The wide applications of the Pascal snail have been known since their description;

the newest ones rely on the application to figure the path of airflow around object
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(A) (B)

Fig. 1 The image of D under Lα,β,γ (z)

(A) (B)

Fig. 2 The image of D under Lα,β,γ (z)

like plane wings, in the design of race and train tracks but also in cryptography for

selecting the points of the curve (ellipse, leminiscate, etc.) over the prime fields.

Also, the leminiscates are used in the construction of grids on irregular regions in the

development of software for numerically solving partial differential equations. Very

recently a method based on leminiscates is applied for meander like regions and rely

on covering the region with sectors bounded by two confocal leminiscate and two arcs

orthogonal to the Pascal snail (cf. [7]).

In this paper we will deal with the Pascal snail (1.5) or (1.6) and its analytical

representation. Also, we will discuss the special cases of (1.5) or (1.6) which give

some interesting curves.

Let us consider individual cases separately. By a symmetry, from now on we make

the assumption: β ≥ α, unless otherwise stated.
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1.1 Circular domains

A circular domain is obtained from (1.5) in the case, when one of the parameter α or

β is zero, and the second is in the interval (−1, 1). Let α = 0 < β < 1. Then L0,β,γ

has the form

L0,β,γ (z) =
2(1 − γ )z

1 − β z
,

and L0,β,γ (D) is a circular domain

D(0, β, γ ) =
{

w ∈ C :
∣

∣

∣

∣

w

2(1 − γ )
−

β

1 − β2

∣

∣

∣

∣

<
1

1 − β2

}

.

For the case α = β = 0 a curve ∂D(0, 0, γ ) is a circle |w| < 2(1 − γ ).

1.2 Halfplane

For the case when α = 0 and β = 1 the domain L(D) is the halfplane ℜw > γ − 1.

The case β = 0, α = −1 gives a halfplane ℜw < 1 − γ which is not the ones of

interest to us.

1.3 Pascal snail regions

In the case β = α ∈ (−1, 1)\{0} the function Lα,α,γ becomes

Lα,α,γ (z) =
2(1 − γ )z

(1 − αz)2
, (1.7)

with 0 ≤ γ < 1, that maps the unit disk onto simply connected and bounded region,

which can be described as

(u2 + v2 − eau)2 = a2(u2 + v2), (1.8)

where

e =
2α

1 + α2
, a =

2(1 − γ )(1 + α2)

(1 − α2)2
.

The equation (1.8) can be rewritten in a polar equation

Lα,α,γ (ei t ) =
{

ρeiϕ : ρ = 
(α, ϕ), −π < ϕ ≤ π

}

, (1.9)
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(A) (B)

Fig. 3 The image of D under Lα,α,γ (z)

where


(α, ϕ) =
2(1 − γ )|α|

α

1 + α2 + 2|α| cos ϕ
(

1 − α2
)2

.

The boundary curve, known as Pascal snail (limaçon of Pascal), is a bicircular

rational plane algebraic curve of degree 4 which belongs to the family of curves called

centered trochoids or epitrochoids (cf. Fig. 3. Certainly L0,0,γ (D) is a disk). Pascal

snail is the inversion of conic sections with respect to a focus.

We note that |e| < 1 for α �= ±1. In this case the snail is elliptic which is inverse

of an ellipse with respect to its focus. In the case, when |e| < 1/2, that is α ∈
(

−2 +
√

3, 2 −
√

3
)

, the domain bounded by the Pascal snail (1.8) is convex, and

tends to the circle when α → 0. For |e| = 1/2 the snail has a flattened segment of

the boundary and when |e| > 1/2, that is for α ∈
(

−1,−2 +
√

3
)

∪
(

2 −
√

3, 1
)

,

the curve has a shape of a bean. The case when the Pascal snail has a loop does not

hold, because it is equivalent to the inequality (1−α)2 < 0. Summarizing, the domain

bounded by the Pascal snail is bounded, convex for α ∈
[

−2 +
√

3, 2 −
√

3
]

, concave

for α ∈
(

−1,−2 +
√

3
)

∪
(

2 −
√

3, 1
)

, and symmetric with respect to real axis.

The function Lα,α,γ (z) with α �= 0 can also be written as a composition of two

analytic univalent functions, that is,

Lα,α,γ (z) = (h2 ◦ h1) (z) =
1 − γ

2α

[

(

1 + αz

1 − αz

)2

− 1

]

,
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where

h1(z) =
1 + αz

1 − αz
and h2(z) =

1 − γ

2α

(

z2 − 1
)

.

The function h1 is univalent in D and h2 is univalent in h1(D) =
{

w ∈ C :
∣

∣

∣

w−1
w+1

∣

∣

∣
< |α|

}

.

1.4 Conchoid of the Sluze

In the fourth special case we set β = 1, α ∈ (−1, 1)\{0} or α = −1, β ∈ (−1, 1)\{0}.
Let us consider β = 1, α ∈ (−1, 1). Thus Lα,1,γ has a form

Lα,1,γ (z) =
2(1 − γ )z

(1 − αz)(1 − z)
, (1.10)

where 0 ≤ γ < 1, that maps the unit disk onto simply connected region with boundary

that is a curve

∂D(α, 1, γ ) =
{

u + iv :
(

u +
(1 + α)(1 − γ )

(1 − α)2

)

(u2 + v2)

−
4α(1 − γ )

(1 − α)2 (1 + α)
u2 = 0

}

=

{

u + iv :
[

2(1 − γ )u + (1 + α)(u2 + v2)
]2

(1 + α)2
+

4(1 − γ )2v2

(1 − α)2

=
[

u2 + v2
]2
}

known as the Conchoid of de Sluze, see Fig. 4. We note that the special case β = 1

and −1 < α < 0 was also considered in [10].

