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Fig. 1 Polymer open-cell (left) and closed-cell (right) foams

Fig. 2 Non-homogeneous structures: foam (left), thermal coating (right)

integration one can observe the set of two-dimensional governing equations. Note that both approaches have a
unique starting point—the equations for the three-dimensional continuum. In contrast, the direct approach is
based on the straight-forward introduction of two-dimensional equations without any a priori three-dimensional
assumptions. This approach in combination with the effective properties concept allows the global analysis in
all branches of the plate theory (homogeneous, sandwich, laminated, etc.). The different possibilities of the
formulation of plate theories are discussed in [27,31] among others.

Here we present a new theory of viscoelastic plates with changing properties in the thickness direction
based on the direct approach in the plate theory and added by the effective properties concept. We consider
plates made of polymer foams with highly non-homogeneous structure through the thickness (see, for example
Fig. 2). We apply the theory of plates and shells formulated earlier in [1–3,38,39]. A similar approach was
suggested in [33], but homogeneous material behavior was assumed. From the direct approach point of view
a plate or a shell is modeled as a material surface each particle of which has five degrees of freedom (three
displacements and two rotations, the rotation about the normal to the plate is not considered as a kinematically
independent variable). Such a model can be accepted in the case of plates with constant or slowly changing
thickness. For the linear variant the identification of the elastic stiffness tensors considering changing properties
was proposed in [4–6]. Using the techniques presented in these articles the static boundary-value problems for
FGM plates made of metal foams which behave elastically are solved in [7]. Some extensions of the proposed
theory of plates to the case of viscoelastic polymer foams were given in [8].

2 Governing equations

Let us consider for brevity the geometrically and physically linear theory. In addition, we assume plate-like
structures. The basic equations interlinking the strains with the displacements and rotations or stating the
equilibrium (static or dynamic) can be deduced applying hypotheses (like the Kirchhoff’s hypotheses) or
mathematical techniques (like power series expansion). In both cases one gets automatically the expressions
for the constitutive behavior assuming elastic or inelastic material behavior.



A quite different way is given by the direct approach. The starting point in this case is a two-dimensional
deformable surface. On each part of this deformable surface forces and moments are acting—they are the
primary variables. The next step is the introduction of the deformation measures. Finally, it is necessary to
combine the forces and the moments with the deformation variables (constitutive equations). In comparison
with the other approaches such a theory is formulated in a more natural way. But the identification of the
effective properties (stiffness and other parameters) must be realized for each class of plates individually
solving, for example, boundary value problems. The identification of the two-dimensional characteristics is a
non-trivial problem since they must be computed from the three-dimensional parameters applying assumptions
like the introduction of stress resultants (forces and moments) instead the stress tensor components.

2.1 Symbolic representation

Let us introduce the governing equations. The equations of motion are formulated as Euler’s laws of dynamics
[5–7],

∇∇ · TTT + qq = ρü + ρ�1·ϕ̈ϕϕ, ∇∇∇ · MMM + TTT × + mmm = ρ��T
1 ·üuu + ρ���2·ϕ̈ϕ. (1)

Here TTT , MM are the tensors of forces and moments, qq , mmm are the vectors of surface loads (forces and moments),
T × is the vector invariant of the force tensor, ∇ is the nabla (Hamilton) operator, u, ϕ are the vectors of
displacements and rotations, ��1, �2 are the first and the second tensor of inertia, ρ is the density (effective
property of the deformable surface), (. . .)T denotes transposed and ˙(. . .) the time derivative. The geometrical
equations are given as

µµµ = (∇u∇u∇u · aaa)sym, γγγ = ∇u∇u∇u · nnn + ccc · ϕϕϕ, κκκ = ∇ϕ∇ϕ.

a is the first metric tensor (plane tensor), nn is the unit outer normal vector at the surface, c is the discriminant
tensor (c = −a na × n), µ, γ and κκ are the strain tensors (the tensor of in-plane strains, the vector of transverse
shear strains and the tensor of the out-of-plane strains), (. . .)sym denotes the symmetric part.

The boundary conditions are given by the relations

ν · T = f , ν · M = l (l · n = 0) or u = uu0, ϕϕ = ϕ0 along S. (2)

Here f and ll are external force and moment vectors acting along the boundary of the plate S, while uu0 and
ϕϕ0 are given functions describing the displacements and rotations of the plate boundary, respectively. ννν is the
unit outer normal vector to the boundary S (ν · n = 0). The relations (2) are the static and the kinematic
boundary conditions. Other types of boundary conditions are possible. For example, the boundary conditions
corresponding to a hinge are given by

νν · M · ττ = 0, u = 0, ϕ · ττ = 0. (3)

Here ττ is the unit tangent vector in the tangential plane to the boundary S (τ · n = ττ · ν = 0).

2.2 Basic equations in Cartesian coordinates

Let us assume the Cartesian coordinate system x1, x2 (in-plane coordinates) and z (orthogonal to the midplane).
Then the unit normal vectors are ee1,eee2 and nn. With respect to the introduced coordinate system the following
representations are valid:

• Displacement and rotation vectors:

u = u1ee1 + u2e2 + wn, ϕ = −ϕ2ee1 + ϕ1e2. (4)

uα(α = 1, 2) are the in-plane displacements, w is the deflection and ϕα are the rotations about the axes eα ,
respectively.

