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1. Let F(x, y) be a function harmonic for y >0, and suppose that for every

point (x, 0) of a set E of positive measure of the x-axis there exist a triangular

region with vertex at that point, where the function is bounded; then it is

well known that:

(A) Almost everywhere in E, F(x, y) has a limit as (x, y) tends nontangentially

to (x, 0) G£.
This result, first proved by Priwaloff [l](2), when applied to analytic

functions leads, as shown by Plessner [2], to the following stronger result:

(B) Let F(z), z = x+iy, be a function analytic for y>0. Then, except for a

set of points of measure zero, at every point (x, 0) of the x-axis, either the function

has a finite limit as z tends nontangentially to (x, 0), or the range of F(z) in every

triangular region with vertex at that point is dense in the whole complex plane.

Actually these results were proved not only for functions harmonic or

analytic in a half-plane, but also in domains limited by rectifiable curves.

However, even the special cases mentioned above were obtained by methods

of conformai mapping [l], [2] which cannot be applied to harmonic or

analytic functions of more variables.

A purpose of the present paper is to give a different proof of (A) which

leads to its generalization to functions of any number of variables:

(a) Let F(P), P = (xx, x2, • • • , x„), be a function harmonic for xn>0

such that for every point Q of a set E of positive measure of the hyperplane x„ = 0

there exists a region Yq limited by a cone with vertex at Q and a hyperplane

xn = const, where F(P) is bounded. Then almost everywhere in E the function

has a limit as P tends to QÇLE nontangentially to xn = 0.

A further generalization of (A), which will enable us to extend (B) to

functions of several complex variables, deals with functions which are har-

monic in sets of variables, and may be stated as follows:

(b) Let E = ExXE2X • • -X-Et» be the Cartesian product of the spaces Ek

of points Pk = (x?\ xf, ■ ■■ , xf ), and F(P), P=(Px, P», • • • , Pm)EE, be
defined and continuous in asJfX), k = 1, 2, • • • , m, and harmonic in Pk, that

is, such that
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-       d2F
2_,-= 0. k = 1, 2, • • •, m.
tí  (**<*>)'

Let BkdEk be the space xíf = 0, a«á B=BxXB2X • • ■ XBm the so-called dis-

tinguished boundary of x™>0, k = l, 2, ■ ■ • , m, and suppose that for every

point Q = (Qi, Q2, ■ ■ ■ , Qm), QiÇ^Bi, of a set E of positive measure of B, there

exist regions Yuq, limited by cones with vertices at the points Qk and hyperplanes

Xn> — const.suchthatthefunctionF(P)isboundedinYQ = YxQXY2(iX • • • XYmQ.

Then almost everywhere in E, F(P) has a limit as P = (Pi, P2, • • • , Pm) tends

t° Q=(Qu Qi, ■ ■ ■ , Qm) G-E in such a way that all Pk tend to Qk simultaneously

and nontangentially.

Once this is established it is not difficult to prove that:

(c) If F(zx, z2, • • • , zm) is an analytic function of Zk = Xk-\-iyk regular for

yk>0, k = l,2, ■ ■ ■ , m, then except for points belonging to a set of measure zero,

at every point Q—(xx, x2, • • • , xm) of the distinguished boundary B, yi = y2

= • • • =ym = 0, either F(zx, z2, • • ■ , zm) has a finite limit as all zk tend to xk,

simultaneously and nontangentially, or the range of the function in every region

ro = rioXr2QX • • -XYmQ, product of triangular regions YkQ of the planes Zk

with vertices at xk, is dense in the whole complex plane.

By means of inversions results similar to Theorem (a) can be obtained for

functions harmonic inside or outside a sphere, or for functions like in (b) but

defined in E = ExXE2X ■ ■ ■ XEm, Ek being either a half-space or the in-

terior or exterior of a sphere. Also using the conformai mapping theorem

of Riesz and Priwaloff [l], [3], (c) can be extended to functions

F(zi, z2, • • • , Zm), analytic when zk belongs to a domain Dk limited by a

rectifiable curve.

Before passing to the proof of the results we wish to express our gratitude

to Professor Antoni Zygmund, who proposed the present topic and helped us

with valuable suggestions.

2. In this section we shall prove (b). The proposition (a) is contained in

(b) as a special case and therefore we shall omit its proof.

However, if one specializes suitably the following argument, (a) can be

established directly.

