
EKONOMI OCH SAMHÄLLE

Skrifter utgivna vid Svenska handelshögskolan
Publications of the Swedish School of Economics

and Business Administration

Nr 151

PATRIK PAETAU

ON THE BENEFITS AND PROBLEMS OF
THE OBJECT-ORIENTED PARADIGM

INCLUDING A FINNISH STUDY

Helsingfors 2005

On the Benefits and Problems of the Object-Oriented Paradigm including a Finnish
Study

Key words: Object-oriented paradigm, benefits with object-oriented paradigm, problems

with object-oriented paradigm, software components, reuse

© Swedish School of Economics and Business Administration & Patrik Paetau

Patrik Paetau
Swedish School of Economics and Business Administration
Department of Management and Organization (Information Systems Science)
P.O.Box 287
65101 Vaasa, Finland

Distributor:

Library
Swedish School of Economics and Business Administration
P.O.Box 479
00101 Helsinki, Finland

Telephone: +358-9-431 33 376, +358-9-431 33 265
Fax: +358-9-431 33 425
E-mail: publ@hanken.fi
http://www.hanken.fi

 ISBN 951-555-893-X (printed)
 ISBN 951-555-894-8 (PDF)
 ISSN 0424-7256

 Edita Prima Ltd, Helsingfors 2005

For my son Robin

ACKNOWLEDGEMENTS

Although there may still be much to discover and understand as far as benefits and
problems with the object-oriented paradigm are concerned, the writing of this
dissertation is now, after several years, coming to an end. The opportunity has therefore
come to look back and give due credit to those who have supported and encouraged me
in different ways.

My first interest in the object-oriented world began in 1989 when my former manager at
Tietotehdas Oy (Tietoenator nowadays) Vice President Tiina Kurki asked me if I
wanted to get to know what objects actually are. As a young systems analyst working in
a project that was developing a large money market information system for the Union
bank of Finland (Nordea Oy nowadays) I was eager to start with something new.

After my time at Tietotehdas Oy, which I found to be an interesting and beneficial
experience, I moved to the Swedish School of Economics and Business Administration
in Helsinki where Associate Professor Pertti Lounamaa and my colleague Dr. Leif
Andersson encouraged me to write a Licentiate thesis concerning the object-oriented
paradigm and Activity Based Costing. This Licentiate thesis consisted of an Activity-
Based Costing application that I programmed using C++ and the object-oriented
database ObjectStore.

After completing the Licentiate thesis in 1995, I took my first steps on the pure object-
oriented road. I would like to thank Professor Bo Sundgren at the Stockholm School of
Economics in Sweden, Professor Sture Hägglund at Linköpings universitet, Sweden and
especially Associate Professor Inger Eriksson at the Swedish School of Economics and
Business Administration in Finland who gave me initial advice on how to continue on
the sometimes rather challenging road of the object-oriented paradigm.

My supervisors Juhani Iivari at the University of Oulu in Finland and Professor Wita
Wojtkowski at Boise State University in Idaho, US combined constructive comments
and encouragement to persist with the process. At the Kilpisjärvi Information Systems
Research Seminar on April 17, 1997 Professor Markku Nurminen from the University
of Turku, Finland and Professor Pertti Kerola from the University of Oulu, Finland, also
gave me some helpful comments on how to continue with the study.

I would like to thank the Hanken Foundation at the Swedish School of Economics and
Business Administration and especially the Rector Professor Marianne Stenius for
helping me financially through some difficult times in recent years.

Without the cooperation of all the Finnish software companies that took part in the
survey and especially the companies that participated in the case studies, this
dissertation would not have been possible. With this in mind, I would like to thank the
companies and their employees who kindly agreed to be interviewed.

Professor Bo-Christer Björk has acted as my supervisor during the later stages of this
dissertation and I would like to express my paramount appreciation to him for all the
support and encouragement that he has shown me and for all his priceless comments.

I would also give my best thanks to Senior Lecturer Dino Cascarino for the high-quality
language proof of my manuscript. Further, I would like to thank Professor Anssi Öörni
who proof read the Finnish survey instrument.

Furthermore my gratitude extends to everyone who offered comments and help on the
object-oriented road: Professor Eero Vaara, Professor Guy Ahonen, Professor Johan
Fellman, Professor Gunnar Rosenqvist, Senior Lecturer, Susanna Taimitarha,
Researcher Turid Hedlund, Docent Juha-Pekka Tolvanen and Research Professor Tarja
Tiainen. I wish to particularly acknowledge Dr. André Sahlström, with whom I shared
many ups and downs when working with this dissertation.

Finally my warmest thoughts go to those who are closest to me: my family and friends;
my wife Solveig, my sons Robin and David, my mother Gunvor, my grandmother
Astrid, my cousin Fredrik Sjöberg, my friends Melker Olenius and Georg Wrede and
many more.

 ‘I have a cat named Trash … If I were trying to sell him (at least to a computer
scientist), I would not stress that he is gentle to humans and is self-sufficient,
living mostly on field mice. Rather, I would argue that he is object-oriented’.

 Roger King (My Cat is Object-Oriented)

Patrik Paetau

Vaasa, August 2005

i

CONTENTS

1 INTRODUCTION ..1
1.1 PURPOSE AND BOUNDARIES OF THIS STUDY ..7
1.2 PRIMARY DEFINITIONS FOR THIS STUDY..9
1.3 RESEARCH PROBLEMS...11
1.4 SCIENTIFIC METHODOLOGY ..12

1.4.1 Literature review ..12
1.4.2 Measuring productivity and quality in information systems development...13
1.4.3 Empirical research and the selection of a research method17

1.5 STRUCTURE OF THE STUDY ...20
2 ON OBJECT-ORIENTED CONCEPTS..22

2.1 THE OBJECT ..24
2.1.1 Methods ..26
2.1.2 Identity ..27
2.1.3 Relations ...27
2.1.4 Encapsulation ...28
2.1.5 Discussion on objects ...29

2.2 THE CLASS ..31
2.2.1 Different types of classes ..33
2.2.2 Discussion about classes ..36

2.3 RELATIONS ...36
2.3.1 Class - object relation ..36
2.3.2 Uses relation or message-passing relation ..37
2.3.3 Association relation..37
2.3.4 Aggregation relation ..37
2.3.5 Inheritance relation ..38
2.3.6 Discussion about relations ...38

2.4 INHERITANCE..38
2.4.1 Multiple inheritance ...40
2.4.2 Discussion about inheritance ...41

2.5 DYNAMIC BINDING ...42
2.5.1 Comparison of dynamic binding with a conventional solution....................43
2.5.2 Discussion about dynamic binding...44

2.6 POLYMORPHISM..44
2.6.1 Example of polymorphism ..45
2.6.2 Discussion about polymorphism...46

3 THE OBJECT-ORIENTED PARADIGM...47
3.1 THE OBJECT-ORIENTED PARADIGM AND THE INFORMATION SYSTEMS DEVELOPMENT

LIFE CYCLE ...47
3.2 DISCUSSION ABOUT THE OBJECT-ORIENTED PARADIGM ..51
3.3 BENEFITS WITH THE OBJECT-ORIENTED PARADIGM...53

3.3.1 Object-oriented analysis...54
3.3.2 Object-oriented design ...59
3.3.3 The one model concept ...62
3.3.4 Management of complexity...64
3.3.5 Productivity, faster development and reduced costs67
3.3.6 Quality and usability ..71

ii

3.3.7 Natural and better mapping to the problem domain75
3.3.8 Maintenance ...78
3.3.9 Software components..82
3.3.10 Easier End-User Computing ..85
3.3.11 Reuse...87
3.3.12 Portability...93
3.3.13 Discussion of the benefits in general..94

3.4 PROBLEMS WITH THE OBJECT-ORIENTED PARADIGM...95
3.4.1 Complexity ..96
3.4.2 The object-oriented paradigm is still immature ...99
3.4.3 Poor support for testing and some other areas in information systems

development ..101
3.4.4 Difficulties in measuring object-oriented systems......................................103
3.4.5 Training & lack of experience..104
3.4.6 Efficiency in two different areas...108
3.4.7 Costs ...109
3.4.8 Limited usability of components...110
3.4.9 Problems with reuse ...111
3.4.10 Problems with object-oriented analysis ...117
3.4.11 Problems with object-oriented design ..122
3.4.12 Lack of object- oriented databases and common interfaces123
3.4.13 Discussion of the problems with object-oriented paradigm in general ...126

4 EMPIRICAL STUDY ..128
4.1 INTRODUCTION ...128
4.2 RESEARCH METHOD AND RESEARCH DESIGN ..128
4.3 RESEARCH QUESTIONS..130
4.4 PILOT STUDY ..131
4.5 SURVEY, PLANNING OF THE SURVEY AND STATISTICAL ISSUES...........................134

4.5.1 Selection of questions for the survey ..138
4.5.2 Selection of population and carrying out the survey..................................139
4.5.3 Survey results concerning the software companies....................................144

4.6 CASE STUDY ...145
4.7 THEORETICAL PROPOSITIONS AND EMPIRICAL FINDINGS.....................................150

5 RESULTS AND ANALYSIS ...218
5.1 SUMMARY OF EMPIRICAL FINDINGS ..218
5.2 ANALYSIS OF EMPIRICAL FINDINGS...220

6. DISCUSSION...223
6.1 REPETITION OF RESULTS ...223
6.2. LIMITATIONS ...225
6.3 RECOMMENDATIONS TO PRACTITIONERS ..226
6.4 RECOMMENDATIONS TO RESEARCHERS ..226

6.4.1 A look in the future ...226
6.4.2 Two theoretical models...227

6.4.2.1 The CBB model - Connection Between Benefits................................228
6.4.2.2 The CBP model – Connections Between Problems233

REFERENCES ..237

iii

APPENDICES

APPENDIX 1 – PILOT STUDY: SURVEY OF THE USE OF SOFTWARE DEVELOPMENT

TECHNIQUES..261

APPENDIX 2 – QUESTIONNAIRE FOR THE SURVEY...267

APPENDIX 3 – QUESTIONNAIRE FOR THE SURVEY IN FINNISH.......................................273

APPENDIX 4 - DATA COLLECTION PROTOCOL OF THE CASE STUDY279

APPENDIX 5 - THE CASE STUDY PROTOCOL IN FINNISH ...285

APPENDIX 6 - SOME SECONDARY DEFINITIONS FOR THIS STUDY291

FIGURES

FIGURE 1: OBJECT WITH ATTRIBUTES AND SERVICES..25

FIGURE 2: A ROUGH SKETCH OF A CLASS..32

FIGURE 3: AN EXAMPLE OF THE USAGE OF A MIXIN CLASS...34

FIGURE 4: AN EXAMPLE OF AN ABSTRACT CLASS ...35

FIGURE 5: THE FOUNTAIN MODEL DESCRIBING THE SYSTEM LEVELS..............................50

FIGURE 6. THE PINBALL MODEL..51

FIGURE 7: RISE IN THE COMPLEXITY WITH INCREASING NUMBER OF COMPONENTS64

FIGURE 8: NUMBER OF EMPLOYEES ..144

FIGURE 9: TURNOVER OF THE COMPANIES IN THE SURVEY ...144

FIGURE 10: THE OBJECT-ORIENTED PARADIGM IS USEFUL FOR LARGE AND COMPLEX

APPLICATIONS..153

FIGURE 11: THE OBJECT-ORIENTED PARADIGM IS MORE PRODUCTIVE155

FIGURE 12: THE OBJECT-ORIENTED PARADIGM IS FASTER ..155

FIGURE 13: THE OBJECT-ORIENTED PARADIGM IS GENERATING BETTER QUALITY157

FIGURE 14: THE OBJECT-ORIENTED PARADIGM PRODUCES BETTER COMMUNICATION

BETWEEN INFORMATION SYSTEMS DEVELOPERS AND END USERS...............160

FIGURE 15: THE OBJECT-ORIENTED PARADIGM GENERATES MORE MAINTAINABLE

APPLICATIONS..163

FIGURE 16: THE OBJECT-ORIENTED PARADIGM AS ONE MODEL167

FIGURE 17: COMPANIES USED MUCH REUSE ...173

FIGURE 18: REUSE CONSIDERED BENEFICIAL..174

FIGURE 19: PORTABILITY USEFUL ..182

FIGURE 20: THE OBJECT-ORIENTED PARADIGM IS CONSIDERED COMPLEX186

FIGURE 21: THE OBJECT-ORIENTED PARADIGM IS CONSIDERED IMMATURE187

FIGURE 22: DIFFICULTIES IN FINDING CASE TOOLS...188

FIGURE 23: DIFFICULTIES IN FINDING OBJECT-ORIENTED DATABASES189

FIGURE 24: DIFFICULTIES IN FINDING OBJECT-ORIENTED SOFTWARE DEVELOPMENT

TOOLS...189

FIGURE 25: DIFFICULTIES IN FINDING REUSABLE OBJECTS..189

FIGURE 26: OBJECT-ORIENTED TESTING IS DIFFICULT ..191

FIGURE 27: LACK OF METRICS ..193

FIGURE 28: DIFFICULT TO FIND PEOPLE THAT KNOW THE OBJECT-ORIENTED

 PARADIGM ...196

FIGURE 29: EXPERIENCED COMPUTER EFFICIENCY PROBLEMS......................................198

iv

FIGURE 30: EXPERIENCED HIGH STARTING COSTS ..200

FIGURE 31: HARD TO FIND COMPONENTS TO REUSE..201

FIGURE 32: NO REUSE BECAUSE COMPONENTS DO NOT WORK......................................203

FIGURE 33: NO REUSE BECAUSE TROUBLESOME TO LEARN HOW A COMPONENT

WORKS..203

FIGURE 34: NO REUSE BECAUSE OF CLASS HIERARCHY ..204

FIGURE 35: DIFFICULT TO FIND OBJECT-ORIENTED DATABASES210

FIGURE 36: HOW TO CONNECT THE OBJECT-ORIENTED PARADIGM AND RDB...............212

FIGURE 37: THE CBB MODEL ..232

FIGURE 38: THE CBP MODEL ..236

TABLES

TABLE 1: OBJECT-ORIENTED CONCEPTS IN DIFFERENT OBJECT-ORIENTED

PROGRAMMING LANGUAGES...22

TABLE 2: THE NUMBER OF FINNISH SOFTWARE COMPANIES IN DIFFERENT TURNOVER

CATEGORIES ...139

TABLE 3: THE NUMBER OF FINNISH SOFTWARE COMPANIES IN DIFFERENT SIZE

CATEGORIES ...140

TABLE 4: CRITERIA OF THE SMES IN THE EU...140

TABLE 5: MAIN CLIENTELE IN THE SURVEY ..145

TABLE 6: POSITION OF RESPONDENT IN THE SURVEY ..145

TABLE 7: INTERVIEWS ..149

TABLE 8: REASON WHY COMPANIES IN THE SURVEY HAVE NOT USED THE OBJECT-

ORIENTED PARADIGM ...152

TABLE 9: DIFFERENCES IN STUDIES ON OBJECT-ORIENTATION......................................223

1

1 INTRODUCTION

Today information systems tend to be much larger and more complex than before, due
to more powerful computers, the increased expectations from end users and use of the
Internet for exchanging all kinds of information (Jacobson et al., 1999). The
functionality of information systems today is also more often based on distributed
computing, on graphical applications and on multimedia systems (Nerson, 1992). In
contrast to the constant decreases in hardware costs, the costs of software development
and maintenance have not decreased over time.

This development has lead to an interest in new information system development
paradigms. Yourdon & Argila (1996, pp. 4-5) propose that the applications and
software systems of tomorrow will be so large and complicated that conventional
software development techniques, which depend on programmers and software
developers developing all programming code from scratch, will be inherently imperfect.
According to Yourdon & Argila there are not enough people, nor money to build the
large and complex applications and software systems of the future, with the software
development techniques of today. Despite the new methods that are available, most
people still use the same information system development methods that have been in
use for as long as 25 years (Jacobson et al., 1999).

The interest in new information system development methods has been triggered by the
need of system developers for making work in development easier and more productive.
Therefore, an information system development method or paradigm to initiate this is
needed.

The growth in size and complexity of information systems and the resulting increase in
software development costs have led to a greater market demand for new software
development paradigms, methods and techniques that would make software
development easier, cheaper and more efficient. Already in the 1980’s the object-
oriented paradigm was considered as a possible answer to this dilemma, and today it is
still viewed by many as the best available solution to the “software crisis” (Johnson,
2002). Nowadays one can also point towards possible solutions such as outsourcing part
of the work in software development to developing countries like India, the Philippines,
Vietnam, Indonesia and China. This is, however, only a partial answer to the costs
involved, and does not therefore address the real problems.

According to Johnson (1997a) the object-oriented paradigm is becoming the industry
standard for software development. One can therefore argue that using it has been a
major means in handling the software crisis (Johnson, 2002).

The idea of object orientation has been a part of our history for more than 2000 years.
Already the philosophers Aristotle and Plato wrote about such things as objects, classes,
subclasses, associations and object behaviour. Later Augustine, Duns Scotus, Bertrand
Russell and Alfred North Whitehead have broadened these ideas. Though these
philosophers used different terms for different things, the basic idea was the same.
(Martin & Odell, 1995, p. xiv)

2

The more contemporary idea of the object-oriented paradigm first appeared in Simula in
the 1960s (Pidd, 1995). In 1962 two Norwegians, Dr. Kristen Nygaard and Ole-Johan
Dahl started to work with a project called Simula at Norsk Regnesentral in Oslo (Norsk
Regnesentral is the Norwegian Computing Center).

Simulation is often used for problems where time dependent processes are studied, for
example, questions regarding queuing are often studied with the help of simulation.
Nygaard and Dahl decided in 1962 to look at the reality as a number of processes,
which was a very different method compared with the approaches in earlier procedure
based languages like Cobol and Fortran. The result of the work by Nygaard and Dahl
was the programming language Simula 1 (1962-1964) that was an ad hoc extension of
the Algol60 programming language, Simula 1 was a new programming language
applicable for use in complex simulation problems (Andersen, 1996, p. 327; Ralston et
al., 2003).

In 1966 Dahl & Nygaard additionally published a work on Simula 1 (Dahl & Nygaard,
1966). The aim of Simula 1 was to obtain a programming language that could be used
for computer-based simulations, and for describing a very complex reality that is to be
simulated (Andersen, 1996, p. 327). Object-oriented software was thus invented to
support the modelling and simulation of real-world systems like car suspensions
systems, oil refining processes, or medical systems (Pawson, 2002). As an example of
Simula 1 code a definition of a class (Sklenar, 1997) is presented:

Class Rectangle (Width, Height); Real Width, Height; ! Class with two parameters;
Begin

Real Area, Perimeter; ! Attributes;
Procedure Update; ! Methods (Can be Virtual);
Begin

 Area := Width * Height;
 Perimeter: = 2*(Width + Height);

End of Update;
Boolean Procedure IsSquare;
IsSquare := Width=Height;
Update; ! Life of rectangle started at creation;
OutText("Rectangle created: ");
OutFix(Width,2,6);
OutFix(Height,2,6);
OutImage

End of Rectangle;

In addition, Nygaard and Dahl had developed a new idea where complex reality was
described by active elements that send and receive messages from other active elements,
and they used Simula 1 as a base when they later developed Simula-67 out of Algol60
by taking the block concept from Algol60 a step further and introducing the concept of
an object and the concept of a class (Khoshafian & Abnous, 1995, p. 13; Ralston et al.,
2003). Simula 67 was ready in 1967 and had already most of the important object-
oriented properties (Jacobson et al., 1995, p. 45). In Simula 67 and later versions the
concepts of processes used in 1962 were replaced by more common concepts (the active
elements). The active elements then become objects, and objects with similar qualities

3

were made to belong to the same class. (Andersen, 1996, p. 328) For a more
comprehensive study of Simula, consider, for example, Dahl & Lindqvist (1993).

Conceivably, it was in 1969 that Nygaard and Dahl developed the object-oriented
paradigm. The same year they tried to simulate the movements of ships in a fjord and
found that this was extremely difficult. Nygaard and Dahl developed an idea where they
were working with objects (ships, waves, the coast line) instead of structural entities
such as the movement of the ships and the blowing of the wind. (Harrington, 1995, p.
16) Although Nygaard and Dahl are considered being the developers of the object-
oriented paradigm, Nygaard has often stated that he and Dahl were influenced by the
work of Börje Langefors who at that time worked with system theory that included
subsystems that had internal and external behaviour. Another early pioneer in this area
was Stephen Zilles who wrote a paper on “how procedures can be used to represent
another class of system components, data objects, which are not normally expressed as
programs” (Zilles, 1973; cited by Mikhajlov, 1999, p. 31).

The ideas of Nygaard and Dahl and the Simula programming language affected the
development of the next interesting object-oriented programming language Smalltalk
that was developed in the research laboratories of Xerox in Palo Alto (US) in the 1970’s
(Holm, 1998, p. 19; Koskimies, 1997, p. 6). Smalltalk was the first well-known object-
oriented programming language and has its origin in the doctoral work of Alan Kay at
Utah University (Graham, 2001, p. 3). Smalltalk was originally developed to program
Dynabook, and additionally it became the software component of the Dynabook that
was a kind of early laptop computer (Eliëns, 2000, p. 12).

Until 1984 the object-oriented paradigm was confined mostly to research laboratories, a
few universities, some governmental agencies and the artificial intelligence community
(Love, 1993, p. 40). Consequently, although the object-oriented paradigm was
“founded” in the 1960’s, there was a paradigm shift as late as in the 1980’s and early
1990’s when object-oriented software development became more common (Fernandes,
1998). One reason for the increased interest in object-oriented software development in
the 1980’s was the pure object-oriented programming language Smalltalk, which
actually proved that the object-oriented paradigm is a complete programming paradigm
(Koskimies, 1997, p. 6).

Since 1969 the object-oriented paradigm has evolved and become more mature and it
has now been used for developing all kinds of information systems, administrative and
business applications as well as technical applications (Eriksson & Penker, 1996, p. 27;
Graham, 2001, pp. 64-65; Jacobson, 1993). The object-oriented paradigm is now in fact
involved in almost all aspects of computing on a variety of platforms (Eriksson &
Penker, 1996, p. 27). Moreover, there are object-oriented operating systems, object-
oriented programming languages, object-oriented databases, object-oriented CASE
tools, object-oriented 4GL tools, object-oriented software development methodologies,
object-oriented knowledge-based systems and object-oriented expert-based systems,
etc. (Harmon, 1995; Jacobson, 1993). In fact, some companies have used the object-
oriented paradigm successfully for a very long time (Jacobson, 1993). Graham (2001,
pp. 64-65) presents a short history of the object-oriented paradigm from 1990 to 2000,

4

and he concludes that in the early years of the 21st century the object-oriented paradigm
will almost certainly see a nearly universal adoption.

The object-oriented paradigm also has a strong theoretical basis and background and
enjoys widespread support in the academic community (Fichman & Kemerer, 1993),
and therefore academic research will also support its development (Smith & McKeen,
1996).

The core of the object-oriented paradigm is the development of new information
systems out of standard, existing components. The standard components could be, for
example, class libraries that can be bought off the shelf (Rothering, 1994). The
components can also be “lower” components like binary trees, hash tables, buttons,
checkboxes and scrollbars (Tyma, 1998). Radin (1996) and Sparling (2000) propose
that components can be seen as encapsulated black boxes with specified behaviour. One
advantage of black boxes is that the software developer does not inevitably need to
understand the internal workings of the black boxes (Martin & Odell, 1992, p. 10). In
other words, software is developed like cars for example, where the car developer does
not necessarily know how the different parts (like the carburettor) work, but can still
build a car.

When working with the object-oriented paradigm the main information systems
development issue is to work with objects, and the main development question is ‘what’
the information system shall do. With the object-oriented paradigm one is looking at
things and what services these things offer, what states (data) the things have, and what
behaviour (functionality) the things offer. (Eriksson, 1992, p. 16; Henderson-Sellers,
1992, p.35) The main focus is on objects and their behaviour, and although the objects
might be complex internally, the software developer does not necessarily need to
understand this complexity (Martin & Odell, 1992, p. xi). The object-oriented model is
in fact more data oriented than a traditional approach (Henderson-Sellers & Edwards,
1994, p. 19). Khoshafian & Abnous (1995, p. 41) propose that the object-oriented
paradigm in fact is based on data, and that the conventional software development
paradigm is based on procedures. In traditional functional oriented information systems
development one is looking at ‘how’ something should be done; ‘How does this thing
work?’ ‘Which procedure?’ ‘Which function?’ (Eriksson, 1992, p. 16; Henderson-
Sellers, 1992, p. 35)

Many authors propose that the development of information systems becomes faster and
more efficient if the object-oriented paradigm is used (Henderson-Sellers & Edwards,
1990). This might be due to the fact that these techniques support reuse, which means
that a new application does not always have to be developed from scratch (Fichman &
Kemerer, 1993; McClure, 1996). Often existing models, class libraries, frameworks
(Noack & Schienmann, 1999), architectures, code, documentations (Stevens & Pooley,
2000, p. 212), business plans, cost analyses, project plans, user manuals, requirements,
designs (Räisänen, 1997b, p. 33), test suites, templates and of course classes are reused
(McClure, 1996). One can also, for example, connect class libraries with CASE
repositories so that new classes can be rapidly developed from existing classes (Martin
& Odell, 1992, p. 12). It has also been proposed that support, maintenance and service

5

of the information system become easier and consequently also cheaper (Henderson-
Sellers & Edwards, 1990).

In the object-oriented paradigm the integration of analysis, design and implementation
within a single framework becomes possible because there is a uniform paradigm
throughout development (Kaindl, 1999; Korson & McGregor, 1990). There exists a
direct relationship between objects identified during analysis and objects in the
implementation (Hopkins, 1992). This fact is important because information systems
built according to some older software paradigm are often expensive and cumbersome
to support and maintain. In fact, large organisations assign more than 50% of the total
programming effort to the maintenance of older systems (Sommerville, 1996, p. 660).
Wilkie (1993, p. 2) presents figures showing that 60-80% of overall software
development costs are in fact maintenance costs. In light of this, the proposed benefit of
easier maintenance of object-oriented systems is significant (Hopkins, 1992).

The object-oriented paradigm is probably not a ‘silver bullet’ (the term ‘silver bullet’
was originally coined by Fred Brooks (1987) as a term for oversold software process
innovations (Fichman & Kemerer, 1993)) that solves all problems in information
systems development today or in the future (Coad & Yourdon, 1991, p. 154; Finch,
1998).

When considering if the object-oriented paradigm can indeed be considered a ‘silver-
bullet’ or not one can look back on different forecasts of its importance in the past.

In the beginning of the 1990’s Bill Gates proclaimed: “The object-oriented paradigm is
going to be the most important emerging software paradigm of the 1990s” (Martin &
Odell, 1992, p. 3). Later on in 1991 the object-oriented paradigm was even predicted to
do the same for software as the microchip did for hardware (Verity & Schwartz, 1991;
Winblad et al., 1990, p. 23). Additionally the president of Borland International Inc.
Philippe Kahn claimed that object-oriented information systems development would be
predominant in the future (Verity & Schwartz, 1991).

The results from a study by International Data Corporation in 1991 showed that 70% of
large US corporations claimed that they were using the object-oriented paradigm or that
they intended to start using it soon (Verity & Schwartz, 1991). Moreover, in 1991 45%
of the Fortune 500 companies in the United States were working with the object-
oriented paradigm to some extent, and 60% of these companies were developing
applications for business use according to the Survey on Object Technology, 1991
(Taylor, 1992, p. xv).

In a study referred by Henderson-Sellers (1992, p. 12), 9 companies out of a sample of
51 in the state of New South Wales in Australia were using object-oriented software
development methodologies.

Kozaczynski & Kuntzmann-Combelles (1993) claimed that the world was full of
companies that were using software that was built according to traditional procedural
methods, and that the step towards a new paradigm was not always self-evident.
Integrating older traditional functional legacy systems with objects-oriented software
would actually be difficult. In the same year Fichman & Kemerer (1993) even claimed

6

that object-oriented software would not be the predominant information systems
development paradigm in the future.

In 1994 10% of the corporate IS groups were committed to the object-oriented paradigm
according to Harmon (1995), and one year later Jacobson et al. (1995, p. 70) argued that
there was a consensus that the object-oriented paradigm would be the most important
information systems development platform in the near future. The same year Harmon
(1995) estimated that by the end of 1996 more than 40% of the IS groups in the US
would use the object-oriented paradigm.

In a study in 1996 it was found that 43,4% of the companies studied used the object-
oriented paradigm (Pickering, 1996, p. 3-9), so the forecast in 1995 by Harmon turned
out to be rather accurate. Still in 1997, Meyer (1997a) stated that there were some
people, such as the chief of IEEE Software Al Davis, who thought the object-oriented
paradigm would either fail or die in the future, although Meyer (1997a) himself was of
the opposite opinion.

In 1998 Bhattacherjee & Gerlach (1998) argued that despite widespread knowledge of
the benefits with object-oriented development and object-oriented tools that had been
disseminated via journals, professional associations and vendors, the object-oriented
paradigm had not removed entrenched information system development practices.

In 1999 Bansiya et al. (1999) proposed that many software companies had transitioned
into the object-oriented paradigm and that the object-oriented tool market had been
growing fast (a 42% growth rate in 1995). In the same year, Buchholz (1999) also
presented a few estimations from some marketing research institutes that revealed that
about 60% of the information systems development projects would probably be object-
oriented in 2002.

In 2000 Pressman (2000, p. 525) argued that software experts seemed to share the
opinion that future software would be developed according to the object-oriented
paradigm. That same year Johnson (2000) made a study on the benefits and problems of
object-oriented software development in the United States.

In 2001 Murphy (2001) addressed the question on benefits with the object-oriented
paradigm and proposed that although the object-oriented paradigm was claimed to have
many benefits there was not much empirical evidence.

As can be seen from the historical presentation above, there have been numerous
optimistic opinions on the object-oriented paradigm becoming the predominant software
development paradigm. In order to become such a dominant paradigm the benefits of
the object-oriented paradigm ought to be realised and the problems ought to be handled
in the right way. As a consequence, more empirical evidence concerning the benefits
and problems that have been encountered in real use is needed.

On the whole, there seems to be very little comprehensive knowledge on the benefits

and problems with the object-oriented paradigm in information systems science and

there is also a lack of empirical information and studies on this issue. Therefore, it is

hoped that this study will compensate for the deficiency through bringing a greater

7

awareness of the benefits and problems associated with the object-oriented paradigm

that will also help working hands-on with information system development.

1.1 Purpose and boundaries of this study

There are few available studies on the benefits and problems of the object-oriented
paradigm (Pomberger & Blaschek, 1996, p. 282), of which the studies by Johnson
(2000) and Pickering (1996) are probably the most worthy of note. Furthermore in the
book by Cockburn (1998, pp. 23-30) several benefits of the object-oriented paradigm
are presented; these benefits are based on comprehensive interviews with project
leaders that Cockburn has made, discussions with consultants and experts also made by
Cockburn, and on information from project reports that Cockburn has read.

Because knowledge of the benefits and problems of the object-oriented paradigm might
be a significant success factor for software companies as well as for other companies,
more awareness of this issue is therefore needed. Verity & Schwartz (1991) propose
that in an era when hardware is a commodity, software will be the most important
competitive factor, and the software companies, the traditional industry and service
companies, and the computer manufacturers that exploit object-oriented software
development the best are likely to succeed in the computer and software industry itself.

However, the choice of software development paradigms is of course not the only
critical issue for the success of companies. There are other issues to consider as well,
for example, Szyperski (1999, pp. 4-5) writes about the possibility of buying standard
software and information systems instead of developing them.

Purpose

The purpose of this study is to investigate and gain some understanding of what benefits

and problems there are with the object-oriented paradigm.

The object-oriented paradigm is based on a modelling approach of the real
world out of objects, classes, inheritance, etc., which is in contrast to the
more traditional functional paradigm that is based on separate functions and
separate data (Chidamber & Kemerer, 1994)

A more precise definition of an object-oriented paradigm and further definitions are
given in the section (1.2) on primary definitions in this study.

Note that a paradigm is more than a type of information systems development or
information systems life cycle. A paradigm is also more than an information systems
development method or information systems development methodology.

It is important to note that ‘problems’ are not ‘pitfalls’. Pitfalls as considered by, for
example, Webster (1995) are something negative that can happen during software
engineering.

By ‘benefits’ it is meant benefits in comparison with some other paradigm, usually the
traditional functional software development paradigm that uses traditional functional

8

programming languages like Pascal and C. The same concerns ‘problems’. Problems
with the object-oriented paradigm are problems in comparison with some other
paradigm, like the traditional functional software development paradigm. It is worth
noting here that there are other software development paradigms than the functional
paradigm and the object-oriented paradigm; Koskimies (1997, pp. 1-2) mentions the
procedural paradigm, the logical paradigm and the limited paradigm, Zhou et al. (1998)
presents the mobile computing paradigm, and, for example, Murer (1997), introduces
the software component paradigm and Bosch et al. (1997) even proposes that this
paradigm is the natural extension of the object-oriented paradigm.

The purpose is also to present different aspects of the benefits and problems if such
aspects are found in the previous studies (literature study) or in the empirical part of this
study. The different aspects found in the empirical part of this study are principally
presented in the summaries of the case studies.

First a comprehensive review of previous (the literature) studies is performed and the
opinions of different researchers were deliberated and examine. When this review is
made the author of this study searches for benefits and problems with the object-
oriented paradigm.

Then an empirical study is made on what benefits and problems Finnish software
companies have experienced when working with the object-oriented paradigm. In this
study a large number of propositions on benefits and problems with the object-oriented
paradigm are presented. Then the software developers in the Finnish software
companies express their subjective opinion on which benefits or problems they have
experienced. Comments are also written down.

No hypotheses are developed. One can say that the purpose is “scan” the Finnish market
regarding software companies and the benefits and problems with the object-oriented
paradigm. This will give some insight into the issue. The purpose is not to test any
specific theory. The purpose is more to investigate specific assertions on proposed
benefits and problems with the object-oriented paradigm. The assertions are, however,
usually based on some theories. Note here that this study is not concerned with creating
any new theory although two models for further research are presented. As a
conclusion, one can argue that this study is somewhere between, on the one hand testing
a theory, and on the other hand creating a new theory.

Boundaries

The focus of this study is on the areas of the object-oriented paradigm specified above.
This study is neither concerned with object-oriented information systems development
analysis methods nor with design methods; if the reader is interested in these issues the
work by Wieringa (1998) is recommended. There is a difference between pure analysis
and an information systems development analysis method because one can carry out an
information systems development analysis without an analysis method as reported by
Fitzgerald (1995).

This study does not investigate detailed benefits and problems at the programming level
as many programming problems are often tied to a specific programming language

9

(Webster, 1995, p. 191), or database management level (for example, a lack of primary
keys in object-oriented databases). For studies on more detailed programming benefits
and problems with the object-oriented paradigm in software development the studies by
Khoshafian & Abnous (1995), Miah (1997) and Ooil (2002) may be recommended.

As mentioned above, detailed issues of the object-oriented paradigm are not deliberated
in this study. Examples of detailed issues are comprehensive programming issues (such
as how to use pointers in C++), exhaustive design issues (such as how to draw a
relation) and comprehensive database questions (such as how to implement an index).
However, in this study a few more detailed benefits with the object-oriented paradigm
are presented when considered appropriate, of which the benefits connected with the
core concepts in the object-oriented paradigm are the best examples (Snyder, 1993).

In other words, this study is concerned with the object-oriented paradigm and not with
object-oriented programming issues. This is important since the object-oriented
paradigm is often confused with certain object-oriented programming languages such as
C++ or Java (Khoshafian & Abnous, 1995, p. viii). It has always to be remembered that
the object-oriented paradigm is more than just a programming language, and that the
whole object-oriented paradigm and not just an object-oriented programming language
has to be utilized, in order to achieve all the benefits of the object-oriented paradigm
(Holm, 1998, p. 12).

It must be noted that the selection of questions for the survey could have been made in
another manner, and that and other questions than those selected could have been
selected as well.

One also has to consider the possibility that individuals who were more favourably
disposed to the object-oriented paradigm were more likely to respond to the survey,
thereby biasing the results in favour of the object-oriented paradigm. However, great
care was taken in the wording of the cover letter, survey instructions and survey items
to avoid any bias for or against the object-oriented paradigm.

1.2 Primary definitions for this study

The aim of this section is to present the primary underlying definitions that are used in
this study. Major object-oriented concepts like objects, classes and inheritance are,
however, presented more thoroughly in sections of their own. The definitions are by
necessity brief, incomplete, and a bit oversimplified. The secondary underlying
definitions for this study are presented in Appendix 6. The definitions are presented in
an order that is based on the structure of the study, and not alphabetically.