• Force and moment tensors:

T = T1ee1ee1 + T12(ee1e2 + ee2ee1) + T2ee2e2 + T1nee1nn + T2nee2nn,
MM = M1e1ee2 − M12(e1e1 − e2e2) − M2e2e1.

(5)

Tα, T12 are the in-plane forces, Tαn are the transverse shear forces, Mα are the bending moments and M12

is the torsion moment.



• Strain tensors:

µ = µ1ee1ee1 + µ12(e1e2 + ee2e1) + µ2ee2ee2,
γγ = γ1eee1 + γ2eee2,

κ = κ1ee1ee2 − κ12ee1ee1 + κ21e2ee2 − κ2e2ee1.

µk are the strains, µ12 is the shear strain, γk are the transverse shear strains, κk are the bending deformations
and κ12 is the torsion deformation.

• External loads:

qq = q1ee1 + q2ee2 + qnn, m = −m2e1 + m1e2. (6)

qk are the in-plane loads, qn is the transverse load, mk are the moments.

Now the first and the second Euler’s law and the geometrical relations take the form (quasi-static case):

• First and second Euler’s law:

T1,1 + T12,2 + q1 = 0, T12,1 + T2,2 + q2 = 0, (7.1,2)

T1n,1 + T2n,2 + qn = 0, (7.3)

M1,1 + M12,2 − T1n + m1 = 0, M12,1 + M2,2 − T2n + m2 = 0. (7.4,5)

• Boundary conditions (for brevity, we present it when S is a part of line x1 = const (ν = e1, τ = e2)):
– Static boundary conditions

T1 = f1, T12 = f2, M1 = l1, M12 = l2 (8)

– Kinematic boundary conditions

u1 = u0
1, u2 = u0

2, w = w0 ϕ1 = ϕ0
1 , ϕ2 = ϕ0

2 , (9)

– Boundary conditions for a hinge

M1 = 0, u1 = u2 = w = 0 ϕ2 = 0. (10)

• Geometrical relations:

µ1 = u1,1, µ2 = u2,2, µ12 =
1

2
(u1,2 + u2,1),

γ1 = w,1 + ϕ1, γ2 = w,2 + ϕ2,

κ1 = ϕ1,1, κ2 = ϕ2,2, κ12 = ϕ2,1, κ21 = ϕ1,2.

(11)

3 Constitutive equations

Polymers near their glass transition temperature behave like viscoelastic materials [11,23–25,32]. That means
that the moduli of the polymers depend on the strain-rate or the time of loading. Thus, a foam made of
such a polymer behaves viscoelastically, too. Experimental investigations of the vicoelasticity of foams were
presented in [16,19]. The two-dimensional constitutive equations of a viscoelastic plate were formulated in
the general form in [2]. A through-the-thickness symmetric structure of the plate and an isotropic material
behavior was considered in [8]. Here we consider the general anisotropic case of two-dimensional viscoelastic
constitutive equations. In this case there follow the constitutive equations for the stress resultants:

• In-plane forces:

TT · aaa = Aµµ + Bκκ + G̃1γγγ

≡

t
∫

−∞

AAA(t − τ)··µ̇µ(τ) dτ +

t
∫

−∞

BBB(t − τ)··κ̇κκ(τ ) dτ +

t
∫

−∞

γ̇γ (τ ) ··· ŴŴŴ1(t − τ) dτ,
(12)



• Transverse shear forces:

T · n = Gγ + G1µµ + G2κ

≡

t
∫

−∞

Ŵ(t − τ)·γ̇γ (τ ) dτ +

t
∫

−∞

Ŵ1(t − τ)··µ̇(τ ) dτ +

t
∫

−∞

Ŵ2(t − τ)··κ̇κ(τ ) dτ,
(13)

• Moments:

MT = B̃µ + Cκκ + G̃2γ

≡

t
∫

−∞

µ̇(τ )··BB(t − τ) dτ +

t
∫

−∞

CC(t − τ)··κ̇(τ ) dτ

t
∫

−∞

γ̇ (τ )·ŴŴ2(t − τ) dτ. (14)

Here A, B, B̃, C, G, G1, G2, G̃1, G̃2, are linear viscoelastic operators, A(t), B(t), C(t) are fourth rank tensors,
ŴŴ1(t), ŴŴ2(t) are third rank tensors,ŴŴŴ(t) is a second rank tensor which describe the effective stiffness properties
(relaxation functions for the plate). They depend on the material properties and the cross-section geometry.

Using the assumptions that A(t), B(t), etc., do not depend on time with the relations µ(−∞) = 0,
κκ(−∞) = 0, γγγ (−∞) = 0 then from Eqs. (12)–(14) we obtain the constitutive equations of elastic plates
presented in [5–7,38].

