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On the Behaviour of Generalized Solutions
to Genuinly Nonlinear First Order

Equations for Small and
Large Values of Time

Yu G. Rykov

ABSTRACT. The paper deals with the asymptotic behaviour of generalized solutions to
nonlinear first order equations. With the aid of explicit variational representation one studies
the decrease of solutions for a large time. And for the small time an asymptotics of the
perturbation’s front is calculated.

1. INTRODUCTION

This paper investigates generalized solutions (briefly:g.s.) of the
equation

Lusu +f(tx,u ) +g(txu)=H@tx), (tx) € R x R (L.1)

with initial data
u(0)=u,(x), xe R (1.2)

Here f e C°, g € C, g(t,x,u) satisfies local Hélder condition in u € R,
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with exponent n > 0 and has three continuous derivatives in u € R,
St x,0)=g(1,x,0)=0, g(¢,x,u) monotonically nondecreases in u, f, (#,x,p)=p>0,
H(t,x) is a measurable function bounded for bounded & uy(x) € W (R,
1o (x)20.

The Cauchy problem for (1.1) was considered in [2], [8]-[10]. The
papers [11], [3]-[7] are devoted to the case of f nonconvex with respect
to u,. Further references may be found in the cited articles.

In §2 we deal with the decreasing of g.s. to (1.1), (1.2) as ¢
converges to +e< in the case

Juoxu)=flu), gtxu)=0, lim u(x)=0, H{tx)=0.

TR

In [8] for this case stabilization to inf #,(x) was proved and the rate of the
stabilization was estimated. Similar results but in the case of nonconvex
f are presented in [1]. Our results are based on explicit formula for the
g.s. of the problem (1.1), (1.2) obtained in [9]. Some function v{fx)
satisfying (1.1) in the generalized sense will be found such that for every
u,(x) with compact support and nonsmooth at the points of the support
boundary the corresponding g.s. of (1.1}, (1.2) identically equals v(z.x)
beginning from some fixed time. If uy(x) is smooth then the g.s. tends to
v(2,x) as t converges to +eo and the rate of convergence will be estimated.

In case uy(x) does not possess compact support but tends to zero as
| x| = +oo the rate of g.s. decreasing also will be estimated.

§3 is devoted to the support behaviour of g.s. to (1.1}, (1.2) for small
values of ¢ provided u (x) has compact support. For example, consider the
equation

u R ) Nu K {ul M, (tx) e R xR
where f{0)=f"(0)=0f" >0,N>0,K>0,0<n<1.

Suppose uy(x)=P(1-x)* for 1-& <x < 1, uy(x)=0 for x > 1, where 021,
P>, £>0. For this particular case as a corollary of the results contained
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in §3 one obtains necessary and sufficient conditions for the support of
the g.s. of (1.1), (1.2) to expand in the left or the right direction.

Definition 1.1. A function u(tx) Lipschitz continuous in [0,T]xR,
7>0, is called a g.s. of the problem (1.1), (1.2) if:

1) u(tx) sarisfies (1.1) almost everywhere in R, x R and takes initial
values (1.2);

2) for every I#0 in each rectangle (0.T|X[-R,R), T>0, R>0, the
following inequality is fulfilled

w(t,x+D-2u(t x) +u(t x-DSMER 2, (1.3)

where M1,R)20 is defined for t € (0,T] and A(t,R)<Ag<+oo for 0<d<t<T.

The existence theorem for the problem (1.1), (1.2) one can prove by
analogy with [8].

Theorem 1.1. Suppose v(tx) € Wi, witx) € WL in each Strip
[0.TIx R, T>0. Suppose v(t,x) is a g.s. of the equation Lv=h,(t,x) with data
v0.x)=v,(x) € W(R), and w(tx) is a g.s. of the equation Lw=h,(tx) with
data w(0,.x)=w,(x) € W.(R}, where h(tx),h,(tx}) are measurable functions
bounded for bounded t. Suppose h(tx)Shy(tx) in R, X R and vy{x)Swy(x)
in B. Then v(tx)sw(tx) in R, x R.

Due to monotonicity of g(t,x,u) in u the proof of this theorem is
analogous to [8]. It follows from the Theorem 1.1 that the g.s. of (1.1),
(1.2) is unique.