Information system. Ives et al. (1980) defines an information system as ‘a collection of
subsystems defined by functional or organizational boundaries’.

Martin & Odell (1995, p. 2) define an information system as a system that has
information, and an ordinary system as a system without information.

10

Examples of ordinary systems are patient monitoring systems and plant control systems.
However, the issue as to which systems that are information systems and which systems
are ordinary systems can be discussed.

Paradigm. In software engineering, the term paradigm is used to denote a particular
approach or concept that is used to refer to the way a given task is presented to and
handled by the user (Webster, 1995, p. 26). A user is defined as the information systems
developer or the end user.

Examples of paradigms used in software engineering are the functional paradigm
(Wybolt, 1992), the object-oriented paradigm (Pree, 1997), and the component-based
software development paradigm (Szyperski, 1999, p. 31). A shift from one paradigm to
another can be considered as a revolution (Törnebohm, 1997) but in software
engineering the shift from one paradigm to another is probably less radical though, for
example, the object-oriented paradigm is very different from the functional paradigm.

Object-oriented paradigm. The object-oriented paradigm is a particular approach to
software engineering and represents another paradigm for developing software systems
differing from the traditional functional paradigm (Wybolt, 1992). The “old” functional
paradigm also has other names, for example, Cackowski et al. (2000) call it
“Algorithmic Decomposition”. The object-oriented paradigm is based on a modelling
approach of the real world out of objects, classes and inheritance, etc., which is in
contrast to the more traditional functional paradigm that is based on separate functions
and separate data (Chidamber & Kemerer, 1994). For a comparison of the traditional
functional software engineering paradigm and the object-oriented paradigm, one can,
for example, study the article by Wybolt (1992).

Object-orientation. Object orientation is a synonym for the object-oriented paradigm
used by some authors (Meyer, 1995, p. 2).

Object-oriented method. In this study the concept ‘object-oriented method’ is not used
although several authors and researchers, like Graham (2001, p. 1), use this concept.
According to several researchers and authors the concept of ‘object-oriented method’
connotes to a whole philosophy of systems development encompassing programming,
knowledge elicitation, requirements analysis, business modelling, system design,
database design and several other related issues (Graham, 2001, p. 1). The concept of
‘object-oriented method’ is thereby very much similar to the concept of ‘object-oriented
paradigm’. There are, however, authors that see differences between the concepts of
‘object-oriented method’ and ‘object-oriented paradigm’, as for example, in the
following quotation from Morris et al. (1996, p. 22):

Typically, a paradigm is a model that breaks the development process into a
series of phases that deal with different but closely related aspects of the
development. In each phase of the paradigm, methods are needed to
accomplish the goals of the phase, and techniques and tools are needed to
apply the methods. Thus, a method is defined to be: A systematic way of
proceeding with a well-defined phase of development of a computer system
product. A method is composed of a series of steps.

11

1.3 Research problems

According to several researchers there are many benefits in using the object-oriented
paradigm in information systems development (Booch, 1994, pp. 3-25; de Champeaux
et al., 1993, p. xiv; Henderson-Sellers & Edwards, 1990; Jacobson et al., 1995, pp. 45-
48; Smith & McKeen, 1996; Winblad et al., 1990, pp. 43-51, etc.). For example,
according to Taylor (1990, pp. 103-107) there are the following potential benefits: faster
development, higher quality, easier maintenance, reduced cost, increased scalability,
better information structures and increased adaptability.

Eleven years later Graham (2001, pp. 41-42), mentions the same benefits as Taylor, but
further he mentions benefits like information hiding through encapsulation helping to
build more secure systems, better supported prototyping and evolutionary delivery, and
that the object-oriented paradigm is a good tool for managing complexity, etc.

There are also of course problems with the object-oriented paradigm. However, there is
still little knowledge on how companies have experienced the benefits and problems
when using the object-oriented paradigm (Miah, 1997). Maring (1996) proposes that
companies know little about how to use the object-oriented paradigm with predictable
results. However, in a study by Villeneuve & Fedorowicz (1996) with 218 practitioners
it was found that perceived benefits of the object-oriented paradigm depend on the size
of the software development project and the scope of use of the object-oriented
paradigm through the systems development life cycle. In the study by Johnson (2000)
the question of benefits and problems with object-oriented systems development was
also studied and it was found that the benefits are recognized but the problems are
virtually nonexistent.

Nevertheless, there is still a lack of comprehensive studies on how to develop object-
oriented information systems by utilising the benefits and avoiding the problems. One
can actually argue that there is a need for knowledge on this issue in the information
systems development community (McGregor, 1996).

The concept or issue of ‘benefit’ can of course also be discussed; for example, Gillach
& Deyo (1993) propose that there is no real benefit of the object-oriented paradigm if
the ‘benefit’ does not enforce the business impact of the developed application. This is
then measured by return on investment etc.

When the review of previous studies was made several benefits and problems with the
object-oriented paradigm were found. The research problems have been developed out
of these benefits and problems. This reference to literature is recommended by
Eisenhardt (1989) and by Yin (1994, p. 9). It is important to recognise that the purpose
of the review of previous studies is to make better questions and not to look for answers
about what is known of something (Yin, 1994, p. 9).

The research problems consists of several specific questions that in fact are the
questions used both in the questionnaire for the survey and in the questionnaire for the
case studies.

12

The research problems for this study are the following:

RP1: What are the benefits experienced with the object-oriented paradigm in
information systems development?

Have the information systems development projects, for example, been faster
or easier? Has the reuse concept been useful?

RP2: What are the problems experienced with the object-oriented paradigm in
information systems development?

For example, has the object-oriented paradigm been considered immature?
Has the object-oriented paradigm been considered difficult or complex?

1.4 Scientific methodology

1.4.1 Literature review

The review of previous studies is as follows; first, some basic object-oriented concepts
and the object-oriented paradigm are presented. Then discussions and empirical results
about the benefits and problems of the object-oriented paradigm are presented. Object-
oriented analysis and object-oriented design are considered important areas of the
object-oriented paradigm, and they are also considered more powerful but also more
inferior than traditional analysis and design, and therefore these are considered in this
study.

The previous studies are examined in such a fashion that the object-oriented paradigm,
the object-oriented theory, the research problems, and the research questions can be
deliberated. It is interesting to look for similarities and conflicts between different
scientific sources and between concepts, theory, research questions, and research
problems (Eisenhardt, 1989).

When the previous studies were read it was found that several of the benefits were
connected to each other, as well as several problems were connected to each other. This
interesting matter was the base for the identification of possible connections between
benefits, and between problems, which gave birth to two theoretical models for further
research.

Because there was a lot of interest in the object-oriented paradigm during the 1990’s,
some of the sources and references are nowadays (in 2005) slightly outdated. It is
interesting to note how much harder it is to find articles, books and conference material
nowadays than it was in the late 1990’s when this study started. Some important
journals like the Journal of Object-Oriented Programming are not published anymore.

13

1.4.2 Measuring productivity and quality in information systems development

When selecting an empirical research method for this study there must be an awareness
of the different options that are available. In order to confirm whether an aspect of a
software development paradigm can be considered as a benefit or a problem, this aspect
must be compared with that of another paradigm. If the aspect in question increases the
productivity or quality of the information systems development project or the
information system itself, then one can argue that this aspect is a benefit (if it also fulfils
the definition of a benefit of course). Equally, if an aspect lowers the productivity or
quality of the information systems development project or the information system itself,
then one can argue that this aspect is a problem (again if it also fulfils the definition of a
problem).

Nevertheless, in order to be able to compare different aspects one must use some kind
of approach. Different aspects and concepts of the object-oriented paradigm could be
compared with the same aspects and concepts of some other software development
paradigm, like the functional paradigm by using software metrics or some other suitable
methods like studying the resulting information system itself or studying the project
specific accounting figures of software companies, etc. Of these approaches the one
using software metrics can be considered probably the most interesting. Software
metrics are therefore presented next and finally there is a short analysis of the
possibility of using software metrics in this study.

Software Metrics

There are a lot of different metrics. One can mention software metrics, software quality
metrics, etc. In this sub section only software metrics will be presented.

Software metrics can be classified in several different ways; Meyer (1998) classifies
software metrics into product metrics and process metrics. Henderson-Sellers (1996, pp.
43-56) also deals with product metrics and process metrics. Meyer (1998) further
divides product metrics into external product metrics visible to users etc. (like product
non-reliability metrics, functionality metrics, performance metrics, usability metrics and
cost metrics for products), and internal product metrics visible only to the software
development team (like size metrics, complexity metrics and style metrics). Process
metrics consists of cost metrics (for projects), effort metrics (concerning the human
part), advancement metrics, process non-reliability metrics and reuse metrics (Meyer,
1998).

The question of which software quality metrics to use in which special occasion is
challenging because quality can be defined in several ways (Reeves & Bednar, 1994)
and each quality definition probably needs a special software quality metrics for
measuring the quality. However, Kan (1995, p. 83) classifies software quality metrics in
three categories:

1. Product metrics, metrics that describe the characteristics of the product such as
size, design features, performance, complexity and quality level.

14

2. Process metrics, metrics that is used for improving the software development
and maintenance process. Examples are effectiveness of removing defects
during development, the pattern of testing defect arrival and the response time of
the fix process.

3. Project metrics, metrics that are concerned with the software development
project. Examples include the number of developers, the schedule, costs,
productivity and staffing pattern over the life cycle of the software.

However, according to Pancake (1995) there are not many reliable measurement units
for predicting progress, assessing productivity and evaluating costs in the object-

oriented world. The problem is due, among other things, to the lack of experience of
object-oriented metrics (Räisänen, 1997a, p. 16). The lack of experiences of object-
oriented metrics is a serious problem especially when an organisation is adopting a new
technology or paradigm, and one has little experience of the new technology or
paradigm (Chidamber & Kemerer, 1994).

How can productivity be measured when most of the code in a system is reused? Good
metrics need to be used in order to be able to measure reuse, reusability, developing for
reuse and developing with reuse, etc. (Kan, 1995, p. 31; Smith & McKeen, 1996),
because traditional product metrics are not sufficient for assessing, characterizing,
measuring and predicting the quality of object-oriented software systems (Basili et al.,
1996b). Frakes & Terry (1996) surveyed a number of metrics and models of software
reuse and reusability and proposed that although many of the metrics lack formal
validation they are being used and are found useful in industrial information systems
development projects. Industrial practice is important because object-oriented metrics
also have to be used, in order to gain experience in how these can be used, and in how
these should be used (Räisänen, 1997a, p. 16).

However, according to Berard (1998) and Webster (1995, p. 96-97) there are metrics for
object-oriented software development that are used to characterize object-oriented
software engineering products, object-oriented software engineering processes and
object-oriented software engineering people. The object-oriented metrics is, however,
different from traditional metrics because of encapsulation, information hiding,
localisation, inheritance and object abstraction techniques (Berard, 1998). Webster
(1995, p. 97) presents the following proposed metrics for the object-oriented paradigm
(quotation):

• Time for analysis, design, implementation, testing.

• Average worker-days per class, average number of classes per
developer.

• Rate of change of class and subsystem interface.

• Hierarchy metrics, including nesting level, number of abstract
classes, “fan-out” (number of derived classes per base class).

• Class metrics (both average and per class), including number of
class variables, number of instance variables, number of class
methods, number of instance methods and number of overridden
methods.

15

• Instance metrics, including size (in bytes) per instance, number of
instances during execution and number of persistent instances.

• Method metrics, including size (in lines of code), number of
parameters.

• Coupling and cohesion metrics, including number of classes
referenced by a given class.

• Reuse metrics, including number of classes used in more than one
project.

Ambler (1998, pp. 174-177) also presents some metrics that can be used when
estimating object-oriented software development projects. Furthermore de Champeaux
(1996) presents some proficient object-oriented metrics.

Bansiya et al. (1999) and Webster (1995, p. 96) propose that the object-oriented
paradigm has a lack of mature metrics, and that traditional software metrics that
evaluate product characteristics like size, complexity, performance and cost do not
apply to object-oriented development. This is due to the use of reuse and polymorphism,
etc. that are special for object-oriented applications. For example, productivity metrics
like ‘lines of code produced’ is a clear disincentive in an object-oriented environment,
new metrics like ‘number of reusable classes built’ or ‘number of classes / objects
reused’ are better and could be used instead (Gillach & Deyo, 1993; Webster, 1995, p.
98).

However, Martin & Odell (1992, p. 37) propose that object-oriented design and
programming give much lower McCabe Cyclomatic Complexity Metrics than
traditional functional development. The McCabe Cyclomatic Complexity Metrics is a
widely used static software metric. By using this metric, one can measure ‘soundness’
and ‘confidence’ for a program. The metrics is based on the measurement of the number
of linearly independent paths through a program module. The resulting measure is a
number that one can compare to the complexity number of other software programs.
(VanDoren, 1997) A more comprehensive explanation on the metrics can be found in
McCabe and Butler (1989).

This proposal indicates that one could actually measure functional development and
object-oriented development with the same metrics (McCabe Cyclomatic Complexity
Metrics). The proposal by Martin & Odell (1992, p. 37) is based on software
development work at NCR and it may be pondered whether the different measured
software development projects could actually be compared. Berard (1998) also used
metrics for the estimation of cyclomatic complexity of object-oriented systems. It was
found that over 95% of the object-oriented software development methods had a
cyclomatic complexity of four or less.

Henderson-Sellers & Edwards (1994, Chapter 10) and Pressman (2000, pp. 657-671)
also contribute to the area of object-oriented metrics. Furthermore, Bansiya & Davis
(1997) present different metrics for object-oriented development. They introduce
different types of metrics from simple system size in classes to averages of depth of
inheritance and even further to more complex metrics regarding the number of
polymorphic methods. Bansiya & Davis (1997) also propose that it is important to

16

understand the usability of metrics in evaluating object-oriented systems. Metrics are
used to chart and rationalise development of an object-oriented application and should
not be used for evaluating the performance or quality of the object-oriented application.
(Bansiya & Davis, 1997) Nevertheless, in order to conclude that a metrics is suitable for
measuring object-oriented systems one has first of course to empirically validate the
metrics. Empirical validation aims at testing the usefulness of a metrics in practice and
therefore it is an important activity in order to establish the overall validity of a metrics.
(Basili et al., 1996b)

Chidamber & Kemerer (1994) also present a metrics suite for object-oriented design, as
they do not consider the previous methods of metrics appropriate for measuring object-
oriented systems. As examples of previous methods of metrics, they mention
conventional software metrics applied to traditional functional software design, as well
as software metrics developed with traditional methods for measuring new object-
oriented systems. The new metrics suite for object-oriented design that Chidamber &
Kemerer (1994) present is based on measurement theory, and consider viewpoints of
experienced object-oriented software developers. The metrics was found to possess a
number of desirable properties and suggested a number of ways in which the object-
oriented paradigm may differ in terms of wanted and even necessary features from more
traditional functional metrics approaches (Chidamber & Kemerer, 1994).

Basili et al. (1996b) validated the metrics suite for object-oriented development
designed and implemented by Chidamber & Kemerer (1994) and came to the
conclusion that five out of six object-oriented metrics appeared to be useful in
predicting class fault-proneness during both the high-level and low-level design phases
in the software development life cycle. The object-oriented design metrics developed by
Chidamber & Kemerer (1994) also showed better predictions than the tested traditional
code metrics (Basili et al., 1996b).

Xenos et al. (2000) present a set of traditional metrics that they claim can be used for
object-oriented programming. Furthermore, they present object-oriented metrics that
consists of class metrics, method metrics, coupling methods, inheritance metrics and
system metrics. All the metrics presented by Xenos et al. (2000) are, however, for
object-oriented programming. Other aspects like analysis, design or maintenance of the
object-oriented software development process are not connected with any metrics.
However, the conclusion of the survey that Xenos et al. (2000) present is that nowadays
there are several good metrics available for evaluating and measuring object-oriented
programming, the difficult thing is more how to find the appropriate metrics for a
specific object-oriented implementation and programming project.

There are other new object-oriented metrics now available, Bansiya presents another
object-oriented metric in Bansiya et al. (1999), which is based on Entropy, and which is
especially useful in predicting the implementation complexity of classes if the design of
classes does not change substantially during implementation. Finally, it is worth noting
that metrics are an important but not yet fully understood aspect of object-oriented
software development; metrics can be used as input into estimating object-oriented
projects, improving object-oriented software development efforts, and metrics can be

17

useful when selecting object-oriented software development tools (Ambler, 1998, p.
194).

Short analysis

It is surprisingly difficult to find suitable metrics for other aspects and concepts than
programming and measurement of complexity for comparisons between software
paradigms, like the traditional functional paradigm and the object-oriented paradigm.
This argument is supported by Nierstrasz & Dami (1995, p. 24) who propose that
traditional metrics are as a rule of limited use in the object-oriented world. It is worth
noting that according to Henderson-Sellers (1996, p. 66), it is already difficult to
compare two object-oriented projects; the issue of size is important, a measure or
estimator derived from a small object-oriented project cannot be transferred without
further detailed evaluation to large object-oriented projects or to non-object-oriented
systems; metrics tuned for C++ are likely to be inappropriate for Smalltalk, Eiffel or
CLOS (examples of programming languages with divergent underlying object models,
which encourage different idioms in programming than C++).

Because paradigms are so different it might turn out to be a comparison between
‘apples’ and ‘pears’, an argument supported by Henderson-Sellers (1996, p. 1) who
proposes that object-oriented systems are different in ways that effect their
measurements (as examples one can mention the different life cycles, the different
system structures and the issue of using classes and objects). Therefore the comparison
between paradigms with metrics would not be adequate, but it is of course important to
be aware of both the possible similarities and dissimilarities of the products, processes
or people being compared, perhaps something that can be compared by measurements.

As a conclusion, the approach of trying to compare a paradigm like the traditional
functional paradigm with the object-oriented paradigm would probably turn into a
comparison between different objects and therefore very complicated. Another problem
is that metrics in this area is rather immature. A third argument for not using metrics as
a research method is that it would not be a realistic option within the budget and time
constraint of this study.

The other research options mentioned earlier in this sub section i.e. studying the
resulting information system itself and studying the project specific accounting figures
of software companies are also discarded here for the same reasons.

1.4.3 Empirical research and the selection of a research method

There are several research approaches that have to be considered when choosing the
best research method for the empirical part of this study. A few of these approaches are
presented below and analysed in terms of their potential usefulness.

Action research. This is applied research where there is an attempt to obtain results of
practical value to groups with whom the researcher is allied, while at the same time
adding to the theoretical knowledge (Galliers, 1992). Action research is a qualitative
research approach in which the researcher associates himself with the practical

18

outcomes of the research. This approach is interesting; although it has the same
weaknesses as the case study approach it is different in the sense that the researcher is
actively involved in the organisation studied. However, one question arises: is it
realistic for the researcher to consider being active in an organisation? It might be
difficult to find a software company that is willing to have a researcher actively
involved in the work of the company.

Case studies. This research method is based on an attempt at describing the
relationships that exist in reality, usually within a single organisation or organisational
grouping (Galliers, 1992). Case studies are a typical qualitative research approach. With
case studies more knowledge of the phenomena being studied can usually be found than
in surveys, assuming that the interviews, etc. are successful (Galliers, 1992). There is
also a likelihood of generating novel theory when cases are used for theory building
(Eisenhardt, 1989). According to Benbasat et al. (1987), case studies are good for
capturing knowledge from practitioners (for example, system analysts) and for
developing theories. Case studies are a good approach if the main questions of the
research are ‘how’ and ‘why’ questions (Yin, 1994, p. 9). This claim by Yin (1994, p. 9)
is supported by Walsham (1995) who proposes that the interpretative school also thinks
that case studies are the appropriate research strategy for ‘how’ and ‘why’ questions.
Case studies are also well suited for research in an area where few previous studies have
been carried out, which in fact is the case with the current study (Benbasat et al., 1987).
A researcher using the case study approach often has little presumptive knowledge of
what the interesting variables are and how they will be dealt with (Gable, 1994).
According to Benbasat et al. (1987) this approach is well suited to information system
research, because the technology is rather new and organisational questions are
interesting.

There are also of course problems with case studies, which are discussed in more detail
later in this study. However, in short it has been claimed that case studies lack statistical
validity, that they can be used to generate hypotheses but not test them (Gummesson,
1991, p. 77), that they lack rigor, that they result in too much material that is difficult to
handle (Yin, 1994, pp. 9-11), that they are time intensive (Covaleski & Dirsmith, 1990;
Yin, 1994, pp. 10-11) and that making generalisations based on them is problematic
(Eisenhardt, 1989; Gummesson, 1991, p. 77; Yin, 1994, p. 10).

Despite the above-mentioned problems, however, the case study approach is seen to be

a suitable method for the empirical part of this dissertation.

Evaluation study. In the evaluation of the innovation, the innovation (e.g. the object-
oriented paradigm) is compared with a stated goal or criterion (Järvinen, 2004, p. 11)
and / or one tries to answer the question “how useful is the particular innovation?” The
evaluation can be made by using for example analytical approaches, the case study
research method, experimental studies, field studies or simulation (Järvinen, 2004, p.
13). This research method is appropriate for this study and the case study method can
be used as well as the survey method that is a part of field studies, when working with
this research method.

19

Grounded theory. The research method could also be out of grounded theory that is
based on an approach where hypotheses are not used in the beginning of the research
work. Grounded theory is concerned with the development of theories. It is an inductive
(from data to theory) theory. (Lundahl & Skärvad, 1999, p.105) The theory is developed
out of the data from the field (Järvinen & Järvinen, 1995, p. 45). For a more
comprehensive study of grounded theory, Glaser & Strauss (1967) may be considered,
for example. The grounded theory approach is not considered useful for this study
because no theory will be developed out of the data from the field.

Subjective, argumentative. This creative research method is based more on
option/speculation than observation, thereby placing greater emphasis on the
role/perspective of the researcher (Galliers, 1992). It can be applied to an existing body
of knowledge (reviews) as well as actual/past events/situations (Galliers, 1992). This
approach could be used here but it does put a lot of responsibility on the researcher who
subjectively discovers the results informally. This approach is useful when creating a
theory that can be tested. However, the aim of this study is not to create new theory, it is
more based on validating earlier proposals of the phenomena being studied (the
experienced benefits and problems of the object-oriented paradigm). There are several
weaknesses to this approach, mostly because it is the researcher who subjectively
interprets the phenomena being studied.

Surveys. Obtaining snap shots of practices, situations or views at a particular point in
time (via questionnaires or interviews) from which inferences are made (using
quantitative analytical techniques) regarding the relationships that exist in the past,
present and future (Galliers, 1992). Surveys seem to be an appropriate approach. Some
kind of description of real world situations can be found, although the insight of the
phenomena being studied might be limited (Yin, 1994, p. 13). Surveys are of course a
typical quantitative research approach where one is collecting data on some phenomena
from a large number of sources (Nandhakumar & Jones, 1997). In surveys associations
that exist in several organisations can be found and generalisable statements can be
made about the phenomena being studied (Gable, 1994). There are of course problems
with surveys too; problems that are discussed later in this study. In this dissertation,
scanning the market in order to get a general picture of the experienced benefits and
problems with the object-oriented paradigm in Finnish software companies will be
performed and surveys are appropriate for this. Surveys for information systems
research are discussed by, for example, Newsted et al. (1998).

Systems development. According to Nunamaker et al. (1991) systems development
could be used as a research approach in information systems research when relevant
research questions and valid hypotheses can be stated. Systems development as a
research approach should conform to the following criteria; that the purpose is to study
an important phenomenon in areas of information systems through system building, that
the results make a significant contribution to the domain, that the system is testable
against all the stated objectives and requirements, that the new system can provide
better solutions to information system problems than existing systems and that
experience and design expertise gained from building the system can be generalized for
future use (Nunamaker et al., 1991, p. 101).

20

Systems development could also be a complementary research approach to some other
research approach like case studies (Nunamaker et al., 1991). In this study the focus is
not on the whole system development process, only on benefits and problems with the
object-oriented paradigm, therefore making systems development an unsuitable research
approach.

The following research approaches were also considered: analytic induction,
consultancy, descriptive/interpretative research, field experiments, forecasting,
laboratory experiments, observing, participant observation, simulation & game/role

playing, theorem proving and written materials & documents but were almost
immediately found irrelevant for this study.

Hamilton & Ives (1992) studied how often case studies, field studies, field tests and
laboratory studies had been used in published MIS articles 1970-79. Case studies were
the most commonly employed empirical strategy. In another study of three IS journals
by Nandhakumar & Jones (1997): MIS Quarterly, Information Systems Research and
the European Journal of Information Systems between 1993 and 1996, surveys were the
most commonly used research approach, experiment was the second and semi
structured interviews was the third.

Discussion. After considering the different approaches outlined above, the following
conclusion has been reached: the best solution and the overall empirical research
method for this dissertation will be the evaluation research method with a combination

of a survey and a case study.

An important argument for a survey is presented by Verschoor & Low (1994) who
argue that “as with any study investigating general ‘state-of-practice’, a survey is a
feasible means of providing data with sufficient external validity”. Because the
empirical part of this study is concerned with treatment of the ‘state-of-practice’ of
experienced benefits and problems with the object-oriented paradigm among Finnish
software companies, a survey seems to be an appropriate research method.

The empirical research methods and the empirical research design are discussed later on
in this study.

1.5 Structure of the study

This dissertation begins with an introduction and a short historical review of the object-
oriented paradigm. Subsequently the aim and boundaries of the study are presented.
Some primary definitions are then presented and afterwards the research problems are
defined.

The scientific methodology to be used in this study is then discussed. Followed by a
discussion on the possibility to measure productivity and quality in information systems
development, a presentation of a number of empirical research methods and a selection
of the research approach to be used in this dissertation.

21

A review of the basic object-oriented concepts, objects, classes, relations, inheritance,
dynamic binding and polymorphism is then presented in chapter 2 as a preparation for a
major chapter (chapter 3) on the benefits and problems with the object-oriented
paradigm where twelve benefits and twelve problems are presented and discussed.

This is followed by chapter 4 with the empirical part that begins with an introduction
and is then followed with a presentation of the research method and the research design.
Here the survey and case studies methods are presented and discussed. After that the
research questions used in the survey and the questionnaire are discussed. The pilot
study is then introduced after which the results are presented. Afterwards the survey and
the case studies are presented.

The section on the analysis of the theory and the empirical findings then follows. In this
section the theory found in the review of previous studies is compared with the findings
from the pilot study, the survey and the case studies.

In chapter 5 there is a summary of the findings from the empirical study and an analysis
and discussion of the empirical findings.

The last chapter consider four sections: a repetition of the results of the study, some
limitations of the study and the empirical part, some recommendations for practitioners
and finally some recommendations for researchers. In the last section there is a look in
the future with suggestions for future research. In this section two tentative theoretical
models are further presented. The first model, the CBB model concerns the connections
between the benefits of the object-oriented paradigm. The second model, the CBP
model focuses on the problems.

22

2 ON OBJECT-ORIENTED CONCEPTS

The object-oriented concepts that will be presented in this chapter are closely connected
to fundamental concepts of object-oriented programming, but because these concepts
reappear in the chapters on benefits and problems with the object-oriented paradigm
they are considered as basic object-oriented concepts and not specifically object-
oriented programming concepts. Note, however, that the concepts presented can often
be found in object-oriented design and object-oriented databases, and to some extent in
object-oriented analysis and knowledge databases, with the exception of dynamic
binding and polymorphism.

Because the terminology of the object-oriented paradigm is different in different object-
oriented programming languages, some differences are described in Table 1 below
before the object-oriented concepts are presented.

The table is from Henderson-Sellers (1992, p. 264) and originated in Winblad et al.
(1990):

Table 1: Object-oriented concepts in different object-oriented programming languages

Smalltalk C++ Objective-C Object Pascal Eiffel CLOS

Object Object Object Object Object Instance
Class Class Factory Object type Class Class
Method Member

Function
Method Method Routine Method

Generic
function

Instance
variable

Member Instance
variable

Object
variable

Attribute Slots

Message Function
call

Message
expression

Message Applying a
routine

Generic
function

Subclass Derived
class

Subclass Descendent
type

Descendent Subclass

Inheritance Derivation Inheritance Inheritance Inheritance Inheritance

In this chapter the concepts from Smalltalk will be used because Smalltalk is a pure

object-oriented language and one of the original object-oriented languages.

The concepts in the object-oriented paradigm can be interpreted in different ways as can
be seen from Table 1. Objective-C is the programming language that came with the
NeXT computers (Verity & Schwartz, 1991), C++ is a hybrid programming language,
Object Pascal is a modified version of the programming language Pascal (Pascal was
developed by Niklaus Wirth in Zurich in 1970), Eiffel is the programming language
developed by Bertrand Meyer and CLOS (Common Lisp Language) is an object-
oriented version of the programming language Lisp.

There are also of course other object-oriented programming languages than the
programming languages presented in Table 1. Eliëns (2000, p. 142) and Graham (2001,
p. 71) propose that there are more than 100 object-oriented and object-based

23

programming languages. Koskimies (1997, p. 7 & p. 15) presents the object-oriented
programming languages Oberon-2, Kevo (based on prototypes, developed in Finland,
and connected to Antero Taivalsaari) and Ada 95, which is an object-oriented extension
to the programming language Ada (Ada is still popular in government). Heller (2003)
introduces the object-oriented programming languages D (the D language by Walter
Bright), Python, Lazlo, Jscheme, Needle, and Water (the Water language by Clear
Methods Company). Love (1993, p. 227) introduces the object-oriented programming
languages ProGraph, Actor, Dylan and Pro-Kappa. Wilkie (1993, pp. 213-214) presents
the object-oriented programming languages Trellis (developed by the Digital
Equipment Corporation) and Object Cobol (in 1993 there were still 70-80 billion lines
of Cobol source code in the world, and the hybrid Object Cobol makes it possible to
migrate from Cobol to object oriented programming). According to Fogarty (2004)
there is still a lot of new Cobol code written every year. The information systems
development work and maintenance work that is done by programming in Cobol is,
however, nowadays often based on the object-oriented paradigm (Fogarty, 2004).

Object-oriented programming languages are interesting but there are also object-based
languages like Ellie, Modula-2, PowerBuilder and Visual Basic (Graham, 2001, p. 109).
Further, there are scripting languages like JavaScript and TCL (Watson, 1999) and these
languages should not be confused with object-oriented programming languages.

Object-oriented programming languages are either pure object-oriented programming
languages, like Smalltalk, where everything is an object (Fagerström, 1993, p. 20), or
hybrid object-oriented programming languages like Ada 95, C++, Object Pascal, Turbo
Pascal with Objects, Modula-3, Object Cobol and modern versions of Simula like Beta
(Koskimies, 1997, pp. 6-7).

Cockburn (1998, p. 29) presents further hybrid programming languages such as C@+
and SOM (IBM’s System Object Model), of which SOM probably cannot be considered
a very pure programming language. Eliëns (2000, pp. 145-147) presents the hybrid
object-oriented programming languages Concurrent Smalltalk (an extension of
Smalltalk), DLP (an extension of Prolog), FLAVORS (an extension of Lisp and
supported by the company Symbolics in the US), LOOPS (an extension of Lisp),
Orient-K (a language for parallel knowledge processing), POOL-T (a simplified version
of Ada) and Vulcan (an extension of Prolog). Khoshafian & Abnous (1995, p. 18)
present the object-oriented programming languages CommonLoops from the company
Xerox and Common Objects. Java and the object-oriented programming language C#
(also called ‘C-sharp’) should also not be excluded in this context.

Another way of classifying object-oriented programming languages is presented by
Mikhajlov (1999, p. 71) and Weck (1997) who propose that there are object-oriented
programming languages that employ classes, and there are those that rely on
prototypical objects. The first category that employs classes includes all the most well
known object-oriented programming languages like C++, Simula and Java. The second
category that rely on prototypical bases, are called prototype-based, and the
programming languages Cecil, Self and Kevo are examples of such programming
languages. In prototype-based programming languages, objects are created by cloning
an existing object, the prototype, and modifying the clone (Weck, 1997).

24

2.1 The object

The concept of object is central to the object-oriented paradigm. An object is an
instance of a class.

An object consists of data and possibly a method, which is a procedure or a function; an
object is thus an abstraction (King, 1989; Snyder, 1993). Abstraction is defined by
Stevens & Pooley (2000, p. 10) in the following way (quotation):

Abstraction is when a client of a module doesn’t need to know more than
what is in the interface.

The object is in other words an entity that is clearly delimited from its environment,
although objects of course have contact with the environment (Taylor, 1992, p. 47). One
main difference between an object and a module is that an object rarely operates in
isolation, and at runtime an object-oriented information system can usually be seen as a
network of communicating objects, which cooperate to achieve the overall functionality
of the information system (Mikhajlov, 1999, p. 32).

Note that although objects and classes are different things the concept of an ‘object’ is
often, in reality, used to mean the class description itself; as a result there are, for
example, ‘object models’ meaning class descriptions and ‘account objects’ meaning
instances of an “Account” class (Cockburn, 1998, p. 5).

An object can also consist of other objects; objects that contain other objects are called

composite objects. However, in many systems composite objects have reference
variables to other objects, so they do not actually ‘consist’ of other objects. (Taylor,
1992, p. 44) Composite objects can have objects that are also composite, and this type
of nesting can go on (Taylor, 1992, p. 47).

An object is defined in several ways in Webster’s Encyclopaedic Unabridged
Dictionary of the English Language:

One definition (quotation):

Anything that is visible or tangible and is stable in form.

Another definition (quotation):

Anything that might be apprehended intellectually.

A third definition (quotation):

A thing, person, or matter to which thought or action is directed.

Martin & Odell (1992, p. 16) define an object in the following way (quotation):

An object is any thing, real or abstract, about which we store data and those
methods that manipulate the data.

25

Later, in 1995, Martin & Odell (1995, p. 26) define an object as follows (quotation):

An object is anything to which a concept applies. It is an instance of a
concept.

An object is theoretically an entity that can save state (in the attribute values) and has a
number of operations (behaviour) that can either examine or affect the state (Jacobson
et al., 1992, p. 44; Kung et al., 1995). The behaviour of an object is the total set of
services (operations) of the object (Henderson-Sellers & Edwards, 1994, p. 54).
Operations are the only way to change the internal data of an object (Gamma et al.,
1995, p. 11). They can be considered as the commands of the object; operations can be
seen as answers to the requests for the object to do something (Henderson-Sellers &
Edwards, 1994, p. 52). Operations have signatures and the signature of an operation
consists of the operation’s name, the objects it takes as parameters and the operation’s
return value (Gamma et al., 1995, p. 13). Requests (messages) are actually the only way
to get an object to execute an operation (Gamma, et al., 1995, p. 11). The messages may
in fact do either of two things. The messages can ask the object to perform a
computation and return a value or the messages can modify the object’s content,
changing its state or value (Khoshafian & Abnous, 1995, p. 39).

As a summary, one can say that objects have a state, behaviour and an identity (Booch,
1994, p. 83). Below is a figure (Figure 1) of an object (truly a class) with attributes and
services (Yourdon & Argila, 1996, p. 10):

Figure 1: Object with attributes and services

SUBSCRIPTION

----------------Attributes---------------------
subscription_id
subscription_status
subscription_details
subscriber_id
recipient_id
service_bureau_id
pricing_id
payment_id

------------------Services--------------------
RECOGNIZE SUBSCRIPTION _REQUEST
REQUEST_SUBSCRIPTION
Enter_Paid Subscription
Enter_Comp_Subscription
Report_Subscriber
Terminate_Subscription
Renew_Subscription

An attribute is defined as an abstraction of a single characteristic, possessed by all the
entities that were abstracted as an object (Shlaer & Mellor, 1988, p. 26). The attributes
can be descriptive attributes, naming attributes or referential attributes (Shlaer &
Mellor, 1992, p. 16). In this area, a domain is defined as the set of values an attribute

26

can adapt to (Shlaer & Mellor, 1988, p. 37). The objects hold the attribute values (Kung
et al., 1995; Rumbaugh, 1997).

In short, in an object-oriented language the objects are entities with functionality
inherently tied to the data (Davis, 2000); examples of objects are invoices,
organisations, shapes in drawing programs, screens in an application, nodes in CASE
tools, mechanisms in robotic devices, engineering drawings, airplanes, airplane flights,
airline reservations, icons on screens, order filling processes, customers, products and
buildings, etc. (Martin & Odell, 1992, p. 15). There are of course other ways of
presenting objects, for example, Kozaczynski & Kuntzmann-Combelles (1993) claim
that objects can be icons, strings, subsystems or even servers. Gamma et al. (1995, p.
13) also indicate that complete subsystems can be objects.