Let us consider orthotropic material behavior and a plane mid-surface. In this case instead of the general
form of the effective stiffness tensors one gets [5–7,38]

A = A11a1a1 + A12(a1a2 + a2a1) + A22a2a2 + A44a4a4,

B = B13aa1aa3 + B14a1a4 + B23aa2aa3 + BB24aa2aa4 + B42a4a2,

C = C22a2a2 + C33aa3a3 + C34(aa3aa4 + a4a3) + C44a4a4,

Ŵ = Ŵ1aa1 + Ŵ2aa2, ŴŴ1 = 00, ŴŴ2 = 00

with

aa1 = aaa = eee1eee1 + ee2eee2, aaa2 = ee1ee1 − eee2eee2, aaa3 = cc = eee1eee2 − ee2ee1, aa4 = eee1ee2 + eee2eee1.

ee1, ee2 are unit basic vectors. In addition, one obtains the orthogonality condition for aai ,

1

2
ai ··a j = δi j , δi j =

{

1, i = j,

0, i �= j,
(i = 1, 2, 3, 4),

where δi j is the Kronecker’s symbol.
In the case of isotropic and symmetric over the thickness plates the effective stiffness tensors have the

following structure [5–7,38]:

AAA = A11aa1aa1 + A22(aaa2aaa2 + aa4aa4), CCC = C22(aa2aa2 + aa4aa4) + C33aaa3aaa3, ŴŴ = Ŵaaa.

4 Effective properties

For elastic plates the identification of the components of the effective stiffness tensors was proved in [5–7,38].
By the same technique below the analogous viscoelastic stiffness tensor components are computed. Let us
consider the three-dimensional viscoelastic constitutive equations [12,15,18]

σσσ =

t
∫

−∞

RRR(t − τ)··ε̇ε(τ ) dτ (15)

or

εε =

t
∫

−∞

JJ (t − τ)··σ̇σ dτ, (16)



where σσσ and εε are the tensors of stress and strain, RR(t) and JJ (t) are the fourth rank tensors of relaxation and
creep functions, respectively.

For an isotropic viscoelastic material Eqs. (15), (16) reduce to

σ =

t
∫

−∞

R1(t − τ)ėe(τ ) dτ +

t
∫

−∞

R2(t − τ)I tr ε̇(τ ) dτ (17)

or

ε =

t
∫

−∞

J1(t − τ)ṡ dτ +

t
∫

−∞

J2(t − τ)II tr σ̇σ dτ (18)

with two scalar relaxation functions R1 and R2 and two scalar creep functions J1 and J2 which describe the
shear and bulk properties of a viscoelastic isotropic material. II is the three-dimensional unit tensor. In addition,
s and ee are the deviatoric parts of the stress and the strain tensors, respectively.

Further we consider two cases:

Case 1 Homogeneous plates—all properties are constant (no dependency of the thickness coordinate z).

Case 2 Inhomogeneous plates (sandwich, multilayered, functionally graded)—all properties are functions
of z.

That means that in general R and JJ depend on the thickness coordinate z and on the time t ,

RR = RR(z, t), J = JJ (z, t).

In addition, a density function must be considered. Let us assume the simplest case—the density depends only
on the thickness coordinate

ρ0 = ρ0(z),

ρ0 is the density of the three-dimensional solid.
Using the Laplace transform of a function f (t),

f (s) =

∞
∫

0

f (t)e−st dt,

one can write Eqs. (15), (16) in the form [12,18]

σσ = sRR(s)··ε, εε = sJJ (s)··σ . (19)

Let us consider an orthotropic viscoelastic material. Using the correspondence principle we may write down
the constitutive equations for the Laplace mappings in the following form:

ε1 =
1

s E1

σ 1 −
ν21

s E2

σ 2 −
νn1

s En

σ n,

ε2 =
1

s E2

σ 2 −
ν12

s E1

σ 1 −
νn2

s En

σ n,

εn =
1

s En

σ n −
ν1n

s E1

σ 1 −
ν2n

s E2

σ 2,

(20)

ε12 =
σ 12

sG12

,

εn1 =
σ n1

sGn1

,

ε2n =
σ 2n

sG2n

with νi j E j = ν j i E i .



Using the analogy between (19) or (20) and Hooke’s law we can extend the identification procedure
[5,6,38] to the Laplace mapping of the effective relaxation or creep functions, see [2]. The in-plane and the
out-of-plane stiffness tensor components are

A11 =
1

4

〈

E1 + E2 + 2E1ν21

1 − ν12ν21

〉

, A12 =
1

4

〈

E1 − E2

1 − ν12ν21

〉

,

A22 =
1

4

〈

E1 + E2 − 2E1ν21

1 − ν12ν21

〉

, A44 =
〈

G12

〉

,

B13 = −
1

4

〈

E1 + E2 + 2E1ν21

1 − ν12ν21
z

〉

, −B23 = B14 =
1

4

〈

E1 − E2

1 − ν12ν21
z

〉

,

B24 =
1

4

〈

E1 + E2 − 2E1ν21

1 − ν12ν21
z

〉

, B42 = −
〈

G12z
〉

,

C33 =
1

4

〈

E1 + E2 + 2E1ν21

1 − ν12ν21
z2

〉

, C34 = −
1

4

〈

E1 − E2

1 − ν12ν21
z2

〉

,

C44 =
1

4

〈

E1 + E2 − 2E1ν21

1 − ν12ν21
z2

〉

, C22 =
〈

G12z2
〉

,

(21)

while the transverse shear stiffness tensor components are

Ŵ1 =
1

2
(λ2 + η2)

A44C22 − B
2

42

A44

, Ŵ2 =
1

2
(η2 − λ2)

A44C22 − B
2

42

A44

(22)

where λ and η are the minimal non-zero eigen-values following from the Sturm–Liouville problems

d

dz

(

G2n

dZ

dz

)

+ λ2G12 Z = 0,
dZ

dz

∣

∣

∣|z|= h
2

= 0,

d

dz

(

G1n

d Z̃

dz

)

+ η2G12 Z̃ = 0,
d Z̃

dz

∣

∣

∣|z|= h
2

= 0 .