Below u(t,x) denotes the g.s. of the problem (1.1), (1.2) with
Htx)=0.
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2, THE BEHAVIOUR OF GENERALIZED SOLUTIONS AS
t CONVERGES TO +e

Suppose fit,xu)=Au,), gltau)=0, £(0)=0, f € C'(R). Under these
conditions (see [9]) the g.s. of the probiem (1.1), (1.2) with H(rx)=0 is
given by the formula

u(tx)=inf G(tx.qu(q), Gx.qul@)=uq)++-P(x-g)/t), (2.1)

qel

where ®(q) is Legendre transformation of the function f{g), ®(q)=f""'(¢)q
- f 2 f7'(g)20, because of the convexity of fig). Notice, that ®(g)=""(g).

Let us fulfil some auxiliary research and study the roots of the
equation (with respect to g)

G, =y (@) (x-@))=0, gefabl, (2.2)

where >0, x ¢ R are fixed.

Lemma 2.1, Suppose uy(tx} is monotone in [a,b), u, € C(la,b]). Then
if [a.b] does not contain zero roots for u’(q)=0 there exists such t, that
Jor 1>t the segment [a,b] does not contain roots of (2.2); if g.€a,b],
u'y(q.)=0 and q. is the unique root for u’,(q)=0 then there exists such t,
that for t>t, the equation (2.2) has only one root tending to q. as t—>+oo.

Proof. The equation (2.2) is equivalent to the following

Floug@=Ce-qyt (2.3)

The left hand side of (2.3) equals zero if and only if u”(g)=0. The right
hand side of (2.3) for fixed x tends to zero as t — +o uniformly with
respect to g € {a,b). Now, the statements of Lemma 2.1 easily follow.
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Lemma 2.2, Suppose supp u,(x) C [a,b]. Then supp u(t x)cR, x[a,b).

Proof. Suppose x ¢ [a,b], t € R,. Let us take g=x, then G(1,x.x,uy(x))
= uy(x) = 0. Our result follows from (2.1).

Let us introduce the notation
v(z,0) =min[G(z,x,0,u,(0)),G(1,x,1,1,(1))].

Theorem 2.1. Suppose the following conditions hold.:

1} supp uy(x) = {0,411,

2} u(x)2h(x), I,(x) € WLR) and 1,(x) > O, I (x£0)20 in (0,1);
3) ufx)=I(x) for |x|<e and for | x-1| <& for some £ > 0;
4) L(x) ~ ax®, I’(x) ~ oax™! as x = +0;

5) L(x) ~ a(l-x)*, I"(x) ~ -aa(1-x)*" as x = 1-0;

here a=const>0, a=const>1.

Then "0 [v(t,x)-u(tx)] = B(x) as t = +oo for every x € R, where
B(x)=0 for x ¢ (0,1} and

B(x)=(c.-1)a " Vo (0)] 4 Pminlx ¥V (1 -x)*@

Jor x € (0,1).

Proof. It follows from the conditions of Theorem 2.1 that
Gtx,q.u,(q) = G x,q.1,(q). By virtue of Lemma 2.1 G(1,x,9,/,(¢)) as a
function of ¢ can have a local minimum at £-neighbourhoods of the
points g=0 and g=1 provided ¢ is sufficiently large. But there u,(q)=l,(g).
It is easy to see that G(¢,x,q,u,(g))>0, ¢ € (0,1) because of uy(g)>0 for
g € (0,1). So global minimum with respect to g of the function
G(tx.q.u,(qg)) coincides with the smallest of the values G(£,x,0,0),
G(I,.X',I,O), G(trx %»“0(%)), G(trx!ql?uo(ql))! where %=%(*'J)s q1=ql(trr) arc
the roots of (2.3) tending to 0 and 1 respectively as f — +oo.
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Notice, that G(¢,x,0,0)=rP(x/t), G(£,x,1,0)=tP((x-1)/1). It is easy to see
that for sufficiently large ¢ the following inequalities are true:

G(tx,0,0) £ G(tx,1,0) for0<x<1/2 and
G(tx,0,0) 2 Gtx,1,00 forif2<x<1.

Hence, provided ¢ is large enough we obtain

G(t.x.q0uy(qy)) S Gltx.q,.u,gq,)) for0<x<1/2 and
Gt x,qo.uy(qo)) 2 G(tx.q.uyq,)) for 12 <x < 1.

Let us seek g,(¢,x) in the form g(t.x)=b,(x)rP+o(r?), where b, € C(R),
B > 0. Substituting g,(¢,x) into (2.2) one gets oagy(t,x)"" + o(gy(t.0)*") =
D ((e-go(1 )/, aaby(x)™' PN 3 o(rP ) = @ (0)(x-go(t, X))/t + o(1/0).
Hence B=1/(c-1) and equating coefficients at +' one finds auhl'(x) =
x®7(0). Further, G(t.x,0,0) - G(r.x,qo(t.x).1e(qe(t.x))) = 1DO/)-1D((x-
Go(t2)/1)-1to{qo(t.x)) = D (x-go(t X)W1, )t + FLE 00D (ENx/1-E)dE] -
aqy(t.)* + o(r*™"). One estimates 7| [¥! @ E)Xx/t-E)dE | < const
L et L x/e-E | dE < comst gt = ofr®") = o(r™*"). Besides, O ((x-

go(t)1) = D (0)x-go(2.x))/t + o(1/1).