Note that objects can be built with traditional functional programming languages like C,
Cobol and Fortran as well as object-oriented programming languages (Martin & Odell,
1992, p. 11; Sanguinetti, 2000). However, an object-oriented programming language
like Smalltalk is usually more convenient to use when building objects, and gives rise to
several advantages (Jenz, 1999c).

2.1.1 Methods

Method is basically a Smalltalk term; in C++ methods are called member functions and
in Eiffel methods are called routines (Henderson-Sellers, 1992, p. 234). The methods
specify the behaviour of the object. The behaviour of the object is based on the set of
messages that the object can respond to, since the methods execute the performance that
is requested by the message (Wirfs-Brock et al., 1990, p. 20). As a rule, the methods are
stored in classes not in objects and a method provides an implementation of an
operation.

However, in the prototype-based object-oriented programming language Self, methods
are stored in objects, although this is made possible by pointers, and the code of the
methods is not copied to every object (Rumbaugh, 1997).

Methods are functions or procedures; functions return an object and procedures do not
return anything. Thus, functions give a query facility and procedures change the state of
an object. For example, in Smalltalk a method is always a function; the object that is
returned can be ignored if necessary. The knowledge of traditional functional and
procedural programming can of course be utilised when developing methods in the
object-oriented world (Henderson-Sellers, 1992, p. 234).

A change in the object’s attribute values by a method might cause changes to the
attribute values of other objects (Kung et al., 1995) because objects are connected to
each other by the message passing facility, and according to Webster (1995, p. 24), a
message is a command to an object. The connection between objects has to be made
according to some rules and in 1987 Ian Holland (Lieberherr, 2005) presented the ‘Law
of Demeter’ which stated that objects should not navigate too far from their immediate
surroundings in accessing other objects, or else the scope of coupling becomes more

27

difficult. Lieberherr et al. (1988; cited by Fagerström, 1995, p. 231) presents the
following group of rules for the ‘Law of Demeter’:

For all classes C and for all methods M in class C, M can call methods (send messages) to the
following objects:

• Argument objects.
• The object itself.
• Objects that are referred by instance variables.
• Global objects.
• Objects that have been developed by C.

The use of the Law of Demeter leads to a disciplined use of classes. There are of course
other rules that can also be used when working with connections between objects.

2.1.2 Identity

The identity of an object distinguishes it from all other objects (Fagerström, 1993, p.
17). Object identity enhances the notion of pointers in traditional programming
languages (like C), primary keys in databases and file names in operating systems
(Wilkie, 1993, p. 18); an identity is in other words implemented through the rules of the
implementation environment (Fagerström, 1995, p. 25).

An identity is not the same as an identifier. An identifier is a set of one or more
attributes. The values of the attributes make the object unique and the user can then
distinguish the objects from each other. (Putkonen, 1994) In other words, an identifier is
defined as a set of one or more attributes that uniquely distinguishes each instance of an
object (Shlaer & Mellor, 1988, p. 32). If an object has several identifiers one identifier
will become the preferred identifier (Shlaer & Mellor, 1992, p. 15). Every object has an
identity of its own, which means that if two objects have the same attribute values (the
same identifier) they can still be identified by using the identities (Kung et al., 1995).
Object identity is a semantic concept associated with objects and the easiest way of
implementation is to use the hardware memory address of an object as its identity
(Wilkie, 1993, p. 18). The identity cannot be altered, and the object has the same
identity as long as the object exists (Fagerström, 1993, p. 17).

2.1.3 Relations

Relations are also considered in another chapter of this study. However, a short
presentation of the message-passing relation will be given here. In this relation the
information associations with other objects are specified. The associations can be static
relations or dynamic relations. Static relations exist for a long period (the objects are
‘connected’). In dynamic relations two objects communicate with each other. (Jacobson
et al., 1992, p. 45) In a more extensive sense relations can be considered as relationships
that are an abstraction of a set of associations that systematically hold between different
things, which are, in fact, objects (Shlaer & Mellor, 1992, p. 21). The objects provide
services to the clients (the programs or users) that have called the objects. The clients
call the objects according to a message-passing technique. Jacobson et al. (1992, p. 47)

28

use the word ‘stimuli’ instead of the word ‘message’. A message is a signal from one
object to another object that requests the receiving object to carry out one of its
methods. A message includes a keyword called a selector and one or several arguments,
for example, resetTime (4, 12:30) where ‘resetTime is the selector and ‘4’ and ’12:30’
are arguments (Stevens & Pooley, 2000, p. 16). It is worth noting that messages and the
message sending syntax differ between various object-oriented programming languages.

In other words, a message sending activity is occurring when an object calls a method in
another object. The methods of the objects perform calculations that correspond to the
abstraction of the object. A message is ‘technically’ the name of an object and the name
of a method that can have parameters. The object that initiates a message (sends a
message) is a sender and the object that receives the message (from the sender) is a
receiver. The sender might also require a response from the receiver and the response is
usually called a return value (Taylor, 1990, p. 43). The message passing technique can
roughly be compared with a subroutine call in a procedural language, but is actually a
more extensive activity, because the message is located without searching through the
entire object (Henderson-Sellers, 1992, p. 24 & p. 240). Rumbaugh (1997, p. 6)
explains the message passing-technique in the following concise way (quotation):

You call an operation and the compiler figures out which subroutine to call
by examining the class of the object (stored in a standard place) and then
looking up the correct method in a table. This works provided each
operation is attached to one class as in C++ or Smalltalk.

The request for a service (a message, or a ‘stimuli’) that the clients send to the objects
can contain parameters, and a result can be obtained. The requests can be generic; a
client can issue the same request (message) to several different objects.

As an example of how relations and objects could be used in an information system, one
can present a system with accounts in a bank. An object could then represent an
account. The variables of the account would be called instance variables (as, for
example, account number, owner, balance and control number). Some methods could be
associated with the account. These methods could be, for example, the methods ‘open’,
‘close’, ‘check’, ‘deposit’ and ‘withdraw’. When an object is calling these methods
relations are created between objects.

2.1.4 Encapsulation

Objects are encapsulated, the external aspects of an object are separated from the
internal aspects, and other objects can only access the external parts of the object. Using
operations (methods) is the only way to change an object’s state and internal data. The
objects thus support the concept of information hiding. Information hiding is defined by
Parnas (1972) and presented by Pree (1997) as follows (quotation):

A module is characterized by its knowledge of a design decision, which it
hides from others. Its interface was chosen to reveal as little as possible
about its inner working.

29

The difference between encapsulation and information hiding is that encapsulation is
the act of grouping data, and operations that affect that data, into a single object,
however, the content of the object could be visible to other objects. Information hiding
is based on the private part of the object, which is how the object carries out the
operations; this private part of the object is not visible to other objects. In other words,
encapsulation is the bundling of data and methods, and information hiding is
implemented through private instance variables that only the methods of the object can
access. (Wirfs-Brock et al., 1990, p. 6 & p. 18)

Having said that, many researchers like Rumbaugh (Rumbaugh et al., 1991, p. 7) do not
distinguish between encapsulation and information hiding. Henderson-Sellers (1992, p.
19) proposes that encapsulation does not guarantee information hiding but information
hiding guarantees encapsulation. According to Penker (1994), one can state that
encapsulation is to define an object as having both data and functions. Data is
encapsulated and can only be accessed through the functions that are defined and
permitted. The objects can also have public instance variables (as in C++), and these
instance variables all clients can access. When an object performs a service that a client
requested, the object uses a method.

Encapsulation promotes reuse because data and functionality packed together becomes
a feasible module for reuse (Davis, 2000). The design of an information system is also
easier due to the encapsulation feature. Encapsulation is also the ground for the benefits
of the object-oriented paradigm that concerns robustness and management of
complexity (Webster, 1995, p. 182). Encapsulation also helps to build secure
information systems (Graham, 2001, p. 67).

2.1.5 Discussion on objects

When an object is examined, what is interesting is that the object consists of functions
and data. In a traditional system an object can be seen as a subprogram or a function (a
module) with data, or as a combination of data (often in a record) with ordinary
functions and procedures that deal with the data.

The encapsulation of objects with functions and data has also some shortcomings.
Höydalsvik & Sindre (1993, p. 246) noticed that it might be difficult to implement some
business rules with strict encapsulation. If encapsulation is studied more carefully, one
can see encapsulation as an extension of the record concept of Pascal and the struct
concept of C. In Pascal and C the record and struct concept only consist of data, when
an object in a class consists of both data and functions, and the functions define all of
the ways the data can be manipulated and examined. Thus, data and methods are not
normally global in an object-oriented program. The data and methods are local to a
particular class. (Pidd, 1995)

The object is a natural entity for many concepts in the real world as the example with
the bank shows. This is among other things due to the fact that it is often easier to look
at real things that exist, for example, in business, than it is to look at separate programs
and files or databases, in order to get a picture of a system in an organisation (Smith &
McKeen, 1996). This is especially true in large and complex data systems. However,

30

different persons or actors in the application area might see the objects in different
ways. There is a subjective view of the object. One can talk about subjects that are a
collection of state and behaviour specifications reflecting a particular gestalt, a
perception of the world at large, such as is seen by a particular application or tool.
(Harrison & Ossher, 1993)

The subject-oriented programming approach can be considered a supplement or a
challenge to the object-oriented paradigm. One main point is to remember, however,
that different persons and different applications, etc. can see the same objects in
different ways, which makes it difficult to have one object or one class for all the
different parts. If the object is shared between several applications then a change in the
view of the object of one application, might force the other application to be modified
according to the new appearance of the object (Harrison & Ossher, 1993). Because it
can be difficult to find objects, and because different persons and different applications,
etc. can see the same objects in different ways, it is often useful to classify the objects
into different categories. The following categories (quotation) are proposed by
(Eriksson & Penker, 1996, pp. 81-87):

• Business objects. Business objects are objects like actors (persons, roles), entities
(orders, accounts, storage places), processes (business processes), occurrences
(impulses), rules (perform calculations, control) and aims.

• Control objects. The objects perform a course of action by considering the action
and then calling other objects and co-ordinating them.

• Entity objects. An entity object describes an object-oriented interface to another
physical part of the system. A physical part can, for example, be a printer.

• User interface objects. An object like a window in the user interface.

• Database objects. For persistent storage of objects.

• Product objects. A result like a report that has been generated from the system.

• Communication objects. A communication object administers the communication
between different computers in the physical architecture.

• Interface objects. An interface object encapsulates the internal structure of a
subsystem, and presents the interface of the subsystem to the environment.

Other categories can of course be found, and all systems will not have objects from all
categories (Eriksson & Penker, 1996, p. 86).

The connection between objects in the object-oriented model and objects in the real
world has been criticised by Höydalsvik & Sindre (1993) and by McGinnes (1992).
Further, Pawson (2002) argues that business objects are behaviourally deficient because
they are defined principally in terms of their attributes and associations, and not out of
their functionality. Stevens & Pooley (2000, p. 219), however, propose that problem
domain objects by their nature frequently recur in different contexts; a company can
therefore develop (out of the problem domain objects) a collection of business objects
that reflects the common entities in the business of the company.

31

2.2 The class

The basic component of an object-oriented system is the class. The independence of
classes defines the external structure of the object-oriented system (Bansiya & Davis,
1997). Martin & Odell (1992, p. 21) define a class in the following way (quotation):

A class is an implementation of an object type. It specifies a data structure
and the permissible operational methods that apply to each of its objects.

A class is a template (a type) for the objects, a collection of similar objects. The class
forms the description of the objects that belong to the class; in the class the methods and
variables for the objects are defined. At runtime the objects have a certain structure and
behaviour, and the description of that structure and behaviour is a class. The difference
between a class and a type is that a type defines the interface of a set of objects and a
class defines the implementation, a type can have different implementations (Madsen,
1995). Gamma et al. (1995, p. 16) give a good explanation of the difference between a
class and a type (quotation):

An object’s class defines how the object is implemented. The class defines
the object’s internal state and the implementation of its operations. In
contrast, an object’s type only refers to its interface – the set of requests to
which it can respond. An object can have many types, and objects of
different classes can have the same type.

Object-oriented languages support the separation between type and class by the abstract
data types (ADT) approach, the export approach or the modularisation approach. The
abstract data types approach is used in Smalltalk; the export approach is used in C++
(which actually uses classes to specify both an object’s type and its implementation
according to Gamma et al. (1995, p. 17)) where mechanisms like public, private and
protected are used for this. (Madsen, 1995)

However, according to Khoshafian & Abnous (1995, p. 33) abstract data types are
important because abstract data types are represented and implemented in object-
oriented systems through classes.

The benefits of the abstract data type are interesting, because as one can recognize when
reading this study, many of the benefits of the object-oriented paradigm are connected
to the abstract data type and the class. The class is, for example, a very reusable artefact
that supports the reuse concept and the abstract data type is the base for encapsulation.

In the following figure (Figure 2) an example of a simple aeroplane class is presented
(source: Fagerström, 1995, p. 26):

32

Figure 2: A rough sketch of a class

Aeroplane

remainingFuel: integer
flyingHeight: integer
numberofPassengers: integer
lowerHeight(height: integer)
fillFuel(fuelamount: integer)

Generally, every object has to belong to a class; one exception is, however, the
prototype-based object-oriented programming languages.

In the object-oriented paradigm a general class can first be defined, this general class is
often known as an abstract data type (Pidd, 1995). In a pure object-oriented solution the
class is in fact an abstract data type, and the details of the class are private for the class
(Korson & McGregor, 1990). In other words, a class is an implementation of an abstract
data type (Henderson-Sellers, 1992, p. 229). Pree (1997) proposes that object-oriented
programming languages improve the module concept of functional programming
languages by having a straightforward definition of abstract data types (the class), and
by providing programming language constructs for the extension and modification of
the abstract data types (the classes).

The user interface of the class consists of two types of class methods. The first type
consists of accessor functions that return abstractions about the state of an instance (the
values of the instance variables). The other type of method consists of transformation
procedures that can change the state of the class. This is simply done so that the values
of the instance variables are changed. (Korson & McGregor, 1990)

A class that consists of objects (instances) has an interface that specifies the operations
of the class, the instance variables of the class, the constants of the class and the
exceptions of the class (Nierstrasz, 1989). A class can also have variables and methods
that are only in the class and that are not duplicated to the instances (objects) of the
class; such variables are called class variables, and such methods are called class
methods (Taylor, 1992, p. 58).

According to Korson & McGregor (1990) several researchers suggest a similar point
when writing about objects and instances. Actually, the terminology in studies
concerning object-orientation differs from one researcher to another. For example,
Shlaer & Mellor (1992, p. 163) make a difference between an object and an instance; an
object is an abstraction of a real-world thing and an instance is a single specified
instance of a class. Wirfs-Brock et al. (1990, p. 22) talk about instances as being objects
of a class, objects that behave according to the specification of the class. According to
Hopkins (1992) objects are instances of classes and objects that belong to the same class
(are instances of the same class) have identical behaviour but private data.

A class can also have other classes as a specification. If the class only has other classes
as instances the class is called a metaclass. A metaclass is a class whose instances are
themselves classes (Booch, 1994, p. 134). In a metaclass, information that relates to the
class itself and not to the objects of the class is defined (Koskimies, 1995). The number

33

of objects is an example of information that relates to the class itself and not to the
objects of the class; the number of objects cannot be stored in the objects. For example,
in C++ that does not have any metaclasses, such information is stored in a static class
member. The static class member belongs to the static storing class in C++ (Prata,
1991/1992, p. 431). In Smalltalk there are metaclasses, every class belongs to a
metaclass and all metaclasses belong to a single metaclass (Taylor, 1992, p. 156).

The interface of the class is often divided into three parts, a private part, a public part
and a protected part. In all of these three parts the class members (data and methods)
can be described. If the class members are in the private part, only the class itself can
access the class members. If the class members are in the protected part, only the class
itself and the subclasses of the class can access the class members. If the data or the
methods are in the public part, then all classes (clients) that are visible to the class can
access the data or methods. C++ supports this division of the interface of the class.
Other programming languages do not always have all three parts. (Booch, 1994, p. 105)

As an example, one can present an information system with accounts in a bank. The
account has an owner, some data and some methods for the handling of the account. An
account is an object. All objects that are the same become then an entity that is a class.

When developing classes, one can notice that the descriptions of classes are similar to
abstract data types. An abstract data type is the description of a class with no
implementation details, when a class is the implementation of an abstract data type
(Henderson-Sellers, 1992, p. 24). A class has member functions, and is divided into a
private part and a public part. Important is also to remember that a class is a description
of a collection of objects. An object has the structure of its class, but takes up memory
and has data values. (Korson & McGregor, 1990) It must be remembered, however, that
an abstract data type is a user-defined type, for example, if integers, reals and chars are
defined by the programming language then the abstract data type extends the set of
types to user-defined types that can be anything like customers, machines or invoices
(Henderson-Sellers, 1992, p. 21). Object classes are in other words types for objects in
the same way as an integer, for example, might be the type for a customer’s age.

2.2.1 Different types of classes

There are several different types of classes. There are abstract classes that sometimes
are called ‘virtual’ classes (Taylor, 1990, p. 56) or abstract base classes (Webster, 1995,
p. 174). These classes are classes from which inheritance can be made and these classes
do not have any objects. The concrete classes or concrete base classes (Webster, 1995,
p. 174) are principally classes that the inheritance mechanism does not use and these
classes do have objects. The abstract classes have such qualities that they can be easily
reused (for example, a common structure with methods for a physical thing like a
machine), and they constitute therefore a natural base for the inheritance mechanism.
(Wirfs-Brock & Johnson, 1990) Concrete classes are designed first so that their
instances (objects) are useful, and second so that they can be used for inheritance
(Wirfs-Brock et al., 1990, p. 109). All superclasses are abstract classes, but all
subclasses are not concrete classes. Abstract classes do not necessarily have subclasses,

34

for example, when they have been defined for capturing architectural intent. The
subclasses are not always concrete classes, because there might be several levels of
abstractions (abstract classes) before concrete classes are reached. (Selic et al., 1994, p.
261)

A special type of class is a mixin class. A mixin class is a class that is intended to
provide an optional interface or functionality to other classes. Mixin classes can be used
only when multiple inheritance is used. (Gamma et al., 1995, p. 16) In Figure 3 the
usage of a mixin class is presented (from Gamma et al. (1995, p. 16)).

Figure 3: An example of the usage of a Mixin class

According to Wirfs-Brock & Johnson (1990) there are three different methods for
describing the contract that exists between the superclass and the subclass in the
implementation of abstract classes. A contract is the list of requests that a client can
make to a server (Wirfs-Brock et al., 1990, p. 31). These methods can also make a base
for development of derived classes (subclasses) from abstract classes (Wirfs-Brock &
Johnson, 1990). The three methods are:

1. Base methods, these methods provide such qualities of a behaviour that is
useful to subclasses. The purpose is to implement behaviour in one place
that can then be inherited to subclasses.

2. Abstract methods, generate such behaviour that subclasses ought to
override. The behaviour does not do anything particularly useful, and the
subclasses have to implement the entire method again. The abstract
methods are used when specifying the responsibility of the subclasses.

3. Template methods provide step-by-step algorithms. Each step can invoke
an abstract method (a method in the class in question) or a base method (a
method in the superclass). The purpose of the template method is to create

ExistingClass

ExistingOperation()

Mixin

MixinOperation()

AugmentedClass

ExistingOperation()

MixinOperation()

35

an abstract definition of an algorithm. The subclass has to implement a
specific behaviour, in order to be able to provide the services required by
the algorithm.

An abstract class and its methods serve as a minimal specification for all the subclasses.
An important part of the specification of an abstract class is the specification of every
method that will be inherited to the subclasses of the class. From the specification of the
methods of the class it has to be clear whether the method is an abstract method that
must be overridden, or a base method or a template method that should be directly
inherited. (Wirfs-Brock & Johnson, 1990) An abstract class has to be meaningful and
capture common patterns, and not only exist as a collection of shared attributes. An
abstract class can even be developed with only one subclass if the class consists of
something that might be reused in the future. (Selic et al., 1994, p. 258) Below, in
Figure 4, is an example of an abstract class programmed in Java (Binder, 1999, p. 535):

Figure 4: An example of an abstract class

Abstract class Account {
abstract Money balance ();
abstract void credit (Money amount);
abstract void debit (Money amount);

}

Several abstract classes can become a framework. Frameworks have to be flexible, so
that they can be modified and applicable in as many problem domains as possible
(Taivalsaari, 1993, p. 159). Often frameworks implement graphical user interfaces
(Tepfenhart & Cusick, 1997).

There are also generic classes. A generic class or a parameterised type is a class that has
one or more arguments of unspecified type. In an object-oriented programming
language a generic array can, for example, store sometimes reals, sometimes integers
and sometimes customers. Generic classes can, for example, be implemented in Eiffel,
Ada and C++. For a further discussion on generic classes, see Meyer (1988).

When the interactions between classes and objects are presented, one can also introduce
the concepts of coupling and cohesion. In structured design coupling measures the
binding between code elements in different modules, and cohesion measures the
binding between code elements that are found in the same module (Page-Jones, 1992a).
Coupling in object-oriented design is described by Coad & Yourdon (1991, pp. 129-
133) as the connections between objects and between classes and coupling can be
interaction coupling or inheritance coupling. In object-oriented design we can also talk
about the cohesion of a class in terms of the methods defined in the class (Page-Jones,
1992a). Coad & Yourdon (1991, pp. 134-135) present service cohesion, class cohesion
and generalization-specialization cohesion. One can further introduce coupling between
classes or between methods of the same class or between methods situated in different
classes (Page-Jones, 1992a).

It is important to remember when designing abstract classes (superclasses) that the class
will be the base for every one of it’s subclasses. Everything that is declared has to be

36

very common, so that it can be inherited to all subclasses. Defining subclasses from
superclasses has also to be carried out carefully. Rumbaugh (1996) gives some advice
on how to define useful subclasses, a subclass has to include all the attributes of its
superclasses, a subclass may add more attributes, a subclass should not constrain the
values of inherited attributes, an implementation of an inherited operation must be
compatible with the behaviour of the implementation in the superclass (because the
meaning of an operation should never be overridden by a method in a subclass), and
finally, a subclass ought to be made only when it changes the structure of the superclass
by adding an attribute, association or operation, etc. (Rumbaugh, 1996).

2.2.2 Discussion about classes

Programmers that work with object-oriented programming languages often work with
the client-server model when designing programs. In this model the client is a function
or a program that uses the server that is the class. The class and the server are in other
words the same thing. The client deals with the server only through the public interface
and therefore the only responsibility of the client, and hence also the programmer, is to
know this interface. When the class is developed and modified, and when the client is
developed and modified, this can be achieved irrespective of each other as long as the
interface between them remains the same (Prata, 1991/1992). This is a noteworthy
advantage with object-oriented programming compared with corresponding traditional
programming. Also Coad et al. (1995, pp. 481-485) and Webster (1995, p. 23) propose
that client – server applications and the object-oriented paradigm fit well together.

In traditional programming independent modules can of course be developed, but as
long as these modules use common data with other modules, they are not totally
independent of the environment in the same manner as the class with its objects, that
have both methods and data encapsulated. A problem with the traditional programming
approach is that when common data is used among programs or subprograms, a change
in the common data can lead to a ripple across all programs that share the data (Fichman
& Kemerer, 1993). In the object-oriented paradigm common data is not used (but can
however be used) and such ripple effects cannot happen, therefore the object-oriented
paradigm is better regarding this issue.

2.3 Relations

There are several relations between objects and classes. Some of these relations have
already been presented in this study. Eriksson (1992, pp. 44-49) presents the following:

2.3.1 Class - object relation

The class - object relation exists between objects and classes. An object belongs to a
class and has the description of the class. This relation was described earlier in the
section on classes.

37

2.3.2 Uses relation or message-passing relation

The objects send messages to each other and perform each other’s operations. The
objects use each other. This relation was described in the chapter on objects. In which
order the object-oriented program execute, and in which order the objects send
messages to each other is managed by a special routine that is called Scheduler
(Fagerström, 1993, p. 55). Note that objects can be executed in parallel.

2.3.3 Association relation

An association between two objects implies that two objects are connected to each
other. The connection can be one way or two ways. A one-way connection means that
one object can refer to the other object but not the other way around. In a two-way
connection both objects know of each other and can refer to each other. Usually the
association relation is implemented with pointers. (Eriksson, 1992, pp. 44-49)
Fagerström (1993, p. 48) explains association as a relation where a class has to “know”
of another class.

Association is a relation when an object uses services of another object (Henderson-
Sellers, 1992, p. 31). An association is also needed for message passing. If the
association is two ways, a pointer is needed in both classes. If the association has
another cardinality than one-to-one, one container class is needed for the administration
of the association if the association is one way, and if the association is two ways then
two container classes are needed. (Eriksson & Penker, 1996, pp. 212-214)

A ‘link-attribute’ can be attached to an association; in the ‘link-attribute’ some extra
information about the association can be stored. The ‘link-attribute’ is usually a class
and the class has a ‘link-object’ that administers and represents the ‘link-attribute’. In
the ‘link-object’ the date and time of the creation of the ‘link-attribute’ are usually
stored. (Eriksson & Penker, 1996, p. 51) Some object-oriented programming languages
do not differentiate between aggregation and association (Henderson-Sellers, 1992, p.
31). In most object-oriented programming languages association is modelled indirectly
by a client-server relationship (Henderson-Sellers & Edwards, 1994, p. 56).

2.3.4 Aggregation relation

In the aggregation relation an object consists of several other objects (Eriksson, 1992,
pp. 44-49; Fagerström, 1993, p. 32), or a class consists of several other classes
(Eriksson & Penker, 1996, pp. 200-201; Fagerström, 1993, p. 46). The aggregation
relation is always static (Eriksson, 1992, pp. 44-49). Eriksson & Penker (1996, pp. 200-
201) present an example of a car that is an object that consists of a motor that is another
object (an aggregation) and four wheels that are also objects (aggregations).
Aggregation is in other words a ‘has a’ or ‘consists of’ relationship (Henderson-Sellers,
1992, p. 31). In most object-oriented programming languages aggregation is modelled
indirectly by a client-server relationship (Henderson-Sellers & Edwards, 1994, p. 56).
Aggregation is usually directly implemented in the object-oriented programming
language (Fagerström, 1995, p. 99). Aggregation is particularly useful in object-oriented

38

databases, where groups of objects are held within a container object for management
and manipulation (Wilkie, 1993, p. 19).

2.3.5 Inheritance relation

Inheritance represents a ‘is a’ relationship in a hierarchy of classes (Henderson-Sellers,
1992, p. 31). Both the generalisation relation and the specialisation relation are
inheritance relations. More specialised classes can be developed out of more common
classes and more general classes can be developed out of specialised classes.
Specialisation and generalisation are types of abstraction (Henderson-Sellers &
Edwards, 1994, pp. 44-46). Pant et al. (1996), however, found that class size and
complexity might grow because of generalisation, and that it might take 55% extra
effort to develop components for reuse compared with developing general components.

2.3.6 Discussion about relations

There are several different types of relations and probably the message-passing relation
is the most interesting because in this relation something is moved from one object to
another object. This is somewhat like using a procedure or function in a traditional
programming language where parameters are passes to the procedure or function.

The class – object relation, the inheritance relation and the aggregation relation are
relations used when defining classes or objects and are interesting in a definition sense.
The inheritance relation can be very powerful for developing new classes because
everything does not need to be developed from scratch.

The association relation is often considered the weakest relation and especially in the
analysis phase of information system development it is important to write down which
objects need to be aware of each other.

When making modifications in an object-oriented information system and when doing
maintenance on an object-oriented information system or application, one has to be
careful with the relations. A broken relation in an object-oriented information system or
application can be harmful, and before deleting or modifying a class or an object, one
has to analyse the relations of the object. In addition, modifying inheritance hierarchies
might affect relations and therefore one has to be careful when modifying, adding or
deleting classes to inheritance hierarchies.

2.4 Inheritance

Inheritance is often considered the most important object-oriented concept (Al-Ahmad
& Steegmans, 2000). This is because inheritance helps in reuse (Radin, 1996), and
software developers can avoid coding redundancies by placing new issues in a hierarchy
of classes (Fichman & Kemerer, 1993).

39

The relation between classes where the definition and implementation of one class is
based on another class is called inheritance. Through inheritance class hierarchies can
be built and in information systems there can be one or several class hierarchies
(Eriksson, 1992, p. 49). Inheritance means in practice that the attributes and operations
of a superclass are automatically defined for all of its subclasses (Kung et al., 1995).

By using inheritance it is possible to reuse classes and code when developing
information systems in such a way where parts of the old system can be used directly by
the new parts. Inheritance can be used within a system as well as between different
systems. (Korson & McGregor, 1990) When a class inherits from another class, the
derived class (the subclass) becomes a precise copy of the base class (the superclass); it
is of course possible to bring to the derived class further new parts. The derived class
becomes a specialised class of the more general superclass. The derived class has to get
a new name and can be modified, which is achieved by giving the derived class new
parts. Parts that exist in the superclass can be developed and modified in the derived
class as well; it can, for example, be done so that the derived class excludes an inherited
part (Selic et al., 1994, p. 261).

Fagerström (1995, pp. 33-34) proposes that when implementing inheritance all
attributes are inherited (though it is not sure that all the code in the derived class can use
all attributes), all methods are inherited (though it is not sure that all methods can be
used by the subclass), methods can be modified, attributes can be added, methods can
be added and other relations that the superclass have will be inherited (like associations
and aggregations). Note, however, that the inheritance mechanism works a little
differently in various object-oriented programming languages (Fagerström, 1995, pp.
33-34). The finding of an object’s method in an inheritance hierarchy is attained in the
following way; first the class of the object is investigated, if the method is not found
there, the investigation goes on in the superclasses one after another (Fagerström, 1995,
p. 35).

Development and modification of the derived class have to be performed very carefully
otherwise problems will arise. The inheritance mechanism does not copy the code of the
superclass to the subclass; the subclass is connected to the superclass by references.
When the superclass is modified, the modifications are inherited to the subclasses. This
means that a controlled modification of many objects can be achieved easily and
simultaneously. In other words, if two classes are linked by an inheritance relation, then
the modifications that are made into the superclass will automatically be transferred into
the subclass. (Korson & McGregor, 1990)

The class that inherits can be called a derived class, a subclass or a specialised class.
The class that the subclass inherits from is called a superclass, a base class, an abstract
class or a generalised class (Penker, 1994, p. 17). When starting with a common class
and then creating a new class that inherits the common class one can talk about
specialisation. The subclass becomes a specialised class and the class specialisation is a
powerful, robust and safe way of building modular code (Henderson-Sellers, 1996, p.
19). This is accomplished without any notable risk of damaging the existing and
working modules in the system (Henderson-Sellers & Edwards, 1994, p. 23). However,
the inheritance hierarchy that is based on conceptual classifications (among classes) is

40

usually the easiest to understand, maintain, extend and use (Al-Ahmad & Steegmans,
2000).

The modification of a method in a subclass (where the method exists also in a
superclass) has to be performed carefully. Inadvertent polymorphism might otherwise
occur. An example illustrates the danger. First, a subclass defines a method check that
does not exist in the superclass. The superclass is then later on modified, so that a new
method check is added, inadvertently using the same name but with another meaning.
Then the method in the subclass overrides the version of the method in the superclass
by accident, and the purpose of the program might suffer. (Cockburn, 1993)

An inheritance between classes can be seen as a static activity. New classes inherit
qualities, instance variables and methods when the classes are defined and created. The
inherited parts exist forever. As an example of how inheritance could be used in an
information system, one can present a system with accounts in a bank. First, a class
representing a common account with account number, owner, balance and control
number, etc. is created. Later a new savings account is created and this is achieved
through the savings account inheriting the common account. The savings account can of
course be modified and further developed during the inheritance. What is important is
that the savings account can be developed from the common account, and one does not
have to develop it from scratch.

Inheritance can be classified into extension inheritance and specialisation inheritance.
According to Al-Ahmad & Steegmans (2000) inheritance in the object-oriented world
should also always belong to one of these inheritance options. Extension inheritance
means that the subclass should add new behaviour accompanied with new instance
variables. However, the behaviour of the superclass is maintained. In specialisation
inheritance everything in the superclass is usually not maintained. The behaviour of the
superclass is often modified because of reasons such as correctness or generally
speaking specialisation. (Al-Ahmad & Steegmans, 2000)

Finally, one should be careful and remember that there is a difference between class
inheritance and interface inheritance (also called subtyping). Class inheritance defines a
class (and an object) out of another class. Interface inheritance describes when an object
can be used in place of another. Many programming languages (like C++ and Eiffel)
use the concept of inheritance for both interface inheritance and class inheritance, the
information system developer is therefore forced to carefully study the programming
language that is used in order to perform proper inheritance. (Gamma et al., 1995, p.
17).

2.4.1 Multiple inheritance

In multiple inheritance, a class inherits from two or more classes. All object-oriented
programming languages do not support multiple inheritance. It can easily generate new
qualities that are difficult to anticipate; therefore multiple inheritance has to be used
with great care. If a class, for example, inherits from two classes that both have a
method with the same name, there will be a conflict, and it might be hard to decide
which method to use. The choice can be made by the system or by the programmer.

41

Often the same problem also arises with instance variables; this problem is, however,
best solved by joining a prefix to the instance variables corresponding to the classes
(Nierstrasz, 1989).

If a class further inherits two classes that both have the same superclass, then the
structure of the superclass will appear two times in the new class (Booch, 1994, p. 64).
Wilkie (1993, p. 24) also presents this kind of inheritance and calls it repeated

inheritance. Repeated inheritance occurs when a subclass acquires the features of a
superclass through inheritance several times. For example, we have the original
superclass ‘Employee’; and then the subclasses ‘Manager’ and ‘Sales Person’ both
inherit the superclass ‘Employee’. If one makes a mistake and makes a multiple
inheritance from both the class ‘Manager’ and the class ‘Sales Person’ in order to get
the subclass ‘Sales Manager’, the class ‘Employee’ would then exist twice in the
subclass ‘Sales Manager’. (Wilkie, 1993, p. 24)

The main advantage with multiple inheritance is the increased power while specifying
classes and the increased opportunity for reuse (Putkonen, 1994). According to
Koskimies (1995) most researchers, however, are of the opinion that multiple
inheritance leads to more problems than benefits and therefore should be avoided. Also
Webster (1995, p. 172) warns of the dangers with multiple inheritance. For example,
Koskimies (1997, p. 54) presents the following:

• The inheritance structure among classes becomes more complicated, the
hierarchical model is not suitable and a network model has to be developed.

• There is a danger of name conflicts. There is a risk that a class inherits
several features with the same name.

• There is a danger that a class can be inherited several times.

Some object-oriented programming languages like C++ and Eiffel support multiple
inheritance while others such as Oberon-2 and Java do not support it (Koskimies, 1997,
p. 51). Java has, however, a support for multiple inheritance of abstract interfaces.

Note also that there are object-oriented programming languages like Smalltalk where
everything is an object, including classes and base types like integers and floating point
numbers. This means that objects (in fact classes) can be reused by inheritance
(Khoshafian & Abnous, 1995, p. 16).

2.4.2 Discussion about inheritance

The inheritance mechanism is often claimed to be the most promising part of the object-
oriented concept. Due to the inheritance mechanism many useful things can be done
when developing information systems in the business world. The fact that new modules
can be developed out of old ones makes the work faster when one does not have to
program everything from the very beginning. The inheritance mechanism can be used to
an advantage when developing menus, windows and buttons, etc. Madsen (1995)
proposes that inheritance is well suited for present classification hierarchies that are tree
structured. However, there are researchers like Lauesen (1998) who think that the

42

object-oriented paradigm is not very useful in the business world. On the other hand
there are others like Lam (1997) who are of the opposite opinion and argue the
following: “object-orientation models mirror the business systems”.

In many object-oriented software packages there is a superclass or a base class (this
superclass is called Object in Smalltalk and Tobject in Object Pascal) that all classes in
the package are based upon (Booch, 1994, p. 113). A base for the programming then
exists and expectantly programming therefore becomes easier.

A disadvantage with inheritance and a complex class structure is that it can be difficult
to gain a proper understanding of how the subclass is constructed. Because objects can
send messages to themselves, and methods up and down the hierarchy can execute, all
the superclasses to the subclass have to be examined in order to acquire an
understanding of the whole inheritance structure. Several levels in the hierarchy have to
be examined and this is often referred to as the yo-yo problem. (Taenzer et al., 1989) If
a superclass gets a new instance variable or method, then all subclasses will also be
connected to this new item (in some programming languages this can be stopped and
the programmer can also override the methods that the subclass does not need (Winblad
et al., 1990)), although the item may have only been designed for one subclass or
perhaps some subclasses. By performing appropriate software design this problem can
usually be contended with. However, generally the inheritance mechanism is best used
when developing an application with a hierarchy. If the application does not have a
hierarchy it can be difficult to utilise the inheritance mechanism properly because there
are few things that can be reused.