(23)

Here 〈(. . .)〉 =

h/2
∫

−h/2

(. . .)dz, h is the thickness of the plate.

In the case of isotropic material behavior one has to set in Eqs. (20)

E1 = E2 = En = E(z, s), νi j = ν(z, s), G12 = Gn1 = G2n = µ(z, s) =
E(z, s)

2[1 + ν(z, s)]
.

Instead of (21), (22) the following non-zero components of the stiffness tensors are valid:

• the in-plane stiffness tensor components

A11 =
1

2

〈

E

1 − ν

〉

, A22 =
1

2

〈

E

1 + ν

〉

= A44 = 〈µ〉 , (24)

• the coupling stiffness tensor components

B13 = −
1

2

〈

E

1 − ν
z

〉

, B24 =
1

2

〈

E

1 + ν
z

〉

= −B42 = 〈µz〉 , (25)



• the plate stiffness tensor components

C33 =
1

2

〈

E

1 − ν
z2

〉

, C44 =
1

2

〈

E

1 + ν
z2

〉

= C22 =
〈

µz2
〉

, (26)

• the transverse shear stiffness tensor components

Ŵ1 = Ŵ = λ2 A44C22 − B
2

42

A44

(27)

with λ following from

d

dz

(

µ
dZ

dz

)

+ λ2µZ = 0,
dZ

dz

∣

∣

∣|z|= h
2

= 0 . (28)

For the plate which is symmetrically to the midplane the relation B = 0 holds true. The relaxation functions
of the isotropic viscoelastic plate with symmetric cross-section were considered in [8].

The tensors of inertia and the plate density are given by Altenbach and Zhilin [1], Altenbach and Eremeyev
[7], Zhilin [38]

ρ = 〈ρ0〉 , ρ��1 = − 〈ρ0z〉 cc, ρ��2 = �aaa, � =
〈

ρ0z2
〉

. (29)

Considering the symmetry of the thickness geometry and of the material properties of the plate from (29) one
gets that �1 = 0. � characterizes the rotatory inertia of the cross-section of the plate.

Note that for isotropic viscoelastic material we introduced three functions E(s), µ(s) and ν(s). They are
interlinked by the formula

E = 2µ(1 + ν). (30)

Following [21,22] we use Eq. (30) as the definition of the Poisson’s ratio for viscoelastic material.
In the theory of viscoelasticity of solids the assumption ν(t) = ν = const is often used. It is fulfilled

in many applications (see arguments in [12,15,37] concerning ν(t) ≈ const). For example, ν = 1/2 for
an incompressible viscoelastic material. In the general case, ν is a function of t . ν(t) was considered as an
increasing function of t [11,32,37] or non-monotonous function of t [21,22]. The latter case may be realized
for cellular materials or foams. Further we consider the influence of ν(t) on the deflexion of the viscoelastic
plate and its effective relaxation functions.

5 Bounds for the eigen-values

To obtain the dependence of the transverse shear stiffness relaxation function we have to solve Eq. (28). In
the general case, the solution of the spectral problem (28) may be performed numerically. For example, in [7]
the shooting method [35] was used. Let us note that for the viscoelastic plate µ = µ(z, s). Thus, λ = λ(s). It
means that for the determination of Ŵ(t) one has to solve (28) for any arbitrary value of s and with the help of
λ = λ(s) to find numerically the inverse Laplace transform of Ŵ.

Let us find the bounds for the values of λ. Introducing a new independent variable ζ by the formula

ζ =

z
∫

−h/2

dz

µ(z, s)
,

one can transform (28) to the form (see, for example, [17] for details)

d2 Z

dζ 2
+ λ2µ(z, s)2 Z = 0,

dZ

dζ

∣

∣

ζ=0,L = 0 . (31)



Here

L = L(s) ≡

h/2
∫

−h/2

dz

µ(z, s)
.

Substituting ζ = ζ/L , one can transform the spectral problem (31) to the canonical form

d2 Z

dζ 2
+ λ2L(s)2µ(z, s)2 Z = 0,

dZ

dζ

∣

∣

ζ=0,1 = 0 . (32)

The following theorem exists [13]:

Theorem If one has two eigen-value problems

d2 Z

dζ 2
+ λ2 f1 Z = 0,

d2 Z

dζ 2
+ λ2 f2 Z = 0,

dZ

dζ

∣

∣

ζ=0,1 = 0 (33)

with two functions f1(ζ ) and f2(ζ ) such that f1 ≤ f2, then the following inequality holds true λ1 ≥ λ2. Here

λ1 and λ2 are the eigen-values corresponding to the functions f1(ζ ) and f2(ζ ), respectively.

Applying this theorem to Eq. (32) and using the inequalities µmin(s) ≤ µ(z, s) ≤ µmax(s), we obtain the
lower and upper bounds of λ

π

L(s)µmax(s)
≤ λ(s) ≤

π

L(s)µmin(s)
. (34)

For a homogeneous plate µmin = µmax = µ(s), L(s) = h/µ(s), and both bounds coincide with each other.

