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On the behaviour of the ANM continuation in
the presence of bifurcations

S. Baguet and B. Cochelin
Laboratoire de M�ecanique et d’Acoustique; UPR CNRS 7051; Ecole Sup�erieure de M�ecanique de Marseille 

IMT-Technopôle de Château Gombert; 13451 Marseille Cedex 20; France

The asymptotic-numerical method (ANM) is a path following technique which is based on high order
power series expansions. In this paper, we analyse its behaviour when it is applied to the continuation
of a branch with bifurcation points. We show that when the starting point of the continuation is near
a bifurcation, the radius of convergence of the power series is exactly the distance from the starting
point to the bifurcation. This leads to an accumulation of small steps around the bifurcation point. This
phenomenon is related to the presence of inevitable imperfections in the FE models. We also explain
that, depending on the maximal tolerated residual error (out-of-balance error), the ANM continuation
may continue to follow the fundamental path or it may turn onto the bifurcated path without applying
any branch switching technique. 

KEY WORDS: continuation; asymptotic-numerical-method; bifurcation; series convergence

1. INTRODUCTION

The asymptotic-numerical-method (ANM) is an alternative to the classical Newton–Raphson
techniques [1] for making the continuation of a non-linear solution with respect to a parameter,
typically in structural mechanics, for tracing an equilibrium path with respect to a loading
parameter [2–4]. The basic principle of the ANM continuation is to determine the path by a
succession of high order power series expansions (perturbation method) with respect to a well
chosen path parameter. It is in fact a high order ‘continuous’ predictor without any correction.
Because few sti�ness matrix decompositions are required, only one per step, the performances
as regard to computing time are attractive. However, the very advantage of the ANM over
incremental-iterative procedure is that it yields an analytic continuous representation of the
path, which provides signi�cant bene�ts for the continuation. For instance, the step-length
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has not to be estimated in advance and, if necessary, to be adjusted according to the conver-
gence behaviour of the corrector. It is always determined after the computation of the power
series by simply analysing their radius of convergence. Using this crucial information, the
design of robust continuation algorithms with automatically determined optimal step-length
is easy.
When the path has a bifurcation point, the ANM continuation has a very speci�c behaviour

which is not encountered with classical predictor-corrector algorithms (Newton–Raphson for
instance). As the current step of continuation approaches the bifurcation, the step-length is
automatically severely reduced. There is an accumulation of small steps and everything looks
as if the continuation process ‘knocks’ against the bifurcation. Depending on the residual error
tolerance, the continuation algorithm may continue to follow the fundamental branch, but it
may also switch to the bifurcated branch. The main objective of this paper is to explain this
step accumulation and the reason for the switch to the bifurcated branch. It is not actually a
proposition towards a branch switching algorithm, we limit ourselves to examine the behaviour
of the ANM continuation in the presence of a bifurcation.
The basic ANM has already been presented in a number of full-length papers dedicated to

several applications [5–10]. Here, we begin with a minimal review of the ANM continuation,
before embarking on the detail of the continuation of a path with a bifurcation.

2. A MINIMAL REVIEW OF THE ANM CONTINUATION

Let us consider a non-linear problem depending on the unknown u and on a parameter �. Let

R(u; �)=0 (1)

be the governing equations of this non-linear problem. The principle of the ANM continuation
consists in describing the solution path by computing a succession of truncated power series
expansions of the following form:

u(a)= u
j
0 + au1 + a

2u2 + a
3u3 + · · ·+ aNuN

�(a)= �
j
0 + a�1 + a

2�2 + a
3�3 + · · ·+ aN�N

(2)

where (u
j
0 ; �

j
0) is a given starting point on the path, N the order of truncature, and a a

path parameter (the classical arc length parameter for instance). By using a high order of
truncature, say from 10 to 30, the series provide an accurate local continuous representation
of the solution path. Obviously, such series generally have a �nite radius of convergence,
and they can give only a limited part of the path. Also, it becomes necessary to use several
expansions from successively updated starting points to describe the full path as shown in
Figure 1.
Hence, a crucial point of the ANM continuation is to analyse the range of validity of

each series expansion in order to de�ne a suitable end point that will serve as a new starting
point for the next step of continuation. We de�ne this range of validity of the series as the
interval [0; am] of the path parameter for which the series satisfy the accuracy requirement
‖R(u(a); �(a))‖6�R, where �R is the tolerance error for R (maximal out-of-balance forces in
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Figure 1. Principle of continuation with the ANM.