Making modifications to an abstract class (a superclass) is a rather complicated activity
because the modifications affect all the subclasses of the abstract class. The changed
superclass has to be completely retested, as do all subclasses, and all classes using
either the modified class or any of its subclasses (Selic et al., 1994, p. 265). Some
authors like Bosch (1997) propose that the main disadvantage of inheritance is that the
software engineer usually must have a detailed understanding of the internal
functionality of a superclass when overriding superclass methods and when
implementing new behaviour to the superclass. However, if one knows the semantics of
the method (from the superclass) that will be modified one can rather safely make the
necessary modifications. Suitable documentation of the superclass is then needed.

Further the maintenance of an information system might be more difficult due to the
inheritance concept. However, according to Selic et al. (119, p. 266) inheritance aids the
maintenance process in many ways, it helps us to find the proper abstraction level for a
change, it makes it possible to make the change to only one place and thereby avoids
error-prone copying, and if supported by tools it automatically makes the change to all
desirable places.

2.5 Dynamic binding

Binding means the attaching of a procedure call and the code that has to be executed in
response to the call. In static binding the code is known during compilation; in other
words there is a permanent linking of a function call to the class type of an object (Pidd,

43

1995). In dynamic binding the code that will respond to the call of the procedure is not
known until the moment of the call at runtime (Korson & McGregor, 1990; Parson &
Wand, 1997). When a message is sent to an object, the object and its status variables
and class are found with the help of a table of symbols. From the table of methods of the
class, the method that corresponds to the message is found. (Korson & McGregor,
1990) Due to dynamic binding (also called late binding) the number of condition cases
(for example, IF cases) is reduced, which in turn makes the system less complex
(Fagerström, 1995, p. 226).

Gamma et al. (1995, p. 14) present a picture of dynamic binding (quotation):

Dynamic binding means that issuing a request doesn’t commit you to a
particular implementation until run-time. Consequently, you can write
programs that expect an object with a particular interface, knowing that any
object that has the correct interface will accept the request.

The basic principle of dynamic binding is the possibility to change the realisation of
some operations in some subclass in order to get the modified operations performed by
the superclass. Operations that are used in dynamic binding are called virtual.
(Koskimies, 1995) Without dynamic binding the parameters have to be fixed in
advance, this should mean that completely common components cannot be built
(Korson & McGregor, 1990). Dynamic binding is often used to allow information
system developers to subclass and customise existing interfaces (Fayad & Schmidt,
1997). Because dynamic binding is connected with the inheritance mechanism, and
because in order to use dynamic binding, one has to understand how programs are
compiled and executed, one can argue that dynamic binding is a rather complex concept
(Fagerström, 1995, p. 225).

As an example of how dynamic binding could be used in an information system, one
can present a system with accounts in a bank. Dynamic binding could be used to find a
class with accounting information from a call of the type “check (account)” that will
become a message. First the table of symbols is checked from which a reference to the
static variables of the object and a reference to the class of the object are found. Then
the proper method is found from the table of methods of the class. The methods have
different codes that work as a key when finding the method. The method then becomes
‘check’ and the account is in this way checked. More simply one can say that there is a
superclass that has a method “check” (it can be a prototype function). The superclass
has two subclasses that both have their own versions of the method ‘check’. If a
dynamic object then points to a member of the superclass, then it may also point to any
member of the subclasses of the superclass. The computer then executes the correct
version of the method ‘check’ depending on the type of the dynamic object.

2.5.1 Comparison of dynamic binding with a conventional solution

It is interesting to compare dynamic binding to a similar solution in a conventional and
non object-oriented language. The solution could be an if ... then...else cascade like the
following pseudo-code in a conventional language:

44

if (the account is a savings account)
 then CheckSaving(account)
else if (the account is a business account)
 then CheckBusiness(account)
else ...

If a new type of account is added, a new extension of the if...then...else cascade must be
written, and a new version of the ‘check’ method must also be written for the new type
of account.

If the account object, however, is defined as a dynamic object, the concept of dynamic
binding could be used. This makes it easier to add a new type of account. The
programmer merely defines a new class, which is a new subclass of the superclass in
question, and the subclass has its own version of the method ‘check’. This example is
based on an illustration by Pidd (1995).

2.5.2 Discussion about dynamic binding

The use of virtual operations and dynamic binding gives the programmer many new
possibilities to develop classes and operations that are totally independent. The
compiler chooses the code (and class) or operation. Using dynamic binding makes,
however, the programs more difficult to understand and more difficult to maintain
(Wilde & Matthews, 1993). In order to be able to follow the code that is executed, the
superclasses of the objects have to be examined. The hierarchy of the classes has to be
examined up and down, and this is probably cumbersome (Koskimies, 1995).
According to Harrington (1995) it is important that not only the programmers and
system analysts who have developed the program have to understand it, but also other
programmers and system analysts as well. Therefore the disadvantage with a program
that is difficult to understand because of dynamic binding is a serious one, especially
when developing production software, strong typing is therefore recommended
(Madsen, 1995).

2.6 Polymorphism

The term polymorphism is Greek and means “many forms” (Taylor, 1990, p. 48). A
definition by Booch and Vilot (1990; cited by Henderson-Sellers & Edwards, 1994, p.
71) is as follows (quotation):

Polymorphism is a concept in type theory in which a name may denote
objects of many different classes related by some common base class. Thus,
any object denoted by this name is able to respond to some common set of
operations in different ways.

Fagerström (1993, p. 25) writes that polymorphism can be explained as an issue where a
reference from one object can refer to several other objects from different classes. Often
there is, however, a requirement that the objects that are referred to must be in the same
hierarchy (Fagerström, 1993, p. 25).

45

There are many kinds of polymorphism. In general polymorphism is the ability to take
more than one form. In an object-oriented programming language, a polymorphic
reference is a reference that over time can refer to objects of more than one class, when
there is an inheritance hierarchy between the classes (Korson & McGregor, 1990;
Parson & Wand, 1997). Different classes can, in other words, have functions that have
the same name (Pidd, 1995). When a superclass has several subclasses then the
subclasses can have different implementations of the methods of the superclass
(Eriksson & Penker, 1996, p. 66). A software developer who is working with the
superclass might think that it is the method of the superclass that is used, but in fact it
might be a method in one of the subclasses that is actually used (Eriksson & Penker,
1996, p. 66).

Polymorphism can thus be found when there is a connection between inheritance and
dynamic binding (Booch, 1994, p. 72). The polymorphic reference can be a static type
or a dynamic type (Korson & McGregor, 1990). The static type of a polymorphic
reference is determined from the declaration of the object in the program (the static
class), but when the program runs, an object in a subclass of the static class can be
referred (Koskimies, 1995). The dynamic type of a polymorphic reference can change
during the execution of the program. Polymorphism is thus linked with dynamic binding
where binding is at run-time (Henderson-Sellers & Edwards, 1994, p. 71).

Deubler & Koestler (1994) found that polymorphism in connection with dynamic
binding is a powerful mechanism for avoiding interdependencies among components.
More general software can thus be produced. However, dynamic binding cannot be
applied if a virtual method has not been developed; the virtual method has furthermore
to be exactly the same in all subclasses in question (Deubler & Koestler, 1994).

According to Coleman et al. (1994, p. 218) and Radin (1996) polymorphism also aids
reuse. This is so because new components can be used in the same environment as old
components without having to modify the calling environment. Polymorphism in
connection with dynamic binding also promotes reuse according to Wilkie (1993, p. 2).

However, Parson & Wand (1997) propose that the concept of polymorphism is not
always advantageous because the arbitrary overriding and cancelling of inherited
features are questionable practices. It is logically incorrect because by definition,
everything of a type should apply to its subtypes (Parson & Wand, 1997). Also Binder
(1999, p. 26) proposes that polymorphic messages have many advantages, but points out
that runtime binding can obscure and fragment control relationships, leading to bugs.

2.6.1 Example of polymorphism

As an example of how polymorphism could be used in a business information system,
one can present a system with accounts in a bank. When someone sends a message to a
class, then several different objects in different classes can perform the request of the
message. If the message concerned some type of control, one object can check the
account number, another object checks the balance and a third object checks the owner.
Wirfs-Brock et al. (1990, p. 23) present an example with a message Print. The
message is sent by one object and can be responded to by several printing objects; if a

46

receiver implements a method with the same signature as the message, it will respond.
A signature of an operation is the same as the names and types of information in the
object. The combination of signatures that an object can offer is called its protocol
(Jacobson et al., 1995, p. 50). In other words, the set of messages to which the object
can respond is called the protocol of the object (Henderson-Sellers, 1992, p. 24).

2.6.2 Discussion about polymorphism

Due to polymorphism the application treats the class as a unit with only one type of
object (although other classes with objects exist) that can be reached with only one
message (Korson & McGregor, 1990). Programs can be developed by using classes
without studying all the details in the realisation of the class. Although, for example,
Meyer (1988, pp. 484-485) is of the opinion that this is good programming standard,
this programming standard can be criticised because the number of classes grows
remarkably (Koskimies, 1995). With polymorphism, however, fewer special cases arise
and the maintenance of the system often becomes easier and clearer. Money and time
can then be saved, which is important for many companies. It is also easier to learn how
to use a class than it is to program the corresponding unit (Korson & McGregor, 1990).

As with dynamic binding polymorphism could make it more difficult to understand the
program, because the behaviour of the lower level classes might be problematic to
understand (Taenzer et al., 1989; Wilde & Matthews, 1993). However, if polymorphism
is used in a correct way it supports abstraction and the program might actually be easier
to understand.

47

3 THE OBJECT-ORIENTED PARADIGM

The object-oriented paradigm provides a new way of conceptualising information
system development and is considerably different from ‘traditional’ information system
development paradigms including the procedural, logical or functional (Henderson-
Sellers, 1992, p. 16). Note that strictly theoretically the object-oriented paradigm has
few features of its very own. According to Koskimies (1997, p. 2) inheritance and the
aspects of inheritance are the only true exclusive features of the object-oriented
paradigm.

The key breakthrough in the object-oriented paradigm according to most researchers is,
however, the ability to build large applications from a set of components by reuse
(Verity & Schwartz, 1991). However, Räisänen (1997a, p. 16) is of a somewhat
different opinion and argues that object-oriented software development methods and
object-oriented models are not very suitable for developing large information systems
and large software applications. Räisänen (1997a, p. 16) believes this is because object-
oriented software development methods and models have a limited support for grouping
objects into larger working units. The lack of grouping support might lead to ‘ravioli’
code where there are a lot of understandable objects, but the communication between
the objects is almost impossible to comprehend (Räisänen, 1997a, p. 16).

Since 1997 and the opinions of Räisänen (1997a, p. 16) the object-oriented paradigm
has, however, evolved and design patterns, frameworks and packages can be used in
order to promote reuse.

3.1 The object-oriented paradigm and the information systems development life

cycle

The object-oriented system development life cycle model identifies the three traditional
activities of analysis, design and implementation, but the paradigm does not separate the
activities as strongly as the procedural approach. Instead the object-oriented system
development life cycle model treats the different activities as more compounded and
dependent on each other. The primary reason why the different activities can be
combined is that they all contain the same elements, the objects. The objects and the
relations between the objects are central both in the analysis and in the design. The
objects and the relations between the objects are in fact the entire base for the design.
(Korson & McGregor, 1990; Nowicki & Kosiak, 1996)

The development process or life cycle of a system convey in which order the phases in a
development method ought to be performed; the development process can, according to
Eriksson & Penker (1996, p. 99 & pp. 299-300) be:

• Sequential. A traditional approach to describe the development
process. For example, the ‘waterfall model’’.

48

• Incremental. Every step in the development process is a small
evolutionary life cycle with analysis, design, implementation and
testing.

• Parallel and incremental. In this development process the
development is performed incrementally but several steps are
carried out at the same time in parallel. This development process
is often called concurrent engineering.

• Iterative. The steps are performed by iteration, for example, in the
order analysis-design-analysis.

• Recursive and incremental. In an incremental step iteration can be
achieved.

• Fountain like. All increments are carried out without any special
order.

Pittman (1993) presents object-oriented system development as iterative or incremental.
By ‘iterative’ Pittman (1993) means a series of solutions to a problem where every
single iteration is a part of the solution and satisfies the requirements. Every single
iteration is complete, but its accuracy or acceptability gets better with each iteration
(Pittman, 1993). By ‘incremental’ Pittman (1993) means a style where system
functionality is built so that every result of each increment is a part of the solution and
not an entire solution.

The object-oriented system development process is (there are some exceptions) iterative
or incremental, and can follow several different life cycle models. Henderson-Sellers
(1996, pp. 5-11) presents the following life cycle models suitable for object-oriented
software development:

• The Fountain Model. This life cycle model means that one phase in the process
can always fall back on an earlier phase in a fountain like structure (Korson &
McGregor, 1990). In this life cycle model the overlap between activities is in
focus, though it is accepted that most activities come in a certain order, see
Figure 5 (source: Henderson-Sellers & Edwards, 1993; cited by Henderson-
Sellers, 1996, p. 7).

• The Pinball Model: In this life cycle model the bumpers and paddles are the
various needed activities of an object-oriented life cycle: finding classes,
attributes, methods and object relationships; defining collaborations,
inheritance, aggregation and subsystems and converting the design to
programming code, testing the system, and on-site implementation. The
ordering of transition between the different places of activity can be different
from one project to another, see Figure 6 (source: Ambler, 1994; cited by
Henderson-Sellers, 1996, p. 10; Ambler, 1998, pp. 28-29). This is the case
because object-oriented information systems development is iterative (Ambler,
1998, p. 28). Further, the ball represents the current version of the information
system under construction. The points scored during the game represent the
benefits achieved by the project, when the ball bounces off a bumper number

49

of points are achieved. In the pinball model the player is the project manager
who ‘guides’ the ball through the game. The better the player, the more points
can be scored. The paddles represent project resources; the player uses the
paddles to keep the ball bouncing between bumpers, whereas a project
manager commits resources to keep a project going. The coin (money for
playing) and putting the coin in the machine represents the project feasibility
study. The plunger represents management approval to begin the project; the
project manager (the player) handles the plunger.

• The SOMA OO Model. This model is based on a diagram with boxes. Each
box represents an activity, and each activity has an output that is tested. A
message-passing technique and some other concepts are vital in the life cycle
model. Graham (1995; cited by Henderson-Sellers, 1996, p. 11) presents this
life cycle model.

• The Spiral Model. This model that has its origin in the work by Boehm (1986;
cited by Henderson-Sellers, 1996, p. 5) and is based on a risk-driven ‘spiral’ in
which iterative and incremental information systems development revolves
through four basic activities (assessment of objectives, risk assessment,
product development and planning). Though the spiral model is used in several
object-oriented information systems development projects there are some
researchers that are critical towards the iterative and recursive nature of the
spiral life cycle model (as an example of one such critical researcher one can
present Berard, 1992, chapter 4; cited by Henderson-Sellers, 1996, p. 5).

The life cycle models presented above are of course not the only models that can be
used for object-oriented software development. For example, Pressman (2000, pp. 40-
41) presents the Component-based development process model that is based on the
spiral model. The iterative structures in the different models do not mean that the
object-oriented information systems development process would lack the different
phases of analysis, design and implementation. The three phases are of course used in
the object-oriented information systems development process too, but as mentioned
earlier, the difference is that the phases are more connected to each other (de
Champeaux et al., 1993, p. 19; Korson & McGregor, 1990). Usually the real-world
objects from the analysis phase are directly translated into objects in the design phase,
and further into the implementation phase, so there are objects in all phases according to
Taylor (1992, p. 71) and de Champeaux et al. (1993, p. xiv). One can say that there is an
integration of analysis, design and implementation within a single framework, using
common concepts and notation (Hopkins, 1992).

The life cycle models presented are of course not the only life cycle models. Other life
cycle models that are more often used for traditional functional information systems
development are, for example, the Waterfall Model (a very popular life cycle model
first proposed by W. W. Royce from the US Air Force in a 1970 paper), the V-model,
the Sawtooth Model, the Shark Tooth Model and the Issue-based Life Cycle Model.
These life cycle models are presented by Bruegge & Dutoit (2000, pp. 471-485) and by
several other authors like Sommerville (1996).

50

Figure 5: The Fountain model describing the system levels

The iterative or incremental information systems development process models presented
above are additionally often suitable for user interaction in the design phase, and
therefore user requirements do not have to be ‘frozen’ as early in the information
system development process as in the traditional waterfall life cycle (Henderson-Sellers,
1993; Noack & Schienmann, 1999).

Requirements and feasibility study

Maintenance

Program use

Evolution

System testing

Unit testing

Coding

Component design

System design

Analysis

Software Pool

51

Although there are benefits in using one of the above presented iterative or incremental
life cycle models when developing object-oriented information systems there are of
course exceptions where another solution has been applied. In a development project
reported by de Champeaux et al. (1992) the fountain model was known, but despite that,
the waterfall model was followed. One reason for this was the familiarity of the product
domain to the system analysts (de Champeaux et al., 1992).

Figure 6. The pinball model

3.2 Discussion about the object-oriented paradigm

If an information system or application is to be built according to the object-oriented
paradigm, there will of course be many important questions. Does the software
company have knowledge of the object-oriented paradigm? Is the software company
presently using the object-oriented paradigm? How shall the software company most
profitably use the object-oriented paradigm? What pitfalls are there in using the object-

Find classes

Define aggregation

Define Subsystems

Implement

Project initiation

Find Attributes

Find Methods

Find Relationships

Define Collaboration

Define Inheritance

Program

Test

Major transition
point in the life of a
projects

52

oriented paradigm? How can pitfalls be avoided? What kind of information systems
(and in which fields of applications) can be developed to an advantage according to the
object-oriented paradigm? What obvious advantages come with the object-oriented
paradigm?

Coad et al. (1995, p. 485) argue that leading firms in nearly every industry use the
object-oriented paradigm in some way, including banking, government, insurance,
investment, manufacturing and telecommunications, etc. Jacobson et al. (1995, p. 69)
and Eriksson (1992, pp. 31-33) are of the same opinion. Interesting, however, is that
Smith & McKeen (1996) argue that object-oriented programming is the dominant type
of programming for the PC, and that traditional programming usually is used on
mainframes. In addition, Henderson-Sellers (1992, p. 261) proposes that object-oriented
programming languages are mostly used on PC’s and Unix workstations.

Note that according to Petre (2000, p. 3) the object-oriented paradigm in point of fact
originated in object-oriented programming, and gained its first notable success with the
programming of graphical interfaces. Cockburn (1998, p. 26) and Smith & McKeen
(1996) are of the same opinion and argue that the object-oriented paradigm supports
graphical user interfaces particularly well, and that modern user interfaces are almost
always object-oriented.

Eriksson (1992, pp. 31-33) proposes that the object-oriented paradigm is especially
useful when developing simulation applications, CAD/CAM applications, transaction
based systems and multimedia applications.

Further Martin & Odell (1995, p. 3) claim that the object-oriented paradigm can be used
beneficially as a mechanism that connects and organizes several different system
approaches like information engineering, business, reengineering, client-server
development, visual programming, 4GLs, SQL, object-oriented databases, relational
databases, knowledge databases, fuzzy logic, generic algorithms and structured
techniques, etc.

An interesting question is whether the object-oriented software development is the
dominating software development paradigm today (2005). One can look back to gain
some understanding on this issue. Yourdon (1994, pp. 17-18; cited by Zhang, 1999, p.
66) proposes that in 1994 only 3.8% of projects in 100 companies had applied the
object-oriented paradigm with a 91.7% success rate. According to Helton (1998) the
object-oriented paradigm had not been used for developing many major business
applications in 1998.

In the beginning of the 1990’s, some researchers thought that the object-oriented
paradigm would mostly be used for developing technical applications, but in fact, today
one can almost certainly say that the object-oriented paradigm has been used in several
applications (Love, 1993, p. 82 & p. 96). Martin & Odell (1995, p. 4) argue that the
object-oriented paradigm can be used for developing any kind of system, and that
object-oriented software development as a whole is important, though Zhang (1999, p.
66) argues (out of his statistical investigation of papers published in OOPSLA
proceedings and the journal Communications of the ACM) that object-oriented

53

programming has been studied a lot, and actually much more than object-oriented
analysis, for example.

According to Mathiassen et al., (2000, pp. 5-6) traditional paradigms have successfully
been used for developing information systems and applications, whose purpose was to
automate labour intensive information processing tasks, and because most of these
information systems have already been developed, new information systems are now in
focus. These new information systems are built upon the traditional ‘automated’
information systems to support individual problem solving, communication and
coordination. When developing these ‘new’ information systems the object-oriented
paradigm is useful, because the object-oriented paradigm can successfully be used for
developing information systems that are not fundamentally based on handling large
amounts of uniform data, but are more focused on managing distributed and specialized
data through the organisation. (Mathiassen at al., 2000, p. 6)

3.3 Benefits with the object-oriented paradigm

In an interesting article in Business Week 30th September 1991 the object-oriented
paradigm was considered a major contribution to the software community. The object-
oriented paradigm was supposed to have an immediate and practical payoff for many
reasons, mostly due to easier development, use and reliability of software (Verity &
Schwartz, 1991).

According to Love (1993, p. 43) a problem with the traditional functional paradigm is
that it requires a conceptual model for an information system that is based on a top
down level design, and that this conceptual model is then transformed into an
implementation model which is the actual programming code. The transformation is so
extreme that mapping from the conceptual model to the programming code and vice
versa is difficult to maintain as the information system evolves. A benefit of the object-
oriented paradigm is that the conceptual model is retained and becomes more explicit
by the virtue of the programming language syntax. The retaining of the conceptual
model is important because then the maintainers of the information system can more
easily read the programming code and determine what the original software developer
had in mind at every single development step.

According to Snyder (1993) the following benefits are connected with the core concepts
in the object-oriented paradigm: all objects embody an abstraction, objects provide
services, clients issue requests, objects are encapsulated, requests identify operations,
requests can identify objects, new objects can be created, operations can be generic,
objects can be classified in terms of services, objects can have a common
implementation and objects can share partial implementation.

Eriksson (1992, p. 31-33) proposes that the object-oriented paradigm is especially
useful when developing graphical user interfaces. Because as much as 50% of the code
of a whole information system can be code for the graphical user interface and the
functional paradigm is not very suitable for developing graphical user interfaces, the
fact that the object-oriented paradigm is useful when developing user interfaces is an
important benefit of the object-oriented paradigm (Fagerström, 1995, p. 17).

54

In graphical object-oriented user interfaces there are icons that represent the objects and
the user can manipulate the icons (Capper et al., 1994). When a user selects an icon an
event (a method call) occurs that the user interface must manage (Fagerström, 1995, p.
17). This occurrence is not easily implemented with the functional paradigm and
therefore most graphical user interfaces are developed with the object-oriented
paradigm (Fagerström, 1995, p. 17). For example, a product item can be added to a
sales list by selecting the icon that represents the product item and then moving the
product item icon onto the sales list icon by “dragging and dropping” (Capper et al.,
1994).

Gehringer & Manns (1996) studied the benefits of the object-oriented paradigm by
asking managers who direct object-oriented programming projects. The findings were
as follows (quotation):

Rate the next twelve statements on a scale of 1 (=strongly disagree) to 5
(=strongly agree)

The object-oriented paradigm has been of benefit to us by:

Facilitating software reuse 3.59
Making maintenance easier 3.76
Decreasing development time (faster time-to-market) 3.30
Increasing software quality 3.61
Allowing the development of more complex systems 3.67

In previous studies several other benefits with the object-oriented paradigm were found.
One difficulty, however, was the fact that the benefits related to many diverse aspects:

• Productivity issues and reuse.

• Life cycle issues (one model, analysis, natural mapping to the problem, domain
design, maintenance).

• Complexity issues.

• Quality issues.

• Software components and End user computing (development of applications
out of components).

• Portability.

One has to acknowledge that when researching into the object-oriented paradigm some
more general benefits might have been overlooked. One difficulty identifying the
benefits is that some researchers have different opinions on what benefits there are with
the object-oriented paradigm.

3.3.1 Object-oriented analysis

Object-oriented analysis is not in itself a benefit of the object-oriented paradigm but the
rather integrated object-oriented analysis and object-oriented design and the one model
concept is considered a benefit (in comparison with traditional analysis and design

55

which is more separated in the software life cycle). There are also some researchers like
Mylopoulos et al. (1999) who propose that object-oriented analysis is more powerful
than traditional analysis like data flow diagrams and structural analysis.

Analysis is the activity where the task of the information system is described, in other
words, what the information system ought to do. Analysis does not tackle problem-
solving activities (de Champeaux et al., 1993, p. 7).

Coad & Yourdon (1990, pp. 18-19) propose that analysis is the study of a problem
domain, leading to a specification of externally observable behaviour; a complete,
consistent, and feasible statement of what is needed; coverage of both functional and
quantified operational characteristics (e.g., reliability, availability and performance).
During analysis (requirements analysis and elicitation analysis) information systems
developers formulate the problem with the end users (the clients) and build the problem
domain model (Bruegge & Dutoit, 2000, p. 8).

Larman (2002, p. 6) gives the following definition (quotation):

Analysis emphasizes an investigation of the problem and requirements,
rather than a solution. For example, if a new computerized library
information system is designed, how will it be used?

“Analysis” is a broad term, best qualified as requirements analysis (an investigation of
the requirements) or object analysis (an investigation of the domain objects).

According to Webster (1995, p. 106) analysis consists of identifying and defining the
following:

• Problem domain.
• User requirements and needs.
• The methodology to be used, including object model and notation.
• Classes from problem domain.
• Subjects from problem domain.
• Object responsibilities.
• Class hierarchies.
• Object structures (whole and part).
• Class and instance attributes.
• Class and instance methods.
• Object relationships and interactions.
• State transitions.
• Information locations, including persistent information and data dictionaries.
• Event flows and message sequences.
• Dynamic models, including use cases and scenarios.

Object-oriented analysis is concerned with identifying the objects that map into
elements of the information system that is to be developed (Lauesen, 1998; Nerson,
1992). In other words, in object-oriented analysis the real world or the domain is
modelled into classes and objects and into relations between these (Eriksson, 1992, p.

56

30). It is important to understand that the objects in analysis should be representations
and not implementation driven (Jacobson, 1993; Parson & Wand, 1997). This is
important because systems analysis involves modelling a domain, when software design
is implementation driven (Parson & Wand, 1997). However, object-oriented analysis is
not always easy to carry out; Kaindl (1999) gives the following recommendations for
object-oriented analysis (quotation):

• Acquire preliminary requirements.

• Become familiar with the domain as it is.

• Envision the domain after the new system is deployed.

• Focus on either static or dynamic issues first, depending on the
domain.

• Combine OO modelling with defining the evolving requirements in
natural language.

• Do not yet commit to specific decisions about the object inside the
program.

When identifying objects and classes a grammatical method is often used. A description
of the system in natural language is written or a requirements specification is used. The
nouns become objects, the verbs become operations (Mathiassen et al., 2000, p. 5;
Sommerville, 1992, p. 213) and the operations correspond to methods. This way of
finding objects is considered as too simple by some researchers (Henderson-Sellers &
Edwards, 1994, p. 142), but Pittman (1993) maintains it is useful. Another approach to
finding objects is presented by Pittman (1993) who argues that many object-oriented
software development methods provide good checklists for identifying objects. When
identifying operations and class protocol relationships (EER modelling) one can utilise
scenarios, class-responsibilities-collaborator cards, finite-state machines, state charts
and the entity life history (Pittman, 1993).

Another rule for finding objects is that if something is interesting to talk about, then it
has to be an object (Thomas, 1989). When larger information systems are developed the
method of finding objects and methods from nouns and verbs does not usually work,
one reason for this is that there is probably no formal and correct requirements
specification from which nouns and verbs can be sought (Rubin & Goldberg, 1992).
Another reason why the method of finding objects and methods from nouns and verbs
does not usually work is that the method is based too much on the tangible aspects of a
problem; objects that can be seen, heard, felt, etc., are easy to find but conceptual
objects are more difficult (Rubin & Goldberg, 1992). Another method than the
grammatical method is therefore presented by Rubin & Goldberg (1992) and is called
Object Behaviour Analysis; the method is based on system behaviours, and on the items
that initiate and participate in the behaviours.

When starting with analysis one can use as a software analysis method, though it is not
mandatory. The selection of software analysis method depends on several concerns such
as the following: the chosen software development paradigm, the experience of
software development methods, the type of information system under construction
(Tengvall, 2001, p. 17), the immaturity of software development methods and the

57

support from software development tools for different software development methods,
etc.

Mylopoulos et al. (1999) propose that object-oriented analysis is more powerful than
traditional analysis like data flow diagrams and structural analysis. One reason is that
object-oriented analysis does not suffer from the well-known problem that exists in
traditional top-down software development (Cackowski et al., 2000). In traditional top-
down software development software components in the structure become dependent on
lower components in the structure, and if a component lower in the structure is modified
this will affect the components in the structure, which eventually makes the
maintenance of the information system more difficult (Koskimies, 1997, p. 3).

In object-oriented software analysis the components are more independent and usually a
bottom-up approach is used. Therefore, a change in a component does not initiate large
effects and usually the effects are limited to message passing features and inheritance
features. There are, however, more traditional software development methods that are
also based on the concept of rather independent parts, like the JSD (Jackson Structured
Design) method where the system is modelled as processes that communicate with each
other (Koskimies, 1997, p. 3).

Further reasons why object-oriented analysis is advantageous is that the object-oriented
paradigm provides a more consistent approach to system modelling, it closely reflects
the ‘real world’, it has an ability to model user interfaces to a system (nowadays this
advantage is not that noteworthy, because designing user interfaces is possible through
several different tools on the market), and finally, it has several reuse possibilities, like
reuse of views from the class hierarchy (Wilkie, 1993, pp. 83-84). Further object-
oriented analysis also significantly advances requirements modelling according to some
researchers like Mylopoulos et al. (1999) and Wilkie (1993, p. 83).

According to Mylopoulos et al. (1999) object-oriented analysis is also popular because
there are good analysis methods like the UML method (Rumbaugh et al., 2000;
Solomon, 1999) and because it advances the state of practice in requirements modelling.
Johnson et al. (1999) assert that there are better analysis and design models in the
object-oriented world than in the traditional world.

UML (Unified Modeling Language) is an object-oriented software development method
that is one result from a standardisation request that the Object Management Group
(OMG) sent out in June 1996, asking for methods that can be considered as
standardisation methods for object-oriented software development. UML combines the
methods by Booch, Rumbaugh and Jacobson. Several important computer companies
like Hewlett-Packard, Microsoft, Oracle and Texas Instruments support UML. Another
standardised modelling language is the modelling language by the OPEN consortium,
called the Open Modeling Language. Don Firesmith, Brian Henderson-Sellers and Ian
Graham manage The Open Modeling Language (Lam, 1997). Note that Larman (2002,
p. 4) has written a book on applying UML and argues that UML is a notation and not a
software development method.

58

In addition, Noack & Schienmann (1999) propose that the UML method (which in fact
covers analysis and design) in reality is only a notion, and this was agreed by leading IT
vendors. Also Ramaswamy (2001) found that many object-oriented developers view
object-oriented analysis methods and object-oriented design methods as nothing more
than documentation techniques. But Caliò et al. (2000) are of a different opinion and
argue that UML introduces an iterative and incremental software life cycle paradigm
with a series of iterations that evolve into the final system. The iterations are
incorporated in the phases in the Unified Process, and the Unified Process utilises the
UML method. The phases in the Unified Process are inception, elaboration,
construction and transition. (Jacobson et al., 1999) Every iteration has requirements
analysis, domain analysis, system design, implementation and testing. Caliò et al.
(2000) propose that UML is a clear and robust notation, with a good conceptual
approach, a good methodological approach and a good modelling technique. Another
benefit of UML is that it is used in connection with the popular Rational Rose software
development tool.

From analysis the next steps are design and implementation: during these steps the
objects are transformed into other objects that are slightly different and that make up the
actual object-oriented information system. Note that according to Martin & Odell
(1995, p. 11) analysis is not an approach that models reality; it is an approach that
models the way people understand and process reality.

Design is the activity where the function of the data system is described, in other words,
how the data system ought to work. Object-oriented analysis is concerned with the
problem domain, and design is concerned with the solution domain (Monarchi & Puhr,
1992). The transition from object-oriented analysis in problem domain to object-
oriented design in solution domain is, however, often so smooth that the boundary
between object-oriented analysis and object-oriented design is equivocal (Henderson-
Sellers, 1992, p. 26).

Mylopoulos et al. (1999) and Johnson et al. (1999) stress the fact that the whole
software development process can be made easier when the designer has the same
building artefacts from analysis to design and implementation. The artefacts are the
objects, the classes, methods, messages and inheritance, etc. (Mylopoulos et al., 1999).
Object-oriented analysis also supports two important structuring mechanisms,
generalisation and aggregation (Mylopoulos et al., 1999).

Analysis, summary and discussion. Object-oriented analysis is a software
development activity and not a pure benefit. However, object-oriented analysis is
considered more powerful than traditional analysis and is thus classified as a benefit in
object-oriented software development. The ‘benefit’ of object-oriented analysis has a
connection to the following ‘real’ benefits and issues:

• Software components and Bottom-Up approach. Software components are
more independent in the object-oriented paradigm, compared with the
functional paradigm (Koskimies, 1997, p. 3), which makes a bottom-up
approach more practicable. Due to the bottom-up approach, a change in

59

component does not affect as much as a change in a high-level top-down
would.

• More natural. The object-oriented paradigm reflects the real world better than
other software development paradigms (Wilkie, 1993, pp. 83-84).

• Reuse. Object-oriented analysis has several reuse possibilities (Wilkie, 1993,
pp. 83-84). Not only components can be reused but also analysis. This issue is
connected to the issues of frameworks and design patterns; if a certain type of
information system has been developed then the analysis from the development
project can be used perchance in another similar information development
project.

Object-oriented analysis and object-oriented design are important activities when
developing object-oriented information systems. Because object-oriented analysis is a
software development activity, and not a pure benefit, there will be no connections
where object-oriented analysis is involved.

3.3.2 Object-oriented design

Object-oriented design is not in itself a benefit of the object-oriented paradigm but the
rather integrated object-oriented analysis and object-oriented design and the one model
concept is considered a benefit (in comparison with traditional analysis and design
which is more separated in the software life).

Design is the activity where the function of the data system is described, in other words,
‘how’ the data system ought to work. Object-oriented design is a step further from
object-oriented analysis, and certain implementation issues are already considered
(Eriksson, 1992, p. 30). Analysis results, like specifications, are expounded into
hardware/software solutions that can be implemented (Coad & Yourdon, 1991, p. 5).
Object-oriented design is often divided into two different subphases that require
different skills and perspectives. The first subphase is architectural high-level design
and the second subphase is low-level design or detailed design. (Ramaswamy, 2001)

Design is defined (Coad & Yourdon, 1991, p. 5) as (quotation):

The practice of taking a specification of externally observable behaviour and
adding details needed for actual computer system implementation, including
human interaction, task management, and data management details.

Larman (2002, pp. 6-7) gives the following definition (quotation):

Design emphasizes a conceptual solution that fulfils the requirements, rather
than its implementation. For example, a description of a database schema
and software objects. Ultimately, designs can be implemented.

As with analysis, the term is best qualified, as object design or database
design.

In object-oriented information systems development the information that is developed
in the analysis phase becomes an integrated part of the design, instead of only as the

60

‘input’ to the design (Johnson et al., 1999; Korson & McGregor, 1990). Here lies the
benefit of object-oriented design in comparison with traditional structured design. In
traditional structured design (in theory) analysis and design are strictly different
activities, and in the transition from analysis to design some information and
understanding of the system often get lost (Fagerström, 1995, pp. 16-17). In the object-
oriented paradigm there is, however, a close connection between object-oriented
analysis and object-oriented design (Mathiassen et al., 2000, p. 6). When there is a
comprehensive representation of components in analysis, design and implementation,
there will be a better internal consistency, and it will be easier to track analysis and
design decisions in the code of the system or application which in turn makes the
maintenance of the system easier (Fagerström, 1995, p. 13). There are classes that are
used in object-oriented analysis for defining system requirements, and there are classes
that are used for describing the information system itself (Mathiassen et al., 2000, p. 6).