Thus, G(£,x,0,0) - Glxgy(t0.ugytx))) = @7 (Oxgy(t0fr -
ab ()™ 4 o(rY Ny = (D (O)xby(X) - ab(X)*) D + o(r ™). Now,
taking into account that ® " (0)=1/f"(f""(0))=1/f "(0), one finds G(¢,x,0,0) -
G(t,x,q0(t )1 Go(2.0)) = by(X)x(1-1/o)r™ Vi (0) + o(r™®V). The first
term of the right hand side is positive for x > 0.

By analogy one can prove the equality G(fx,1,0) - G{t,x,q,(2,.%),
uy(@,(1,%))) = r¥=Vp(1-x)(1-x)(1-1/a)ff“(0) + o(r**"). Here the first term
of the right hand side is positive for x < 1.

Comparing the last two formulas one proves the statement of

Theorem 2.1 for x € (0,1). For other x B(x)=0 by virtue of Lemma 2.2.

Theorem 2.2. Suppose the following conditions hold:

1) supp uyx) = [0,1];
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2) uy(x) 2 Iy{x) in (0,1), L(x)=Mxle for 0 < x < &,
Lix)=M(1-x)/(1-g) for e £ x < 1, M>0, 1>£>0;

3} D(s) < Ms/e for 0<s<s,(M.e), ®(-s) < Ms/(1-g) for 0<s<s,(M,£),
where ® is the Legendre transformation of f.

Then u(tx) = v(tx) for t 2 T = max [-Uf(-Mi(1-¢)), 1f(Mle),
sfM.e)’, s (M,g)"].

Proof. Let us investigate infimum (with respect to ¢) of the function
G(tx,q0,(q)). Because of Lemma 2.2 one may consider only 0 < x < 1.
We are interested in the values of the function G at the points g, where
either G, =0 or G is not smooth. G is not smooth at three points: 0, €, 1.

If g < 0 then G =0 only at g=x; if 0<g<e then G =0 at g=x-ff (M/e);
if e<g<l1 then G =0 at g=x~1f (-M/(1-¢)); if g>1 then G,=0 only at g=x.

Thus, the global minimum on the funcion G{f.x,q.l,(q)) with respect
to ¢ coincides with the smallest of the values:

= 1P(xft), ®, = 1P((x-1)ft), ®, = M+ D((x-£)f1), ®,=L(x), 05 =
z(x-tf' (M/€)) + 1@of (M/e), 0 = L(x-tf (-Mf(1-2))) + t®f (-M[(1-€)).

For O<x<l, x<tf (M/e), x > 1 + if(-M/(1-¢)) the following
inequalities are true: ®, < ®;, ®, < W, Because of assumption 3)
min{®,,®,) < o, for 27. Further ®, > M in consequence to ® > 0. Thus,
it sufficies to find min(®,,w,) for t = T. But G{(t.x,9.u,(q)) 2 G(t,x,q.1,(q))
for every g. Hence

infG(t.x,q,u(q)) =infG(t.x,q,0,(q)) =minle®(x/t) 1 P((x-1)/D)l=v(e x) for 2T,

geR geR

!

Remark 2.1. k follows from the theorems 2.1, 2.2 that u(t,x) tends
to zero as t — +oo in case u,(x) is not smooth at the points 0 and 1 slower
than in case u,(x) is smooth there. But this difference presents only in the
second term of the asymptotics as t — +oo,
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Theorem 2.3. Suppose the following conditions hold:

1) uo(x)>0 xe R
©2) uyfx) = ly(x), I, € WYR), I(x) > 0, l(x+0)¢0forx € R,
3) uy(x) = lyfx) for | x| sufficiently large; .
4) Lix)~ C;lx| P+ C x| #,
© Lix) ~ -PC, ) x| ‘ﬁ'lsign X- (]3+1)C2 | x| *sign x,
x| = +os, C,>0, C,>0, B>0.

Then th+f)-"fB+2)u(I’x) R CZI'J'(ﬁ+2)(B+2)2-I[(D,,(0)/[3]51”5...2}[”(54_21 -
& (0)PHIBABC, Y B2CHBC,) - | x| ] as t — +oo for every x € R.