structural mechanics). Here, we shall use an asymptotic expansion of R in order to determine
this range of validity, i.e., to compute the value of am. By reporting the truncated series
expansions (2) into the governing equation (1) and ordering like powers of the expansion
parameter a, we get

R(u
j
0+au1+ · · ·+aNuN ; �j0+a�1+ · · ·+aN�N ) = R0+aR1+a2R2+ · · ·+aNRN+aN+1RN+1+ · · ·

(3)

The �rst term R0=R(u
j
0 ; �

j
0) is null since the starting point (u

j
0 ; �

j
0) is on the path. Since the

series are truncated at order N and according to the perturbation principle, all the terms Rk
with k=1; : : : ; N are also null. Indeed, Rk =0 corresponds to the linear problem that has to
be solved at order k in order to obtain uk and �k . As a result, the �rst non-zero term of the
R expansion (3) is aN+1RN+1, where RN+1 is simply the r.h.s. vector of at order k + 1 (easy
to compute [11]). In practice, a very good approximation for R is obtained by keeping
this �rst term and neglecting all the other higher order terms. Hence, the requirement that
the norm of R(u(a); �(a)) is below �R leads to the following maximal value for the path
parameter a.

am=

(

�R
‖RN+1‖

)

1
N+1

(4)

So, for a∈ [0; am], the series (2) give an analytical continuous representation of the branch
which satis�es the accuracy requirement ‖R(a)‖6�R everywhere. The last point of the interval
(u(am); �(am)) serves as the new starting point (u

j+1
0 ; �

j+1
0 ) for the next step of continuation.

Practically, this continuation algorithm requires only two parameters: the order of truncature
N and the error tolerance �R which de�nes the accuracy of the solution. The size of the steps
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Figure 2. Continuation of the path with no bifurcation (N =25 and �R=10
−6), R=2540 mm,

L=254 mm, h=6:35 mm, �=0:1 rad, E=3102:75 Mpa, �=0:3, P=1000 N.

are automatically given by the criterion (4). The user of the algorithm has only to specify
how many steps he (she) wants to do.

3. EXAMPLES OF ANM CONTINUATION

3.1. Path without bifurcation

We consider for this the well-known benchmark problem of a thin simply supported cylindrical
shell subjected to a central point load as described in Reference [4, p. 268]. By meshing only
one quarter of the shell and applying suitable symmetry conditions on the edges, the solution
path has no bifurcation point. At order N =25, and with a tolerance �R=10

−6, it is described
in 12 steps as can be seen in Figure 2.

3.2. Path with bifurcations

By meshing one half of the shell instead of one quarter, the response is now made of the same
fundamental path as above, and of a secondary closed path that corresponds to a buckling
with a symmetry breaking. The two paths are connected at two bifurcation points as shown
in Figure 3. Using the same parameter N =25 and �R=10

−6, the ANM continuation has now
a rather di�erent behaviour. After a �rst step which is almost identical to the �rst step in the
previous example, the algorithm makes a shorter second step, with an end point which is just
behind the bifurcation point. The third and the fourth steps appear to be short, the length of
the fourth step being the double of the third one. Once the updated starting point is far from
the bifurcation, the step length retrieves the same behaviour as in the case without bifurcation.
Finally, we can see that the same phenomenon of small steps accumulation also occurs behind
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Figure 3. Continuation of the path with bifurcations, N =25 and �R=10
−6. The bifurcated branch

is plotted with dashed lines. Small steps occur behind the bifurcations.
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Figure 4. Path with bifurcations. With a smaller tolerance �R=10
−7 (N =25) the

step accumulation is more pronounced.