6 Quasi-static behavior of a symmetric orthotropic plate

Let us consider the quasi-static deformations of a symmetric orthotropic plate. In this case Eqs. (7.1,2) split
into two parts: the in-plane problem for tangential displacements u1 and u2, and the bending problem for w,
ϕ1 and ϕ2, respectively.

The constitutive equations for a symmetric orthotropic plate can be given as follows:

T 1 = s
(

A11 + 2A12 + A22

)

µ1 + s
(

A11 − A22

)

µ2,

T 2 = s
(

A11 − A22

)

µ1 + s
(

A11 − 2A12 + A22

)

µ2,

T 12 = 2s A44µ12,

T 1n = s
(

Ŵ1 + Ŵ2

)

γ 1, T 2n = s
(

Ŵ1 − Ŵ2

)

γ 2,

M1 = s
(

C33 − 2C34 + C44

)

κ1 + s
(

C33 − C44

)

κ2,

M2 = s
(

C33 − C44

)

κ1 + s(C33 + 2C34 + C44)κ2,

M12 = sC22 (κ12 + κ21) .

(35)

In Cartesian coordinates with the geometrical relations (11) Eqs. (7.1,2) reduce to the form

s
(

A11 + 2A12 + A22

)

u1,11 + s
(

A11 − A22

)

u2,21 + s A44

(

u1,21 + u2,11

)

+ q1 = 0,

s
(

A11 − A22

)

u1,12 + s
(

A11 − 2A12 + A22

)

u2,22 + s A44

(

u1,22 + u2,12

)

+ q2 = 0.
(36)

Equation (7.3) has the following form:

(

Ŵ1 + Ŵ2

)

w,11 +
(

Ŵ1 − Ŵ2

)

w,22 +
(

Ŵ1 + Ŵ2

)

ϕ1,1 +
(

Ŵ1 − Ŵ2

)

ϕ2,2 + qn/s = 0. (37)



Equations (7.4,5) result in

s
(

C33 − 2C34 + C44

)

ϕ1,11 + s
(

C33 − C44

)

ϕ2,21

+ sC22

(

ϕ1,22 + ϕ2,12

)

− s
(

Ŵ1 + Ŵ2

)

ϕ1 − s
(

Ŵ1 + Ŵ2

)

w,1 + m1 = 0,

s
(

C33 + 2C34 + C44

)

ϕ2,22 + s
(

C33 − C44

)

ϕ1,12

+ sC22

(

ϕ1,21 + ϕ2,11

)

− s
(

Ŵ1 − Ŵ2

)

ϕ2 − s
(

Ŵ1 − Ŵ2

)

w,2 + m2 = 0.

(38)

Let us eliminate the functions ϕ1 and ϕ2 from Eqs. (37) and (38). For brevity, let us assume that m1 = 0,
m2 = 0. By using operator notations, Eqs. (38) may be rewritten in the form

L11ϕ1 + L12ϕ2 = b1w, L21ϕ1 + L22ϕ2 = b2w, (39)

where

L11 = ss
(

C33 − 2C34 + C44

)

∂2
1 + sC22∂

2
2 − sŴ1 − sŴ2,

L22 = s
(

C33 + 2C34 + C44

)

∂2
2 + sC22∂

2
1 − sŴ1 + sŴ2,

L21 = L12 = (C33 + C22 − C44) ∂1∂2,

b1 = s
(

Ŵ1 + Ŵ2

)

∂1, b2 = s
(

Ŵ1 − Ŵ2

)

∂2,

∂α(. . . ) ≡ (. . . ),α, α = 1, 2.

From (39) we obtain the relations Lϕ1 = L1w, Lϕ2 = L2w, where

L = L11L22 − L2
12, L1 = L22b1 − L12b2, L2 = L11b2 − L21b1.

Using operator notations Eq. (37) can be rewritten as follows:

Lww + b1ϕ1 + b2ϕ2 + qn = 0,

where Lw = s(Ŵ1 + Ŵ2)∂
2
1 + s(Ŵ1 − Ŵ2)∂

2
2

. Then we obtain one differential equation of sixth order with
respect to w,

(LLw + b1L1 + b2L2)w + Lqn = 0. (40)

For the isotropic plate we have C22 = C44, C34 = 0, Ŵ2 = 0, and one gets

L11 =
(

sC33 + C44

)

∂2
1 + sC44∂

2
2 − sŴ1, L22 = s

(

C33 + C44

)

∂2
2 + sC44∂

2
1 − sŴ1,

L21 = L12 = C33∂1∂2,

b1 = sŴ1∂1, b2 = sŴ1∂2,

Lw = sŴ1

(

∂2
1 + ∂2

2

)

= sŴ1�

and

L = s2
[(

C33 + C44

)

∂2
1 + C44∂

2
2 − Ŵ1

] [(

C33 + C44

)

∂2
2 + C44∂

2
1 − Ŵ1

]

− s2C
2

33∂
2
1 ∂2

2 ,

L1 = s2Ŵ1

[(

C33 + C44

)

∂2
2 + C44∂

2
1 − Ŵ1

]

∂1 + s2Ŵ1C33∂1∂
2
2 ,

L2 = −s2Ŵ1C33∂
2
1 ∂2 + s2Ŵ1

[(

C33 + C44

)

∂2
1 + C44∂

2
2 − Ŵ1

]

∂2.