In the case when α = −1, β ∈ (−1, 1)\{0} we obtain the conchoid of de Sluze

(see Fig. 5) of the form

∂D(−1, β, γ ) =
{

u + iv :
(

u −
(1 − γ )(1 − β)

(1 + β)2

)

(u2 + v2)

−
4β(1 − γ )

(1 + β)2 (1 − β)
u2 = 0

}

=
{

u + iv :
[

2(1 − γ )u − (1 − β)(u2 + v2)
]2

(1 − β)2

+
4(1 − γ )2v2

(1 + β)2
=
[

u2 + v2
]2
}

,

symmetric to the ∂D(α, 1, γ ) with respect to the imaginary axis.
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Fig. 4 The image of D under Lα,1,γ

Fig. 5 The image of D under L−1,β,γ

1.5 Hippopede. Leminiscate of Booth

Here we let β = −α, α ∈ (−1, 0). In this case Lα,−α,γ is of the form

Lα,−α,γ (z) =
2(1 − γ )z

1 − α2z2
, (1.11)

and the equation (1.5) or (1.6) reduces to (u2 + v2)2 = c2u2 + d2v2, with c =
2(1 − γ )/(1 − α2), d = 2(1 − γ )/(1 + α2), that is

∂D(α,−α, γ ) =
{

u + iv :
4(1 − γ )2

(1 − α2)2
u2 +

4(1 − γ )2

(1 + α2)2
v2 =

(

u2 + v2
)2
}

.

(1.12)
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Fig. 6 The image of D under Lα,−α,γ (z)

We remind that the hippopede is the bicircular rational algebraic curve of degree 4,

symmetric with respect to both axes. Any hippopede is the intersection of a torus

with one of its tangent planes that is parallel to its axis of rotational symmetry. When

c > d > 0 (that is α �= 0) such a curve is known as an oval or leminiscate of Booth,

see Fig. 6. Since the case d = −c does not hold, the leminiscate (1.12) do not reduce

to the leminiscate of Bernoulli.

We note that for c/
√

2 < d < c
√

2, the domain bounded by the hippopede is

convex, that is for −
√

3 − 2
√

2 < α < 0, and the curve is called Booth’s oval. For

d = c/
√

2, that is for α = −
√

3 − 2
√

2 the hippopede has a flattened segment of

the boundary. Summarizing, the domain bounded by the hippopede is bounded and

convex for α ∈
[

−
√

3 − 2
√

2, 0
)

, and concave for α ∈
(

−1,−
√

3 − 2
√

2
)

.

1.6 Remaining cases

In the remaining range of parameters, i.e. −1 < α < β < 1, not considered in

previous subsections, the curve Lα,β,γ (ei t ) is the generalized Pascal snail, that has the

form

(u2 + v2 − au)2 = c2u2 + d2v2 (1.13)

with

a =
2(1 − γ )(α + β)

(1 − α2)(1 − β2)
, c =

2(1 − γ )(1 + αβ)

(1 − α2)(1 − β2)
,

d =
2(1 − γ )(1 + αβ)

(1 − αβ)
√

(1 − α2)(1 − β2)
. (1.14)

We note, that the curve given by (1.13) has similar properties to the Pascal snail, but

symmetric only with respect to real axis. It has either horizontal eight-like shape,
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Fig. 7 The range of the

parameters α, β

bean-shape, pear-shape or is convex. From this reason the region bounded by (1.13) is

convex, or concave. As we can see in the Theorem 1.1 the minimum and maximum of

real part are not always achieved on the real axis. Taking into account the geometrical

properties of set L(D), we get the following.

Theorem 1.1 [5] Let −1 ≤ α ≤ β ≤ 1 and αβ �= ±1. Then

max
0≤θ<2π

ℜL(eiθ ) =

⎧

⎨

⎩

(1+αβ)2

2(1−αβ)[2
√

αβ(1−α2)(1−β2)−(α+β)(1−αβ)]
for (α, β) ∈ B2,

1
(1−α)(1−β)

otherwise,

min
0≤θ<2π

ℜL(eiθ ) =

⎧

⎨

⎩

−(1+αβ)2

2(1−αβ)[2
√

αβ(1−α2)(1−β2)+(α+β)(1−αβ)]
for (α, β) ∈ B1,

−1
(1+α)(1+β)

otherwise,

where

B1 = {0 < α < 1, β1(α) < β < 1} , B2 = {−1 < α < 0, α < β < β2(α)} ,

with

β1(α) =
(1 + α)

√
α2 + 14α + 1 − (α2 + 6α + 1)

2α(1 − α)
,

β2(α) =
(1 − α)

√
α2 − 14α + 1 − α2 + 6α − 1

2α(1 + α)
.

The sets B1, B2 are represented on a Fig. 7.
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In the special cases we have

max
0≤θ<2π

ℜL(eiθ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 1
8α

(

1+α2

1−α2

)2
for −1 < α ≤

√
3 − 2, β = α,

1
(1−α)2 for

√
3 − 2 ≤ α < 1, β = α,

− 1+α

2(1−α)2 for −1 < α ≤ 0, β = 1,

− 1
2(1+α)

for 0 ≤ α < 1, β = 1,

1
1−α2 for −1 < α < 0, β = −α.

min
0≤θ<2π

ℜL(eiθ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 1
8α

(

1+α2

1−α2

)2
for 2 −

√
3 ≤ α < 1, β = α,

− 1
(1+α)2 for −1 < α ≤

√
3 − 2, β = α,

− 1
2(1+α)

for −1 < α ≤ 0, β = 1,

− 1−α

2(1+α)2 for 0 ≤ α < 1, β = 1,

− 1
1−α2 for −1 < α < 0, β = −α.

1.7 Conclusions

In general L(D) is a domain symmetric about the real axis and starlike with respect

to origin and such that L(0) = 0, L
′(0) = 1 > 0. The geometrical properties of the

regions L(D) provides a natural bridge between the convex and concave domains. We

also note that such domains were discussed in relation of generalized typically-real

functions and generalized Chebyshev polynomials of the second kind [4,5].

From Theorem 1.1 we conclude the following Corollary.