the second bifurcation point. If we now reduce the tolerance criterium �R to 10
−7, the step

accumulation is more pronounced (see Figure 4). The end of the second step gets closer to
the bifurcation, and more steps are needed to run away from the bifurcation. Here, the third,
fourth and �fth steps are short, and there is again a doubling of step length between the third
and fourth steps, and between the fourth and �fth steps. Finally, if we take �R=10

−8, the
end of the second step is now before the bifurcation point. A severe accumulation occurs and
the continuation algorithm turns onto the bifurcated path instead of following the fundamental
one as shown in Figure 5.
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−8 (N =25) the algorithm turns onto the bifurcated path.

This behaviour, with an accumulation of short steps and possibly a turn onto the bifurcated
branch, is very speci�c of the ANM continuation. It is not encountered with predictor-corrector
methods. For instance, the classical Newton–Raphson method with prescribed step length
generally gives exactly the same results for the two tests used above. Nevertheless, the test
with bifurcations can make troubles for the corrector if the end of a step is very near the
bifurcation. In this case, an increase of iterations and a jump onto the bifurcated branch can
occur. For the same reason, Newton–Raphson methods with self adaptative step length [4, 12]
can behave di�erently when applied to the two tests, but the di�erences are not as pronounced
as in the case of the ANM continuation.

4. THE STEP ACCUMULATION AND THE TURN
ONTO THE BIFURCATED BRANCH

To explain the step accumulation and the reason why the algorithm stays on the fundamental
branch or turns onto the bifurcated one, we shall consider two very simple examples, with
one and two d.o.f., and for which analytical solutions are known.
The �rst example concerns a vertical rigid bar hinged at its base and connected to a spiral

spring that supplies a linear restoring moment (see Figure 6). The bar is loaded by an almost
perfectly vertical force. We denote by u the angle of rotation of the bar, � and �� the vertical
and horizontal components of the force, where � is a small imperfection parameter. The
balance of momentum leads to the (dimensionless) governing equations

R(u; �)= (1− �)u− ��=0 (5)

In the perfect case �=0, the solution is made of two straight branches u=0 and �=1,
whereas in the imperfect case � �=0, it is made of two hyperbolae u= �(�=(1− �)).
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Figure 6. The rotating rigid bar under vertical load.

Let us apply the ANM continuation from the origin (u=0; �=0) by taking the load
parameter � as the path parameter. Hence, we seek

u(�)= u0 + �u1 + �
2u2 + · · · (6)

Introducing this expansion into the governing equation (5) and equating like powers of �
gives ui= � for i=1; : : : ; N; that is

u(�)= ��+ �2�+ · · · (7)

which is nothing else than the truncated Taylor expansion of the exact solution u= �(�=(1−�)).
In the perfect case �=0, (7) provides u=0 which is the exact solution. The range of

validity of the series is in�nite. This is not the case anymore when there is an imperfection
� �=0, whatever the smallness of �. Indeed, the radius of convergence of the power series (7)
given by limn→+∞ un=un+1 is equal to one. It is exactly the distance measured with � from
the starting point to the bifurcation point. So, we can say that the imperfection makes the
bifurcation ‘visible’. Let us analyse the quality of the series (7) truncated at order N . The
exact expression of the residual is

|R(��+ �2�+ : : : �)|= ��N+1 (8)

It is a continuous increasing function of � which grows rapidly for �¿1 when N is large.
Here, the criterion (4) that gives the range of validity of the series yields

�m=

(

�R
�

)

1
N+1

(9)

So, the step length depends on the ratio between the residual tolerance �R and the imperfection
�. The end point of the �rst step of continuation will be behind the (quasi-)bifurcation if �R¿�
and before the bifurcation otherwise. As we shall see later on, this makes the decision for
the next step of continuation to follow the fundamental branch or to turn onto the bifurcated
one. Notice that if N is very large, the end point will always be closed to the bifurcation.
Let us now consider a second example in order to complete the analysis. It consists of two

truss elements loaded in a plane by a vertical force � and a small horizontal one �� (see
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Figure 7). The degrees of freedom are u and v, the vertical and the horizontal displacements
of the loaded node. The forces in the truss are taken to be proportional to the Green strain
elongation e= 1

2
(l2−l20)=l20 as in Reference [4].