Finally, the bending Eq. (40) has the form

s
(

C33 + C44

)

��w = ∂1m1 + ∂2m2 −
C33 + C44

Ŵ1

�qn + qn . (41)

If m1 = m2 = 0 and Ŵ1 → ∞ one gets the Kirchhoff’s plate equation

s D��w = qn

with the bending stiffness D = C33 + C44.



7 Examples of effective stiffness relaxation functions

7.1 Homogeneous plate

The simplest test for the correctness of the estimated stiffness properties is the homogeneous isotropic plate.
The basic geometrical property is the thickness h. The plate is symmetrically with respect to the mid-plane. All
material properties are constant over the thickness, that means they do not depend on the thickness coordinate.

For the sake of simplicity, at first let us consider the case ν(t) = ν = const. That means that the following
relations hold true: E(t) = 2µ(t)(1 + ν). The non-zero components of the classical relaxation tensors are

A11(t) =
E(t)h

2(1 − ν)
, A22(t) =

E(t)h

2(1 + ν)
= µ(t)h,

C33(t) =
E(t)h3

24(1 − ν)
, C22(t) =

E(t)h3

24(1 + ν)
=

µ(t)h3

12
.

Thus, the bending stiffness results in

D(t) =
E(t)h3

12(1 − ν2)
.

The density and the rotatory inertia coefficient are

ρ = ρ0h, � =
ρ0h3

12
. (42)

The transverse shear relaxation function follows from (27). The solution of (28) with µ = µ(s) is given by
cos λz = 0. It yields the smallest eigenvalue λ = π/h which does not depend on s. Finally, one obtains

Ŵ(t) = λ2C22 =
π2

h2

µ(t)h3

12
=

π2

12
µ(t)h. (43)

π2/12 is a factor which is similar to the shear correction factor which was first introduced by Timoshenko [36]
in the theory of beams. Here this factor is a result of the non-classical establishments of the transverse shear
stiffness. Comparing this value with Mindlin’s estimate π2/12 [26] and Reissner’s estimate 5/6 [29,30] one
concludes that the direct approach yields the same value like in Mindlin’s theory (note that Mindlin’s shear
correction is based on the solution of a dynamic problem, here the solution of a static problem was used). The
Reissner’s value slightly differs.

It is evident that in the case of homogeneous viscoelastic plates with constant Poisson’s ratio one gets
the same relations for the effective stiffness tensors as in the case of elastic plates [5,6]. There is only one
difference—they are now functions of t .

At second, let us consider the general case ν = ν(t). In this case D is reconstructed from

D =
Eh3

12(1 − ν2)

as follows:

D(t) =

t
∫

−∞

E(t − τ)h3

12[1 − ν2(τ )]
dτ.

Using the initial value theorem that f (0) = lims→∞s f (s) and the final value theorem that limt→∞ f (t) =

lims→os f (s) we establish that

D(0) =
E(0)h3

12(1 − ν2
0 )

, D(∞) =
E(∞)h3

12(1 − ν2
∞)

,



where

ν0 =
E(0)

2µ(0)
− 1, ν∞ =

E(∞)

2µ(∞)
− 1.

ν∞ may be considered as Poisson’s ratio in the relaxed state, while ν0 is Poisson’s ration in the initial state.
For the sake of simplicity we use the notation f (∞) = limt→∞ f (t).

As an example let us consider the relaxation functions following from the standard linear viscoelastic
model [15,18,28,37]

E(t) = E∞ + (E0 − E∞)e−t/τE , µ(t) = µ∞ + (µ0 − µ∞)e−t/τµ, (44)

where E∞ and E0 are the equilibrium and the short-time Young’s moduli (E∞ < E0), while µ∞ and µ0 are
the equilibrium and the short-time shear moduli (µ∞ < µ0), respectively. τE and τµ are the relaxation times
for tension and shear. Using the Laplace transforms

E =
E∞

s
+

E0 − E∞

s + τE
, µ =

µ∞

s
+

µ0 − µ∞

s + τµ

we obtain that

ν =
(s + τµ)(E∞τE + E0s)

2(s + τE)(µ∞τµ + µ0s)
− 1.

Note that the assumption ν = const is fulfilled if and only if E∞/E0 = µ∞/µ0 and τE = τµ. Finally, we
obtain the expression for the Laplace transform of the bending stiffness,

D =
µ2h3

3(4µ − E)
=

(

µ∞ + µ0τµs
)2

h3

s2
(

sτµ + 1
)2

[

12
µ∞+µ0τµs

s(sτµ+1)
− 3 E∞+E0τEs

s(sτE+1)

] .

To avoid an awkward expression we do not present the expression for D(t) corresponding to the latter equation.
Here we have the following relations:

D(0) =
E0h3

12(1 − ν2
0 )

, D(∞) =
E∞h3

12(1 − ν2
∞)

,

where

ν0 =
E0

2µ0
− 1, ν∞ =

E∞

2µ∞

− 1.

The dependence of the dimensionless bending stiffness on time is presented in Fig. 3 (solid line). Here the
following values are assumed ν0 = 0.2, ν∞ = 0.4, µ∞ = µ0/2, τµ = τE. We also present the two curves of
D(t) in the case of constant Poisson’s ratios which are equal to 0.1, 0.4 (Fig. 3, dashed lines). Note that in the
case ν �= const D(t) is a non-monotonous function of t , while D(t) is the monotonous decreasing function
for constant Poisson’s ratio.