Corollary 1.2 Let −1 ≤ α ≤ β ≤ 1, αβ �= ±1 and 0 ≤ γ < 1, and let Lα,β,γ be the

function defined by (1.1). Then, for z ∈ D we have

ℜ
{

Lα,β,γ (z)
}

> L0(α, β, γ )

=

⎧

⎨

⎩

−(1+αβ)2(1−γ )

(1−αβ)[2
√

αβ(1−α2)(1−β2)+(α+β)(1−αβ)]
for (α, β) ∈ B1,

−2(1−γ )
(1+α)(1+β)

otherwise,

and

ℜ
{

Lα,β,γ (z)
}

< M0(α, β, γ )

=

⎧

⎨

⎩

(1+αβ)2(1−γ )

(1−αβ)[2
√

αβ(1−α2)(1−β2)−(α+β)(1−αβ)]
for (α, β) ∈ B2,

2(1−γ )
(1−α)(1−β)

otherwise,
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Also, if α = 0, then

∣

∣

∣

∣

L0,β,γ (z) −
2(1 − γ )β

1 − β2

∣

∣

∣

∣

≤
2(1 − γ )

1 − β2
.

In the sequel we will use the following lemma.

Lemma 1.3 [1] Let z is a complex number with positive real part. Then for any real

number t such that t ∈ [0, 1], we have ℜ
{

zt
}

≥ (ℜ z)t .

2 Subclass of the Carathèodory class related to the generalized
Pascal snail

Denote by P the Carathèodory class of functions i.e. P = {p : p(z) = 1 + p1z +
p2z2 + · · · , ℜ p(z) > 0 (z ∈ D)}. The fundamental importance of P in geometric

functions theory relies on the construction of several related families of analytic func-

tions and is well known. Hence, various subclasses of P were defined and studied.

Classical cases are related to the halfplane and angular domain i.e. P(α) that denotes

a subclass of P consisting of functions with real part greater than α (0 ≤ α < 1), and

Pγ the class with argument between −γπ/2 and γπ/2 (0 < γ ≤ 1). Also, several

subfamilies of P were determined by the fact that some functionals are contained in

convex subdomains of right halfplane. Therefore any subfamily of halfplane domains

were considered in the context to a subfamily of P . Hence a definition of the domains

related to the Pascal snail was a motivation to the definition of some subclass of P

associated with such domains. To do this we first translate a domain Lα,β,γ (D) with

a vector (1, 0) in order to obtain a domain Dα,β,γ contained in a right halfplane such

that 1 ∈ Dα,β,γ . The boundary of the domain Dα,β,γ is then described as follows:

∂Dα,β,γ =
{

u + iv :
(

(2 − 2γ )(u − 1) + (α + β)((u − 1)2 + v2)
)2

(1 + αβ)2

+
4(1 − γ )2v2

(1 − αβ)2
− ((u − 1)2 + v2)2 = 0

}

.

We note that Dα,β,γ is contained in a halfplane ℜw > 1+L0, where L0 is given in

Corollary 1.2. Anyway, there is substantial difference between Dα,β,γ and a halfplane

because Dα,β,γ is not always a convex domain. However, when α = 0 and β → 1−

then Dα,β,γ tends to a halfplane ℜw > γ − 1. Thus Dα,β,γ provides a natural bridge

between the convex and the concave domains.

Now, we define a function Tα,β,γ as

Tα,β,γ (z) = 1 + Lα,β,γ (z), (2.1)

that map D univalently onto a domain Dα,β,γ . Rewriting Corollary 1.2 for the function

Tα,β,γ we conclude the following theorem.
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Theorem 2.1 Let −1 < α ≤ β < 1, 0 ≤ γ < 1, and let Tα,β,γ (·) be defined by (2.1).

Then

ℜ
{

Tα,β,γ (z)
}

> 1 + L0(α, β, γ )

and

ℜ
{

Tα,β,γ (z)
}

< 1 + M0(α, β, γ ),

where L0(α, β, γ ) and M0(α, β, γ ) are given in Corollary 1.2.

Now, we are ready to construct a class Psnail(α, β, γ ) as follows

Psnail(α, β, γ ) = {p ∈ P : p(D) ⊂ Dα,β,γ } = {p ∈ P : p ≺ Tα,β,γ }.

3 The classesST snail(˛, ˇ, 
), CVsnail(˛, ˇ, 
) and their properties

In this Section we give a concise presentation of some families of analytic functions

related to the generalized Pascal snail Tα,β,γ . We will study some subclasses of S with

functions analytic and univalent in D of the form

f (z) = z +
∞
∑

n=2

anzn (z ∈ D). (3.1)

We also recall a class ST (β) ⊂ S, called starlike functions of order 0 ≤ β < 1, that

consist of functions f satisfying a condition

ℜ
{

z f ′(z)/ f (z)
}

> β (z ∈ D)

and a class CV(β), called convex functions of order 0 ≤ β < 1, with analytic condition

ℜ
{

1 + z f ′′(z)/ f ′(z)
}

> β (z ∈ D).

Let f and g be analytic in D. Then the function f is said to subordinate to g in

D written by f (z) ≺ g(z), if there exists a self-map of the unit disk ω, analytic in D

with ω(0) = 0 and such that f (z) = g(ω(z)). If g is univalent in D, then f ≺ g if

and only if f (0) = g(0) and f (D) ⊂ g(D).

Also, let ST [β] be the subclass of ST defined by

ST [β] :=
{

f ∈ A :
z f ′(z)

f (z)
≺

1

1 − βz

}

where −1 ≤ β ≤ 1, β �= 0. Notice that for β = ±1 the function w = 1/(1 − βz)

maps the unit disc D onto the half-plane ℜw > 1/2, and for −1 < β < 1 the function

w = 1/(1 − βz) maps the unit disc D onto the disc D(C(β), R(β)) with the center

C(β) = 1/(1 − β2) and the radius R(β) = |β|/(1 − β2).
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Lemma 3.1 Let −1 < α ≤ β < 1, 0 ≤ γ < 1, and Lα,β,γ be defined by (1.1). Then

Lα,β,γ is starlike in D, moreover

Lα,β,γ (z)

2 − 2γ
∈ ST

(

1 − |αβ|
(1 + |α|) (1 + |β|)

)

and
Lα,β,γ (z)

2 − 2γ
∈ CV (t0(α, β)) ,

where

0 ≤ t0(α, β) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − |α|
1 + |α|

+
1 − |β|
1 + |β|

−
1 + αβ

1 − αβ
for αβ ≥ 0,

1 − α2

1 + α2
+

1 − β2

1 + β2
−

1 − αβ

1 + αβ
for αβ < 0.