For the sake of simplicity we shall confine ourselves to the special case in

which E=EiXE2, Ei and E2 being the three-dimensional spaces of points

-Pi = (*i, yi, Zx) and P2=(x2, y2, z2) respectively, the same argument applying

mutatis mutandis to the general case. We have then a function F(P),

P = (Px, P2), harmonic in Px and P2 for Zi>0, z2>0, such that at every point

Q= (Qx, Q2) of a set E of positive measure of Zi = z2 = 0 there exist two regions,

Yxq and Y2q limited by cones with vertices at Qx and Q2 and planes Zi = const,

and z2 = const., such that F(P) is bounded in Yq = YiQXY2q. First we shall

show that from the beginning we may make a stronger assumption about

the regions YQ. We may assume in fact that for 0<Zi<& and 0<z2<h, F(P)

is uniformly bounded in all regions 7<3=7q1X7q,, <2 = (<2i, ÔOG-E, Toi and
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7q2 being the cones with vertices at Qi and Q2 respectively, and parallel to

a2z2>x24-y2, z>0, a being any fixed positive number. This will be a conse-

quence of the following lemma.

Lemma. // F(P) is a function continuous for Zi>0, z2>0, and for every

point Q belonging to a set E of positive measure of Zi — z2 — 0 the function is

bounded in a region Yq, then, given any a and e >0, there exist a constant h>0 and

a set E', E'CZE, \E'\ >\e\ —e, such that for 0<zi<h, 0<z2<A, the function

is uniformly bounded in all 7<j, QG-E'-

It is clear that there exists a sequence of regions r(n), limited by cones and

planes z = const., such that every region Yiq or r2<j contains a conical region

with the same vertex and congruent to some r(n). Let Y{q be the region con-

gruent to rin) with vertex at Qx, and Yfç the region congruent to r(n) with

vertex at Q2. Let E„TOr denote the set of points Q of Zi = z2 = 0 such that

|P(P)| <r in Y^qXY^q; since F(P) is continuous, Enmr is measurable and

since every point of E belongs to some Enmr, we have ECU£nmr. Let now Q

be a point of strong density(3) of £,„; then every point P=(Px, P2) of 7q

belongs to some Y^qXY^, QGEnmr, for Zi and z2 small enough. To show it,

draw with vertices at Pi and P2 two cones parallel to those of YM and Y(m'>

respectively and directed towards the planes zx = 0 and z2 = 0, which they inter-

sect in two ellipses Si and S2; for Pi and P2 close enough to zi = 0 and z2 = 0,

P=(Pi, Pt) is contained in T^xr^, <2=(<2i, Q2)GEnmr, if QxG^i and

Ç2GS2, that is, if SjXS2 contains the point Q of Enmr; but since Q is a point

of strong density of Enmr, the average density of this set in 2iX22

tends to one as P tends to Q remaining inside 7q and 2iXS2 certainly con-

tains a point of Enmr for zt and z2 small enough. Hence if we denote by

En the set of points Q such that | F(P) | <» in 70, QE.En, for 0<zi<l/w

and 0<z2<1/m, then except for a set of measure zero, every point of Enmr

belongs to some En, and since ECUEnmr, the same thing holds for E;

that is, except for a set of measure zero, every point of E is contained in

\Jx°En, and so | Ur£„| è | E\. But the sets En are increasing, that is, ExQE2

Ç • • • ; hence lim„,„ \En\ = | UE„| è|-E|, and w^«o, we have \E„\

^ I E\ — e, which proves the lemma. This shows that if we prove the theorem

under the stronger assumption that the set E is closed and the function

is uniformly bounded in all regions Jq, QÇLE, for 0<Zi<& and 0<z2<A, the

existence of the limit will be established for subsets of measures arbitrarily

close to that of the given set, that is, for the given set itself. Hence, returning

(3) We use here the strong density theorem in a form slightly more general than the usual

one. Let Q be a point of a set E and C any domain such that the quotient of its measure by the

measure of the smallest interval with edges parallel to the axis and containing both Q and C

exceeds a fixed positive number. Then, as remarked to us by Professor Zygmund, the theorem

still holds, that is, for almost all Q of E, the average density of E in C tends to one as the

largest edge of the interval tends to zero, and the result is a simple consequence of the strong

density theorem in its usual form.
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to our function F(P), we shall assume that, for 0<Zi<2 and 0<z2<2,

| F(P) | < 1 in all 7q, Q belonging to a closed set £ of positive measure. We

shall also assume that in the cone a2z2>x2-\-y2 we have a = 1.