7.2 Functionally graded material

In this paragraph we consider small deformations of an FGM plate made of a viscoelastic polymer foam. For the
panel made from a porous polymer foam the distribution of the pores over the thickness can be inhomogeneous
(see, for example, Fig. 2). Let us introduce h as the thickness of the panel, ρs as the density of the bulk material
and ρp as the minimum value of the density of the foam. For the description of the symmetric distribution of
the porosity we assume the power law [7]

V (z) = α + (1 − α)

∣

∣

∣

∣

2z

h

∣

∣

∣

∣

n

, (45)



Fig. 3 Dimensionless bending stiffness in dependence on time for constant Poisson’s ratio (dashed lines) and in the general case
(solid line)

where α = ρp/ρs is the minimal relative density, n is the power. n = 0 corresponds to the homogeneous plate
described in the previous paragraph.

The properties of the foam strongly depend on the porosity and the cell structure. For the polymer foam in
[16] the modification of the standard linear viscoelastic solid is proposed. For the open-cell foam the constitutive
law has the form

σ̇ + τEσ = C1V (z)2 [E∞τEε + E0ε̇] , (46)

while for the closed-cell foam the constitutive equation has the form

σ̇ + τEσ = C2

[

φ2V (z)2 + (1 − φ)V (z)
]

[E∞τEε + E0ε̇] . (47)

Here C1 ≈ 1, C2 ≈ 1, φ describes the relative volume of the solid polymer concentrated near the cell ribs.
Usually, φ = 0.6 . . . 0.7. E∞, E0, τE are material constants of the polymer used in manufacturing of the foam.

From Eqs. (46), (47) one can see that the corresponding relaxation function is given by the relations

E = E(z, t) = E(t)κ(z), (48)

where E(t) is defined by Eq. (44), while

κ(z) = C1V (z)2

for open-cell foam and

κ(z) = C2

[

φ2V (z)2 + (1 − φ)V (z)
]

for closed-cell foam, respectively. Analogous to (48) the following relation can be established for the shear
relaxation function:

µ = µ(z, t) = µ(t)m(z). (49)

Equations (48) and (49) have the meaning that the viscoelastic properties of the foam, for example, the time of
relaxation, do not depend on the porosity distribution. Note that representations (48) and (49) are only simple
assumptions for spatial non-homogeneous foams.

Using experimental data presented in [9,16] one can assume ν = const. In this case we obtain that A11,
A22, C33, C22 are related to

A11 =
1 + ν

1 − ν
A22, C33 =

1 + ν

1 − ν
C22, (50)



For the open-cell foam A22 and C22 are given by

A22 = h

[

α2 +
2α(1 − α)

n + 1
+

(1 − α)2

2n + 1

]

µ(t), C22 =
h3

12

[

α2 +
6α(1 − α)

n + 3
+

3(1 − α)2

2n + 3

]

µ(t), (51)

while for the closed-cell foam by

A22 = h

{

φ2

[

α2 +
2α(1 − α)

n + 1
+

(1 − α)2

2n + 1

]

+ (1 − φ)

[

α +
1 − α

n + 1

]}

µ(t),

C22 =
h3

12

{

φ2

[

α2 +
6α(1 − α)

n + 3
+

3(1 − α)2

2n + 3

]

+ (1 − φ)

[

α +
3(1 − α)

n + 3

]}

µ(t).

(52)

Here we assume that C1 = 1, C2 = 1, and that φ does not depend on z.
From Eqs. (51), (52) it is easy to see that the classical relaxation functions differ only by factors from the

shear relaxation function. Note that one can easily extend Eqs. (46), (47) to the case of general constitutive
Eqs. (15) or (18). Thus, using the assumption that ν = const, one can calculate the classical effective stiffness
relaxation functions for general viscoelastic constitutive equations multiplying the shear relaxation function
with the corresponding factor similar to Eqs. (51), (52). In the more general situation with ν = ν(t) or taking
into account other viscoelastic phenomena, for example, the filtration of a fluid in the saturated foam, the
effective stiffness relaxation functions may be more complex than for the pure solid polymer discussed here.

Finally, we should mention that in the case of constant Poisson’s ratio and with the assumption (49) the
determination of the effective in-plane, bending and transverse shear stiffness tensors of a symmetric FGM
viscoelastic plate made of a polymer foam can be realized by the same method as for elastic plates [5–7]. The
relaxation functions for viscoelastic FGM plates can be found from the values of the corresponding effective
stiffness of an elastic FGM plate by multiplication with the normalized shear relaxation function of the polymer
solid.

8 Bending of viscoelastic plate

8.1 Homogeneous plate

Let us assume the plate bending with mm = 0. From Eq. (41) we obtain that

s D��w = qn −
D

Ŵ1

�qn (53)

where D = Eh3/12(1−ν2) is Laplace transform of the bending stiffness relaxation function, Ŵ1 = π2µh/12
is Laplace transform of the shear stiffness relaxation function, w = u · n is the Laplace transform of the plate
deflection, qn = qqq ·nn is Laplace transform of the transverse load, respectively. Using Eqs. (30), (53) transforms
to

s D��w = qn −
2h2

π2(1 − ν)
�qn . (54)

Let us assume that x1 ∈ [0, a], x2 ∈ [0, b], where a and b are the length and the width of the plate, respectively.
Let us consider a sinusoidal load

qn = Q(t) sin
πx1

a
sin

πx2

b
(55)

and the boundary conditions (3). Then

qn = Q(s) sin
πx1

a
sin

πx2

b
,

and the solution of Eq. (54) is given by

w = wmax(s) sin
πx1

a
sin

πx2

b
, (56)



Fig. 4 The dimensionless maximal deflexion in dependence on time for constant Poisson’s ratio (dashed lines) and in the general
case (solid line)

where

wmax(s) =
Q(s)

s Dη4

[

1 −
2h2η2

π2(1 − ν)

]

is the Laplace transform of maximal deflexion, η2 =
(π

a

)2
+

(π

b

)2
.