There are also other benefits of object-oriented design that are presented by Morris et al.
(1996, p. 65), Stevens & Pooley (2000, p. 218) and Wilkie (1993, p. 93), who propose
that object-oriented design is associated with inherent modularity, and the client / server
relationship between objects creates a framework for weak coupling and strong
cohesion which is good. Coupling means the dependence of a module on other modules.
A module which has complex and numerous interconnections with other modules is
‘tightly coupled’, and a module with few interconnections with other modules is
‘weakly coupled’. A tightly coupled module is more difficult to maintain because of its
heavy interdependences with other modules. (Wilkie, 1993, p. 93)

Cohesion means a measure of how well the parts of a software system ‘hold together’.
There are three different kinds of cohesion: functional cohesion (all the modules
contribute towards the same purpose), sequential cohesion and coincidental cohesion. It
is good especially if the functional cohesion is high. (Wilkie, 1993, p. 93)

Ramaswamy (2001) proposes that object-oriented design is a skill in its own right and
not necessarily based on analysis skills. If a developer is good in analysis or
programming, the developer is not necessarily good in design, though analysis and
design are tightly coupled together in the object-oriented paradigm (Ramaswamy,
2001). Object-oriented design is not always easy, and therefore Kaindl (1999) presents
the following guidelines for the proper use of the object-oriented analysis model in
object-oriented design (quotation):

• Imagine zooming in on the black box representing the proposed
system in the OOA model.

• Develop an architectural vision of the proposed system.

• For each object class in the OOA model, answer this question: Will
the proposed program need information about corresponding real-
world objects?

• For each association in the OOA model, answer this question: Do
the object classes associated through it in the OOA model have
corresponding object classes in the OOD model?

• Find out if the system needs additional associations.

61

• Define the architecture using the dynamic part of the OOA model,
the architectural vision, and the OOD model under construction as
guides.

• If the architecture requires it, define ‘additional’ object classes in
the OOD model.

• Assign responsibilities to OOD objects to achieve the required
functionality.

Following guidelines, like the ones above, will probably make it easier to gain the
benefits of object-oriented design. Webster (1995, p. 106) also discusses how to do
object-oriented design, and recommends that the software developers should specify the
following when doing object-oriented design (quotation):

• Class and object internals.

• Abstract vs. concrete classes.

• Data management, including instance ownership and persistence.

• User interface and interactions with the system.

• Subsystems and modules, including interfaces and cohesion and
coupling.

Of course different researchers recommend different activities for object-oriented
design in the same manner they present different object-oriented design methods.
Nevertheless, as one can see from the two recommendations above, the different
approaches have some similarities. One difficult question is, however, which activities
are analysis activities and which activities are design activities. Roughly, one could say
that analysis becomes design when one starts to think of how to implement things
(Nerson, 1992).

Performing object-oriented design does not presuppose that the design will be
implemented in an object-oriented programming language. An object-oriented design
can be implemented in almost any programming language (Sommerville, 1992, p. 216).
Whether it is expedient to have a software development paradigm shift between design
and implementation is, however, questionable. According to Fayad et al. (1996)
software development paradigm shifts in the middle of an information system
development project have usually failed. According to de Champeaux et al. (1993, p. 5)
panels experts at the OOPSLA/ECOOP 1991 and OOPLSA 1991 conferences proposed
that combinations of traditional and object-oriented analysis, design and implementation
are problematic. In addition, Meyer (1995, p. 97) warns against a software development
paradigm shift in the middle of a software development project, and recommends that
one should apply the object-oriented paradigm from analysis to design, implementation
and maintenance.

However, Henderson-Sellers & Edwards (1994, pp. 129-131) propose that some
companies want to incrementally adopt the object-oriented paradigm in information
systems design and therefore they might have traditional analysis and object-oriented
design and implementation (F-O-O) or object-oriented analysis and design and

62

functional implementation (O-O-F). Nevertheless moving from traditional analysis to
object-oriented design might not be a good solution.

Design is, however, often influenced by the forthcoming implementation: if there is no
implementation language, there is no good context for design decisions. For example,
Smalltalk users and C++ users will probably present the same problem with different
design solutions because the implementation languages are so different. (Hohmann,
1996)

There are nevertheless some information system development methods that are hybrid;
they are both structured and object-oriented. As an example, the PDIT method can be
mentioned. The PDIT method has a structured development process with separate data
and functions, but also consists of object principles supported by the development
process (Repa, 1996).

Analysis, summary and discussion. Object-oriented design is a software development
activity and not a pure benefit. The ‘benefit’ of object-oriented design has a connection
to the following ‘real’ benefits and issues:

• Close connection between object-oriented analysis and object-oriented design.
Several researchers and authors (like Mathiassen et al., 2000, p. 6) propose that
object-oriented analysis is more closely connected to object-oriented design
than functional analysis is connected to functional design. The closer
connection is probably advantageous though some software developers might
become irritated because of the ‘fuzzy’ borderline between object-oriented
analysis and object-oriented design.

• Object-oriented design is associated with inherent modularity (Wilkie, 1993, p.
93). The modularity most likely has to do with components.

• Reuse. Object-oriented design has several reuse possibilities and it is actually
recommended to utilise reuse when performing object-oriented design
(Fagerström, 1995, p. 13). This issue is, like the issue of reusing analysis,
connected to the issues of frameworks and design patterns; if a certain type of
information system has been developed then the design from the development
project can conceivably be reused in another similar information development
project.

Object-oriented design and object-oriented analysis are important activities when
developing object-oriented information systems. Object-oriented design, however, is
not a ‘real’ benefit of the object-oriented paradigm. Because object-oriented design is a
software development activity, and not a pure benefit, there will be no connections
where object-oriented design is involved.

3.3.3 The one model concept

A significant benefit of the object-oriented paradigm is that the paradigm is a uniform
paradigm throughout the information system development process (life-cycle) from
analysis to implementation and maintenance (Henderson-Sellers & Edwards, 1990;

63

Radin, 1996). Because of the uniform paradigm an object identified in the analysis
phase of the information systems development process will also be an object in the
code, and there is traceability in the process (Eriksson, 1992, p. 27; Ramaswamy, 2001).
Traceability can only be attained if there are connections between analysis, design and
implementation (Eriksson & Penker, 1996, p. 101).

The one model benefit goes from the problem domain to code and maintenance (Coad et
al., 1995, pp. 481-485). In a traditional approach data flow charts and hierarchy charts
are often used in analysis and/or design, and then these different models are translated
into a third model for detailed design and coding where the characteristics of the
procedural programming language are considered (Henderson-Sellers, 1992, pp. 21-22).
The change from analysis to design in a traditional approach (following, for example,
the 'waterfall life cycle') is often difficult because there is often a need to dramatically
change the structure and components of an information system, because the analysis and
design do not necessarily always 'fit' together. Another problem is that often a change in
the requirements is not integrated in the design, and therefore the design does not fully
represent the information system anymore. (Radin, 1996)

Johnson (2000) found in his study that other benefits of the one model concept are
easier modelling, more understandable analysis and design models and easier transition
between phases. But Lauesen (1998) found that there was a good ‘one model’ solution
mostly in technical applications and in business applications the object operations rarely
transferred seamlessly from analysis to design.

Analysis, summary and discussion. The one model concept is a benefit that
predominately is due to the following issue:

• The object-oriented paradigm. The object-oriented paradigm is a uniform
paradigm throughout analysis to implementation and maintenance (Henderson-
Sellers & Edwards, 1990; Radin, 1996). According to Lauesen (1998) this is,
however, only true for technical applications.

The object-oriented paradigm can be used in combination with several life cycle models
and the life cycle model affects the uniformity of the software development work.
Nevertheless, one can probably argue that the object-oriented paradigm per se is more
uniform than other software development paradigms. However, the study by Sheetz
(2002) concluded that several information systems developers have difficulties to
understand the one model concept when developing object-oriented information
systems.

The following possible association between benefits has been identified:

o THE OBJECT-ORIENTED PARADIGM is usually based on a -> ONE
MODEL information systems development life cycle.

64

3.3.4 Management of complexity

According to Edsger Dijkstra who presented the famous paper “Programming
considered as a human activity” in 1965, software systems beyond a certain size are too
complex to be entirely comprehended by a single human (Dijkstra, 1965; cited by
Webster, 1995, p. 22). The question of complexity is significant, and several software
developers have been working on the problem of how to reduce complexity in
information systems development, and structured programming can be considered as
one result in this area (Webster, 1995, p. 22).

Pomberger & Blaschek (1996, pp. 177-178) give an example of how the complexity of
an information system emerges; when a system consists of a multitude of individual
parts like data, files and functions, and there are relationships between them, the number
of possible interconnections rises more than linearly with the number of components, as
the succession in Figure 7 demonstrates (the figure is from Pomberger & Blaschek,
1996, p. 178). The quadratic rise in the number of possible interconnections means that
the number of potential relations quadruples when the number of components doubles.
When developing information systems the software developers do not only need to
understand the different components, they also need to understand the huge number of
interconnections between the components. One solution to the dilemma of huge number
of interconnections is the use of modules with encapsulated connections. (Pomberger &
Blaschek, 1996, p. 178)

Figure 7: Rise in the complexity with increasing number of components

The object-oriented paradigm is well suited for developing large complex business
information systems (Brunet et al., 1994; Cackowski et al., 2000; de Champeaux et al.,
1993, p. xiv; Graham, 2001, p. 41; Jacobson et al., 1995, pp. 45-48; Love, 1993, p. 90;
Martin & Odell, 1992, p. xi; Wadden, 1999; Wegenast, 1998).

Components:

 2 2 4 n
Interconnections:

 1 3 6 n * (n-1)

 2

65

Business systems are often large and complex information systems, and according to
Taivalsaari (1993, p. 272) the object-oriented paradigm usually makes it possible to
make classes or objects that correspond to the real world, and by reusing these classes
and objects, business applications can more easily be developed. This is feasible
because although the number of reusable classes and objects might be limited, it is still
possible to make enough reusable classes or objects for most business application
needs. Typical objects in business applications are customers, accounts, manufacturing
processes, reports, bills and orders, etc. (Eriksson & Penker, 1996, pp. 41-42). Also
Henderson-Sellers & Edwards (1994, p. 5) propose that the object-oriented paradigm is
better for developing business applications with business rules, products and services
than traditional information systems development.

In fact, the object-oriented paradigm has several principles for dealing with complexity:

• Abstraction (Henders, 1998; Wadden, 1999). Blair & Lea (1992) and Fichman
& Kemerer (1993) consider abstraction as perhaps the most important tool for
managing complexity, by using the abstraction principle one tries to select only
part of the thing under consideration. Note that polymorphism supports
abstraction and reuse.

• Application frameworks. Application frameworks can also be used which
means that reuse can be utilised and applications in complex business and other
domains can be developed out of ‘semi-complete applications’ (Fayad &
Schmidt, 1997). Because frameworks cover a large part of a system, reusing
frameworks gives more often than not a notable pay back according to
McClure (1996). Examples of areas that are often covered by frameworks are
data access, user interfaces and security issues (McClure, 1996).

• Association can be used to tie together things (Coad & Yourdon, 1991, pp. 6-
9).

• Classification is often part of the system structure (Nerson, 1992) and
abstraction is the base for classification. Classification is the conception of
grouping software ideas into classes of things (Henderson-Sellers, 1992, p. 21).
Madsen (1995) proposes that a hierarchy of classes and subclasses through
inheritance usually represents classification.

• Communication with messages (Gall et al., 1995).

• Decomposition. The possibility to decompose complex information into small
and reusable parts (Jean, 1992).

• Dynamic binding which is advantageous because the number of condition
cases is reduced (Fagerström, 1995, p. 26).

• Encapsulation supports abstraction and information hiding which makes
rework easier when developing new information systems (Coad & Yourdon,
1991, pp. 6-9).

• Hierarchy. According to Booch (1994, pp. 16-25) and Rinat & Magidor (1996)
the object-oriented paradigm is well suited for developing large complex
business information systems because the complexity of a large and complex

66

business information system is often structured in a hierarchy. Booch (1994, p.
59) defines a hierarchy as a ranking or ordering of abstractions. A hierarchy is
fairly easy to incorporate in the object-oriented paradigm, due to the possibility
of developing equivalent hierarchies with classes and inheritance (Booch,
1994, pp. 16-25; Rinat & Magidor, 1996).

• Inheritance that makes it possible to specialise (Gall et al., 1995).

• More natural. Taylor (1990, p. 24) and Martin & Odell (1992, p. 78) propose
that there is a similarity between the hierarchical structure of the object-
oriented information system and the assumed human knowledge; both are
structured in a hierarchy. Object-oriented systems are believed to reflect the
real world more accurately (Webster, 1995, p. 58; Wilkie, 1993, p. 39).

• Pervading methods of organisation which means that object-orientation
supports the way people organise their thinking (Coad & Yourdon, 1991, pp. 6-
9).

• Reuse. Reuse of existing components makes it easier to develop more complex
information systems (Hopkins, 2000).

• Scale. Scale means a principle that pertains to the whole-part principle that
helps an observer to manage something very large without being overwhelmed
(Coad & Yourdon, 1991, pp. 6-9).

According to Gehringer & Manns (1996) both programmers and managers recognise
that the importance of the object-oriented paradigm increases as the information
systems increase in complexity. Berg et al. (1995) describe a large development project
of an operating system that used the object-oriented paradigm; the project contained
14,000 classes, 90,000 methods and 2 million lines of C++ integrated into 20 million
lines of total code, and almost 10,000 classes were inherited from some base class. This
complex project was a success by most measures. In fact, Berg et al. (1995) propose
that the object-oriented paradigm is probably the best paradigm when building large and
complex information systems.

However, Korson & Vaishnavi (1992) propose that some companies that have used the
object-oriented paradigm when developing large and complex information systems have
not experienced all its benefits, mostly due to a lack of knowledge about how to manage
object-oriented projects. Also Lauesen (1998) proposes that there are experiences from
the business world that illustrate that it is actually problematic to develop business
information systems with the object-oriented paradigm.

In the software development community today, increasingly complex applications and
information systems are needed. For example, Malan et al. (1995) mention plug-and-
play strategies and off-the-shelf standard parts. They further propose that the object-
oriented paradigm is viewed as a key enabler for agile and responsive software
engineering, software development and software-driven product development.

Analysis, summary and discussion. According to previous studies better management
of complexity is predominantly claimed to be due to the following issues:

67

• The object-oriented paradigm makes abstraction possible, which makes the
management of complexity easier (Henders, 1998). Abstractions per se
probably do not make anything easier, but skilful use of abstractions might.
Skilful use of abstraction and reuse can, for example, be performed by
polymorphism.

• Complex information systems are usually hierarchical, and the hierarchical
structure of object-oriented systems fits well with hierarchical information
systems (Booch, 1994, pp. 16-25). This claim is, however, rather restricted;
first, there are perhaps not so many complex software systems that are
‘hierarchical’ (though Vossos et al. (1991) report of legal systems that are
hierarchical), and second the hierarchy of an object-oriented system makes it
probably more complex and difficult to understand.

• More natural. Object-oriented systems better reflect the real world, which
makes the management of complex real world information systems easier
(Webster, 1995, p. 58; Wilkie, 1993, p. 39). This is probably the case when
developing information systems that consist of concrete things like machines,
products and customers. Nevertheless, if the information system consists of
more abstract things like customer relationships, manufacturing processes and
cost analyses then the reflection is probably more difficult to obtain.

• Reuse. Reuse of existing components makes it easier to develop more complex
information systems (Hopkins, 2000). Due to reuse the complexity of
information systems can somewhat be controlled. Software developers can
reuse several things, like design and components when developing new
software systems. Because much can be reused, the software development
work becomes easier and the complexity of the new software system can easier
be controlled.

The following possible associations between benefits have been identified:

o The object-oriented paradigm is considered more NATURAL -> which makes
the MANAGEMENT OF COMPLEXITY easier.

o The REUSE concepts makes it possible to reuse components and other artefacts
-> which makes the MANAGEMENT OF COMPLEXITY easier.

3.3.5 Productivity, faster development and reduced costs

Time saving comparisons between different software development paradigms in
information systems development can only be estimated roughly, because in order to
achieve exact information on this issue, one would be forced to develop exactly the
same information system with two or more different software development paradigms
and then compare the results. At professional production sites this is impossible out of
cost reasons, and even in research organisations this is difficult. One reason is that if an
information system would first be developed with software development paradigm A
(for example, the functional paradigm), and then the same information system would be
developed with paradigm B (for example, the object-oriented paradigm), the experience
from developing with paradigm A would effect the development with paradigm B. The

68

selection of new software developers for the work with paradigm B (with exactly the
same experience as the software developers had when they started to work with
paradigm A) would probably be almost impossible. (Pomberger & Blaschek, 1996, p.
282)

Information systems development can be made easier and faster if the work is done in
an object-oriented way and if reuse is utilised (Bhattacherjee & Gerlach, 1998; Caliò et
al., 2000; Henderson-Sellers & Edwards, 1990; Love, 1993, p. 85; Manhes, 1998;
Meyer, 1995, p. 107; Musakka, 1996; Nowicki & Kosiak, 1996; Johnson et al., 1999;
Sheetz & Tegarden, 1996; Smith & McKeen, 1996; Verschoor & Low, 1994). By
reusing existing and tested artefacts like classes, components, design and database
objects the information systems developers do not have to construct a solution for a
common task repeatedly.

According to O’Connor et al. (1994) reuse will make it possible to achieve immediate
and effective solutions for information systems development for customers. Without
reuse object-oriented information systems development is usually slower than
traditional development (Koskimies, 1997, p. 5). Räisänen (1997a, p. 12) claims that
faster development is due to reuse, to the uniform object-oriented software development
process and also to object-oriented thinking. One has also of course to remember that
the experience of the programmers and software developers highly affects the
productivity and development time in an information system development project. Out
of all the stages in a software development life cycle, the programming stage is the
stage that probably gains the most from using the object-oriented paradigm (because it
becomes faster). The stages of analysis, design, testing, rollout, installation and training,
etc., are not effected so much by the object-oriented paradigm as programming (and the
stages are probably as time consuming as they were when developing functional
information systems), and the speed of programming is very much effected by the
experience of the programmers. (Cockburn, 1998, p. 25) According to Cockburn (1998,
p. 25) the programming time will be reduced only if experienced programmers (with
more than 12 months of active object-oriented programming behind them) are used.

Jenz (1999a) and Szyperski (1999, p. 7) point out that employing reuse and components
makes it possible to achieve better information systems and software development
productivity. Productivity gains are also achieved because a component or module is
encapsulated and the software developer only needs to understand the interface of the
component or module, which is much easier than to investigate how the component or
module actually works (Stevens & Pooley, 2000, p. 9). Furthermore, the connection of
CASE tools with class repositories and class libraries makes information systems
development faster, because components in the class repository can be seen, customised
and interlinked on the CASE tools screen (Martin & Odell, 1992, p. 33).

Coad et al. (1995, pp. 481-485), Gillach & Deyo (1993) and Radin (1996) propose that
speed and frequent tangible working results are considered a benefit, and that when
object-oriented development is used from analysis to implementation, it is easier to
perform rapid prototyping and acquire tangible working results. Noack & Schienmann
(1999) also point out that early delivery of software products can be achieved more
effortlessly if the object-oriented paradigm is used.

69

Jenz (1999a) and Räisänen (1997a, p. 11) also propose that exercising reuse and using
components will reduce costs and result in less need for financial resources for
information systems development. In addition, patterns and architectures support lower
development and maintenance costs and enforce a higher level of reuse (Bhattacherjee
& Gerlach, 1998; Mellor & Johnson, 1997).

However, starting to apply reuse can result in higher initial costs and even slow return
on investment (3-4 years) according to Joos (1994). Also Räisänen (1997a, p. 12)
argues that one has to use the object-oriented paradigm for some time before one can
experience that utilising reuse will actually lower costs. Bhattacherjee & Gerlach (1998)
are of the same opinion as Joos (1994) and point out that the high initial costs are due to
issues like extensive training, paying external consultants and buying expensive object-
oriented information systems development tools, etc.

Page-Jones (1992b), Page-Jones (1998), Räisänen (1997a, p. 12) and Webster (1995, p.
60) also point out that the first object-oriented project in an organisation will probably
get little productivity gain because new reusable classes have to be developed, and there
is nothing or very little existing software to reuse. Usually the reusable classes are put
in a special reuse library for reuse in the future according to McClure (1996).

Improved productivity was an experienced benefit of the object-oriented paradigm in
the Survey of Advanced Technology 1996 (Pickering, 1996). Object-oriented software
development methods were also found to improve productivity by Aksit & Bergmans
(1992) and Basili et al. (1996a). In 1996 Harrison et al. (1996) also evaluated functional
and object-oriented programs. They found that functional (SML) was easier to debug
than object-oriented code (C++), and that object-oriented code was faster to compile
and run than functional code in the development process. In addition, Watanabe (1997)
proposes that object-oriented software development contributes a great deal to software
development productivity. Capper et al. (1994) present a case study where better
productivity through the use of inheritance was experienced. However, inheritance is a
part of the reuse concept, which is the key to better productivity. Better productivity
from reuse does not, however, necessarily shorten the time for the product to the market
according to Lim (1994), although Petre (2000, p. 2) is of an opposite opinion. In order
to reduce the time for the product to the market reuse must be used effectively on the
critical path of the information systems development project (Lim, 1994).

An interesting case is presented by Love (1993, pp. 95-95) where American Airlines
developed a system for supporting dispatches with 200 classes and 2,000 methods with
over 150,000 objects in active memory at a time. Only three software developers built
this information system in only eight months. The productivity was amazing and one
can argue that the quality of the system did not suffer because only two errors were
found after deployment.

It might be difficult to estimate the increase in productivity; Page-Jones (1992b) has
heard about an increase of 15:1, but the writer claims that the increase is actually only
5:1 and requires the development of a good library with classes and about five years of
elapsed time. Martin & Odell (1992, p. 37) report that several organisations have been
able to develop 80% of the code in new projects out of existing reusable classes, then

70

only 20% of the code is new. There are also of course reusability figures as high as
90%, but even 80% is still often difficult to achieve (Martin & Odell, 1992, p. 37).
Pomberger & Blaschek (1996, p. 283) propose that the savings in code to be written
when using the object-oriented paradigm is 25 – 50%, but the total amount of code will
actually rise (120-300%) because of all the imported code.

One has also to notice that system development costs are not reduced by 5:1, because
the requirements analysis is the same and object-oriented information development
requires writing new code, understanding what can be reused and how to reuse it and
building the library with classes or components, etc. (Page-Jones, 1992b). However,
according to Nowicki & Kosiak (1996) the costs will be reduced.

Agarwal et al. (2000) argue that higher productivity is not gained automatically by
adopting the object-oriented paradigm and by requiring information system developers
to use the object-oriented paradigm. They often need some help on how to use specific
reusable classes, and the owner or manager of the specific reusable class is often needed
to guide the information systems developer in how to use the reusable class in question
(McClure, 1996). The usability of the object-oriented paradigm must therefore be
considered; otherwise the productivity of the information system developers might
decrease because they consider the object-oriented paradigm as too complex (Agarwal
et al., 2000; Malan et al., 1995). Another question is if the reusable class is appropriate
for the information systems developer, but the owner (manager) of a reusable class can
probably give some help (McClure, 1996).

Analysis, summary and discussion. According to previous studies higher productivity
and faster development are be due to the following issues:

• Reuse (Bhattacherjee & Gerlach, 1998; Caliò et al., 2000; Henderson-Sellers &
Edwards, 1990; Love, 1993, p. 85; Manhes, 1998; Musakka, 1996; Nowicki &
Kosiak, 1996; Sheetz & Tegarden, 1996; Smith & McKeen, 1996), it is easy to
understand that reuse leads to faster development and that faster development
improves productivity. If one reuses then one does not have to develop
everything from scratch. But if one reuses, one has to perform the reuse work
carefully (Jézéquel & Meyer, 1997).

• The object-oriented software development process and object-oriented thinking
(Räisänen, 1997a, p. 12). This argument is well known. It presumes that the
object-oriented paradigm by itself leads to better productivity, which probably
is not the case. If few things can be reused then the productivity gains might be
rather minor.

• The connection of CASE tools with class repositories and class libraries
(Martin & Odell, 1992, p. 33). This is most likely true in theory, but if no
CASE tools that are connected to repositories can be found, then there will be
no productivity gain in the software development work.

• Object-oriented software development methods (Aksit & Bergmans, 1992;
Basili et al., 1996a). It might be extremely difficult to compare the efficiency
between traditional functional software development methods and object-
oriented software development methods. There are a vast number of both

71

traditional functional software development methods and object-oriented
software development methods, and to compare them would be a tremendous
task which would include difficult questions like ‘which methods ought to be
compared?’ and ‘how does one compare the methods?’ etc. The conclusion is
that this argument must be a rather subjective argument presented by the
researchers mentioned above.

The reduced cost was predominantly due to the following reasons:

• Reuse and use of components (Jenz, 1999a; Räisänen, 1997a, p. 11), it is rather
obvious that if something can be made faster by reuse it will also be cheaper
because one can save in labour costs. Reuse shows the way to faster
development, which leads to better productivity which in turn leads to better
efficiency and lower costs. However, if the quality is suffering from faster
software development work, then the maintenance costs might be higher so
might the total costs for the life cycle of the information system.

• Patterns and architectures (Bhattacherjee & Gerlach, 1998; Mellor & Johnson,
1997), if these reuse related concepts are used correctly this is almost certainly
the case. Nevertheless, if patterns and architectures are difficult to use then the
costs will probably not be lower because the decrease in labour hours due to
reuse will be counterbalanced by the extra effort to learn how the patterns and
architectures are constructed.

Reuse seems to be the most important issue when attempting to achieve higher
productivity. Different object-oriented software development methods, tools and
patterns can of course also affect the productivity in a positive manner, but there are
also good functional software development methods and tools on the market, so it is
almost impossible to state that using object-oriented software development methods or
tools, will increase productivity compared with using traditional ones.

The following possible association between benefits has been identified:

o The utilisation of REUSE -> results in FASTER DEVELOPMENT -> which
results in better PRODUCTIVITY -> which affects the EFFICIENCY of the
information systems development project -> which leads to REDUCED COSTS.

3.3.6 Quality and usability

When talking about information systems quality one can consider the issue of what is
meant by quality. In a study by Capper et al. (1994) the concept of quality was divided
into code quality, correctness, usability, adaptive maintainability, perfective
maintainability and performance. Love (1993, p. 186) suggests that quality is
‘conformance to requirements’. Reeves & Bednar (1994) propose that the quality is
‘conformance to specification’.

Due to the object-oriented paradigm, the quality of the information system can be
improved because programs are made of existing tested components and not developed

72

from scratch every time (Gillach & Deyo, 1993; Graham, 2001, p. 41; Jenz, 1999b;
Johnson et al., 1999; Lim, 1994; Love, 1993, p. 80; Martin & Odell, 1992, p. 32;
Räisänen, 1997a, p. 13; Sheetz & Tegarden, 1996; Sim & Wright, 2002; Smith &
McKeen, 1996; Stevens & Pooley, 2000, p. 9; Taylor, 1990, p. 104). The quality in
question is the ‘conformance to specification’ quality defined by Reeves & Bednar
(1994).

By reusing tested components fewer faults and errors occur, the user interface becomes
better and the quality of the information system becomes higher (Basili et al., 1996a;
Graham, 2001, p. 41; Watson et al., 2004). This is due to the fact that when products are
used several times the defect fixes from each reuse accumulate, which results in higher
quality (Lim, 1994). Love (1993, pp. 188-189) proposes that the object-oriented
paradigm produces software of better quality because of the following reasons
(quotation):

• Objects accept only a finite number of messages as inputs. One
object cannot access the data within another object. This
encapsulation simplifies both debugging and testing. This
fundamental structure makes test scripts relatively easy to develop
and to use – tests are developed for each class at the same time the
class is being developed.

• In languages that support dynamic binding, a message replaces
numerous branching statements required to accomplish a desired
behaviour. This can significantly decrease control flow complexity.

• Classes are stable chunks of methods and data structures that can be
reused in a variety of systems and applications. Thus, their
reliability can improve steadily. Reusability ratios between systems
will increase from their current levels of 5-15% with traditional
methods to 60-90% with object-oriented technology. This means
that a lot of code will be used again and again.

• The size of systems decreases due to dynamic binding and
inheritance, so errors are easier to find.

• The model in the designer’s head is directly expressed in the
software itself. Unlike procedural languages, designs are actually
preserved in the source text of the software, making the code more
comprehensible to future maintenance engineers.

Reliability is a further benefit of the object-oriented paradigm (Lim, 1994; Page-Jones
(1992b). Coad et al. (1995, pp. 481-485) are of the opinion that information systems
that are based on problem domain classes tend to be more stable over time compared to
information systems based on functions and data.

Lim (1994) suggests that reuse provides incentives to remove bugs and prevent defects
earlier in the life cycle of the product because the cost of prevention and debugging can
be amortized over a larger number of users.

Coad & Yourdon (1991, p. 15) and Pomberger & Blaschek (1996, pp. 288-289) also
propose that object-oriented design improves software quality. When one is using reuse,
one can manage with less code, which probably means fewer bugs and the quality of the
information system becomes better (Finch, 1998). In certain cases presented by Capper

73

et al. (1994) the better quality was primarily due to reuse from inheritance and from
encapsulation; it applied to both object-oriented design and object-oriented information
systems programming. Furthermore, design decisions can be encapsulated in the object-
oriented paradigm, which reduces the damage of requirements changes and leads to
higher quality (Cockburn, 1998, p. 2).

Another reason why encapsulation gives birth to better quality is because data structures
have better integrity when they are encapsulated, and therefore more difficult to access
for users (Martin & Odell, 1992, p. 33). This is, for example, important in many
distributed, co-operative, and client-server systems. As a more concrete explanation one
can present the case presented by Wilkie (1993, p. 39); since the only information about
objects that is available to software developers is the information about messages and
responsibilities of the objects, one can change the logic of the objects without fear of a
ripple effect on any logic in another object.

Object-oriented application frameworks can also increase software quality and make
development easier. Frameworks should, however, be used with great care in order to
obtain the proposed benefits (Fayad, 2000).

Capper et al. (1994) then studied three cases with object-oriented information system
development at IBM in the United Kingdom, and came to the conclusion that the quality
of the developed object-oriented information systems improved more than the quality of
similar functionally developed information systems. However, the information systems
developed at IBM in the United Kingdom were not 100% object-oriented (Capper et al.,
1994).

Bäumer et al. (1996) gives an account on experienced better software quality in a large
banking software development project. Improved quality was also an experienced
benefit of the object-oriented paradigm in the Survey of Advanced Technology 1996
(Pickering, 1996). In 1996 Harrison et al. (1996) also evaluated functional and object-
oriented programs. They found no significant differences between these programs
regarding quality. Capper et al. (1994) observed that the issue of quality is based a great
deal on the experience and skills of the information systems developers; using a specific
information systems development paradigm does not as such produce better quality.

Analysis, summary and discussion. According to previous studies better quality and
higher usability are due to the following issues:

• Reuse. Reuse is utilised and programs are made of existing, tested components
and not developed from scratch every time. A presupposition for this
contention is that the components themselves are very well tested and of high
quality. Out of personal experience the author of this study claims that this is
not always the case. When working as a systems analyst in 1990 in a major
Finnish software company, an unpleasant error in a component that had been
reused for more than ten years was found, and the component had been
considered as high quality.

• Encapsulation (Love, 1993, pp. 188-189). Because an object cannot generally
access data within another object, both testing and debugging is easier. The

74

encapsulation structure makes test scripts relatively easy to develop and use,
and this easier testing and debugging should produce better quality. The
encapsulation concept is not always easy to control and understand. If the
software developers are not comfortable with encapsulation the testing will
probably not be easier.

• Dynamic binding (Love, 1993, pp. 188-189). Due to dynamic binding the
control flow complexity will decrease, which generates better quality.
However, dynamic binding is probably the most challenging object-oriented
concept and if the software developers do not manage dynamic binding, its use
will probably make the quality of the information system lower, not higher.

• Classes (Love, 1993, pp. 188-189). Classes are examples of components and
the reuse of tested classes through inheritance improves quality. This issue is
very much like the first issue.

• The size of an object-oriented information system is smaller (Finch, 1998). The
size of object-oriented information systems is smaller due to dynamic binding
and inheritance, and smaller information systems are usually easier to
comprehend, which makes maintenance, testing and debugging easier. This is
not always the case; there are design issues that affect the understandability of
programs. Therefore, a small but badly designed program is probably harder to
understand than a large but well designed one.

• The model in the designers mind can directly be expressed in the software itself
(Love, 1993, pp. 188-189). The object-oriented paradigm makes it possible for
designs to be preserved in the programming code, which subsequently makes
the information system easier to understand and maintain. This line of
reasoning probably has its origin in the ‘one model’ concept in object-oriented
analysis and design (Sheetz & Tegarden, 1996) that reduces the difficulty to
map problem constructs from the problem domain with programming
structures and program code. Someone could, however, argue that a ‘one
model’ approach is fuzzier than a stepwise approach with analysis and design,
although this is probably a subjective question.

• Application frameworks (Fayad, 2000). If the application frameworks are of
high quality, their use most certainly increases software quality in the same
manner as reuse increases software quality. One has, of course, also to
understand how to use and manage application frameworks in order to achieve
better quality when developing information systems; if application frameworks
are used in the wrong way the quality improvements might be very moderate.

The reuse concept combined with software components and the ‘one model’ concept
seems to be the most fundamental basis for achieving better software quality when
doing object-oriented information systems development.

The following possible associations between benefits have been identified:

o Utilising REUSE and reusing tested components -> results in HIGHER
QUALITY.

75

o The ONE MODEL concept that makes it possible to embed design issues in the
programming code -> results in HIGHER QUALITY because the information
system is easier to understand.

o Using SOFTWARE COMPONENTS like classes -> results in better
USABILITY because tested components can be used.

3.3.7 Natural and better mapping to the problem domain

In the object-oriented paradigm the connection to the mind of the human being makes it
easier for system developers to build object-oriented information systems than
traditional information systems. This is the case because it is easier to look at the world
as a collection of objects than it is to look at the world as a collection of functions and
data (Booch, 1994, p. 287; Castelluccio, 1997; Mathiassen et al., 2000, p. 5; Räisänen,
1997a, p. 10). There is in other words a better mapping to the problem domain with
things like machinery, bank issues, customers, products, sensors, markets and so on
(Webster, 1995, p. 22). Castelluccio (1997) gives an unpretentious explanation as to
why the object-oriented paradigm is more natural (quotation):

Remember those intelligence tests in primary school? Those series of four or
five pictures or objects where you had to pick out which one was different?
Object-oriented programming depends on the human tendencies to look for
similarities and to reduce complexity through classifying and “chunking”.
Similar objects are grouped into classes.

Bruegge & Dutoit (2000, p. 7) even propose that when object-oriented information
systems development is performed the problem domain integrates into the solution
domain. In other software development paradigms the problem domain and the solution
domain are different, and other paradigms are often based on some mathematical
models that users are neither familiar with nor interested in (Koskimies, 1997, p. 2).

Bozowski (1997), Koehler (1992), Korson & McGregor (1990) and Martin & Odell
(1992, p. 31) argue that the parts that are produced by the object-oriented design
process are more natural in the sense that they correspond more to the concepts of the
real world. This claim is also supported by other researchers like Capper et al. (1994),
Eriksson & Penker (1996, p. 43), Fagerström (1993, p. 15), Nerson (1992), Räisänen
(1997a, p. 10), Sim & Wright (2002), Smith & McKeen (1996) and Taylor (1990, pp.
29-31) who propose that object-oriented software supports the way people view the real
world, and the transition of this view into information systems becomes easier.

As an example of the arguments above, one can present the claim by Esch (1995) that
there is a one-to-one mapping between the objects in the real world and the objects that
are in a manufacturing information system. The correspondence between objects in the
real world and objects in an object-oriented information system is easily understood if
one examines an object-oriented user interface with objects as icons for different
business objects like invoices, contracts, establishments and customers (Capper et al.,
1994). However, the one-to-one correspondence between objects in the graphical user
interface and the business objects does not come by itself. Though there is a relationship
between them, there might be a different level of granularity (Capper et al., 1994).

76

There are also research results that imply that human beings usually think in a
procedural way and not in an object-oriented way (Agarwal et al., 2000; Rosson &
Alpert, 1990). Hatton (1998) presents an interesting model of how human beings use
their memory; in the model the short-term memory, the long-term memory and a
rehearsal buffer are considered. Out of the model and also psychological evidence from
studies on Alzheimer’s disease Hatton presents some material on how the memory of
human beings works. The writer goes on and claims that the concept of encapsulation
fits well in the memory of a human being. However, the concepts of inheritance and
polymorphism do not.

In the study by Agarwal et al. (2000) there was also the result that people do not think
in objects and objects are not natural representations of things in the problem domain.
An earlier study by Rosson & Alpert (1990; cited by Sim & Wright, 2002) came to the
same result as the study by Agarwal et al. (2000). The question of how well the object-
oriented paradigm is connected with how human beings actually think is probably a
difficult question and cannot easily be solved (Martin & Odell, 1995, p. 20). One fact
that makes this issue difficult is that the mind of human beings is different from one
human being to another, which signifies that people might think very differently in a
similar situation (Barondes, 1998, p. 2-3).