Taking a tension sti�ness equals to one, the potential energy of the system is

P= 1
2
l0e

2
1 +

1
2
l0e

2
2 − �u− ��v (10)

and the equilibrium equations are

R(u; v; �)=



















@P

@u
=

1

5
√
5
(u(u− 4) + v2)(u− 2)− �=0

@P

@v
=

1

5
√
5
(10− 4u+ u2 + v2)v− ��=0

(11)

For the perfect case �=0, the solution is made of a fundamental branch that satis�es v=0,
�=(1=5

√
5)u(u−2)(u−4), and of a closed loop branch that is connected to the fundamental

one at two bifurcation points. On the fundamental branch the tangent sti�ness matrix (2× 2) is
diagonal since @2P=@u@v=0, and its determinant (@2P=@u2)(@2P=@v2) vanishes for u=2± 2

3

√
3

corresponding to the limit points with respect to �, and for u=2±
√
2 corresponding to the

bifurcation points.
For this example the suitable path parameter is the vertical displacement u. Thus, we take

a= u and the series expansions for � and v become

�(u) = �0 + �1u+ �2u
2 + �3u

3 + · · ·
v(u) = v0 + v1u+ v2u

2 + v3u
3 + · · ·

(12)
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Table I. Coe�cients of the series in the perfect and imperfect cases.

Coe�cients Perfect case �=0 Imperfect case �=10−8

�1= +0:71554175 +0:71554175
�2= −0:53665631 −0:53665631
�3= +0:89442719E− 0 +0:89442719E− 01
�4= 0: −0:23726984E− 14
�5= 0: −0:45347614E− 14
�6= 0: −0:86535831E− 14
�7= 0: −0:16330004E− 13
: : : : : : : : :
�22= 0: −0:12095001E− 09
�23= 0: −0:21457631E− 09
�24= 0: −0:38013517E− 09
�25= 0: −0:67254147E− 09

In the perfect case (�=0), the introduction of these series into (11) and the identi�cation of
the coe�cients �i and vi leads to the exact fundamental solution

�(u) =
8

5
√
5
u− 6

5
√
5
u2 +

1

5
√
5
u3

v(u) = 0

(13)

at the �rst step of the ANM continuation. The range of validity of the series is in�nite.
Let us now introduce a small imperfection �=10−8 in the model. In that case, the analytic

solution is not known and the hand computation of the series coe�cients becomes tedious.
We use our ANM-oriented FEM code to compute the series (12) up to order 200. The result
is that the coe�cients of the � series are only slightly modi�ed by the imperfection as it
is shown in Table I. However, the radius of convergence of the series is largely modi�ed.
Indeed, using a Domb-sykes plot [13], the limit of �N =�N+1 do seems to be 2−

√
2=0:5857664

(see Figure 8). Once again this corresponds exactly to the distance measured with the path
parameter u from the starting point to the bifurcation point.
To analyse the quality of the truncated series, we have numerically determined the evolution

of norm of the residual error R of (11) with respect to the path parameter u for various order
of truncature N of the series (12) . The results are reported using logscale in Figure 9. We
can see that the plots are almost straight lines, which is in agreement with the approximation
R≃ aN+1RN+1. The three lines cross each other for u≃ 2 −

√
2. Before that value of u, the

quality of the solution increases with N (convergence), and after that value, it decreases
(divergence). This con�rms that 2−

√
2 is the radius of convergence of the series.