Proof. By analogy with the proof of Theorem 2.1 it'sufficies to find
the minimum with respect to ¢ of the function G(t,x,q,/,(g)). The equation
(2.3) with respect to g has two roots g,(z,x) and ¢ (¢,x) tending to +e and
-oo respectively as ¢ — +eo. Let us seek these roots in the form

q,(tx)=ta 1 (1 +a,(x)t P +o(1 %),

where a, = const > 0, a, € C(R), y>0,8> 0.

Let us consider ¢,. Applying Taylor’s formula with the remainder
term in Peano’s form one gets

1(q,(t.0) =-BC,a, PN Lra,()r® + o(r®) P -
(B+DCoa, PHr P La, () + o) P2 + o(r™®+2),;

D ((e-q, (L)) = DO [xft-a,0' 1+, + o)) +
D (02 [x/t-a, 0 (T4+a,() + o)) + o(F2 ).

Substituting these expresions into (2.3) and comparing the terms with
the lowest absolute value of powers of ¢ one obtains

Y=1/(B+2), a/”=BC /" (0).

If 6 > ythen -y(B+1)-06 < -1 and the supplementary condition on
will arise: (B+1)C,a;*® = x®"*(0) which 1s in the contrary with the
former.
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If & < y then -y(B+1)-6 > -1 and -y(B+1)-8 = -1+y-8; besides
-a,a,(x)®"(0) = BP+1)C,a,** Ya,(x). It is impossible because the left hand
the right hand quantities are of opposite signs.

Hence 8=y and a;®?[C B(B+1)a,a,(x)-(B+1)C,] = @ (0)(x-a,a,(x)),
that is

2" ?=BC /0" (0), a,(x)=[BCx+C,B+DIBB+2)C,a,] (4
Using formulas (2.4) one gets

G(t.x,9.(6,%), L(g.(t0))) = C g (.07 + Cq,(t.)*! +
orPI) + 121D (O)(x-q,(L 0N + 6167 (0)
(g, (t D/ + o(*® V)] = [C P + 2797 (0)a]] x
P2y (@ (0)aa,(x) - BC .aiﬂaz(x) + CaPt - B (0)a] X
FBB) g (BB = G201 B4 1 12)D 7 (0)FPBD +

a, @ (O)[Cf(BC)-x]r BB o o(p BBy,

By analogy one finds

G(tx,q(tx), I{qg(tx)) = a%(l/B_l. 1/2)¢"(0)I'W(B+2) +
a, D" (OHCHPC )+x]r® VD 4 o(rBrivdsdy

It is easy to see that
w(tx) = min [G(2.x,q,(00).45(q,(1.0)),G (1.9 (1.0).45(q (£)]
and get the statement of Theorem 2.3.
Theorem 2.4. Suppose assumptions 1), 2) of the Theorem 2.3 hold
and assumptions 3), 4) hold only for x < 0; besides f(0) > 0. Then

(independently of the behaviour of uyx) as x — +eo) the following
relation is valid

u(t P -C (F (0N P > (0P (C,+BCx)

ast— +e, forevery x € R
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Proof. In this case for large r equation (2.3) has only one unbounded
root g (t,x) — -0 as t — +eo. Other roots, if they exist, tend to finite
limits. It sufficies to establish asymptotics only for the function p(f,x) =
G(t.x,q (1,%).1;(g.(1.))) as t = +oo because G(2,x,q (1.x),uy(q (¢.x))) tends to
ZETo as ¢ — +oo.’ '

Let us seek ¢.(z,x) in the form

g (tx)=-a,t (1 +a,(x)t S+at 2+o(t %),

where a, = const > 0, a, € C(R), @, = const, v>0, A>6>0. Then Ig(q_(t,x))
= BC,a P V[ 14a, () +at 240 +CL(B+ Da P 1 +ay(x)r +aq
+o(r P2 + o(r®?), Now we have " (g.(1,)) — 0 as t — +oo, It follows
from (2.3) that (x-g_(t,x))/t tends to b = const as 1 — +o0 and ®(h)=0 so
®(b)=0. However, (x-g (t,))/t = x/t+a, "' (1+a,() *+a,r*+o(r)). So y=1,
a,=b. Further, .