In the empirical study by Johnson (2000) improved communication between
information systems developers and end users was found to be a benefit. In addition,
Davis & Morgan (1993), Gillach & Deyo (1993), Johnson (1997a) and Johnson et al.
(1999) propose that using object-oriented information systems development makes it
possible for the end users and information systems developers to speak the same
language. Further, the communication between information systems developers and
business executives becomes easier if the object-oriented paradigm is used (Cockburn,
1998, p. 2; Johnson et al., 1999). Martin & Odell (1992, p. 31) even claim that end users
and business people think naturally in terms of objects, triggers and events. Gillach &
Deyo (1993) also propose that better communication between information systems
developers and end users results in information systems that represent the real world
more adequately, and that the object-oriented information systems developers could
deliver custom applications that are built specifically for the needs of end users.
However, the benefit of better communication was not considered very important,
probably because the users do not care how the information system is developed and
because the new paradigm is rather radical compared with older paradigms (Johnson,
2000).

Noack & Schienmann (1999) say that the object-oriented paradigm makes closer
communication with users easier. Agarwal et al. (2000) propose that the communication
between information system developers and users is very important; otherwise the
requirements analysis and the information system will not succeed. If the persons
performing object-oriented analysis and design are skilled and knowledgeable then the
benefit of better domain mapping is more palpable (Webster, 1995, p. 22).

It is also important to remember that objects used later on in the information system
development process are often dynamic entities, which means that the natural view of
them might have been lost (Bozowski, 1997). The natural view might also be difficult if

77

there are several names for one object that are natural. Another problem with the natural
view is that there might be names among the users, but no explicit object for the names.
These issues are discussed by Hanseth & Monteiro (1994).

Lauesen (1998) reports that users do not find object-oriented analysis natural; object-
diagrams do not make sense to users, object-interaction diagrams are not easily
understood, and objects per se are not natural for users. Objects like customers are
perhaps relatively easy to understand, but objects like orders are hard to grasp as
something that can perform operations and have responsibilities (Lauesen, 1998).

Analysis, summary and discussion. According to previous studies the concepts of
‘natural’ and ‘better mapping to problem domain’ are predominately due to the
following issues:

• Good connection to the mind of the human being because it is easier to look at
the world as a collection of objects than it is to look at it as a collection of
functions and data (Booch, 1994, p. 287). The world is full of things as
customers and products and these concepts are typically natural for a human
being and can usually easily be found in the problem domain. This issue can be
put in doubt, because different persons think in different ways, and something
that is natural for one person might be rather unnatural for another. However,
an object is a rather persuasive concept; typical examples with customers and
products are often easy to understand.

• The parts that are produced by the object-oriented design process are more
natural (Bozowski, 1997; Koehler, 1992, Korson & McGregor, 1990; Martin &
Odell, 1992, p. 31). Lauesen (1998) was of the opposite opinion and reported
that object-oriented diagrams do not make sense to end users. Probably objects
per se might be easy to understand but object-oriented diagrams are not easy to
comprehend. The question of how to model the “real-world” is also an
interesting question. According to Isoda (2001) the real-world modelling can
be divided into “genuine real-world” modelling and ”pseudo real-world
modelling” In other words, the object-oriented mapping to the problem domain
is not very easy.

The question of what is natural is probably a very difficult one. End users are probably
experts of the concepts in the domain where they are working. Information systems
developers are perhaps not always very familiar with the same concepts. In a study
reported by Johnson (2002) it was found that end users tend to think in terms of objects
and experienced information systems developers tend to focus more on functional
properties.

The following possible association between benefits has been identified:

o The OBJECT-ORIENTED PARADIGM with objects -> is more NATURAL
for human beings.

78

3.3.8 Maintenance

Maintenance of information systems in organisations is a burdensome activity and more
time is usually spent maintaining old information systems than in developing new ones
(Swanson & Dans, 2000). Maintenance is the most costly part of an information
systems life cycle and sources indicate that more than 50% of the working time is spent
on maintenance out of the total time spent on software activities (Lientz & Swanson,
1981). According to Fagerström (1993, p. 13) and Hatton (1998) about 80% of all costs
for software (from the whole life cycle of the software) come from maintenance, Erlikh
(2000) proposes that the figure is about 90%.

Out of the maintenance costs one study showed that 65% were perfective (Lientz &
Swanson, 1981). In another study it was found that 42% of the maintenance costs came
from challenging new requirements specified by users (these changes are often
challenging because one has to go back to the early stages in the life cycle of the
software), 17% came from changes in the data, 12% came from emergency corrections
and 9% came from normal daily corrections (Koskimies, 1997, p. 4).

If maintenance could be easier and cheaper due to an object-oriented information
system, much could be gained. Easier maintenance is based on the ability to make
changes easily and the in-depth understanding of how the information system or
program is built (Wilde & Matthews, 1993).

Maintenance of the information system becomes easier (Agarwal et al., 2000; Booch,
1994, pp. 77-78; Caliò et al., 2000; Graham, 2001, p. 41; Johnson, 2000; Kozaczynski
& Kuntzmann-Combelles 1993; Martin & Odell, 1992, p. 33; Nowicki & Kosiak, 1996;
Radin, 1996; Sim & Wright, 2002) and cheaper (Gillach & Deyo, 1993; Page-Jones,
1992b) if object-oriented information systems development is used in comparison with
functional information systems development. Koskimies (1997, p. 2) even proposes that
easier maintenance is one of the most important benefits of the object-oriented
paradigm.

Easier maintenance is based on several aspects, but one is the expectation that an
object-oriented information system has high quality because of better data abstraction,
better information hiding, better concurrency control and better management of changes
in the real world, due to the mapping between objects in the real world and the objects
in the application (Wilde & Matthews, 1993). Another aspect is localized maintenance,
which means that changes in the object data or implementation is only modified in one
single place, leading to lower costs and fewer errors (Graham, 2001, p. 41; Pressman,
2000, p. 526; Stevens & Pooley, 2000, p. 9; Watson et al., 2004). Because objects are
encapsulated and viewed as black boxes, programs that use the objects only care about
what the object is supposed to do, which in turn makes maintenance easier (Lam, 1997).
According to Räisänen (1997a, p. 13) easier maintenance is a result of the real world
model in object-oriented software development, better modularity and higher quality.

Hatton (1998) is, however, of a different opinion and argues that there is little data that
support the claim that object-oriented information systems are easier to maintain than
traditional functional information systems. Eeles & Sims (1998, p. 61) are of the same

79

opinion as Hatton (1998) and present an example of a customer class used in two
different information systems (a car rental system and an apartment rental system); the
customer class can be changed once but both information systems must be rebuilt,
retested and redeployed.

Hatton (1998) and Wilde & Matthews (1993) propose that the complexity of object-
oriented information systems is one reason why object-oriented information systems are
more difficult to maintain than traditional functional information systems. However, if
adequate design practices and passable support tools would be available, then
maintenance of object-oriented information systems would also be easier (Wilde &
Matthews, 1993),

Ambler (1998, pp. 134-135) proposes that patterns increase the consistency between
applications, making the applications easier to understand and maintain. When
applications are developed in a consistent manner it will become easier to do technical
walkthroughs that make it easier to improve the quality of the applications (Ambler,
1998, pp. 134-135).

By developing information systems that are based very much on components the
information systems are easier to maintain. Object-oriented information systems are
more flexible and easier to modify (Fagerström, 1993, p. 9; Gillach & Deyo, 1993;
Graham, 2001, p. 41; Smith & McKeen, 1996), they can easily be modified to keep up
with rapidly changing business needs and business environments (Gillach & Deyo,
1993) and their maintainability is better than the maintainability of traditional functional
information systems (Kozaczynski & Kuntzmann-Combelles, 1993).

Regarding maintenance, the object-oriented paradigm allows information systems to be
extended over time when new functionality is needed; in other words, we can build
smaller information systems that can easily be extended in the future (Rumbaugh, 1997;
Taylor, 1992, p. 138). Adding extra components to object-oriented information systems
is easier and safer than making extensions to traditional systems (Henderson-Sellers,
1992, p. 49). The object-oriented information system is more ‘open’ and new
components like classes can be more easily added to the information system without
damaging its overall structure (Eriksson, 1992, pp. 16-18; Jaime et al., 2000). Wolber
(1997) furthermore proposes that objects are less likely to change than processes and
requirements; therefore object-oriented information systems are more maintainable than
traditional information systems.

The claim that the object-oriented paradigm makes maintenance easier rated 3.79 on a
scale from 1 to 5 (1 =strongly disagree, 5 =strongly agree) in a study of managers who
direct object-oriented information systems development projects (Gehringer & Manns,
1996). In the study by the Gothenburg School of Economics on the use of the object-
oriented paradigm in Sweden, one finding was that 48% of the companies thought that
maintenance costs decrease due to the object-oriented paradigm (Lotsson, 1996).

Reuse is the most important concept that makes maintenance easier (Lim, 1994; Wilde
& Matthews, 1993). Easier maintenance is also based on the class structure that makes
it easier to contain the effects of changes; the use of inheritance also makes it possible

80

to reuse existing classes and to extend the information system (Coleman et al., 1994, p.
7). The extension of the information system is usually based on adding new
functionality to subclasses (Wilde & Matthews, 1993).

The independent and encapsulated objects also make maintenance easier because
modifying one object will not affect other objects (Sommerville, 1992, p. 193; Wilde &
Matthews, 1993). In a traditional approach global variables might be used which makes
the modifications of procedures and functions more difficult to anticipate. Capper et al.,
(1994) also propose that the encapsulation of data and methods makes changes to the
object-oriented information system easier, because it allows the scope of the changes to
be found rapidly, and therefore there is a lower risk of accidentally introducing errors in
other parts of the object-oriented information system.

However, if the problem in the object-oriented information system is due to improper
messaging between objects then the maintainability will suffer because of the difficulty
in analysing the message passing between several objects, and finding the troublesome
object. (Capper et al., 1994) In addition, Wilde & Matthews (1993) talk about object-
oriented information systems maintainers that have to trace through chains of
dependencies produced either by inheritance or calling relationships. There are,
however, tools that are based on dependence analysis that can be of great help for the
object-oriented information systems maintainer working with these difficult issues. The
browser can, for example, usually open a specific window for each link in the chain. If
there are a lot of links there will also be a lot of windows, which probably make the
analyses of the links and relationships harder. (Wilde & Matthews, 1993)

Lieberherr & Xiao (1993) propose that using the object-oriented paradigm makes
maintenance actually more difficult, because details of the class structure are repeatedly
encoded in the methods. The methods are in the classes and hard to change without
consequences that are difficult to foresee. In addition, Wilde & Huitt (1992) argue that
using object-oriented software development makes maintenance of the information
system more difficult. This is because inheritance and polymorphism introduce
difficulties in program analysis and understanding.

Analysis, summary and discussion. Easier maintenance is chiefly due to the following
issues:

• The reuse mechanism, like inheritance (combined with the class structure),
makes consistency easier to maintain (Winblad et al., 1990, pp. 213-222). In
fact, reuse is probably the most important concept and issue that make
maintenance easier (Lim, 1994; Wilde & Matthews, 1993). By inheritance and
reuse of components, an information system developer can easily add new
features to an information system that is maintained. In addition, modification
can be achieved through inheritance, but here the information systems
developer has to be more careful, there is a danger of unwanted effects, like the
yo-yo effect, if an information system obtains complex inheritance structures.

• Software components that make information systems are more flexible to
maintain (Gillach & Deyo, 1993; Smith & McKeen, 1996) and it is rather easy
and safe to add new components (Henderson-Sellers, 1992, p. 49). Components

81

like tested objects are also not very likely to change (Wolber, 1997).
Encapsulation is actually also an important concept that makes maintenance
easier, because changes can be found rapidly and there is a lower risk of
accidentally introducing errors in other parts of the object-oriented information
system (Capper et al., 1994). If no adequate software components can be
found, or the existing software components are of low quality the maintenance
might, however, suffer.

• In-depth understanding of how an information system is built (Wilde &
Matthews, 1993); this issue combined with reuse and components, also creates
an ability to make changes easily (Wilde & Matthews, 1993). Regarding this
matter one can hypothesize that it has to do with the opinion that object-
oriented information systems are more ‘natural’ and better mapped to the
problem domain, which makes the understanding of the information system
easier. However, the object-oriented paradigm is complex and it might be
difficult to get the ‘in-depth understanding of how an information system is
built’.

• High quality because of several reasons such as better data abstraction, better
information hiding, better concurrency control and better management of
changes in the real world (due to the mapping between objects in the real world
and objects in the information system) (Wilde & Matthews, 1993). If an
information system is of high quality it is certainly also easier to maintain.
Whether the concepts mentioned above produce information systems of better
quality is another question, as discussed in this study in the analysis of the
‘quality’ benefit.

• The object-oriented information systems are smaller (Rumbaugh, 1997;
Taylor, 1992, p. 138). The maintenance of smaller information systems is not
necessarily easier than the maintenance of larger information systems. Major
issues regarding the maintainability of information systems are system design,
program design and quality. The size is only one issue that might affect the
maintainability of an information system.

Reuse is again the major concept that enhances maintenance; it is easier to maintain an
information system or application if one can work with existing and tested components,
and the information systems developer does not have to program all the changes at the
commencement. The basic object-oriented concepts like classes, inheritance, dynamic
binding, encapsulation and polymorphism are also argued to make maintenance easier,
and if this is true then one can propose that the object-oriented paradigm as such is well
suited for maintenance. The complexity of the object-oriented paradigm is, however, a
hindrance for easy maintenance (Hatton, 1998). Because details of the class structure
are repeatedly encoded in the methods the maintenance also becomes more difficult
(Lieberherr & Xiao, 1993).

The conclusion is that reuse enhances maintenance of object-oriented information
systems. However, the complexity of the object-oriented paradigm might affect the
maintenance negatively.

The following possible associations between benefits have been identified:

82

o The utilisation of REUSE makes it easier to maintain the information systems
because tested and existing components can be used -> MAINTENANCE
becomes consequently easier.

o The use of SOFTWARE COMPONENTS makes it possible to avoid
programming new parts for an information system, which makes ->
MAINTENANCE easier and faster.

3.3.9 Software components

Pancake (1995) proposes that the greatest advantage of the object-oriented paradigm is
the fact that objects can be used as software components. Components can also be
analysis components, design components or programming components, etc. (Coad &
Yourdon, 1991, p. 124).

According to Love (1993, p. 238) a software component (a class or object) usually
consists of 10-15 methods, equivalent to 200-300 uncommented lines of programming
code and it typically takes about two months for a person to build a commercial
software component once the design is understood.

Software components are interesting because one vision of the object-oriented paradigm
is that one could build information systems with software components in the same
manner as one can, for example, build a radio out of premade and tested technical
components. This is probably possible though some kind of programming code will
probably be needed in order to integrate the premade software components.

The concepts of components and objects should not be considered the same. According
to Petre (2000, p. 6) the difference is that objects are suitable for describing real world
entities and components are suitable for describing the services of real world entities.
Expressed differently, objects are suitable for describing the problem domain and
components are suitable for describing the functionality of the problem domain.

Components and reuse of components have generated success in information system
development in several companies. One good example of such a company is Castek in
Toronto, Canada (Sparling, 2000). IT shops nowadays are building libraries of
components and these components are often built for sale. Components are also derived
from internal information systems development projects. (Carr, 1999)

Components have to be managed properly so that they can be reused, and some
software companies have even created corporate support centres for software
components to facilitate the internal sharing of the components. Each centre manages
several activities like receiving the components, verifying the quality of the
components, documenting the components, handling the maintenance of the
components and shipping the components to places where they are needed. Every
individual component normally has a formal corporate part number and the use of an
individual component results in internal transfers (Love, 1993, p. 164).

83

Eriksson (1992, p. 54) argues that software components or modules are easier to
develop because of the object-oriented paradigm. Kaasböll (1993) is of the same
opinion and claims that the easier development of components is due to object-oriented
software development methods. Caliò et al. (2000) also feel the same and present UML
as such an object-oriented software development method.

According to Sparling (2000) it is also important that information systems developers
accept the value of working with the components as encapsulated black boxes, and not
try to rebuild them if it is not absolutely necessarily.

As maintained by Henderson-Sellers (1996, p. 16) and Thomas (1989) the time to code
and test is usually less in object-oriented information system development, because the
reused classes and software components have usually been more carefully designed and
tested. Existing tested components can also safely be reused again and again (Airikkala,
1996), but there are some questions the information systems developer has to consider
such as those in the following quotation from Binder (1999, p. 29):

I’m a producer of reusable components. How can I test these components
without knowing how they will be used?

I’m a consumer of reusable components. How can I be sure that a reused
component works correctly?

I’m a consumer of reusable components. How can I be sure that a reused
component hasn’t caused other objects in my system to break?

Testing is important when developing components for reuse. The consequences of an
error in a component are much more severe when the information system developer of
the component in question is hard to locate and when the component is used in several
places (Stevens & Pooley, 2000, p. 217).

Because of software components (modularity) object-oriented information systems are
often more robust, more extensible, more flexible and have higher integrity. This is not
only because of the components but also due to encapsulation that makes modifications
safer and easier (Henderson-Sellers, 1992, p. 68; Henderson-Sellers & Edwards, 1994,
p. 15; Petre, 2000, pp. 2-3).

A reusable component can be used in several different ways. It can, for example, be
used as an attribute in other classes (aggregation or association), it can be used in
inheritance, it can be inherited from to create subclasses (derived classes) and it can be
used as an object and instantiated to create a set of runtime objects (Pant et al., 1996).
However, in order to reuse a component the component must be locatable, consumable
and extensible (Sparling, 2000). The components also have to be used correctly. One
problem is that when the information system that uses components grows larger there
will often be several different versions of one component (Jarzabek & Knauber, 1999).

Silveira (2000) presents one interesting advantage of using components when doing
maintenance. He presents a “Web-based object computing paradigm” for supporting on-
demand, dynamic distribution and integration of distributed reusable software artefacts
on user environments during execution time. This paradigm is based on the concept that
information systems do locate, retrieve, install and execute remotely available software

84

components on user desktops. This is done over the Web in the same manner as, for
example, virus detection programs locate new components and install them on the
user’s computer. Another example is Java applets, which load remotely available
classes during runtime. Examples of applications that are based on this new paradigm
are Castanet, Netcaster, NetDeploy and WebCasing. The software that is based on this
new paradigm is called 'spontaneous software'. (Silveira, 2000)

Analysis, summary and discussion. Software components as a ´concept’ is a benefit
from object-oriented software development and this benefit is due to the following
issues:

• The object-oriented paradigm. The object-oriented paradigm per se is
supporting the creation of software components. According to Eriksson (1992,
p. 54) a proposition in the object-oriented paradigm is the use of software
components. Because software components in the form of classes, objects and
design parts, etc. are predominant in the object-oriented paradigm, the
argument by Eriksson seems to be correct.

• Object-oriented software development methods. Object-oriented software
development methods support the creation of software components (Kaasböll,
1993).

Software components are very central in the object-oriented world and one important
base for reuse. Object-oriented information systems are also more robust, more
extensive, more flexible and have higher integrity due to the software components
(Henderson-Sellers, 1992, p. 68; Henderson-Sellers & Edwards, 1994, p. 15; Johnson et
al., 1999; Petre, 2000, pp. 2-3).

The following possible associations between benefits have been identified:

o The OBJECT-ORIENTED PARADIGM enables the use of -> SOFTWARE
COMPONENTS.

o Using SOFTWARE COMPONENTS results in higher -> FLEXIBILITY
because one can reuse premade artefacts.

o Using tested SOFTWARE COMPONENTS results in higher - >
ROBUSTNESS.

o Making use of SOFTWARE COMPONENTS leads to -> easier
EXTENSIBILITY possibilities.

o Using SOFTWARE COMPONENTS results in higher -> INTEGRITY because
the components are encapsulated without things like global variables.

85

3.3.10 Easier End-User Computing

During the 1980s the development of information systems by end users accelerated
especially in the scientific/technical and business/commercial field (Brancheau &
Brown, 1993), and it is estimated that by 2005 in the US alone, there will be 55 million
end user developers (Sutcliffe & Mehandjiev, 2004).

Buxton (1993), Love (1993, p. 254), Pressman (2000, p. 891) and Winblad et al. (1990,
p. 49) point out that the end users of today can probably develop and build information
systems of their own easier in the future by using the object-oriented paradigm.
Business people in some cases will be able to make changes in object-oriented
information systems by themselves and will not need to consult programmers (Martin et
al., 2001; Verity & Schwartz, 1991). However, Buxton (1993) argues that the rules of
behaviour for objects will still have to be expressed in algorithmic terms and therefore
object-oriented information systems will still need systems analysts and information
system developers.

Brancheau & Brown (1993) give the following (quotation) definition of End-User
computing:

End-User Computing is the adoption and use of information technology by
personnel outside the information systems department to DEVELOP
software applications in support of organizational tasks.

Further Welke (1994) and Patriot Partners (presented in Martin & Odell, 1992, p. 50)
claim that the age when information systems are developed by software developers is
coming to an end. The new approach is where ’ordinary’ people select and acquire
product components and assemble them into information systems (Mörch et al., 2004).
The role of the information system developers will be to develop components for the
needs of the users (Love, 1993, p. 254). This is the End-User computing concept. The
term information system development will change and the change will be based on the
object concept. Objects will be available for all kinds of information systems and
combining objects from object-oriented platforms that are integrated in operating
systems, will make it possible for users to build information systems on their own. The
end users will combine the objects by using some sort of ‘glue’ (Alencar et al., 1998).
There are research reports on component-based software engineering and some software
engineering books like the one by Pressman (2000, pp. 738-763) that present what
‘glue’ could consist of.

Martin & Odell (1992, p. 33) talk about easier programming based on the object-
oriented paradigm; this issue supports end-user development. Object-oriented
programming is easier because programs can be developed in small pieces. However,
Welke (1994) puts into question the view that users would start programming.

In a scenario by Gibbs et al. (1990) there are similar ideas to the ones above; a
developer builds an information system by selecting generic software components and
then composing these components. Eriksson & Penker (1996, p. 166) present a scenario
where information systems will be developed from components, and the components
will come from standard applications (like Word, Excel and Lotus 1-2-3), from libraries

86

with components developed in-house, from components in standard libraries, from
components in the operating system and from components that are visual interface
components (for charts and diagrams), etc. Eriksson & Penker (1996, p. 166), however,
do not propose that end users will actually develop information systems.

However, according to Pree (1997) end-user computing in the future will be more based
on component-based software engineering than on object-oriented software engineering
and frameworks will be used as the building blocks in end user programming. Further
Pree (1997) argues that visual, interactive composition tools will be available that make
it possible for end users to develop information systems by handling components that
are connected to convenient frameworks.

Further, according to Welke (1994) the objects being manipulated will be business

artefacts, and the role of the information system developer in the future will mostly be
to guide the end users on how to find objects. Information system development will be
increasingly directed at the production of commercially available object components for
general and more special information systems. (Welke, 1994) One benefit of the new
idea that end users will develop their own applications and information systems is of
course that information system developers will not be needed anymore; there will be no
actual need anymore for end users to try to explain to information system developers
what they need (Love, 1993, p. 255).

Gillach & Deyo (1993) also propose that end users will become more involved in
information system development because of the object-oriented paradigm. The
involvement will range from defining business processes to designing and developing
solutions and further onto testing and refining so that the information system is
according to the requirements (Gillach & Deyo, 1993).

Nevertheless, in 1998 end-user information systems development with objects was still
very rare according to Finch (1998), but Staringer (1994) reports on a major information
system that was built in co-operation with users in an end-user manner. The end users
obtained some adequate tools and started to build the information system; this went well
though the information system developers had some problems with the end users who
could alter the source code of the information system developers, which sometimes
caused the information system to behave differently than intended (Staringer, 1994).
However, Lauesen (1998) claims that the object-oriented paradigm has not made it
easier for end users to develop information systems.

Analysis, summary and discussion. Easier End-user computing is a benefit
predominantly because of the following:

• Object-orientation. Easier programming (and implementation) because of
object-orientation. This question is a very difficult and dubious question and is
discussed below.

If end-user computing becomes more widespread, there will be less need for system
analysts and information system developers according to Love (1993, p. 254).
Information system development work will also change and probably be cheaper; the

87

savings in the decreased use of information system developers will, however, be
balanced by the extra costs of having end users spend time developing information
systems.

Winblad et al. (1990, p. 49) consider how the user can start programming if there is
access to the object-oriented paradigm and some object-oriented class library. The
scenario by Welke (1994) supports the claims by Winblad et al. but there are still many
questions that have to be answered. How can the user find the objects? Can the user
adequately utilise the objects without any understanding of how the objects have been
developed? Is it really workable information system development to have users using
objects or standard application packages and then developing the ‘glue’ between the
objects? Perhaps the development of the ‘glue’ is difficult. Nevertheless, Zhang (1999,
pp. 167-168) proposes that end users would be both willing and capable to carry out
some information system development work, on the condition that the information
system development methods the end users work with are simple and supported with
easy-to-use tools. Help from experienced information system developers would also be
necessary.

The end-user computing concept can further be criticised if the users, for example, use
the C++ programming language one has to remember that C++ is a complex
programming language (Koskimies, 1995) that is definitely not very well suited for
beginners. In addition, Taylor (1992, p. 275) is of the opinion that end users should not
program their own information systems although end-user computing has been an
activity in several companies since the 1970’s (Brancheau & Brown, 1993).

The following possible association between benefits has been identified:

o The OBJECT-ORIENTED PARADIGM with readymade components makes it
easier to develop information systems, which result in -> better possibilities for
END-USER COMPUTING.

3.3.11 Reuse

Reuse means the process of using existing software modules and other items instead of
building everything from scratch (Basili et al., 1996a; Watanabe, 1997). Reuse has been
a part of software development and programming since the early days of programming,
but though traditional functional approaches allow for reuse of code, the object-oriented
paradigm provides mechanisms that facilitate and put in force reuse (Fichman &
Kemerer, 1993). Examples of these mechanisms are abstraction, encapsulation and
inheritance.

Frakes & Isoda (1994) define reuse as follows (quotation):

Software reuse is the use of engineering knowledge or artefacts from
existing systems to build new ones. Software reuse is a technology for
improving software quality and productivity.

88

Reuse is important in the object-oriented paradigm and makes it possible to move from
a project oriented way of developing information systems to a product oriented way,
where software modules are developed for several projects and not only for the ongoing
project (Eriksson, 1992, pp. 348-349). In fact, the reuse concept is probably the most
outstanding benefit of the object-oriented paradigm (Agarwal et al., 2000; Gillach &
Deyo, 1993; Henderson-Sellers, 1992, p. 51; Koskimies, 1997, p. 2; Yourdon & Argila,
1996, p. 6).

One can develop object-oriented information systems without reuse (Koskimies, 1997,
p. 5). However, developing object-oriented information systems without reuse might be
appalling (McClure, 1996). Further Webster (1995, p. 215) proposes that one has to be
aware of the fact that the benefits of reuse are not always realized.

Reuse can efficiently be combined with encapsulation, information hiding and
inheritance (Wolber, 1997). Martin & Odell (1992, p. 51) claim that one of the best
ways of achieving reuse is to use the object-oriented concepts that are connected to
reuse mechanisms; classes, inheritance, polymorphism and frameworks. Gamma et al.
(1995, p. 28) propose that using frameworks is the way that object-oriented systems
achieve the most reuse and larger object-oriented information systems consist of layers
of frameworks that cooperate with each other. Furthermore Koehler (1992) proposes
that because of inheritance and reuse there is less code to write and test.

Reuse of software components can be accomplished through several concepts and
mechanisms like class libraries, inheritance, design patterns and frameworks, etc.
(Watanabe, 1997). As an example of a set of class libraries one can consider the Java
class libraries that are produced by JavaSoft and Microsoft (Franz, 1998). The class
libraries of Java are actually crowded with thousands of useful classes like classes for
networking and encryption (Watson, 1999). Note that when using class libraries that
they are usually written for a specific programming language like Java. A class library
is not the only place for storing classes; another place is, for example, a repository
(Jenz, 1999a). A repository is a tool for storing and retrieving development work.
Source code in class libraries, documentation and analysis/design models can be stored
by making a repository a more general storage mechanism than a class library. In
practice a repository is a centralised database (Ambler, 1998, p. 217).

Reuse is reliant on artefacts to reuse. Classes and other components are usually reused,
but also design and other object-oriented artefacts like business objects, subsystems and
subroutine libraries etc. can be reused (Henderson-Sellers, 1992, p. 51; Radin, 1996).
Joos (1994) presents designs and documentation as very reusable based on her
experience at the company Motorola in the United States. Räisänen (1997b, p. 33)
presents business plans, cost analyses, user manuals, project plans, test cases,
requirements, designs and applications as reusable. Frakes & Terry (1996) present
architectures, estimates (templates) and human interfaces as reusable. Mili et al. (1995)
present data and programs as reusable. According to Gibbs et al. (1990) past experience
like requirements, specifications, models, designs and software components and
evolving software should be reused in order to improve the productivity of information
systems development.

89

According to Nierstrasz et al. (1992) the reuse paradigm can very well be used, for
example, for composing applications from already packed software components. Note
however, that when building applications or information systems out of existing
components the components can seldom be reused as they are, reusable components
generally need to be adapted to match the system requirements. Component adaptation
techniques should be transparent, black box, suitable for composition, configurable,
reusable and efficient to use. (Bosch, 1997)

Reusable classes come from three sources, some come with the object-oriented
programming languages, while others can be obtained from companies or developed by
in house software analysts and programmers (Taylor, 1990, p. 90). Of course it might
also be possible to find reusable components on the Internet that are originally from
other sources like universities or even the personal libraries of programmers (Watanabe,
1997).

Reuse is dependent on the following (Hopkins, 2000):

• Components of good quality.

• Suitable components can be found.

• Components are licensed.

• Components that can be used without problems.

• The availability of a platform on which the components can be used and
on which the components can send messages to each other.

However, the above listed requirements are seldom found, Grinzo (1998) reports of
many programmers who have experienced that components are difficult to reuse,
components do not include the source code (which means that they cannot be modified)
and components are bound by absurd licensing restrictions, etc.

Reuse is based on software that is more general, which means that the software might
be more cumbersome for users and more costly in terms of the number of CPU
instructions (Deubler & Koestler, 1994). When developing general software
components for reuse in the future, one has to consider what information systems will
be built in the future and also to evaluate the straightforwardness needed for the
development of new information systems, etc. (Nierstrasz et al., 1992).

Note that the word ‘composed’ is interesting, components using interfaces from each
other are usually said to be composed together (Petre, 2000, p. 2). If the component will
be unused then it is of course no idea to develop it as a reusable component, there has to
be something that validates the effort (Sparling, 2000). One has also to consider the
costs of reuse, which includes costs for creating or purchasing, reuse work, tools,
product, libraries and implementing reuse related processes (Lim, 1994).

In addition, documentation is important when developing reusable classes; it might be
more cumbersome and more expensive than the documentation of ordinary classes
(McClure, 1996; Stevens & Pooley, 2000, p. 9). Webster (1995, p. 161) suggests that an
on-line document should be created for every class, justifying its creation and design

90

and elucidating the postulations behind it as well as the future plans for its use and
extension. The software developers should of course also update the documentation of a
class when the class is modified (Webster, 1995, p. 161).

There are several management issues regarding reuse. Lawrence & Pfleeger (1995)
found that doing reuse presupposes proper planning and measurement. Glass (1998)
even proposes that if management is not working well then the whole reuse process
might fail, which of course is in correspondence with the arguments that are presented
by Meyer (1997b). Jenz (1999a) argues that reuse is so important that one should have a
reuse manager who works with reuse issues.

Other management issues are planning and management of human issues (Bhattacherjee
& Gerlach, 1998; McClure, 1996). One has to agree on the level of reuse, to promote
reuse and to develop standards for building reusable components, etc. Furthermore Mili
et al. (1999) propose that one also has to consider the costs of reuse, and these costs
have to be weighed against the benefits. The costs of reuse are associated with the costs
of finding and understanding classes in libraries and the costs of making modifications
to existing classes (Henderson-Sellers, 1996, p. 20). If one is developing reusable
classes, one has to be aware of the reality that reusable classes are usually more time
consuming to develop and therefore also more expensive to develop (McClure, 1996).
Software reuse is concerned with the trade-offs involved in such cost-benefit decisions;
if the reuse costs a lot and the benefits are not obvious one should of course not go
ahead with it (Mili et al., 1999).

Gehringer & Manns (1996) studied software reuse through consulting managers who
directed object-oriented programming projects. The finding was as follows (quotation):

Answer to the next question ‘yes’ or ‘no’.

Does your company have an organized program to encourage software reuse?

34 Yes 19 No.

If you answered yes to the question, is the reuse:

a) Class libraries purchased from vendors? 25 Yes 8 No
b) Class libraries developed in-house? 30 Yes 1 No

Reusing is also connected to education on how the components work, to testing, which
means that the programmer gets to know how the component really works, and to
working with implementation details outside the component, which means that the
component has to fit the place were it is going to be used (Grinzo, 1998). Often
software developers have to do more drastic things like reprogram or modify existing
reusable classes, which is an activity that has to be carried out with great care (Casais,
1995, p. 201).

Finally, one can present some good arguments for reuse. According to Meyer (1995, p.
106) reuse enhances productivity, facilitates maintenance, improves reliability,
efficiency and interoperability and capitalizes on software investment, which is a result
of reuse as a customer and of reuse as a producer.

91

Analysis, summary and discussion. Reuse is a significant benefit and is predominately
due to the following issue:

• The object-oriented paradigm. Core object-oriented concepts like classes,
inheritance, polymorphism and frameworks support reuse (Cockburn, 1998,
p. 25).

Reuse might constitute one solution to the problem with expensive and time-consuming
software development. Instead of building everything from scratch one tries to reuse as
much as possible. If good reusable components are used and developed, the information
systems development process will not only gain from this, in fact the information
systems developer that has developed the components that are often reused, will
probably be famous (Watanabe, 1997). Nevertheless, several issues have to be
considered when the reuse concept is discussed and analysed. For example, the issues of
hierarchical systems and reuse, finding the appropriate components, the quality of the
components, the reusability of the components, copyright and management of reuse, etc.

In order to utilise reuse dynamically the software developers have to be able to find safe
and high-quality components that are easy to understand and modify as McClure (1996)
proposes. Out of personal experience as a C programmer at the major Finnish software
company Tietotehdas Oy (nowadays Tietoenator Oy), building a large money market
information system for the Union Bank of Finland (nowadays Nordea) in the year 1990,
the author of this study experienced, together with colleagues, an occasional difficulty
in finding suitable components for the information systems development work.
Moreover, it was often rather hard to understand how to use standard C components.
Several of the information systems developers in the money market project felt
somewhat like detectives searching for appropriate components in large C libraries.

When the reuse concept in the object-oriented model is discussed, one important issue is
the hierarchical information system and the management of complexity. According to
Booch (1994, pp. 59-65) the reuse concept can well be used when an information
system is hierarchical (Booch, 1994, pp. 59-65). If an information system is not
hierarchical, or if the information system is small, then the object-oriented paradigm
probably does not give any noteworthy advantages because the reuse concept cannot
probably be used to its full potential.

However, there are researchers who are of a different opinion. Gillach & Deyo (1993)
claim that the object-oriented paradigm can be used very well for developing almost all
kinds of information systems, and present a case where developing products and
information systems are based on other products and information systems in a common
family. In other words, information systems and software product families that share
common functionality are particularly good targets for object-oriented information
system development because there is a good potential for reuse.

Cartwright & Shepperd (2000) present a case with an object-oriented information-
system development project. The object-oriented information system had 133,000 lines
of C++ code but there was little use of reuse. In fact, there were only two inheritance
trees in the system, and the trees consisted of very few classes. Perhaps the lack of

92

inheritance and reuse was due to the problem domain or to the object-oriented analysis
and design method used as Cartwright & Shepperd (2000) state. On the other hand, it
was perhaps due to something else like the development experience of the information
systems developers who were accustomed to thinking in certain ways. They might have
thought that inheritance made the information system harder to understand and
therefore more difficult to maintain (Cartwright & Shepperd, 2000).

Verschoor & Low (1994) studied the perceived benefits of reuse in Australian
organisations and their finding was that organisations generally perceived substantial
benefits from reuse. Nevertheless, Glass (1998) presents several reasons why reuse has
not always been a success because there was “little to reuse”.