According to the criterion (4) the value am of the path parameter at the end point of the step
is given by the intersection of the horizontal line corresponding to the required tolerance with
the residual curves. Once again, we can see that the end point will be behind or before the
bifurcation depending on the value of the tolerance error �R. For �R=10

−6, the step length am
will be always greater than 2−

√
2, and the end point always behind the bifurcation, whatever

the order N . Here, the algorithm follow the fundamental branch as shown in Figure 10. For
�R=10

−10, am is smaller than 2−
√
2 and the end point is always before the bifurcation. In
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that case, the next step of continuation gives an accurate description of the sharp turn of the
branch and the bifurcated branch is followed, as shown in Figure 11. This can occur only
if the required precision �R is below the level of the imperfection that is responsible for the
transfer of the pure bifurcation into a quasi-bifurcation.
With these results in mind, we are now able to examine the behaviour of the ANM continu-

ation on the cylindrical shell benchmark of Section 3. Because of limited accuracy in the data,
for instance in the position of the nodes (8 decimal digits in the data �le), the symmetry is not
perfectly satis�ed within the FEM model. As a consequence, there are no pure bifurcations on
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Figure 10. The �rst step ends after the bifurcation point and the fundamental branch is followed.
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Figure 11. The �rst step ends before the bifurcation point and the algorithm
turns onto the bifurcated branch.

the path, but only quasi-bifurcations as in the case of the simple imperfect models presented
in Section 4. Here, the level of imperfection is unknown. It is certainly very small but, as we
have seen before, it is su�cient for the series to have a �nite radius of convergence which is
given by the distance from the starting point to the bifurcation. That’s why we had a shorter
second step with an end point closed to the bifurcation (see Figures 3 and 4). This is also
why it takes several steps to get away from the bifurcation, with a step length doubling. The
level of imperfection can be inferred by reducing the tolerance error �R as we did in Section 3.
Here it seems to be between 10−7 and 10−8. When the tolerance error �R is below this level
of imperfection (Figure 5), the end of the second step is before the bifurcation and the ANM
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continuation automatically makes very short steps to describe the very sharp turn onto the
bifurcated branch. This should not be seen as a bad behaviour of the algorithm but, on the
contrary, as a remarkable property of the algorithm to stay on a branch without jumping onto
the opposite one.

5. CONCLUSION

In this paper, we have explained the behaviour of the ANM continuation when there is a
bifurcation on a path. We should say ‘when there is a quasi-bifurcation on a path’ since it
is the rule more than the exception because of inevitable small imperfections in the data of
a �nite element model. Pure or quasi-bifurcations generally do not matter for the classical
incremental-iterative methods which continue to follow the fundamental branch by jumping
over the bifurcation during one step. However, this does matter for the ANM continuation
since the small imperfection can largely modify the radius of convergence of the power
series representation of the path. With the criterion (4) for the continuation, the algorithm
automatically reduces its step-length at the bifurcation in order to follow the path with the
sharp turn, and it succeeds if the residual tolerance is small enough as compared to the level
of imperfection.
We conclude with a few comments on the behaviour of the ANM continuation:

• The users of the ANM continuation know that a step accumulation is always a very good
indicator that a singularity is announced on the path. All the bifurcations can easily be
identi�ed by the user without any speci�c tool.

• The turn onto the bifurcated branch is not a bad behaviour of the algorithm. On the
contrary, it is a remarkable demonstration of the robustness of the continuation algorithm
to stay on its branch even at a very sharp turn.

• By using a suitable very small tolerance �R, the algorithm could be seen as a way of
switching to a bifurcated branch without speci�c tools. This is true, but it is unfortu-
nately not e�cient since it requires a lot of small steps to make the turn. We refer to
References [15, 14] for e�cient branch switching techniques.

• Having in mind the described phenomenon, the user can modify the parameter �R and
the order N to jump e�ciently over a quasi-bifurcation [11]. For instance, in the neigh-
bourhood of a bifurcation, it is better to use low orders of truncature in order to have
a step end which is far from the bifurcation after the jump and thus reduce the step
accumulation.
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