Let D be the region of all points of Uqç=e7q contained in 0<zi<2,

0<z2<2, and D that of all points contained in 0<Zi<l, 0<z2<l. Let Fn(P)

= F(xx, yx, Zx + l/n, x2, y2, z24-l/») and Dn be the domains obtained by shifting

D by — 1/» in the directions of the Zx and z2 axes. WTe have D CZD„ ; | Fn(P) | < 1

in Dn and continuous in Zi^O, z2^0. If B denotes as before the distinguished

boundary Zi = z2 = 0 and because Dn is an open set, we have DnC\B is open in

B and E(ZDni^B. Let now F* be a function continuous and less than 1 in

absolute value, equal to Fn in E and vanishing outside Dnf~\B, and let

<i>n(Pl,P2)   =  —-   f Zl Z\ Fn*(Ql,Q2)do-xdo-2
Air2Jb   I Pi - Qi\3    | P2 - Q2|3

where | Pi — Qi | and | P2 — Q2 | are the distances between Pi and Qx and P2

and Q2 respectively; zi and z2 are the coordinates of Pi and P2; and aVi and

da2 are the elements of area of Zi = 0 and z2 = 0 respectively. The function

<t>n(Px, P2) is the double Poisson integral of the function F*(Qx, Q2), and is

therefore a function harmonic in (xx, yx, Zx) and (x2, y2, z2) separately. Since

F*(Q\,Q2) is continuous in B and its absolute value is less than 1 there, <p„ (Pi, P2)

is continuous in Z>„ for Zi^O and z2^0, <p„ = F„* in B and ^„(P^ P2) | <1.

Hence the functions yp„= Fn—<pn are continuous in Dn for Zi^Oand z2S:0,

vanish in E, because cpn= F* = F„ there, and \if/n\ <2 in D„. Because \<pn\ <1

we may select a subsequence </>„,. converging to a function <p(Pi, P2) harmonic

in Pi and P2 separately, and since Fn converges to F, \p„t will converge to a

function \p and we have finally F=<p-r-)p. Now <p is in absolute value less than

1 in Zi>0, z2>0 and may therefore be represented by a double Poisson integral

4>(Pi,P2) -— f     ,  _   2l .   i.    ■ _   22 .   ,. <p(Qi,Q2)d<rxdo-2,
At2Jb   I Pi - Qi|3   I P2 - Q2\z

<t>(Qu Qi) being a bounded measurable function, and therefore </>(4) has a

limit as P = (Pi, P2) tends to Q = (&, Ç2) in such a way that Pi tends to Qx and

P2 to Q2 simultaneously and nontangentially to zi = 0 and z2 = 0, almost

everywhere in B. It remains then to show that also \p has a limit almost every-

where in £. Now \p is the limit of functions \pni which are all continuous and

vanishing in £. Therefore it is natural to expect that \¡/ will tend to zero

almost everywhere in £. To prove this we shall construct a function ß(Pi, P2)

positive and harmonic in D, tending to zero almost everywhere in £ and such

that at every boundary point of D the inequalities

(4) See [4], The result is stated there for the case of a bicylinder and of radial approach

only, but the proof (a simple consequence of strong differentiability of the integral of a bounded

function) is perfectly general.
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- 2 Q(Pi, P2) ^ MPi, -P») á 2 0(Pi, P2)

will hold. Now applying the principle of maximum the inequalities extend to

the whole domain D, and passing then to the limit we shall obtain

- 2 n(Pi, Pt) g v(Pi, P*) = 2 fi(Pi, P2).

This will prove that ip tends to zero as (Pi, P2) tends to (Ci, Qi) G£, along

any path contained in D, almost everywhere in E; now the restriction on the

path is only apparent, because in virtue of the lemma, for all QG£ not be-

longing to a set of measure zero, any path ending at Q and such that its pro-

jections on £i and £2 are nontangential to Zi = 0 and z2 = 0 is contained in D

for z and z2 small enough.