The problem with “little to reuse” seems to be connected to the fact that different
information systems need different components, and it is hard to find suitable
components for a specialised information system. If one wants a component that shows
the time on the computer then finding the appropriate component is probably not very
difficult. However, if someone wants to find a component that calculates the interest
rate in a very country specific money market information system, it might be very hard
to find such a component to reuse. Finding a suitable component that at that time needs
a lot of rewriting is often not the solution, because as most experts agree, it is more
effective to start from scratch if more than 20% of the component must be reworked for
its new use (Glass, 1998). In order to find out if a component is easy or hard to reuse
one can carry out reusability assessment as presented by Frakes & Terry (1996).

Another problem as to why there are so few components to reuse is that it is more
difficult and takes more time to build reusable components compared with developing
components for a specific information system. If the information systems developer has
a picture of what there is in the company to reuse, the developer would probably prefer
not to build another reusable component if something already exist that can be reused,
even if it is not a very good component (Glass, 1998).

As a summary, one can propose that the reuse concept is probably the most promising
concept in the object-oriented paradigm. If the reuse concept can be used in all its
potency through significant productivity, quality, efficiency and reduced cost, etc.
results can be obtained.

The following possible associations between benefits have been identified:

o The OBJECT-ORIENTED paradigm is connected to the -> REUSE concept.

o By utilising REUSE -> the MAINTENANCE of the information system
becomes easier because most maintenance tasks come from challenging new
requirements specified by users, and these requirements can be more easily
developed if ready-made components can be reused.

o By performing REUSE -> MANAGEMENT OF COMPLEXITY can be
controlled more easily because the complexity of an information system is often
due to a hierarchy that can be built by using reuse.

93

o By utilising REUSE -> HIGHER QUALITY can be achieved because the
information system is built out of readymade and tested components.

o REUSE results in -> FASTER DEVELOPMENT because readymade artefacts
like components can be used, which results in higher -> PRODUCTIVITY ->
and better EFFICIENCY -> which leads to REDUCED COSTS.

3.3.12 Portability

Portability of an information system means the ease with which the information system
can be adapted to work on different computers; in other words on other computers than
the computer that the information system was originally developed for. The portability
depends on several factors such as the programming language, the extent of exploitation
of specialized system functions and hardware properties. (Pomberger & Blaschek, 1996,
p. 13) Portability can be considered a part of quality (Graham, 2001, p. 45), but in this
study portability is presented in a sub section of its own.

Theoretically, portability can be considered a benefit of the object-oriented paradigm
(Agarwal et al., 2000), although platform independence is not actually related to the
object-oriented paradigm. The idea is that an object-oriented program can run on every
computer with the assistance of a virtual machine, like the Java Virtual Machine (Franz,
1998). In order to achieve this goal one has to use design independence. Classes are
then developed to be independent of platforms, hardware and software environments
(Martin & Odell, 1992, p. 34). The independent classes should also employ requests and
responses of standard formats so that they can be used with multiple operating systems,
database managers, network managers and graphic user interfaces, etc. (Martin & Odell,
1992, p. 34).

Interesting is the platform independence that the programming language Java has
(Tyma, 1998). Java is portable because of it’s compiler targets the Java bytecode and
not any part of the operating system or hardware. Java works in any environment, which
means that all platforms will support Java programs and pure Java applications (Martin
et al., 2001).

There are also of course other portability schemes like the Juice solution developed by
University of California Irvine (Franz, 1998). One can write programs, compile them
and run them on every computer without porting the program (Tyma, 1998). There are
also interesting solutions in this area, for example, the Juice solution is transparent to
end users and applets based on Juice can coexist with applets based on Java (Franz,
1998). However, all computers do not have a virtual machine, which makes the benefit
less useful (Tyma, 1998). Another problem is that virtual machines put too much
responsibility on the behaviour of the application, or information system, on the virtual
machine (Watson, 1999). The Java Virtual Machine is also not the best solution
according to Franz (1998) who proposes that there are better solutions for cross-
platform portability.

94

Analysis, summary and discussion. In this study portability is seen as a benefit of
object-oriented software development although this can be questioned, and this is due to
the following issue:

• The object-oriented paradigm itself. Portability is considered a benefit of the
object-oriented paradigm (Agarwal et al., 2000). Although portability in this
study is considered a benefit of the entire object-oriented paradigm, it is often
associated with the programming language Java and information systems
developed with Java (the Juice solution developed by University of California
Irvine is another example). Portability solutions have also been developed of
course with the functional paradigm.

The following possible associations between benefits have been identified:

o The OBJECT-ORIENTED paradigm -> has a good support for PORTABILITY
in the Java programming language (and some other programming languages)

3.3.13 Discussion of the benefits in general

There are several benefits of the object-oriented paradigm. Some of the benefits are
comprehensive and some are more detailed. One general objective of the object-
oriented paradigm is to support reuse and make it possible to develop information
systems out of existing, high-quality software components. The reuse possibility then
gives birth to better management of complexity, better productivity, faster development,
reduced costs, better quality, better usability, better maintenance and easier End-User
computing.

The second significant benefit of the object-oriented paradigm is the naturalness and
better mapping to the problem domain. The end users, clients and business executives,
etc. are supposed to experience the world (and problem domain) as a collection of
objects, which of course fits well with the object-oriented paradigm.

The third benefit of the object-oriented paradigm is better integration between analysis
and design using the object-oriented paradigm as compared with older paradigms. This
“one model benefit” can be experienced when working with most object-oriented
software development models. In object-oriented information systems development
object-oriented analysis and object-oriented design are important activities and
considered more powerful than traditional analysis and traditional design. Therefore
they are presented as benefits in this study, although neither object-oriented analysis nor
object-oriented design can be considered as a pure benefit of the object-oriented
paradigm.

The fourth benefit presented is portability, despite the fact that this benefit is very much
connected to the programming language Java (the Juice solution developed by
University of California Irvine was presented as another example).

When starting to scrutinize the benefits of the object-oriented paradigm, the benefits
might sometimes be difficult to recognise. For example, Coad & Yourdon (1991, p. 17)

95

present several benefits of object-oriented design. However, many of the benefits are
rather common, and it might be difficult to understand them. A benefit like ‘improve
problem domain expert, analyst, designer and programmer interaction’ is quite vague
because different persons can apprehend these issues in various ways.

The findings of Gehringer & Manns (1996), however, support the claims of the benefits
of the object-oriented paradigm. It is probably like Webster (1995, p. 23) proposes:
“object-oriented development offers significant benefits in many problem domains, but
those benefits must be considered realistically, as must the costs of object-oriented
development”.

3.4 Problems with the object-oriented paradigm

Taylor (1990, pp. 109-113) discusses the following potential concerns with the object-
oriented paradigm: the maturity of the technology, the need for standards, the need for
better tools, the speed of execution (discussed comprehensively by Pomberger &
Blaschek, 1996, pp. 284-286), the availability of qualified personnel and the costs of
conversion and support for large-scale modularity. Pancake (1995) studied the question
of what problems there are with the object-oriented paradigm in information systems
development, and why in 1995 there were still many companies that did not use the
object-oriented paradigm. The author identified several obstacles that have to be
overcome before the object-oriented paradigm becomes a standard for industry
applications in the future. In addition, Johnson (2000) and Steinmann (1992) found
several problems with the object-oriented paradigm. In 1992 Steinmann presented 17
pitfalls and recommends that one has to be very careful when moving into the object-
oriented paradigm. However, in the rather recent study by Johnson (2000) the
information systems developers that participated in the study viewed the presented
problems as virtually nonexistent.

In this section only problems that are connected with the object-oriented paradigm are
presented. Specific problems connected only to analysis, design, programming or
execution are not dealt with.

The problems are presented and analysed one after the other and possible connections to
other problems are identified in order to develop a basis for further research.

In this analysis different problems with the object-oriented paradigm are studied with a
focus on the issues that are behind these problems. The problems are further divided
into those that could be solved if the market would be ‘mature’ and those that are
intrinsic to the object-oriented paradigm itself. According to Krajnc (1997; cited by
Helton, 1998) the major setbacks of object-oriented information systems development
are actually due to the problems that are intrinsic to the object-oriented paradigm. As an
example of such an intrinsic problem one can present the risk of creating spaghetti like
code because all objects may reference each other. These reference problems might give
some information systems developers reasons for scepticism about the possibilities of
developing large information systems.

96

3.4.1 Complexity

In the Survey of Advanced Technology 1996 (Pickering, 1996, p. 6-2), it was found that
the most significant difficulties with the object-oriented paradigm are complexity and
compatibility with existing practices. Johnson (2000) proposes that complexity of
object-oriented analysis and design methods and furthermore complexities of object-
oriented programming languages are considered significant disadvantages with the
object-oriented paradigm. Noack & Schienmann (1999) and Lauesen (1998) mention
complexity and especially the complexity of object-oriented programming code as a
disadvantage of the object-oriented paradigm. In another study by Harrison et al. (1996)
object-oriented code was found more complex and more difficult to understand than
functional code. Maring (1996) is of the same opinion as Harrison et al. (1996) and
reports that classes are often so complex that only the programmers who have
developed the classes are capable of debugging, enhancing and maintaining the
software they wrote, and this is with difficulties.

Gamma et al. (1995, p. 1) also propose that object-oriented information system
development as an activity from requirements analysis to maintenance might be
difficult. The difficulty is primarily connected to object-oriented analysis and design
(Johnson et al., 1999), predominantly because object-oriented analysis and design
requires a new and different way of thinking. The information system developer has to
find pertinent objects, put them into classes at the correct granularity, define inheritance
hierarchies, define class interfaces and finally establish key relationships between
objects. When doing all this, the information systems developer has to remember that
the object-oriented software should be reusable. (Gamma et al., 1995, p. 1)

As an example of the complexity of an object-oriented application Webster (1995, p.
204) presents the following: let us assume that there is an average of eight methods per
object class in the object-oriented application. For 10 objects the upper limit of message
links is now 720 and the upper limit for 100 objects comes close to 80,000 distinct
message links. This is not the end of the structure, one also has to deal with the possible
ranges of parameter values as passed among objects for method calls, and even worse,
one has to examine the state of the receiving objects when the method calls are made
(Webster, 1995, p. 204).

Hu (2005) proposes that university teachers have thought that the object-oriented
paradigm is complex for a rather long time. Eriksson (1992, p. 442-443) proposes that
the object-oriented paradigm is often considered complex by information system
developers, and that there is a lack of good practices and standards. If good tools were
available for understanding the often more dynamic behaviour of object-oriented
information systems, then its complexity would probably not be considered a major
problem by information systems developers (Love, 1993, p. 189). One reason why the
object-oriented paradigm is considered complicated by information system developers
is probably that research and development of the theory of the object-oriented paradigm
have been performed in the academic world, and this often creates a conflict because
many information system developers are often fairly practical and the solutions (like
multiple inheritance) that the systems developers have to use are rather theoretical
(Eriksson, 1992, pp. 442-443).

97

It is also difficult to make good object-oriented design decisions and to reuse existing
components because it is hard to document components and to understand existing
software components (LaBoda & Ross, 1997). There are also many possibilities to
develop complex software when using the object-oriented paradigm; one can easily
create new classes, rearrange hierarchies, add data and function members to objects,
construct new objects from old ones (by inheritance) and have objects to send messages
to each other, etc. (Webster, 1995, p. 116).

However, Pittman (1993) claims that the object-oriented paradigm is not complex per
se, the complexity usually arises out of the way the information systems developers
manage complex structures. According to Sheetz & Tegarden (1996) complex problem
domains and complex implementation environments imply more complex object-
oriented information systems.

Pittman (1993) even proposes that the requirements for training and experience are
larger for an object-oriented developer than for a conventional developer. Information
systems developers are, however, very different regarding skills and productivity; there
are studies that show productivity differences of 25:1 among information systems
developers with comparable training and experience (Love, 1993, p. 220). Therefore the
level of experience and training of staff are significant success factors in object-oriented
information systems development (Pittman, 1993). Further Sheetz & Tegarden (1996)
propose that developing a reusable object-oriented information system is usually more
difficult than developing a “one-shot” information system. Polymorphism can also
increase the complexity of the object-oriented information system (Sheetz & Tegarden,
1996). If the underlying semantics of the methods in polymorphism with the same name
are different, this will probably make the object-oriented information system more
complex (Sheetz & Tegarden, 1996).

Complexity in the distributed object-oriented information system also makes it difficult
to know where to put the functionality among the objects in the hierarchy (Sheetz &
Tegarden, 1996). The labelling of attributes and methods and the determination of the
class protocol can also make the already defined classes even more complex (Sheetz &
Tegarden, 1996). Moreover overuse of inheritance will make the object-oriented
information system more complex, and developing reusable classes is of course more
difficult than developing “one-shot” classes, which makes development work more
complex (Sheetz & Tegarden, 1996).

Sheetz and Tegarden (1996) found that because the object-oriented paradigm was
considered complex there were many other difficulties in object-oriented information
systems development. Among these difficulties were communication between objects,
designing methods, using methodologies and tools, using the existing class hierarchy,
designing classes, incorporating reusability constraints and project management.
Lieberherr & Xiao (1993) also consider object-oriented programs rigid and hard to
evolve because object-oriented programs contain a lot of redundant information about
class relationships.

Lauesen (1998) claims that some kinds of information systems cannot even be
developed with the object-oriented paradigm. Especially business information systems

98

are difficult to develop with the object-oriented paradigm because the complex structure
of the business domain forces the developers to use objects that are not purely object-
oriented. These objects are called degenerate objects. (Lauesen, 1998)

Analysis, summary and discussion. Complexity is a problem with the object-oriented
paradigm and this is mainly due to the following issues:

• Theoretical concentration. The object-oriented paradigm has been developed in
the academic world (Eriksson, 1992, pp. 442-443). Information systems
developers that are often more practical, however, do not always appreciate the
academic focus. Probably there are also many information systems developers
that have an academic education but not in the object-oriented paradigm. The
object-oriented paradigm is then considered complex because it is based on
different way of thinking than the functional paradigm. Instead of mainly
working with algorithms and functions one has to work with objects, classes,
inheritance and existing components.

• Difficulties in understanding existing software components and other software
artefacts. It might be difficult to reuse existing components, especially if the
components are deficiently documented (LaBoda & Ross, 1997). Because
different information systems developers have different ways of programming
(programming is considered as a specific art by many researchers and authors)
it might be difficult to understand how an existing software component works.
This is also the daily challenge for information systems developers working
with maintenance of information systems.

• Possibilities in the object-oriented paradigm to create complex structures and
object-type spaghetti code (Krajnc, 1997; cited by Helton, 1998; Webster,
1995, p. 116). The complex structures and object-type spaghetti code comes
from objects referring to each other in an uncontrolled manner, rearranged
class hierarchies and new (added) data and function members to objects, etc.

• Polymorphism. If the underlying semantics of the methods in polymorphism
with the same name are different, this probably makes the object-oriented
information system more complex (Sheetz & Tegarden, 1996). Polymorphism
has been considered very complex by several authors (like Penker (1994)) and
developing mediocre solutions based on polymorphism makes things even
worse.

• Distributed systems. Distributed object-oriented information systems are
usually complex and it might be difficult to know where to put new
functionality among the objects in the hierarchy (Sheetz & Tegarden, 1996).
The distribution concept usually makes information systems more complex,
and distributed object-oriented information systems are often very complex.

• Overuse of inheritance. One should use the inheritance mechanism with
considerable care; otherwise complex inheritance structures are easily
developed (Sheetz & Tegarden, 1996). One can perhaps actually propose that
inheritance hierarchies are usually complex per se.

99

• Lack of good tools for managing the dynamic behaviour of object-oriented
information systems (Love, 1993, p. 189). If there would be adequate tools for
managing complexity the problem would not exist. There is always a need for
good information systems development tools. If there are no suitable
information systems development tools (like CASE tools) then the information
systems development work inevitably becomes more complicated.

Sheetz & Tegarden (1996) introduced several other risks of developing complex object-
oriented information systems. These risks were inadequate communication between
objects, deficient designing of methods, second-rate use of methodologies and tools,
using the existing class hierarchy in an uncontrolled way, designing classes badly,
incorporating reusability constraints in a unsatisfactory way and imperfect project
management. One can conclude that there are many different possibilities for using the
object-oriented concepts in an inferior manner, probably because the object-oriented
concepts are rather difficult to understand, and one must be trained and experienced in
order to perform high-quality object-oriented information systems development. As an
example of a difficult object-oriented concept one can mention polymorphism, which
often is considered as complicated and incomprehensive (Penker, 1994, p. 20).

As a summary, one can propose that the complexity problem seems to come from the
object-oriented paradigm per se, although one has of course to remember that
complexity is a rather subjective issue, different people with different backgrounds
perceive different things as complex.

The following possible associations between problems have been identified:

o The OBJECT-ORIENTED paradigm is based on rather complex concepts like
polymorphism and inheritance hierarchies. This results in higher ->
COMPLEXITY in the information systems development work.

3.4.2 The object-oriented paradigm is still immature

The object-oriented paradigm is still considered immature by some researchers, and
often object-oriented projects are criticised as promising too much and delivering too
little (Bhattacherjee & Gerlach, 1998). Webster (1995, p. 39) recommends that if one
starts with a first object-oriented information systems development project one should
prepare to enter areas that are still rather undeveloped.

Some pure object-oriented programming languages (like Smalltalk) are still not very
well supported and it might be difficult to find suitable compilers and environments.
Hybrid object-oriented programming languages are better supported, but there is always
a danger in using them. Moreover, existing programming languages are neither
consistent nor interoperable. It might be difficult to connect information systems
programmed in different languages. The object concept can also mean different things
in different programming languages. (Pancake, 1995) Further there is still a lack of
experienced object-oriented information systems developers although this problem is
becoming less conspicuous the more wide spread the object-oriented paradigm becomes
(Räisänen, 1997a, pp. 14-15).

100

There is still a lack of good and suitable object-oriented tools like CASE tools, object-
oriented databases, object-oriented reuse tools and object-oriented project management
tools and there is a lack of experience on how to use the available tools (Bhattacherjee
& Gerlach, 1998; Henders, 1998; LaBoda & Ross 1997). There is also a lack of
components to reuse, and companies have to put great effort in developing components
and libraries that can be reused later on (Graham, 2001; p. 57; Henders, 1998; LaBoda
& Ross, 1997; Smith & McKeen, 1996). It might also be rather difficult to find a
suitable component to reuse (Graham, 2001, p. 57), and when one finds a component
that would be appropriate for reuse there is still a considerable risk that the component
has not been updated and is of an older version because version problems are not
uncommon (Hopkins, 2000).

In the study by Johnson (2000) the object-oriented paradigm was not considered
immature by object-oriented information system developers, although a problem with
the unavailability of object-oriented CASE tools was pointed out. One has of course to
remember that the word 'immature' is a rather subjective word; for example, Noack &
Schienmann (1999) state that UML is still ’immature’, and therefore only a notion and
not a full life cycle and process focused methodology.

The object-oriented paradigm also constantly matures as new solutions to earlier
problems are developed. For example, the problem with connecting the object-oriented
paradigm with relational databases can be considered as solved through many different
approaches. However, Reinwald et al. (1996) present an example of a solution that
made things even more complex.

Analysis, summary and discussion. This problem comes from the fact that the object-
oriented paradigm became a major information systems development paradigm in the
late 1980’s though the object-oriented paradigm itself is much older. The indications of
its immaturity are disappearing all the time, but there are still some significant
symptoms such as the following (summary):

• There are few compilers and environments for pure object-oriented
programming languages (Pancake, 1995).

• There is a lack of experienced object-oriented information systems developers
(Räisänen, 1997a, pp. 14-15).

• There is a lack of object-oriented tools like CASE tools, object-oriented
databases, object-oriented reuse tools and object-oriented project management
tools, etc. (Bhattacherjee & Gerlach, 1998; Henders, 1998).

• There is a shortage of components to reuse (LaBoda & Ross, 1997; Smith &
McKeen, 1996).

It is surprising how many object-oriented areas were still considered immature in the
late 1990’s; about 10 years after the object-oriented paradigm became an interesting
area of study in the software engineering field. During recent years the immaturity is
probably mostly connected to specific areas of the object-oriented paradigm or to
specific object-oriented programming languages like Smalltalk.

101

The following possible association between problems has been identified:

o The OBJECT-ORIENTED paradigm is - > considered IMMATURE in some
areas.

3.4.3 Poor support for testing and some other areas in information systems development

Information systems often have little information on object reliability, on performance,
on resource utilisation and on security capabilities (Pancake, 1995). The object-oriented
paradigm also had poor support for persistence issues and for stylistic guidelines for
object-oriented programming (Henderson-Sellers, 1994, p. 21). Wolber (1997) proposes
that important characteristics and processes as implementation and testing are poorly
supported by most object-oriented information systems development methods.

Henders (1998) proposes that there is inadequate support for integrating the new object-
oriented environment and paradigm with existing legacy information systems. Wrappers
could, however, be a suitable solution. When the existing traditional legacy information
system is a relational database then other solutions like Factory classes can also be used.

Malan et al. (1995) present experiences from Hewlett Packard where they state that
most notations used in object-oriented information systems development methods (they
used Fusion, OMT by James Rumbaugh, Coad & Yourdon and Shlaer-Mellor) pay little
attention to how the method will cope with the size of the problem. Further, subsystems
concurrency and real-time systems reuse and requirements were not well supported in
the used methods. However, newer methods like the unified method (UML) probably
address these missing characteristics in a better way.

Pree (1997) argues that classes/objects implemented in one object-oriented
programming language cannot interoperate with classes/objects implemented in
another. However, one has to remember that there is support in the object-oriented
paradigm for many important characteristics and software issues. For example, the
Common Object Request Broker Architecture (CORBA) is a framework defined by the
Object Management Group to provide a unified communication layer for object-
oriented information systems (Boulanger & Dubois, 1998). CORBA is an API
(application programming interface); other APIs are, for example, JNI and RMI. APIs
can be used, for example, for connecting legacy information systems with object-
oriented information systems (Watson, 1999).

Testing the information system or software is important. According to Brooks’ rule of
thumb (Brooks, 1979; cited in Webster, 1995, p. 90) the time required for a project
should be broken down into one-third for design and prototyping, one-sixth for
implementation and half for testing. The object-oriented paradigm has little support for
testing and several information systems software development methods are poor in
providing guidance for testing (Malan et al., 1995). The major testing problems of an
object-oriented information system are according to Kung et al. (1995) the following:

• The understanding problem. This problem is due to the encapsulation and
information-hiding features. Because a member function of an object might

102

call another member function of another object, there is a 'delocalized plan'
with an invocation chain of member functions. It is difficult to test such a
structure where several member functions might call each other in a chain.

• The complex dependency problem. This problem comes from the complex
relationships that exist in an object-oriented information system. Examples of
such relationships are inheritance, association, aggregation, template class
instantiation, class nesting, dynamic object creation, member function
invocation, dynamic binding and polymorphism, etc. In other words, classes
are dependent on each other and testing structures like these is not easy
because it is difficult to understand a given class in a large object-oriented
information system if the class depends on many other classes. Dynamic
binding and polymorphism are also difficult to test.

• The state behaviour testing problem. The effect of an operation performed
by a method on an object depends on the state of the object. The operation
might also change the state of the object. The combined effect of the operations
must be tested, which is difficult.

• The tool support problem. There are very few CASE tools for testing object-
oriented systems.

Changes to an object-oriented program can have many effects that all have to be tested.
However, testing is difficult due to the problems mentioned above. In addition,
Ramaswamy (2001) argues that testing object-oriented programs can be more difficult
and subtle than testing traditional functional programs. Lam (1997) proposes that testing
object-oriented programs is somewhat different from testing traditional structural code.
In object-oriented programs the information systems developer uses model tests, class
tests, cluster tests, system tests, integration tests, regression tests and stress tests.
Further the software developer tests iteratively and incrementally. There are of course
also other testing strategies like white box testing and black box testing of components
(Webster, 1995, p. 206). In white box testing the information systems developer has
access to the code of the component, and in black box testing the information systems
developer is forced to test all possible calls to the component because the information
systems developer only has access to a compiled copy of the component (Webster,
1995, p. 206).

Stevens & Pooley (2000, p. 9) propose that in object-oriented information systems
development bugs ought to be easier to find because then one could avoid examining
irrelevant modules. Nevertheless, Hatton (1998) argues that testing in C++ is much
harder than testing in C; he reports of a case where each C++ correction took more than
twice as long to fix as each C correction. This could be the cause because C++ per se is
more difficult to test than C, but Hatton (1998) does not think that this is the case, and
argues that in general it appears to be more difficult to test object-oriented information
systems than functional information systems. However, according to several researchers
like Koskimies (1995) and Webster (1995, p. 138) C++ is hard to learn and use, and the
circumstances are that some information systems developers have difficulties to
perform good C++ programming.

103

However, one has to remember that C++ is a hybrid programming language and not a
pure object-oriented programming language. Hatton (1998) also suggests that corrective
maintenance costs are much higher in object-oriented information systems written in
C++ than in conventional information systems written in C.

Analysis, summary and discussion. It seems that the object-oriented paradigm in the
late 1990’s still had poor support for the following issues:

• Object reliability (Pancake, 1995).

• Performance (Pancake, 1995).

• Resource utilisation (Pancake, 1995).

• Security (Pancake, 1995).

• Persistence (Henderson-Sellers, 1994, p. 21).

• Stylistic guidelines for object-oriented programming (Henderson-Sellers, 1994,
p. 21).

• Testing (Wolber, 1997).

The reason why the issues above might be poorly supported by the object-oriented
paradigm is that the object-oriented paradigm is still immature in some areas. For
example regarding testing, it is somewhat difficult nowadays (2005) to understand that
there would be poor support for the testing of object-oriented information systems. The
extensive book on testing object-oriented information systems by Binder (1999)
supports this view.

The following possible associations between problems have been identified:

o The object-oriented paradigm is still IMMATURE in some areas -> which
results in POOR SUPPORT FOR SOME AREAS.

3.4.4 Difficulties in measuring object-oriented systems

In the sub section on measuring productivity and quality in information systems
development the lack of appropriate object-oriented metrics was discussed. The lack of
object-oriented metrics makes the measurement of object-oriented information systems
development projects and object-oriented information systems difficult.

Analysis, summary and discussion. It would be favourable to be able to measure
object-oriented information systems because one would like to compare object-oriented
information systems with each other, as well as compare object-oriented information
systems with similar traditional functional information systems.

There are some object-oriented metrics on the market. The problem seems to be the lack
of experience in how to use these metrics (Räisänen, 1997a, p. 16) and the difficulties in
finding suitable metrics for a specific object-oriented software development project.

104

The reuse concept seems to be a rather challenging concept when working with object-
oriented metrics (Kan, 1995, p. 31). If a lot is reused it might be difficult to measure the
development progress. Other concepts that affect the measurement are (Berard, 1998):

• Encapsulation and information hiding.

• Polymorphism (Webster, 1995, p. 96).

• Inheritance.

• Localisation.

If these object-oriented concepts would be integrated in good object-oriented metrics
and the metrics would be commonly known and well tested, then there would be great
progress in the area of object-oriented metrics.

The following possible association between problems has been identified:

o The object-oriented paradigm is still IMMATURE in some areas -> one area is
software metrics which results in DIFFICULTIES IN MEASURING OBJECT-
ORIENTED SYSTEMS.

3.4.5 Training & lack of experience

Many people consider the object-oriented paradigm hard to understand and use because
it is based on new concepts like encapsulation and inheritance, new programming
techniques like using classes and objects and new database modelling techniques, etc.
The object-oriented paradigm might further introduce new working roles like class
designers, object architects and object-oriented programmers. The birth of new working
roles is of course dependent on how tasks are divided among the personnel. Further the
work processes might change and new work processes such as reuse-based development
are introduced. (Page-Jones, 1998)

Booch (1994, pp. 288-289) and Sheetz & Tegarden (1996) argue that it takes time for
the information systems developers and managers to learn how to use the object-
oriented paradigm. The object-oriented paradigm is very different from traditional
paradigms (Lam, 1997) and one can talk about a change in the mindset and a new way
of working and thinking (Henderson-Sellers, 1994, p. 21; Jenz, 1999a).

Bhattacherjee & Gerlach (1998) propose that it might take several years to learn how to
carry out first-class object-oriented information systems development, though Berard
(1998) proposes that it takes the average information systems developer about 6 months
to become comfortable with the object-oriented paradigm. According to Johnson et al.
(1999) it takes about six weeks for a programmer to become proficient with an object-
oriented programming language.

According to findings presented by Berard (1998) an object-oriented information
systems developer should plan on taking about one day per class to eventually fully
understand all the classes in the class library under consideration. McClure (1996)

105

recommends two days of hands-on training per class. In addition, Fagerström (1995, p.
225) reports that information systems developers have often had difficulties in learning
how to use class libraries, mostly because they consist of numerous classes and complex
relations between the classes. It is difficult to navigate through existing libraries of
classes (Henderson-Sellers, 1992, p. 59), it is difficult to analyse a problem in terms of
objects and it is difficult to perform good object-oriented analysis and design (Bohrer et
al. 1998). Further Henders (1998) suggests that some information systems developers
do not understand the value of reuse.

Cockburn (1998, p. 2) proposes that it might take as much as nine months in order to
fully earn back the salaries of the information systems developers; if nine months is
multiplied with the hundreds or thousands of developers that companies will have to
train, then the total cost is staggering, and many business executives will not consent to
such extent. The problem with the lack of knowledge, training and experience with
object-oriented projects might also be so substantial that managers might fear that
adopting the object-oriented paradigm could have unanticipated impacts on mission-
critical activities in the company (Bhattacherjee & Gerlach, 1998).

Further, many information systems developers are not very willing to shift from the old
traditional functional paradigm to the object-oriented paradigm (Henders, 1998; Malan
et al., 1995). This might be because they have considerable experience in functional
information systems development and it is always hard and time consuming to become
an expert in a new field. Some information systems developers think moreover that the
traditional functional paradigm is simply the best for solving information systems
development problems and for building information systems (Lam, 1997).

There might also be political reasons that make information systems developers
unwilling to adopt the object-oriented paradigm; for example that they do not, nor wish
to, understand it, that they are afraid that they will not be able to understand it or that
they in fact do want to adopt it but in their own way, etc. (Webster, 1995, p. 58). Some
information systems developers that are good at traditional structural information
systems development might feel that they would be worse at object-oriented
information systems development and are therefore not willing to move into this new
area (Webster, 1995, p. 98). Sim & Wright (2002) even propose that it would be more
difficult to learn the object-oriented paradigm for information systems developers that
are experienced in the traditional functional paradigm, than it would be for novices.

Nevertheless, starting to use the object-oriented paradigm might also motivate the
personnel, as reported by Davis & Morgan (1993). In addition, Capper et al. (1994)
state that the real challenge for the information systems developers at IBM in the United
Kingdom was actually the change from the functional paradigm to the object-oriented
paradigm.

According to Noack & Schienmann (1999) and Radin (1996) it might be difficult to
find experienced object-oriented information systems developers. This might be due to
the fact that many developers are fully occupied by their current work and have no time
to start studying a new software development paradigm (Fayad et al., 1996).

106

Many information systems developers do not know where to start when moving to
object-oriented information systems development and are neither sure that it is worth
the effort (Fayad et al., 1996; Malan et al., 1996, pp. 32-34). The management of object-
oriented projects is important and only experienced managers should manage first-time
object-oriented projects (Ramaswamy, 2001). Radin (1996) also claims that
inexperienced information system developers tend to write object-oriented programs
that are slow, difficult to test and hard to debug. Education, mentoring and gaining
experience are therefore important issues. Not only working with information systems
developers is important for management, management has also to consider issues like
how this way of developing information systems might affect issues like the business
strategies of the company (Jenz, 1999a).

Hohmann (1996) found that students at universities learn object-oriented concepts
rather easily but have difficulties in creating solutions that are based on the concepts.
Teachers that teach the object-oriented paradigm in first year courses have reported that
they find teaching this concept more difficult than teaching the traditional functional
paradigm (Kölling & Rosenberg, 2002). This is not due to the complexity of the object-
oriented paradigm, but due to a set of other factors like a lack of experience and
knowledge of how to teach these courses, unfamiliarity with the object-oriented
paradigm, inadequate teaching materials, a lack of suitable software tools and problems
with moving from the algorithm based view.

Love (1993, p. 162) presents some recommendations for training object-oriented
information systems developers. First, the developers have to learn the concepts of
object-oriented information systems development, which takes about one week. Then
the traditional base programming language (of the hybrid programming language in
question, if such is used) is studied, which takes about two weeks or more depending on
the prior experience of the developers. The next step is to learn the object-oriented
programming language and component library by using prototyping and developing
sample programs; this step takes approximately 4-6 weeks for prototyping. Learning the
component library takes about a further two weeks for 20 components (this is not true
for larger libraries that must be learnt through experience). The last step is to plan a
project (taking about one week) and to develop the first real object-oriented information
system, taking about 20-40 weeks. During the latter stages guidance from a mentor or
an experienced object-oriented information systems developer is usually needed.

Gehringer & Manns (1996) studied the problems of the object-oriented paradigm by
asking managers who directed object-oriented programming projects. The findings were
the following (quotation):

Rate the next twelve statements on a scale of 1 (=strongly disagree) to 5
(=strongly agree)

A roadblock we have faced in using the object-oriented paradigm has been

Retraining employees 3.88
Few qualified recent graduates 3.57
A lack of quality class-libraries 3.47
The poor quality of O-O development environments 3.06
Poor quality or an absence of needed tools 3.32

107

The results indicate that in 1996 it was problematic to get trained information systems
developers. If one faces a problem finding trained developers one has to develop the
object-oriented skills among the developers in the company. Some experiences of how
this can be done is presented by Malan et al. (1995) who present issues such as training,
hands-on experience, mentoring, pilot projects, continued learning and identifying and
solving problems, etc. Joos (1994) proposes that education is important and presents
education forums like seminars, conferences and workshops. Steinmann (1992)
recommends pilot projects.

One way of solving the problem with this lack of experienced object-oriented
information systems developers is to let the object-oriented learning occur during
project work with the help of a mentor (Ramaswamy, 2001; Sircar et al. 2001).

However, the learning of the object-oriented paradigm should not interfere with existing
information system development work and ongoing projects (Bhattacherjee & Gerlach,
1998). Webster (1995, p. 35) proposes that a culture of learning the object-oriented
paradigm is needed, and in order to achieve this the managers and developers that
progress the most need to be rewarded. Books on object-oriented learning culture,
relevant journals etc. are a necessity, and the developers should have time to read them
(Webster, 1995, p. 35).

Analysis, summary and discussion. The object-oriented paradigm is not the only
software development paradigm and a lot of information systems development work is
still carried out consistent with the functional software development paradigm. The
reason for this might be that the object-oriented paradigm is still immature, or perhaps
there is a resistance to move into a new way of developing information systems. The
complexity of the object-oriented paradigm might also be a notable hindrance for
adopting object-oriented information systems development.

A lack of training in the object-oriented paradigm has been a problem, and although
today a majority of universities and schools in the information systems development
field teach the object-oriented paradigm, there are still companies that might experience
a difficulty in finding trained object-oriented information systems developers. Further
older information systems developers who are experienced in some other field are not
always interested in starting to develop object-oriented information systems.

The following possible associations between problems have been identified:

o The object-oriented paradigm is still IMMATURE in some areas -> and it might
be difficult to find TRAINED and EXPERIENCED information systems
developers in these areas.

o The Object-oriented paradigm has high COMPLEXITY -> which makes
TRAINING more difficult and there are several information systems developers
that have a LACK OF EXPERIENCE.

108

3.4.6 Efficiency in two different areas

In this sub section two very different types of efficiency problems connected to object-
oriented information systems development are presented.

1. There are often problems with efficiency because object-oriented information system
development might take a lot of computer processing time (Booch, 1994, pp. 288-
289; Johnson et al., 1999). Henderson-Sellers & Edwards (1994, p. 21) also propose
that performance issues have to be solved before the object-oriented paradigm can be
fully utilised. In the study by Johnson (2000) decreased system run-time performance
was also considered a problem.

2. Page-Jones (1992b) discusses efficiency in another fashion and warns about starting
to use the object-oriented paradigm if effective information systems software
development is desired but there is no suitable repository with components for reuse.
If the information systems developers are forced to develop reusable classes in
connection with information system development work, the overall efficiency will
probably be poor (Page-Jones, 1992b). Much extra effort is needed to develop
reusable classes, and Page-Jones (1992b) presents a rule of thumb that proposes that
it takes about 20 days for a person to develop a class for use immediately, and about
40 days for a person to develop a reusable class.

Analysis, summary and discussion. It seems that in the late 1990’s the object-oriented
paradigm was still suffering from efficiency problems in the following areas:

• Object-oriented information systems development takes up a significant
amount of computer processing time and system run-time was poor because of
the object-oriented paradigm.