D ((x-q .t/ = O (a)[¥/t+a,a,() +a,a:r *+o(r™)] +

2D (a, ) x/t+a,a,(0) +a, a2 +o(r)]? + o(rmindAy,

Substituting @~ and /; into (2.3) one obtains 8=1, a,(x)=-v/a,; further,
A=B+1, BC a;?'=a,a,®"(a,). Thus,

ptx) = L{q (1) + 1D((x-q.(1,0)/1) = CoaiPr*(L+a(0r'+
atFlo(rP YR + CoatPrP (14a, () 4ay ™ +o( P )P +
o(r™h) + 27D (a Na,at* +o(tPD))] = C PP +
(Ca™ - CiaPBa, (et + o(r,
Substituting a,(x) one gets the required asymptotics.
3. THE BEHAVIOUR OF GENERALIZED SOLUTIONS
FOR SMALL t '
In this paragraph we consider the equation (1.1) in the form

LluEu f +f] (t,x,ux) +Bu_ +g(rx,u)=0, (3.1)

where £,20, B = const20, f(t,x,0)=0.
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Theorem 3.1. Suppose the following conditions hold:

1) supp uy(x)=[0,1]; u,(x)<P(1-x)* for 1-¢ < x < 1, a=constz1,
P=const>0, e=const>0;

2) gltxu)zg (w), 8,20, g,€C, /J; 4, (E)< oo ; 5
3) A ()=PH (1))!""-Bt > O for small t, where H(s)= L d&/g (8).

Then there exists such t,>0 that u(tx)=0 for 1-A,(t)<x<1, 0<t<t,,.

Proof. Let us construct such a function v,(x) that v,(x)=P(1-x)* for
l-e <x <1 and vy(x) 2 uy(x) for other x. Let us consider a comparison
function w (t,x), defined by the relation

L%(X-B’)difg.(ﬁ)w for J;VD(M)JE-J&@E‘ and

equals to zero for other ¢,x. It is easy to see that w (0,0)=2u(x), L,w,20 at
the points where w (¢,x) is smooth and (1.3) is valid with w, instead of «.
It follows with the aid of Theorem 1.1 that u(rx)<w,(fx). From the
definition of w,(t,x) one has w (1,x)=0 for H(vy(x-Br))<t, in particular for
x-Bt 2 1-¢ and 1-x+Br<[H'(H)/P]""™. To finish the proof it remains to
choose such £, that two previous inequalities are valid for 0<r<z,.

Remark 3.1, If A,()=0 for small ¢ then u(t,x)=0 for x21 and small
t. it follows from the proof of Theorem 3.1.

Theorem 3.2. Suppose the following conditions hold:

1) g(tx,s) < Ks" for small 520, 0 <n < 1, K = const > 0;

2) supp u(x)=[0,11, u2P(1-x)*, 1-e<x<1, £>0, 021, P = const >.0;

3) Ay ()=B1-P"*[t{K(1-n}+8))"'") > 0 for small t and some 6>0.

Then there exists such t,>0 that u(t,x)>0 for 1+A(1)2x21, (=1,
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Proof. Let us choose such a continuous in R and smooth for x£1
function vy(x) that vy(x)=[P(1-x)°]"" for 1-e<x<1, 0y (x)<uy(x)"" for other
x. Let us consider the function

w,(£,0) ={[v (x~Bt)-(K(1 -n) +3)t] P P=p A,

It is easy to see that (1.3) is valid for w,(z,x). Further, at the points where
w,(t,x) is smooth one obtains L,w, = -(1-n)" A" [v' ;B + (K(1-n) + 8] +
filtx,(wy)) + BA-ny'A" o+ gt Ay < (L-ny'ATO x
[f. (6., (w) Y(wy), - 8] < (L-ny 'R F (2 x,(w,)) - 8] £ 0, if € is small and
vy{x) is suitably chosen.

_ The function wy(t,x) is positive if vy(x-Bf) > (K(1-n) + &), in
particular for 1-e+Bt < x < 1+Br and for x < 1 + Bt - PY(K(1-n) +
3y el-mpald-mi - Applying Theorem 1.1 on gets the required result.

Remark 3.2 If A,(9)=0 for small ¢ then u(tx)>0 for 1-e<x<1, £>0
and small 7: it follows from the proof of Theorem 3.2.

Remark 3.3. Suppose g(t,x,5)=K|s|"'s, 0 < n < 1, K = const > 0,
ug(x)=P(1-x)* for 1-¢ < x <1, =1, P = const > 0, e>0. then the
following statements follow from Theorems 3.1, 3.2:

1) If 0c«(1-n) > 1 then sup supp u(t,x) < 1 for small ¢ > O.
X

2) If o{1-n) < 1 then sup supp u(t,x) > 1 for small ¢ > 0.
X

3) Suppose a(l-n) = |; then:

a) If B < KP"*(1-n) then sup supp u(t,x) < 1 for small 1 > @,
x

b) If B > KP'*(1-n) then sup supp u(t,x) > 1 for small ¢ > 0;
x
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