Let us now pass to the construction of the function i2(Pi, P2). Let CE be the

set complementary to £ in B and c(Qx, Q2) its characteristic function. We

define

(1)    Û(Px, Pi) = zx + z2 +  f    ■        *      ■      ■       Zi      ,    c(Qx, Q2)daxda2.
J b  I Pi - öi I3   | Pi - Q2\s

This function is positive, harmonic in Pi and P2 and tends to zero almost

everywhere in £. We shall investigate the behaviour of Í2 at the boundary of

D.
Let first P= (Pi, P2) be a point of the boundary of D for which Zi or z2 is

equal to 1, then ß(Pi, P2) ï; 1. Let now P= (Pi, P2) be a boundary point of D

such that 0<Zi<l anH 0<z2<l, then £2(Pi, P2) exceeds 1. In fact, let us draw

with vertices at Pi and Pt two cones parallel to z2 = x2+y2 and directed down-

wards; they meet Zi = 0 and z2 = 0 in two circles Si and S2; 2iXS2 contains

no point of £ in its interior, for otherwise (Pi, P2) would be contained in

D. Hence c(Qu Q2) is equal to one in SiXS2 and we have

—   —         C                 zi                    z2
Ö(Pi, Pi) ^   I -¡-=-r t^-r do-ida.

JttXZ,     I  Pi  "Oll3      |P2-Ö2|3

Computing this integral in polar coordinates we obtain

aiT-Tù ' [/." vi^ **][/." W¡Pí 2^']

and finally, introducing the variables p = Zis and p = z2s,

_   _        r       T '        sds       ~\
0(Pi, P2) è Ux2        -    > 1.

L Jo      (1  + 52)3'2J

Finally let P—(Px, Pi) be a point such that zx>0 and z2 = 0; that is, P2 coin-

cides with a point Q2 of z2 = 0. The function fi is not defined there, but we may

estimate the lower limit of ß(Pi, P2) as (Pi, P2) tends to (Pi, P2). By (1) we

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



52 A. P. CALDERÓN [January

have

0(Pi, Pi) è 2i + 2x f   -¡-¡-j— f   -,-¡- c(Qx, Qi)dc2\ do-x,
JBl\Px-Ql\t\j.irJBi\Pi-Qi\* J

but c(Qx, Q2) is the characteristic function of an open set, and so is continuous

at every point where it is equal to one; hence the inner integral above tends

to c(Qi, Qi) whenever c(Qx, Ç2) = 1 ; at the other points c(Qx, Q2) is zero, and the

integral being non-negative its lower limit is also non-negative ; that is,

c(QxQi) never exceeds the lower limit of the integral and hence

lim inf Q(Px, Pi) è zx + 2w f   j-^— \ u c(Qx, Q2)da,
JBi

Zi

P~Qi

as (Pi, P2) tends to (Pi, Q2). Let us denote the right-hand side of the last in-

equality by co(Pi, Q2), and by Dq2 the set of all points (Pi, Q2), 0 <Zi < 1, such

that Pi is contained in some cone parallel to z2>x2-f-y2 with vertex at Qi,

(Qi, Qi)GE. The function w(Pi, Q2) of Pi is quite similar to fl(Pi, P2) ; it is

harmonic in Pi non-negative, and exceeds 1 at every point not contained in

Dqí for which zt>0. The proof of this property is the same as for £2 and there-

fore we omit it.

We are now in a position to show that we can majorize the functions if/n

by Q in D. More precisely we shall prove that at every boundary point of

D either

(2) - 212 ̂  yPn S 2a

or

(3) - (lim inf 2ü) ¿ ¿„ g lim inf 20

holds, and so, in virtue of the principle of maximum, the validity of the first

inequalities throughout D will follow and the proof of the theorem will be

complete.

First let (Pi, Pi) be a boundary point of D for which Zi>0 and z2>0 since

|^„| <2 in Dn and ß^l at this point, the inequality (2) follows in this case.

Let now (Pi, Qî) be a boundary point such that Zi>0, z2 = 0. Consider the

function 20,—ipn', we have to prove that

lim inf (20 - \¡/n) ̂  0.