(3.2)

Also, if |z| = r < 1, then (see Figs. 1, 2 and 6)

max
|z|=r

∣

∣Lα,β,γ (z)
∣

∣ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Lα,β,γ (r) for αβ > 0 with α + β > 0 or α = 0,

−Lα,β,γ (−r) for αβ > 0 with α + β < 0 or β = 0,

Lα,β,γ (r) for αβ < 0 with α + β > 0,

−Lα,β,γ (−r) for αβ < 0 with α + β < 0,
∣

∣Lα,−α,γ (±r)
∣

∣ for α + β = 0,

min
|z|=r

∣

∣Lα,β,γ (z)
∣

∣ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−Lα,β,γ (−r) for αβ > 0 with α + β > 0 or α = 0,

Lα,β,γ (r) for αβ > 0 with α + β < 0 or β = 0,

4(1−γ )r
√

|αβ|
(β−α)(1−αβr2)

for αβ < 0 with α + β > 0,

4(1−γ )r
√

|αβ|
(β−α)(1−αβr2)

for αβ < 0 with α + β < 0,
∣

∣Lα,−α,γ (±ir)
∣

∣ for α + β = 0.

Proof A straightforward calculation shows that G := Lα,β,γ satisfy

ℜ
{

zG ′(z)

G(z)

}

= 1 + ℜ
{

αz

1 − αz

}

+ ℜ
{

βz

1 − βz

}

> 1 −
|α|

1 + |α|
−

|β|
1 + |β|

,

from which the result concerning starlikeness follows.

In addition, we have

1 +
zG ′′(z)

G ′(z)
=

1 + αz

1 − αz
+

1 + βz

1 − βz
−

1 + αβz2

1 − αβz2
(z ∈ D).

Thus for θ ∈ [0, 2π)

ℜ
{

1 +
eiθ G ′′(eiθ )

G ′(eiθ )

}

=
1 − α2

1 + α2 − 2α cos θ
+

1 − β2

1 + β2 − 2β cos θ

−
1 − α2β2

1 + α2β2 − 2αβ cos 2θ
.
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A convexity result yield from the estimating the value of the function g(t) of the

variable t := cos θ of the form

g(t) :=
1 − α2

1 + α2 − 2αt
+

1 − β2

1 + β2 − 2βt
−

1 − α2β2

(1 + αβ)2 − 4αβt2
,

where −1 ≤ t ≤ 1.

In order to prove the second part of lemma, define for θ ∈ [0, 2π) the function

Q(θ) :=
∣

∣

∣
Lα,β,γ

(

reiθ
)
∣

∣

∣

2

=
4(1 − γ )2r2

(

1 + α2r2 − 2α r cos θ
) (

1 + β2r2 − 2β r cos θ
) (0 < r < 1).

We see that min or max of Q(θ) are attained at the critical points of the above function,

equivalently

8(1 − γ )2r3 sin θ

(

4αβr cos θ − (α + β)(1 + αβr2)

)

= 0.

For αβ = 0 and α + β �= 0 the only ones critical points are θ = 0, θ = π . Next,

let αβ > 0. Then, similarly, Q′(θ) = 0 for θ = 0 and θ = π since |(α + β)(1 +
αβr2)/4αβ| ≤ 1 does not hold. If α + β > 0, then for such θ we have

−Lα,β,γ (−r) ≤
∣

∣

∣
Lα,β,γ

(

reiθ
)
∣

∣

∣
≤ Lα,β,γ (r).

And, if α + β < 0, then we obtain

Lα,β,γ (r) ≤
∣

∣

∣
Lα,β,γ

(

reiθ
)
∣

∣

∣
≤ −Lα,β,γ (−r).

For the case αβ < 0, the critical points are θ = 0, θ = π , and the solutions of the

equation

4αβr cos θ − (α + β)(1 + αβr2) = 0. (3.3)

We consider three separate cases, the first is α +β > 0. Then for critical points θ = 0

and the solutions of the equation (3.3) we have

4(1 − γ )r
√

|αβ|
(β − α)(1 − αβr2)

≤
∣

∣

∣
Lα,β,γ

(

reiθ
)
∣

∣

∣
≤ Lα,β,γ (r).

The second case is α + β < 0. Then for the critical points θ = π and the solutions of

the equation (3.3), we obtain

4(1 − γ )r
√

|αβ|
(β − α)(1 − αβr2)

≤
∣

∣

∣
Lα,β,γ

(

reiθ
)
∣

∣

∣
≤ −Lα,β,γ (−r).
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Finally for the case α + β = 0, the critical points are θ = 0, θ = π/2, θ = π, θ =
3π/2 and θ = 2π . For such θ we conclude

2(1 − γ )r

1 + α2r2
=
∣

∣Lα,−α,γ (±ir)
∣

∣ ≤
∣

∣

∣
Lα,−α,γ

(

reiθ
)
∣

∣

∣
≤
∣

∣Lα,−α,γ (±r)
∣

∣ =
2(1 − γ )r

1 − α2r2
.

⊓⊔

Let α = ±β. From (3.2), the function Lα,α,γ (z)/(2−2γ ) is univalent in D if t0(α, α) =
1+α2−4|α|

1−α2 ≥ 0 and this is equivalent to the range −2 +
√

3 ≤ α ≤ 2 −
√

3.

Now, we define a family of functions related to the Pascal snail Tα,β,γ and present

various relations of that family with the previously known classes.