Using the theorems on the initial and the final values of the Laplace transforms, we obtain that the initial
value of the maximal deflexion is given by formula

wmax(0) =
Q(0)

D(0)η4

[

1 −
2h2η2

π2(1 − ν0)

]

,

while the relaxed maximal deflexion results in

wmax(∞) =
Q(∞)

D(∞)η4

[

1 −
2h2η2

π2(1 − ν∞)

]

.

Let us consider Eqs. (44) and the step function Q(t)

Q(t) = Q0 H(t),

where H(t) is the Heaviside’s function. Then we obtain that

wmax(s) = Q0
12(1 − ν2)

Eh3η4

⎡

⎣1 −
2h2

(

1
a2 + 1

b2

)

1 − ν

⎤

⎦ .

For the constant Poisson’s ratio we obtain that

wmax(t) = Q0
12(1 − ν2)

h3η4

⎡

⎣1 −
2h2

(

1
a2 + 1

b2

)

1 − ν

⎤

⎦

[

1

E0
+

(

1

E0
−

1

E∞

)

e−t E0/(E∞τE)

]

.

The dependence of the dimensionless maximal deflexion on time is presented in Fig. 4 (solid line). Here we
again assume that ν0 = 0.2, ν∞ = 0.4, µ∞ = µ0/2, τµ = τE. We also present the two curves of wmax(t) in
the case of constant Poisson’s ratios (Fig. 4, ν = 0.1, 0.4, dashed lines).



8.2 FGM plate

Considering the symmetry of the material properties with respect to the mid-plane one gets a decoupling of
the in-plane state and the plate state. Let us assume again the plate bending with mm = 00. Using [7] and the
Laplace transform, one can reduce (1) to

s Deff��w = qn −
Deff

Ŵ
�qn, (57)

where Deff = C22 + C33 is the Laplace transform of the effective bending stiffness relaxation function. Note

that here s Deff = D0
effµ(s), where D0

eff = (C22 + C33)/µ(t).
To analyze the influence of the transverse shear stiffness on the deflection of the plate let us consider the

bending of a rectangular plate made of an FGM. Using the assumption that ν = const and Eqs. (26), (27), and
(49) are valid, we can rewrite Eq. (41) in the following form:

s Deff��w = qn −
2

λ2(1 − ν)
�qn . (58)

Introducing dimensionless variables by the formulae

W = h−1w, X1 = h−1x1, X2 = h−1x2, X1 ∈
[

0,
a

h

]

, X2 ∈

[

0,
b

h

]

,

Eq. (58) transforms to

sµ(s)��W = Q −
2

1 − ν

1

λ2h2
�Q. (59)

Here

� =
∂2

∂ X2
1

+
∂2

∂ X2
2

, Q =
qnh3

D0
eff

.

Let us consider again a sinusoidal load (55) and the boundary conditions (3). Then the solution of Eq. (59)
is given by

W =
K

η4h4

Q

sµ(s)
sin

πh X1

a
sin

πh X2

b
, K = 1 +

2η2

1 − ν

1

λ2
. (60)

For the Kirchhoff’s plate theory K = KK ≡ 1, for the homogeneous plate modeled in the sense of Mindlin’s
plate theory

K = KM ≡ 1 +
2η

1 − ν

1

π2
.

Using bounds (34) for the FGM plate we obtain the inequalities

1 +
2η

1 − ν

L2m2
min

π2h2
≤ K ≤ 1 +

2η

1 − ν

L2m2
max

π2h2
.

The influence of the shear stiffness on the deflection of the elastic FGM plate was given in [7]. For the
viscoelastic plate both the qualitative and the quantitative influence of the shear stiffness is the same as in [7].

For example, let us consider an open-cell foam and the following values ν = 0.3, a = b, h = 0.05a,
α = 0.9. Using the calculation of [7] we obtain the following values of λ: λ = 0.83/h for n = 2, λ = 0.82/h

for n = 5. The corresponding values of factor K are given by

KM ≈ 1.014, K ≈ 1.20 (n = 2), K ≈ 1.21 (n = 5).

That means that for the functionally graded plates the influence of transverse shear stiffness may be significant.
As well as for elastic FGM plates for the cases of other types of boundary conditions the influence of the
structure of the viscoelastic plate on the deflection may be greater than for the used simple support type
boundary conditions.



9 Discussion and outlook

The considered approach to model FGM plates within the framework of a five-parametric theory of plates has
an advantage with respect to classical theories of sandwich or laminated plates. Further investigations should
be directed to the more complex constitutive equations of viscoelastic solids taking into account thermo-
mechanical behavior, impact processes and the description of the creep phenomenon in plates made of metal
or polymer foams.
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