If (Pi, Q2) is not contained in Dq2, we know that lim inf 2ß^2w(Pi, Q2) ̂ 2

and since 1^„| <2 in D, we have the inequality above. If (Pi, Q2) is contained

in Dq2, it is also contained in D„, as is easily seen by the definitions of Z>q,

and Dn. Now \f/n is a function continuous in D„ for Zi^O and z2^0, and so

i£n(Pi, Pi) tends to ^„(Pi, Q2) as (Pu P2) tends to (Pi, Q2). Hence

(4) lim inf (20 - *„) ^ 2«(?1, Qi) - fn(Flt Qi).
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Now ipn(Pi, Q2) is a continuous function of Pi in Dqv and being the limit of

functions '/'„(Pi, Pi) harmonic in Pi and uniformly bounded, it is also har-

monic in Pi. Moreover, we have |^n| <2 in D„ and hence \\pn\ <2 in Dq2; and

finally, as Pi tends to a point Qi (Qx, Qi) G£, ¿„(Pi, Qi) tends to zero because

\pn is continuous and vanishes in £. From this and from the properties of

oj(Pi, Qi) we stated above, it follows that the function of P

2»(?i, Q2) - ¿„(Pi, Qi)

is non-negative, or has a non-negative lower limit at every boundary point

of Dq2, and so, by the harmonicity of the function in Pi, and in virtue of the

principle of maximum, we have

2w(P!, Öl)   - 4>n(Ph Ö2)   è  0

in Dq2; and in virtue of (4)

lim inf (20 - &,) ^ 0

when (Pi, Pi) tends to any boundary point (Pi, Ö2) of D.

The case in which for the boundary point we have Zi = 0, z2>0, that is, Pi

coincides with a point öi of Zi = 0, may be treated in exactly the same way as

the preceding.

Finally suppose that (Pi, P2) is a boundary point of D such that Zi = z2 = 0.

Then (Pi, P2)GE and since \j/n is continuous and vanishes in £ and ß is

non-negative we have again lim inf (2Q,—\¡/n) §:0. Hence the proof of the right-

hand side of (3) is complete.

Arguing in the same way as above on — ̂„, the left-hand side of (3) fol-

lows, and the theorem is established.

Finally we need remark that the foregoing argument still holds if we as-

sume that F(P) is defined only in the domain D, or in the regions Yq. This

fact will be needed in the proof of (c).

3. To establish Theorem (c) we shall use the same technique used by

Plessner in the proof of his result.

Let P(zi, z2, • • • , zm), Zic=Xk-\-iyk, be an analytic function regular in

y*> 0, £ = 1,2, • ■ • ,m. Consider the sequence { C„} of all circles of the complex

plane with rational radii and centers w„ with rational coordinates, and let £„

be the set of points Q of the distinguished boundary B, yx = y2= ■ ■ ■ =ym = 0,

for which there exists a region rQ = rigXr2QX ■ • • XTt^q where the function

does not take values of C„. The continuity of P(zi, z2, • • • , zm) in y*>0 im-

plies that the sets are £„ measurable. Let now £ be the union of all sets £„, and

CE the set complementary to £ in B; then in every region Yq = YxqX ■ ■ ■

XYmQ, QEiCE, the range of the function is dense in the whole complex plane,

for otherwise P(zi, z2, • • • , zm) would not take values of some C„ in Yq, and

hence Q would belong to some £„. Now, at every point Q of £„ the function

does not take values of C„ in Yq, and so <¡> — (F—wn)~l is a function bounded
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in all Yq, ÖGEn- But this function is analytic in zk, k = l, 2, ■ • • , m, that is,

harmonic in the pairs of variables (xk, yk), and so, by Theorem (b), has a limit

as (zi, z2, • • • , zm) tends to Q nontangentially to y,i = 0 almost everywhere

in E„. Hence P = wn+<£_1 has also a finite or infinite limit almost everywhere

in En; and since the same is true for all £„, F has a finite or infinite limit al-

most everywhere in £. It remains only to show that this limit must be finite

almost everywhere.

In order to prove this let us consider the function

<p(z) = F(ax + z, on + z, ■ ■ ■ , am + z),

z = x-\-iy, the a* being real parameters. Let £* be the subset of £ where the

limit of P(zi, Zi, ■ ■ ■ , Zm) is infinite, and ac* = «*+/, k = l, 2, ■ • ■ , m, a

straight line of the space B of variables x*. If Xk = ak-\-t is a point of intersec-

tion of the line with £* we have evidently lim <p(z) = <» as z—H non-

tangentially to y = 0. But according to (B) this can happen only for a set of

measure zero of y = 0, that is, for a set of measure zero of values of t. Hence

the line intersects £* in a set of measure zero, and, since the same holds for

any values of the parameters ak, every straight line meets £* in a set of

measure zero. But, £* being measurable, this is possible only if its measure

is zero.

This completes the proof of (c).
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