Definition 3.2 For −1 < α ≤ β < 1, and 0 ≤ γ < 1 with γ ≥ T0(α, β) and T0(α, β)

defined by

T0(α, β) =

⎧

⎨

⎩

1 − (1−αβ)[2
√

αβ(1−α2)(1−β2)+(α+β)(1−αβ)]
(1+αβ)2 for (α, β) ∈ B1,

1 − (1+α)(1+β)
2

otherwise,

(3.4)

let ST snail(α, β, γ ) denote the subfamily of S consisting of the functions f , satisfying

the condition

z f ′(z)/ f (z) ≺ Tα,β,γ (z) (z ∈ D), (3.5)

and let CVsnail(α, β, γ ) be a class of analytic functions f such that

1 + z f ′′(z)/ f ′(z) ≺ Tα,β,γ (z) (z ∈ D), (3.6)

where Tα,β,γ is given by (2.1). Geometrically, the condition (3.5) and (3.6) means

that the expression z f ′(z)/ f (z) or 1 + z f ′′(z)/ f ′(z) lies in a domain bounded by the

generalized Pascal snail Tα,β,γ (Fig. 8) given by

[

(u − 1)2 + v2 − a(u − 1)

]2
= c2(u − 1)2 + d2v2,

where a, c and d given by (1.14).

By the properties of Tα,β,γ , given in Theorem 2.1, we have

ℜ
{

z f ′(z)/ f (z)
}

> 1 + L0 (z ∈ D), (3.7)

for f ∈ ST snail(α, β, γ ), and for f ∈ CVsnail(α, β, γ )

ℜ
{

1 + z f ′′(z)/ f ′(z)
}

> 1 + L0 (z ∈ D), (3.8)

where L0 = L0(α, β, γ ) is given in Corollary 1.2.
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Additionally CVsnail(α, β, γ ) ⊂ G for γ satisfying

γ ≥ γ0(α, β) =

⎧

⎨

⎩

1 − 3(1−αβ)[2
√

αβ(1−α2)(1−β2)+(α+β)(1−αβ)]
2(1+αβ)2 for (α, β) ∈ B1,

1 − 3(1+α)(1+β)
4

otherwise,

(3.9)

where G is the family of function univalent, convex in one direction, and satisfying

ℜ{1 + z f ′′(z)/ f ′(z)} > −1/2, see [12].

Taking into account (3.2) the function Lα,α,γ (z)/(2 − 2γ ) ∈ G for |α| ≤ 4 −
√

13,

and Lα,−α,γ (z)/(2 − 2γ ) ∈ G for −
√

6 −
√

33 ≤ α < 0, [8].

Summarizing, Tα,β,γ is a analytic univalent function with positive real part in D,

Tα,β,γ (D) is symmetric with respect to the real axis, starlike with respect toTα,β,γ (0) =
1 and convex in one direction under some conditions on α and β. Moreover T ′

α,β,γ (0) =
2(1 − γ ) > 0 hence Tα,β,γ (D) satisfies Ma and Minda condition [9]. We refer to

[2,3,6,11] for a detailed discussion about similar subclasses of related to functions

mapping the unit disk onto domains contained in a right halfplane and starlike with

respect to 1.

For β = α with −1 < α < 1 and β = −α with −1 < α < 0, the quantities

T0(α, β) and γ0(α, β) are the following

T0(α, α) =

⎧

⎨

⎩

1 − 4α

(

1−α2

1+α2

)2
for 2 −

√
3 ≤ α < 1,

1−2α−α2

2
for − 1 < α ≤ 2 −

√
3,

T0(α,−α) =
1 + α2

2

and

γ0(α, α) =

⎧

⎨

⎩

1 − 6α

(

1−α2

1+α2

)2
for 2 −

√
3 ≤ α < 1,

1−6α−3α2

4
for − 1 < α ≤ 2 −

√
3,

γ0(α,−α) =
1 + 3α2

4
.

For γ = 1/2, classes ST snail(α, α, 1/2) and CVsnail(α, α, 1/2) are defined under the

condition 0 ≤ α ≤ α0, where α0 = 0.615331 . . . is a root of equation 8α
(

1 − α2
)2 =

(

1 + α2
)2

. We also note that ST snail(α,−α, 1/2) and CVsnail(α,−α, 1/2) of starlike

and convex functions of Ma-Minda type [9], can not be defined, because it should

satisfy γ ≥ 1+α2

2
that is α2 ≤ 0 which is impossible.

Further properties of Tα,β,γ yield:

f ∈ ST snail(α, β, γ ) �⇒ φ(z) :=
∫ z

0

(

f (t)

t

)− 1
L0

dt ∈ CV.
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(A) (B)

Fig. 8 Image of D under Tα,−α,γ (z)

Indeed, by logarithmic differentiation of φ′(z) =
(

f (z)
z

)− 1
L0 we obtain

1 +
zφ′′(z)

φ′(z)
= 1 −

1

L0

(

z f ′(z)

f (z)
− 1

)

= 1 +
1

L0
−

1

L0

z f ′(z)

f (z)
(z ∈ D).

Since f ∈ ST snail(α, β, γ ), we conclude that

ℜ
{

1 +
zφ′′(z)

φ′(z)

}

= 1 +
1

L0
−

1

L0
ℜ
{

z f ′(z)

f (z)

}

> 0 (z ∈ D).

The equivalence g ∈ ST snail(α, β, γ ) if and only if zg′(z)/g(z) ≺ Tα,β,γ (z) allows

to determine the structural formula for functions in ST snail(α, β, γ ). A function g is

in the class ST snail(α, β, γ ) if and only if there exists an analytic function p ≺ Tα,β,γ ,

such that

g(z) = z exp

(∫ z

0

p(t) − 1

t
dt

)

. (3.10)

The above integral representation provides many examples of functions of the class

ST snail(α, β, γ ). Let p(z) = Tα,β,γ (zn) ∈ ST snail(α, β, γ ) for n = 1, 2, . . .. Then,

for α �= β, n ≥ 1, the function


α,β,γ,n(z) = z exp

(∫ z

0

2(1 − γ )tn−1

(1 − αtn)(1 − βtn)
dt

)

= z

(

1 − βzn

1 − αzn

)

2(1−γ )
n(α−β)

= z +
2(1 − γ )

n
zn+1 +

(1 − γ )[2(1 − γ ) + n(α + β)]
n2

z2n+1 + · · · ,

(3.11)
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Fig. 9 
α,β,γ,n(D) for α = −0.9, β = 0.4, γ = 0.93, n = 5, 8

is extremal for several problems in the class ST snail(α, β, γ ). For n = 1 we have


α,β,γ (z) := 
α,β,γ,1(z) = z

(

1 − βz

1 − αz

)

2(1−γ )
α−β

, (3.12)

and for α = β


α,α,γ,n(z) = z exp

(

2(1 − γ )zn

n(1 − αzn)

)

= z +
2(1 − γ )zn+1

n(1 − αzn)
+ · · · (3.13)

and


α,α,γ (z) := 
α,α,γ,1(z) = z exp

(

2(1 − γ )z

1 − αz

)

. (3.14)

We note that 
α,β,γ,n(D) is sunflower’s domain (Fig. 9).

Indeed, for α �= β let

G(t) =
∣

∣

∣

α,β,γ,n(ei t )

∣

∣

∣
=
(

1 + β2 − 2β cos nt

1 + α2 − 2α cos nt

)p

,

where p = 1−γ
n(α−β)

and n ≥ 2. Since

G ′(t) =
(

1 + β2 − 2β cos nt

1 + α2 − 2α cos nt

)p−1
pn(β − α)(1 − αβ) sin nt

(1 + α2 − 2α cos nt)2
,
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(A) (B)

Fig. 10 Graph of function H(t)

we see that the points of extreme of modulus occur at t = kπ
n

, where k =
0, 1, 2, ..., 2(n − 1). At these points G(t) alternately attains its maximum and mini-

mum, equal
(

1+β
1+α

)2p

and
(

1−β
1−α

)2p

, respectively.

Additionally, the argument of 
 i.e.

H(t) = Arg 
α,β,γ,n(ei t ) = t − 2p tan−1 (β − α) sin nt

1 + αβ − (α + β) cos nt
,

is also alternately increasing and decreasing (see Fig. 10) as t ∈ [0, 2π) and γ >

T0(α, β), where T0(α, β) is defined by (3.4).

In the case α = β the function G(t) has the form

G(t) = exp ℜ
(

2(1 − γ )zn

n(1 − αzn)

)

= exp

(

2(1 − γ )(cos nt − α)

n(1 + α2 − 2α cos nt)

)

,

whose behavior is similar to the behavior of G(t) for α �= β. The same situation holds

for H(t), α = β.

If γ < T0(α, β), the function 
α,β,γ,n is not starlike in a whole unit disk as well

as not univalent there (Fig. 11).

From Lemma 3.1 it can be seen that the smallest disk with center (1, 0) that contains

Tα,β,γ (D) and the largest disk with center at (1, 0) contained in Tα,β,γ (D) (see Fig 12)

are, below.

Proposition 3.3 Let −1 < α ≤ β < 1, αβ �= ±1. Then

Tα,β,γ (D) ⊃

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{

w ∈ C : |w − 1| <
2(1−γ )

(1+α)(1+β)

}

for αβ > 0 with α + β < 0 or β = 0,

{

w ∈ C : |w − 1| <
2(1−γ )

(1−α)(1−β)

}

for αβ > 0 with α + β > 0 or α = 0,

{

w ∈ C : |w − 1| <
4(1−γ )

√
|αβ|

(β−α)(1−αβ)

}

for αβ < 0 with α + β �= 0,

{

w ∈ C : |w − 1| <
2(1−γ )

1+α2

}

for α + β = 0,

(3.15)
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Fig. 11 
α,β,γ,n(D) for α = −0.9, β = 0.4, γ = 0.2, n = 5, 8 with γ < T0(α, β)

Fig. 12 The range of the

functions Lα,β,γ ,
2(1−γ )

(1+α)(1+β)
z + 1,

2(1−γ )
(1−α)(1−β)

z + 1 and

4(1−γ )
√

|αβ|
(β−α)(1−αβ)

z + 1 for

α = −0.9, γ = 0.93 and

β = 0.4

Tα,β,γ (D) ⊂

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{

w ∈ C : |w − 1| <
2(1−γ )

(1−α)(1−β)

}

for αβ �= 0 with α + β > 0 or α = 0,

{

w ∈ C : |w − 1| <
2(1−γ )

(1+α)(1+β)

}

for αβ �= 0 with α + β < 0 or β = 0,

{

w ∈ C : |w − 1| <
2(1−γ )

1−α2

}

for α + β = 0.

(3.16)

The function 
α,β,γ given by (3.11), and (3.14) shows that the bounds are the best

possible.

Theorem 3.4 Let −1 < α ≤ β < 1, and let f be analytic in D. If P f = f / f ′ ∈
ST snail(α, β, γ ), then

z f ′(z)

f (z)
≺

z


α,β,γ (z)
(z ∈ D).
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Proof Let p(z) = z f ′(z)/ f (z). Then P f (z) = z/p(z) and z P ′
f /P f = 1 − zp′/p.

Since P f ∈ ST snail(α, β, γ ), we have

−
zp′(z)

p(z)
≺ Tα,β,γ (z) − 1 = Lα,β,γ (z) (z ∈ D).

The function F defined by

F(z) =
∫ z

0

Lα,β,γ (t)

t
dt = log

(


α,β,γ (z)

z

)

where 
α,β,γ given by (3.12), is analytic in D, F(0) = F ′(0) − 1 = 0 and

1 +
zF ′′(z)

F ′(z)
=

zL′
α,β,γ (t)

Lα,β,γ (t)
(z ∈ D).

Taking into account Lemma 3.1, we deduce that the function F is convex in D. Apply-

ing [14], we conclude that

− log p(z) ≺ log

(


α,β,γ (z)

z

)

or log p(z) ≺ log

(

z


α,β,γ (z)

)

,

and by (3.12), the required result follows. ⊓⊔

Since for z ∈ D and α �= β

ℜ
{

z


α,β,γ (z)

}

=
∣

∣

∣

∣

1 − αz

1 − βz

∣

∣

∣

∣

− 2(1−γ )
β−α

cos

(

2(1 − γ )

β − α
arg

1 − αz

1 − βz

)

and arg 1−αz
1−βz

∈ (−π/2, π/2) the above and Theorem 3.4 leads to the following con-

clusion.

Corollary 3.5 Let f ∈ A be a locally univalent function. If P f = f / f ′ ∈
ST snail(α, β, γ ) with α �= β and γ ≥ 1 − β−α

2
, then f ∈ ST .

Now we get a representation of functions in class ST snail(α, β, γ ) with the help

of the class ST [β].

Lemma 3.6 Let f ∈ ST snail(α, β, γ ) with α, β �= 0 and α �= β. Then there exists

h ∈ ST [β], and g ∈ ST [α] such that

f (z) = z

(

h(z)

g(z)

)

2(1−γ )
β−α

(z ∈ D).
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Proof Let f ∈ ST snail(α, β, γ ). Then, by (3.10), there exists a self-map ω, which is

analytic in D, ω(0) = 0, |ω(z)| < 1, and such that

f (z) = z exp

(∫ z

0

Tα,β,γ (ω(t)) − 1

t
dt

)

= z exp

∫ z

0

q

[

βω(t)

t(1 − βω(t))
−

αω(t)

t(1 − αω(t))

]

dt

= z

⎛

⎜

⎜

⎝

z exp

∫ z

0

βω(t)

t[1 − βω(t)]
dt

z exp

∫ z

0

αω(t)

t[1 − αω(t)]
dt

⎞

⎟

⎟

⎠

q

= z

⎛

⎜

⎜

⎜

⎝

z exp

∫ z

0

1
1−βω(t)

− 1

t
dt

z exp

∫ z

0

1
1−αω(t)

− 1

t
dt

⎞

⎟

⎟

⎟

⎠

q

= z

(

h(z)

g(z)

)q

,

where q = 2(1−γ )
β−α

. The assertion now follows. ⊓⊔

From the relation h ∈ CVsnail(α, β, γ ) if and only if 1 + zh′′(z)/h′(z) ≺ Tα,β,γ (z)

we obtain the structural formula for functions in CVsnail(α, β, γ ). A function h is

in the class CVsnail(α, β, γ ) if and only if there exists an analytic function p with

p ≺ Tα,β,γ , such that

h(z) =
∫ z

0

exp

(∫ w

0

p(t) − 1

t
dt

)

dw. (3.17)

The above representation supply many examples of functions in class CV snail(α, β, γ ).

Let p(z) = Tα,β,γ (z) ∈ CVsnail(α, β, γ ), then for some n ≥ 1 and α �= β, the

functions

Kα,β,γ,n(z) =
∫ z

0

exp

(∫ w

0

2(1 − γ )tn−1

(1 − αtn) (1 − βtn)
dt

)

dw

=
∫ z

0

(

1 − αtn

1 − βtn

)

2(1−γ )
n(α−β)

dt, (3.18)

are extremal functions for several problems in the class CVsnail(α, β, γ ). For n = 1

we have

Kα,β,γ (z) := Kα,β,γ,1(z) =
∫ z

0

(

1 − αt

1 − βt

)

2(1−γ )
α−β

dt . (3.19)
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and for α = β

Kα,α,γ,n(z) =
∫ z

0

exp

(

2(1 − γ )tn

n(1 − αtn)

)

dt and Kα,α,γ (z) := Kα,α,γ,1(z).(3.20)

Now we get a representation of functions in class CVsnail(α, β, γ ) with the help of

class ST [β]. From Lemma 3.6, we conclude the following Corollary.

Corollary 3.7 Let f ∈ CVsnail(α, β, γ ) with α, β �= 0 and α �= β. Then there exists

h ∈ ST [β] and g ∈ ST [α] such that

f ′(z) =
(

h(z)

g(z)

)

2(1−γ )
β−α

(z ∈ D).

From (3.15), we conclude that f ∈ ST snail(α, β, γ ) if and only if

∣

∣

∣

∣

z f ′(z)

f (z)
− 1

∣

∣

∣

∣

< L =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2(1−γ )
(1+α)(1+β)

for αβ > 0 with α + β < 0 or β = 0,

2(1−γ )
(1−α)(1−β)

for αβ > 0 with α + β > 0 or α = 0,

4(1−γ )
√

|αβ|
(β−α)(1−αβ)

for αβ < 0 with α + β �= 0,

2(1−γ )

1+α2 for α + β = 0

and the fact that f ∈ CVsnail(α, β, γ ) if and only if z f ′(z) ∈ ST snail(α, β, γ ), we

get the following conclusions.

Proposition 3.8 Let −1 < α ≤ β < 1. The classes ST snail(α, β, γ ) and

CVsnail(α, β, γ ) are nonempty. The following functions are the examples of their

members.

(1) Let an ∈ C with n = 2, 3, . . .. Then f (z) = z + anzn ∈ ST snail(α, β, γ )

⇐⇒ |an| ≤ L
n−1+L

.

(2) Let an ∈ C with n = 2, 3, . . .. Then f (z) = z + anzn ∈ CVsnail(α, β, γ )

⇐⇒ n |an| ≤ L
n−1+L

.

(3) Let A ∈ C. Then z/(1 − Az)2 ∈ ST snail(α, β, γ ) ⇐⇒ |A| ≤ 2
2+L

.

(4) Let A ∈ C. Then z/(1 − Az) ∈ CVsnail(α, β, γ ) ⇐⇒ |A| ≤ 2
2+L

.

(5) Let A ∈ C. Then z exp(Az) ∈ ST snail(α, β, γ ) ⇐⇒ |A| ≤ L.

(6) Let A ∈ C. Then
exp(Az)−1

A
∈ CVsnail(α, β, γ ) ⇐⇒ 0 < |A| ≤ L,

where L is given in the Corollary 3.7.

The following corollary is the consequence of Lemma 3.1, and Theorems in [9].

Corollary 3.9 For −1 < α ≤ β < 1, |z| = r < 1, and f ∈ ST snail(α, β, γ ), it holds

−
α,β,γ (−r) ≤ | f (z)| ≤ 
α,β,γ (r),


 ′
α,β,γ (−r) ≤

∣

∣ f ′(z)
∣

∣ ≤ 
 ′
α,β,γ (r) for αβ > 0 with α + β > 0 or α = 0,
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 ′
α,β,γ (r) ≤

∣

∣ f ′(z)
∣

∣ ≤ 
 ′
α,β,γ (−r) for αβ > 0 with α + β < 0 or β = 0,

|Arg { f (z)/z}| ≤ max
|z|=r

Arg
{


α,β,γ (z)/z
}

.

Equalities in the above inequalities hold at a given point other than origin for the

functions

ψα,γ,μ(z) = μ
α,β,γ (μz) (|μ| = 1) . (3.21)

Moreover

f (z)

z
≺


α,β,γ (z)

z
(z ∈ D). (3.22)

If f ∈ ST snail(α, β, γ ), then either f is a rotation of 
α,β,γ given by (3.12) and

(3.14) or

{

w ∈ C : |w| ≤ −
α,β,γ (−1)
}

⊂ f (D),

where −
α,β,γ (−1) = limr→1− [−
α,β,γ (−r)].

Corollary 3.10 Let −1 < α ≤ β < 1. If f ∈ CVsnail(α, β, γ ) and |z| = r < 1, then

−Kα,β,γ (−r) ≤ | f (z)| ≤ Kα,β,γ (r),

K ′
α,β,γ (−r) ≤ | f ′(z)| ≤ K ′

α,β,γ (r),

|Arg
{

f ′(z)
}

| ≤ max
|z|=r

Arg
{

K ′
α,β,γ (z)

}

.

Equalities in the above inequalities hold at a given point other than 0 for functions

μKα,β,γ (μz) with (|μ| = 1) . Moreover

f ′(z) ≺ K ′
α,β,γ (z) (z ∈ D).

If f ∈ CVsnail(α, β, γ ), then either f is a rotation of Kα,β,γ given by (3.19) and

(3.20) or

{w ∈ C : |w| ≤ −Kα,β,γ (−1)} ⊂ f (D),

where −Kα,β,γ (−1) = limr→1− [−Kα,β,γ (−r)].

Theorem 3.11 Let −1 < α < β < 1. If f ∈ ST snail(α, β, γ ), then

(1) ℜ
{

f (z)

z

}

>

(

1 + α

1 + β

)

2−2γ
β−α

for T0(α, β) ≤ 1 −
β − α

2
≤ γ (z ∈ D),

(2) ℜ
{

f (z)

z

}
β−α
2−2γ

>
1 + α

1 + β
(z ∈ D),
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(3)

∣

∣

∣

∣

Arg

{

f (z)

z

}
∣

∣

∣

∣

≤
2(1 − γ )

β − α
sin−1

(

|z|(β − α)

1 − |z|2αβ

)

(z ∈ D).

Proof Let q := 2(1−γ )
β−α

.

Case 1. From 1 − β−α
2

≤ γ it follows that 0 < (2 − 2γ )/(β − α) ≤ 1, and from

f ∈ ST snail(α, β, γ ) it follows that T0 ≤ 1 − β−α
2

. Then, making use Corollary 3.9

and Lemma 1.3, we conclude that

ℜ
{

f (z)

z

}

> ℜ
{


α,β,γ (z)

z

}

= ℜ
{(

1 − αz

1 − βz

)q}

≥
{

ℜ
(

1 − αz

1 − βz

)}q

>

(

1 + α

1 + β

)q

.

The function ψα,γ,μ given by (3.21), shows that the bound is the best possible.

Case 2. From Corollary 3.9 we have

[

f (z)

z

]1/q

≺
[


α,β,γ (z)

z

]1/q

.

Thus

ℜ
{

f (z)

z

}1/q

> ℜ
{

1 − αz

1 − βz

}

>
1 + α

1 + β
.

Case 3. By Corollary 3.9 it is enough to consider Arg
{


α,β,γ (z)/z
}

. Since the

image of the disk {z ∈ C : |z| ≤ r} by the function w = 
α,β,γ (z)/z or w1/q =
(1 − αz) /(1 − βz) is contained in closed disc with center

(

1 − αβr2
)

/
(

1 − β2r2
)

and radius (r(β − α)) /
(

1 − β2r2
)

, then

∣

∣

∣

∣

w1/q −
1 − αβr2

1 − β2r2

∣

∣

∣

∣

≤
r(β − α)

1 − β2r2
and

∣

∣

∣
Arg w1/q

∣

∣

∣
<

π

2
.

Thus

∣

∣

∣
Arg w1/q

∣

∣

∣
≤ sin−1

(

r(β − α)

1 − r2αβ

)

.

The proof is now complete. ⊓⊔

It is clear that f (z) ∈ CVsnail(α, β, γ ) if and only if z f ′(z) ∈ ST snail(α, β, γ ). Using

the same notation and the same reasoning as in the proof of Theorem 3.11 we have

the following Corollary.

Corollary 3.12 Let −1 < α < β < 1. If f ∈ CVsnail(α, β, γ ), then

(1) ℜ
{

f ′(z)
}

>

(

1 + α

1 + β

)

2−2γ
β−α

for T0(α, β) ≤ 1 −
β − α

2
≤ γ (z ∈ D),
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(2) ℜ
{

f ′(z)
}

β−α
2−2γ >

1 + α

1 + β
(z ∈ D),

(3)
∣

∣Arg
{

f ′(z)
}
∣

∣ ≤
2(1 − γ )

β − α
sin−1

(

|z|(β − α)

1 − |z|2αβ

)

(z ∈ D).

The conditions T0(α, β) ≤ 1−
β − α

2
≤ γ in Theorem 3.11 for requirement β = −α

are equivalent to conditions 1−
√

2 ≤ α < 0, γ ≥ 1+α, and so we have the following.

Corollary 3.13 For 1 −
√

2 ≤ α < 0 and γ ≥ 1 + α, we have:

f ∈ ST snail(α,−α, γ ) �⇒ ℜ
{

f (z)

z

}

>

(

1 − α

1 + α

)

1−γ
α

(z ∈ D),

and

f ∈ CVsnail(α,−α, γ ) �⇒ ℜ
{

f ′(z)
}

>

(

1 − α

1 + α

)

1−γ
α

(z ∈ D).
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