• Developing reusable classes in connection with the ordinary information
systems development work effects the efficiency of the information systems
development project negatively.

The trend during recent years has been that the speed and efficiency of computers have
become better all the time and hardware efficiency problems have usually decreased to
a corresponding degree. However, what the future holds is difficult to predict.

The need for developing reusable components will also decline when the object-
oriented paradigm becomes more mature and there will be more reusable components in
companies, organisations and on the market.

The following possible associations between problems have been identified:

o The object-oriented paradigm is still IMMATURE in some areas, which results
in -> EFFICIENCY problems.

109

3.4.7 Costs

The starting costs are often huge when one starts to develop a completely new object-
oriented information system, because there is nothing that can be reused and everything
has to be developed from scratch (Booch, 1994, pp. 288-289). Building for reuse can be
very expensive and it can cost 3-10 times as much as merely developing the information
system (LaBoda & Ross, 1997). Cost issues are connected to productivity issues but the
productivity issues are presented in a sub section of their own in this study.

According to Jacobson (1993) the first object-oriented projects are often expensive and
one has to see the object-oriented information systems development project as an
investment for the future. Page-Jones (1992b) also presents this “technology trap”
where the first object-oriented information systems development projects are costly and
not very productive because there is nothing to reuse. The first projects are frequently
expected to produce robust libraries with reusable components and classes, although
these first projects cannot utilise the reuse concept because there is nothing to reuse.

Mili et al. (1995) present further the indirect and direct costs of including a component
into a library of reusable components and the cost of integrating and/or adapting the
component.

Analysis, summary and discussion. The starting costs for a new object-oriented
information systems development project are usually high because there is nothing to
reuse. As the object-oriented paradigm gets more mature this problem diminishes
though there are also other costs with reuse as Mili et al. (1995) indicate.

Another issue that will most likely affect the costs negatively is the costs of finding
components or other object-oriented software artefacts to reuse. This is an issue that
Mili et al. (1995) discuss in detail; they also present the following formula for the
average cost of attempting reuse in the following way (quotation):

[Search + (1-p) x Development]

Where Search is the cost of searching for a component in a database, Development is
the cost of developing the component from scratch, and p is the probability that the
component is found in the database. The reuse option is feasible only if (quotation):

[Search + (1-p) x Development] < Development or

 Search < p x Development.

The following possible association between problems has been identified:

o The object-oriented paradigm is still IMMATURE in some areas, which results
in -> higher COSTS.

110

3.4.8 Limited usability of components

Existing components and frameworks connected to products on the market are mainly
intended for graphical user interfaces and other special areas (Schmidt & Fayad, 1997);
therefore, it might be difficult to find reusable components in other areas (Garlan et al.,
1994; Szyperski, 1999, p. 11). Another problem is that components are seldom built
explicitly for reuse and therefore are difficult to reuse (Garlan et al., 1994; Radin,
1996). One has to plan for component reuse and anticipate the various ways one might
use and reuse a component and build the component accordingly (Webster, 1995, pp.
223-225). It is also recommended that one builds class libraries and frameworks that are
easy to find and use (Jolin, 1996).

Finding components for reuse is a notable problem in many object-oriented information
systems development projects. Radin (1996) proposes that intelligent search engines
might be a solution to this problem. Even if the information systems developer finds
some promising components, significant problems often remain because the chosen
components do not fit well together. Often this difficulty is due to low-level problems of
interoperability like incompatibilities in operating systems, programming languages and
database schemas, etc. (Garlan et al., 1994) Reusable components that are developed in
different programming languages are usually the problem (Konstantas, 1995, p. 70) but
there are also other mismatch problems, for example, different software architectures
might have different suppositions about the reusable components, the operating system
and the programming language might be the same, but mismatch problems still arise if
the software architectures are not the same (Garlan et al., 1994).

Another problem is several different versions of a component. When a system that uses
components grows and becomes larger, there will be a need for new functionality in the
components because of new requirements, reuse, new software tools and new operating
systems, etc. This results in several different versions of a component, or very complex
single components and the usability of the components suffers. One solution to this
problem is to use a distributed component platform like EJB (Enterprise JavaBeans
from Sun Micro Systems), ActiveX (from Microsoft) or CORBA.

Analysis, summary and discussion. In order to utilise the reuse concept one has to be
able to find appropriate and high-quality software components to reuse, and the
components ought to be usable, which is not always the case. The problem is mainly
due to the immaturity of the object-oriented paradigm, and has the following symptoms:

• Difficulties in finding components to reuse (Garlan et al., 1994).

• Reusable components are very complex (Jarzabek & Knauber, 1999).

• Potential reusable components are not built for reuse (Garlan et al., 1994).

• Reusable components are difficult to utilise (Radin, 1996).

• The reusable components do not fit well together and neither do they fit well
with the existing components in the information system under development
(Garlan et al., 1994).

111

• Reusable components can have several different versions and it is difficult to
resolve which component is the most suitable for a specific reuse situation
(Jarzabek & Knauber, 1999).

The following possible association between problems has been identified:

o The object-oriented paradigm is still IMMATURE in some areas, which results
in -> LIMITED USABILITY OF COMPONENTS because there are no suitable
components to use or existing components are complex or difficult to reuse.

3.4.9 Problems with reuse

The reuse concept has often been presented as the most promising concept in the object-
oriented paradigm. However, several authors like Eeles & Sims (1998, p. 59) propose
that reuse has not been the success one expected. However, reuse is the base for using
objects and classes, and not using reuse when working with them might be worse than
traditional information systems development (Maring, 1996).

Nierstrasz & Dami (1995, pp. 6-7) refer to Jon Udell (1994) who claims that
components that are delivered with systems like Visual Basic are a more successful
example of software reuse than object-oriented programming employing reuse.
Nierstrasz & Dami (1995, p. 7) write about an interesting debate on the Internet that
followed the claim by Jon Udell (1994). As a result of the discussion several researchers
came to the conclusion that software reuse is a matter of methodology and design, and
more than just technology. Object-oriented systems per se do not come with reuse
though reuse can be utilised with the object-oriented paradigm.

Finch (1998) proposes that among companies that use the object-oriented paradigm
there is actually little reuse; some industry watchers report 15 percent average reuse,
whereas a major consulting firm reports 25 percent reuse, etc. Nevertheless, there are
also figures of 80 percent reuse and therefore the real picture is actually a bit fuzzy
(Finch, 1998). Mili et al. (1999) claim that although there are many examples of reuse,
the fact is still that the promises of reuse remain for the most part unfilled. Jenz (1999c)
goes even further and claims that reuse actually works very poorly. However, the claim
by Mili et al. (1999) is based on the assumption that reuse will not occur if there are no
reusable ‘assets’ and that good domain engineering is important in achieving them. The
lack of assets is therefore the reason why reuse often fails to succeed. Further, if assets
are found, some have to be reused more than thirteen times before the costs of
developing the reusable assets are covered (Frakes & Isoda, 1994). What kinds of assets
are there and what important issues have to be considered in order to perform proficient
reuse? Mili et al. (1999) present the following:

Assets:

• Assets that abstract a function, for example, abstract data type implementations
in Ada.

• Assets that abstract a structure, for example, design patterns.

112

Issues:

• How assets are represented; the properties of an asset should be represented
well.

• How assets are matched; there are differences in matching assets based on
functions with queries and matching assets based on structures with queries

• How assets are developed; black-box reuse is designed in another way than
white-box reuse.

• How assets are used or reused; assets that embody a function might only be
used for black-box reuse, assets that embody a structure are usually used for
white-box reuse.

There are furthermore other more specific problems with reuse. According to Meyer
(1995, p. 111), Nokso-Koivisto (1995) and Radding (1999) information system
developers often avoid reusing existing modules, because they claim that the modules
do not work, or it is not worth the effort to figure out how they work. There is a not-

invented-here (NIH) problem where the information system developers do not trust the
work of other information system developers (Coad & Yourdon, 1991, p. 137; Eriksson
& Penker, 1996, p. 156; Henderson-Sellers & Edwards, 1994, p. 427; Schmidt & Fayad,
1997). The NIH problem usually concerns all artefacts that other information systems
developers have developed, classes, frameworks and design patterns. The more distant
the artefact is, the worse the NIH problem becomes. As a rule, one can thus argue that
reuse within a project is fairly easy; across projects it is fairly hard and across an
organisation it is exceedingly difficult. Further, there are some developers that think it is
better to develop new components from scratch instead of reusing existing components
(Sparling, 2000).

In fact, it is often hard to develop reusable classes (Nierstrasz et al., 1992) and the
motivation for object-oriented information systems developers to build such modules is
often poor (Eriksson, 1992, p. 86). Capper et al. (1994) report that developing the initial
classes with reuse in mind is strenuous and time consuming, and one has to plan for this
activity in order to get the object-oriented information systems developers motivated to
develop reusable classes. In fact, in order to achieve better motivation among
information system developers, a new ‘reuse culture’ should be incorporated in the
company (Jenz, 1999b).

According to Pittman (1993) the quality of the components is seldom a serious problem.
The manager of the information systems developer must be aware of the fact that the
“not invented here” problem might effect the quality of the information systems being
developed and therefore endorse the information systems developers to reuse
components (Fichman & Kemerer, 1993; Pittman, 1993). If the information systems
developers do not reuse components, expedient and tested functions and algorithms that
are integrated in some components will not be utilised (Love, 1993, p. 220). Pittman
(1993) proposes that a purchased component will most likely be of better quality than a
component that is developed for the same price in the company. In practice individual
information systems developers have probably developed components that they reuse;
but successful reuse of other components in the company is rare (Maring, 1996).

113

However, according to Frakes & Fox (1995) most information system developers still
prefer to reuse instead of developing new modules. Radding (1999) and Stevens &
Pooley (2000, p. 218) also propose that using prebuilt components offers the best way
to fast enterprise information systems development. However, buying components is
not a self-evident matter; when buying a component a lot of new code comes to the
company and the code has to be maintained (Love, 1993, p. 219). The quality of the
commercial component that is bought from outside the company might, however, be
better than a similar component developed within the company (Stevens & Pooley,
2000, p. 218).

However, by using existing components information systems development time can be
reduced by 50% - 60% (Radding, 1999) and the information systems development costs
can be reduced by 20%; and this in an industry where even a 1% saving could give a
competitor a significant advantage (Graham, 2001, p. 46; Henderson-Sellers, 1996, p.
19). These opinions are supported by the experiences at AT&T Bell Labs, which moved
into object-oriented information systems development, and experienced a total
development time saving of 60% (Wilkie, 1993, p. 40). The question of how many
changes to a component raise the reuse cost is also interesting. Pree (1997) proposes
that only a few changes (12%) to a component raise the reuse cost to 55% compared to
the costs of developing the same component from scratch; here the changes themselves
do not cost that much, it is the required understanding of the component that generates
costs.

Furthermore, Nokso-Koivisto (1995) and Radding (1999) found that reuse of
components often cannot be carried out because no adequate component can be found.
Henderson-Sellers (1993) and Coleman et al. (1994, p. 7) also present the problem of
finding the desirable class. Class management is, however, dealing with this problem.
For example, Gibbs et al. (1990) present issues like class management, class evolution,
class packaging, class organisation and class selection. By learning how to work with
class management, developers probably get enough assistance in selecting classes
(Gibbs et al., 1990). Page-Jones (1992b) proposes that a special librarian is needed who
maintains the quality of the libraries with reusable classes. The quality of the libraries is
important; one has to work with questions like naming (several components might have
the same name), configuration control (the functionality of the components changes,
versioning questions), accessing (how to find components), dependencies (components
are often dependent on other components), distribution (how updates etc. are
distributed), responsibilities (who is responsible for a given component) and testing, etc.
(Love, 1993, p. 218). In addition, a library consultant could be used who assists the
information systems developers in their reuse of classes (Page-Jones, 1992b). If both
these persons existed in the company then finding and using the reusable classes would
probably be much easier.

The problem of finding the appropriate class is important, and it might occur when one
is starting to use standard libraries that come with the environment of an object-oriented
programming language. If there are hundreds of classes, a great deal of effort is required
from the programmer before an understanding of all the standard library classes is
achieved. The programmer might find it easier to program an adequate class

114

himself/herself than start searching for a suitable class among hundreds of standard
library classes. (Gibbs et al., 1990)

There are also studies, of course, where there has been no problem in finding classes.
Caliò et al. (2000) present one study and state that relevant architectural system
components for user interfaces and data management were easily found among the
components provided by Ms Windows and Visual Basic environments. Further Mili et
al. (1999) argue that about 50 solutions are available to the problem of how to find a
component. The authors present the retrieval method and the browsing method as the
most important in finding assets in a component library. The retrieval method is based
on queries and the browsing method is based on relevance guidelines (Mili et al., 1999).

Another obstacle to the reuse concept is the resistance to develop generalised classes
because in such a case other teams in an information system development project could
use these classes and in so doing become more productive than the team who initially
developed the generalised classes (Henderson-Sellers, 1993). If, for example, a business
line pays for an initial development, the benefits from reduced testing through reuse
may actually be experienced by another - perhaps competing - business line (in the
same or in another business unit) in later projects (Henderson-Sellers, 1996, p. 22).
Productivity is also discussed by Coad & Yourdon (1991, p. 137) who argue that when
productivity is measured by the number of code lines produced, reuse is not feasible.
Jenz (1999a) and Maring (1996) argue that in order to achieve better productivity with
reuse, companies have to give rewards to programmers who develop and use reusable
components. Graham (2001, p. 56) also discusses problems with unwillingness or
resistance to develop components that can be reused in the future because of cost
reasons and because of a suspicion that the components will, in fact, not be reused.

Frakes & Fox (1995) did a study where it was found that the choice of programming
language does not affect code reuse. Reuse in object-oriented and traditional languages
was almost the same. Another issue to contemplate is the issue of reuse between
programming languages; if a component has been programmed in one programming
language like C++ it might be difficult to reuse it in an environment that is programmed
in another programming language like Smalltalk (Eriksson & Penker, 1996, p. 154).

The hierarchy of classes can also be a hindrance for reuse. If a programmer needs a
simple class that is down in the hierarchy and has perhaps four or five superclasses, then
the programmer gets a lot of unnecessary classes and code when the whole hierarchy in
the program has to be taken in just to get one class. If the resources of the computer are
limited, the extra classes are probably unwanted and the programmer develops the
wanted class himself/herself (Webster, 1995, p. 226). An object-oriented programmer
(Wrede, 1998) also presented this problem to the author of this study. Further, a
hierarchy in a class library can also be difficult to integrate into the existing class
hierarchies in the company (Eriksson, 1992, p. 356). In a hierarchy there are often many
classes and ‘unwanted’ classes easily come into the information system in the company
when a class library is reused (Eriksson, 1992, p. 356). The hierarchy of classes that
result from extensive reuse also often becomes difficult to document (Manhes, 1998).

115

Other obstacles to reuse might be the lack of good textbooks on how to perform reuse,
unsuccessful experiences with reuse from the past (Coad & Yourdon, 1991, p. 137;
Räisänen, 1997b, p. 35), technical difficulties in the form of information systems that
are delivered as single executable programs in machine code (Eeles & Sims, 1998, p.
59), difficulties in understanding and using available components, a lack of tools that
support reuse, no rewards for utilizing reuse (Räisänen, 1997b, p. 35), problems with
the copyright for reusable components when working with several clients (Eeles &
Sims, 1998, p. 59; Räisänen, 1997b, p. 35) and a shortage of time which means that
immediate business needs have to be considered (LaBoda & Ross, 1997). Webster
(1995, p. 216) proposes that reuse is difficult because reusable information systems
must be more general (and therefore often become larger and more complex),
similarities among projects are often small and that many of the things that can be
reused already exist in the application environment or in the operating system.
Verschoor & Low (1994) also argue that reusing classes usually results in information
systems that are more complex, and the more a class is reused the more complex the
information system becomes.

Further, Fayad et al. (2000) propose that in smaller start-up companies (less than 50
employees) the development of components for reuse might not be an advantage. The
higher cost and increased time needed for developing reusable components are less
important than releasing the product (Fayad et al., 2000). Lim (1994) refers to a number
of projects at Hewlett-Packard where it cost twice as much to develop a reusable
component than to develop an ordinary component. Jenz (1999c) thinks that is takes
about 2-4 times more effort to develop reusable components than to develop ordinary
components. However, if the company is successful then releasing the product is
probably not the most important issue, and reusable components for the future can be
developed (Fayad et al., 2000).

There are also other dangers with reuse that information systems developers have to be
aware of (Murphy, 2001). These dangers are connected to the reuse of ready-made
components in a new environment or context. Jézéquel & Meyer (1997) report on the
catastrophic error that was actually a reuse error in the Ariane project that led to the
destruction of the unmanned Ariane 5 rocket. The main cause was the failure of an
assertion in a piece of code that was performing an unnecessary calculation (which
exceeded its set of expected values). This came as a result of a crucial reuse of the
Ariane 4 program code (Murphy, 2001). The error would have been avoided if the
programmer had taken the Ariane 5 project into consideration (Murphy, 2001).

Analysis, summary and discussion. It appears that reuse is a very strong feature in the
object-oriented paradigm. If the reuse feature is used accurately several benefits can be
achieved. However, in order to carry out appropriate reuse one has to realize that reuse
is not only about technology; reuse is also a question of economical, human and
organisational factors, as Nierstrasz & Dami (1995, p. 7) argue.

One also has to be aware of the problems and pitfalls with reuse, and remember that the
management of reuse is important. Actually, the management of object-oriented
information systems projects has to develop a culture where the reuse of components is
as palpable as programming in its own right.

116

The following problems connected to reuse were found (summary):

• There is a lack of components and other assets to reuse (Mili et al., 1999). This
problem could probably disappear when the object-oriented paradigm becomes
more mature.

• There is a not-invented-here problem (Radding, 1999). This is rather an old
problem that has existed with functional programming as well (regarding
modules, etc.). Everyone wants to be a master in information systems
development and one does not ‘trust’ the work of others. A rather challenging
problem that has no clear solution.

• Out of reuse a lot of programming code comes into the company that has to be
maintained (Love, 1993, p. 219). If there is good documentation on the
programming code or the ‘black-box’ components, then this problem is
perhaps not that serious.

• No suitable component for reuse is found (Coleman et al., 1994, p. 7). The
development of suitable tools for finding components will probably be
available very soon. The problem is primarily connected to the immaturity of
the object-oriented paradigm.

• Technical difficulties in the form of information systems that are delivered as
single executable programs in machine code (.EXE file), and from which there
is no possibility to take out a class that one wants to reuse (Eeles & Sims,
1998, p. 59). The solution is of course to try to get the source code for the class
one wants to reuse.

• Resistance to develop generalised classes or other components because this
means a demand on resources, and then there is a danger that someone else
gets the credit (Henderson-Sellers, 1993). The solution to this problem is
probably a system with some kind of rewards for developing artefacts for reuse
(Henderson-Sellers, 1993).

• The hierarchy of classes might be a hindrance for reuse in the form of
inheritance (Webster, 1995, p. 226). Careful and skilful use of inheritance is of
course the solution, and experienced programmers can probably deal with this
issue. The problem is mainly connected to the immaturity of the object-
oriented paradigm.

• Reuse and inheritance often increase the complexity of an object-oriented
information system (Sheetz & Tegarden, 1996).

• A lack of good textbooks on how to carry out reuse (Coad & Yourdon, 1991, p.
137). The more mature the object-oriented paradigm becomes, the less
important this problem will turn out to be.

• A lack of tools that supports reuse (Räisänen, 1997b, p. 35). The more mature
the object-oriented paradigm becomes, the less important this problem
becomes.

• Problems with the copyright of reusable components when working with
several clients (Eeles & Sims, 1998, p. 59; Räisänen, 1997b, p. 35). This is an

117

interesting problem when working in a software company with several clients.
Should one have different reusable classes for different clients, or could the
same components be used for different clients? This is both a legislative as
well as a marketing problem.

• Reuse is not feasible because similarities among projects are often small
(Webster, 1995, p. 216).

The following possible associations between problems have been identified:

o The object-oriented paradigm is still IMMATURE in some areas (for example, a
lack of good textbooks), which results in -> PROBLEMS WITH REUSE.

o By using REUSE inheritance structures can be developed which increase the ->
COMPLEXITY of the information system.

3.4.10 Problems with object-oriented analysis

Object-oriented analysis has been criticised by Höydalsvik & Sindre (1993) and Wilkie
(1993, p. 85). Höydalsvik & Sindre (1993) found that object-oriented analysis does not
fulfil the purposes of analysis (because, for example, requirements exist prior to object-
oriented analysis), and that object-oriented analysis has no smooth transition to design.
Wilkie (1993, p. 85) proposes that the mixing of analysis and design methods is a
problem - especially for the information systems development project manager who
must measure project progress - this is because the management (planning and control)
of software development projects becomes more difficult, due to the mixing of analysis
and design in object-oriented information systems development.

Kaindl (1999) proposes also that the object-oriented analysis model cannot be a part of
the object-oriented design model. This is because there are differences in the
representation of the objects in the different models, and the model of the domain inside
the deployed program can be different from the object-oriented analysis model in many
ways (Kaindl, 1999). However, Maring (1996) reports that some domains lead
themselves to clear class definitions.

If one achieves a smooth transition to object-oriented design, there is the risk that
analysis has not fulfilled its purposes, and vice versa. McGinnes (1992) identified some
requirements that analysis has to fulfil; these were the following: ‘Multiple views of
problem situation’, ‘Easily understood method’, ‘Relating views at different levels’,
‘Richness’, ‘Recognizable terminology’, ‘Technical content’, ‘Objectivity’, ‘Minimal
solution’ and ‘Self-checking method’.

In many cases, there is a requirement capture phase before analysis in the information
systems development life cycle; for example, de Champeaux et al. (1992) present such a
phase. Because many object-oriented analysis methods assume that the requirements are
identified before analysis starts (McGinnes, 1992), it is perhaps wrong to use the term
analysis to characterise object-oriented analysis. The aim of analysis is to describe the
problem and the user requirements, but what is there to analyse if the requirements are

118

already clear? Höydalsvik & Sindre (1993) argue that object-oriented analysis can thus
be seen as a preliminary design rather than as pure analysis.

Kaindl (1999) proposes that it is difficult to move from object-oriented analysis to
object-oriented design, because object-oriented analysis objects represent different
things than object-oriented design objects do. Therefore an object-oriented analysis
model cannot easily become an object-oriented design model. This leads to a situation
where the information systems developers have to specify the architecture for the
software and build a model of the domain that the information system is going to use.
(Kaindl, 1999)

The transition to design from object-oriented analysis is based on the objectiveness of
object-oriented analysis. It is possible to develop analysis models that have a clear
connection to design, but this is not always the case, as Höydalsvik & Sindre (1993) and
McGinness (1992) argue. If there is no distinction between object-oriented analysis and
object-oriented design, then the objects in the system have to be equivalent to the
objects in the real world. This is, however, seldom the case; often the real world has to
be ‘modified’ to fit into the object model (McGinnes, 1992). The purpose of object-
oriented analysis can be found in the general objectives of analysis; the smooth
transition to design is questionable (McGinnes, 1992). However, in an information
systems development project reported by de Champeaux et al. (1992) there was a
smooth transition from object-oriented analysis to object-oriented design.

Many researchers claim that object-oriented modelling is natural and that objects are
natural ensembles for many concepts in the real world (Booch, 1994, p. 78, Jacobson et
al., 1992, p. 44). This means that the way people perceive the structure and behaviour of
a system is connected to how the object-oriented model is constructed. Is the object-
oriented analysis then problem-oriented? Höydalsvik & Sindre (1993) claim that this is
probably not the case; in fact object-oriented analysis is quite domain oriented. This is
due to several reasons, Höydalsvik & Sindre (1993) claim that good analysis does not
arise simply from a model which is in accordance with the way humans think; object-
oriented representation is not suitable for all kinds of knowledge; the analysis ought to
be close to the user and not to the software engineer, and the main motivation for
choosing object-oriented analysis is that the following steps in the software
development process are also object-oriented. When discussing what is natural for
users, interestingly Ellis & Gibbs (1989) claim that people will find it natural to think in
terms of active object systems.

Höydalsvik & Sindre (1993) present business rules and processes as two examples of
knowledge that are difficult to present in an object-oriented structure. It is important to
remember that the real world should be modelled in the way that the users find accurate,
if the users stress processes, a process-oriented view might be better than an object-
oriented view. The users’ way of thinking is important, and the information systems
developer has to consider that the idea that object-oriented information systems are a
natural representation of the world is probably an over-simplification (McGinnes,
1992).

119

Sommerville (1992, p. 66) claims that humans are flexible and can switch regularly
between different ways of looking at the same information system, but the writer (1992,
p. 193) also argues that it is difficult to find objects in object-oriented design because
people’s ‘natural’ view of many information systems is functional. Canning &
Nethercott (1996, p. 125) propose that the development of the object model follows
standard object-oriented principles in that the problem domain (the business) is
examined to identify objects and relationships for inclusion in the model. Canning &
Nethercott (1996, p. 125) go on and claim that users have little trouble understanding
this approach. In other words, the practical finding supports the opinion of end users
rather easily identifying objects in the real world.

Furthermore, Aksit & Bergmans (1992) found several obstacles in object-oriented
software development, the problems related to preparatory work (in the analysis phase)
and are inherent to object-oriented software development methods. Preparatory work
means the mapping of the real world entities and the objects that are the entities in the
analysis model. The problems found by Aksit & Bergmans (1992) are the following:

• Identification of Problem-Domain Structures.

It was often difficult to identify classifications in the problem domain that
could be mapped to inheritance hierarchies.

• Dealing with Excessive Domain Objects.

Integrating the domain knowledge with the user’s requirement specifications
can yield a lot of objects. Only few of these objects may be relevant to the
problem area.

• Early Decomposition.

If subsystems are not identified before objects are identified problems will
evolve, because objects have to be placed into some subsystem when
identified. If the subsystems are identified before object identification, the
boundaries of the subsystems may not be optimal.

• Subsystem-Object Distinction.

In the analysis phase objects may act as subsystems if they are complicated.
Subsystems can also be defined as objects if they can be structured in a
hierarchy and reused.

• Commonality versus Partitioning.

Because subsystems partition the system, classes that are members of the same
hierarchy can be spread over several subsystems. Finding the suitable
inheritance hierarchies becomes difficult.

• Subsystems Identification Using Object Interactions.

Subsystems are often used for structuring interactions among objects; however,
most object-oriented methods only have intuitive techniques for subsystem
identification.

120

The problems above are discussed by Aksit & Bergmans (1992) who claim that they
arise due to the size and complexity of the problem domain and how the problem
domain is modelled. Aksit & Bergmans (1992) also have a solution to these problems; a
new concept called composition filters. The rather rare Sina programming language
adopts composition filters.

Finally, one can mention that it has been reported that object-oriented analysis is
sometimes slower than traditional analysis (Koskimies, 1997, p. 5).

Analysis, summary and discussion. Object-oriented analysis is an information systems
development activity and not a pure problem; however, object-oriented analysis is
classified as a problem in object-oriented information systems development, because
object-oriented analysis is considered problematic by several researchers and authors.

McGinnes (1992), Kaindl (1999) and Höydalsvik & Sindre (1993) take up several
interesting and even very critical aspects of object-oriented analysis. For example,
Kaindl (1999) proposes that the differences between what is modelled in the analysis
phase and what is modelled in the design phase might initiate more deliberate
development approaches. Another claim that is important is that object-oriented
analysis does not fulfil all the tasks of analysis.

Analysis is, however, the stage in the information systems development life cycle that
many researchers consider the most important, because if one starts to build the wrong
product the consequences will be severe. The close connection between object-oriented
analysis and object-oriented design is a major challenge in this context. However, the
fountain like life cycle includes better opportunities to return to earlier work in design
stage, and offers new potential for managing the whole analysis and design process.
One has to remember that the fountain life cycle model is only one model for object-
oriented information systems development; there are other models as well.

The following problems with object-oriented analysis were found (summary):

• The mixing of object-oriented analysis methods with object-oriented design
methods is a problem (Wilkie, 1993, p. 85). It is difficult to determine where
object-oriented analysis ends and object-oriented design starts when following
the popular fountain life cycle in object-oriented information systems
development (Monarchi & Puhr, 1992). This problem is probably worst for the
project manager who has to work with milestones and resource allocations. For
traditional information systems developers the problem is less important and
some information systems developers probably think that it is practicable with
a smooth transition from object-oriented analysis to object-oriented design.

• Object-oriented analysis does not fulfil the purposes of analysis because
requirements exist prior to object-oriented analysis itself (Höydalsvik &
Sindre, 1993). There are many different object-oriented analysis methods, and
when object-oriented analysis is made in dexterity with all these various
methods, object-oriented analysis is probably different from case to case. It
might be a little bit treacherous to generalize and argue that there always exist
requirements before object-oriented analysis.

121

• Object-oriented analysis has no smooth transition to design (Höydalsvik &
Sindre, 1993). Korson & McGregor (1990), however, are of the opposite
opinion and claim that the information in the analysis phase of the information
systems development life cycle becomes an integrated part of the design.

• There are differences in the representation of objects in object-oriented
analysis and object-oriented design (Kaindl, 1999); object-oriented analysis
objects represent different things than object-oriented design objects. When
carrying out object-oriented information systems development and working
with analysis objects and design objects, it is probably true that the objects do
not always fit very well together. One has to modify the object model
(McGinnes, 1992). Whether this is a problem is an interesting question. Often
one has to apply ‘ad hoc’ solutions when building different things like houses
and machines, and software is probably no exception.

• Object-oriented analysis is sometimes slower than traditional analysis
(Koskimies, 1997, p. 5). Perhaps object-oriented analysis is slower than
traditional analysis because of the fountain like life cycle and the diffuse
borderline with design. Perhaps parts of object-oriented analysis are actually
designed already and the pure object-oriented analysis is in reality not much
slower than traditional analysis.

The claim that the objects in the object-oriented model badly correspond to the objects
in the real world is important. If this is true, much of the idea behind the object-oriented
paradigm as a better way of modelling the real world can be questioned. But if the claim
by Sommerville (1992, p. 66) that users can easily switch between different ways of
looking at an information system, then the correspondence between objects in the real
world and the objects in the object-oriented model seems less important.

In a study by Paetau (1995) activity based costing concepts were analysed in order to
transform them into objects. This was, however, surprisingly difficult. Perhaps the
question of how easy users find objects among business concepts is a question of what
kind of information system is being developed and how experienced the user is in
information systems development projects. Maring (1996) also reports that finding
classes out of a general business domain is not always so easy. Maring (1996) goes on
by saying that there might be different possibilities to model the problem domain into
classes, and there is probably not any ‘right model’.

The claim that object-oriented analysis, design and programming are more natural is
also supported by Taylor (1990, pp. 29-31) who compares the structures of living
organisms with object-oriented structures, and proposes that objects are like cells. The
claim that a cell is natural is rather obvious, just as when a zoologist is looking at an
animal like a lion, the lion is very natural. However, when a user like a financial dealer
is looking at a financial process based on a formula for calculating an interest rate, the
financial process might not be considered especially ‘natural’.

Because object-oriented analysis is a software development activity, and not considered
a problem of the object-oriented paradigm in this study, there will be no connections
where object-oriented analysis is involved.

122

3.4.11 Problems with object-oriented design

The distinction between object-oriented analysis and object-oriented design is not
always very clear. Many of the problems with object-oriented analysis can thus be
recognized in object-oriented design as well. However, there are some specific
problems with object-oriented design (quotation) reported by Pang (1996):

• In modelling a complex information system, the problem domain
involves too many objects interacting with each other in a complex
way.

• The problem domain of the applications is not well defined at the
early stage of development. Coupled with constant changes in
requirements, it is rather difficult to develop a proper object model.

• Reuse is generally not addressed in the modelling and design phase.

Kaindl (1999) argues that there are few descriptions or rules of how object-oriented
design objects should be defined. In fact object-oriented analysis objects and object-
oriented design objects are often defined in the same way (Kaindl, 1999). Monroe et al.
(1997) propose that there are limitations with object-oriented design because it is
difficult to specify how groups of objects interact, and it is difficult to specify and
package related collections of objects for future reuse. However, design patterns can
solve the limitations (Monroe et al., 1997). In 1993 Wilkie (1993, p. 96) presented some
shortcomings of object-oriented design; difficulties in identifying classes, blurred
boundaries between design and both analysis and implementation, difficulties to find
good CASE tools and elaborate and complex notations.

Kaindl (1999) proposes that there is often also another problem with design objects;
they are both abstractions of something in the problem domain as well as an objects in
the solution space It has also been reported that object-oriented design is slower than
traditional design (Koskimies, 1997, p. 5).

Analysis, summary and discussion. Object-oriented design is a software development
activity and cannot be considered as a problem. However, object-oriented design is
classified as a problem in object-oriented information systems development, because
object-oriented design is considered problematic by several researchers.

When presenting problems with object-oriented design, one has to remember that in
object-oriented information system development analysis and design are strongly
connected to each other, and that it might be difficult to draw a line between them.
Therefore the problems with object-oriented analysis are probably found to some extent
in the design phase too. In the design phase questions like “how shall this be
implemented?” are common which distinguish design from analysis, because in analysis
the questions are more like “what are we going to do?”

The following problems connected with object-oriented design were found (summary):

• Difficulties in finding good CASE tools that support object-oriented design
(Wilkie, 1993, p. 96). This is a question of how mature the object-oriented

123

paradigm is. Nowadays (2005) the situation is better and several CASE tools
are available.

• In object-oriented design it is difficult to specify how groups of objects interact
(Monroe et al., 1997). This is an important issue because if the interactions
between objects become indistinct, then the system becomes more complex
and the understandability of the system suffers.

• In object-oriented design it is difficult to identify classes (Wilkie, 1993, p. 96).
Although it is rather easy to identify classes when working with machines,
customers, invoices and products, etc., it is more difficult to identify classes
when working with more abstract things like relations and interests.

• In object-oriented design it is difficult to specify package related collections of
objects for reuse in the future (Monroe et al., 1997). The activity of packaging
collections of objects is connected to frameworks, and is not only a design
issue.

• In most object-oriented design there are elaborate and complex notations
(Wilkie, 1993, p. 96).

• Object-oriented design is slower than traditional functional design (Koskimies,
1997, p. 5). Perhaps this is because of the fountain like life cycle and the
disseminated border with analysis. Perhaps parts of object-oriented design are
actually analysis, so the pure object-oriented design is in actuality not much
slower than traditional design.

• There are blurred boundaries between object-oriented analysis, object-oriented
design and object-oriented implementation (Wilkie, 1993, p. 96). This problem
is perhaps only a problem if projects are to be divided into milestones and then
measured by project managers.

Because object-oriented analysis and object-oriented design are so closely connected,
and the connection is influenced a great deal by the life cycle model that is followed,
one has to probably study problems with object-oriented analysis when studying
difficulties with object-oriented design, and vice versa.

3.4.12 Lack of object- oriented databases and common interfaces

Objects have to be stored somewhere because persistent objects are a necessity when
performing object-oriented information systems development. Objects can be stored in
files, relational databases, object databases and object/relational databases, etc.
(Ambler, 1998, p. 341). Databases are mostly used.

Khoshafian & Abnous (1995, p. 24) present the following six approaches (quotation)
for incorporation of the object-oriented paradigm in databases:

1. Use a novel database data model/data language approach.

2. Extend an existing database language with object-oriented
capabilities.

124

3. Extend an existing object-oriented programming language with
database capabilities.

4. Provide extendable object-oriented database management system
libraries.

5. Embed object-oriented database language constructs within host
language.

6. Use application-specific products with underlying object-oriented
databases.

The unavailability of adequate object-oriented database systems is, however, a problem
(Johnson, 2000). It is mostly due to a lack of an industry standard and a solid theoretical
basis (Johnson et al., 1999). Because of the lack of appropriate object-oriented
databases, relational databases are often used in object-oriented systems. Nevertheless,
the use of a relational database within an object-oriented programming language often
becomes problematic. The resulting information system is perhaps not optimal if object-
oriented databases cannot be used, because theoretically one can achieve functionality
with object-oriented databases that one cannot achieve with relational databases. One
example of such functionality is the possibility to build intelligence in the form of
methods in object-oriented databases. (Martin & Odell, 1992, p. 35) When working
with complicated information structures object-oriented databases are also typically
faster than traditional relational databases (Räisänen, 1997a, p. 15).

When using relational databases in object-oriented systems one common solution is to
map a class with a table. In other words, each business class, like a security or a
portfolio (Staringer, 1994), has a one-to-one correspondence with a relational table. In
the table a row corresponds to an object. Usually this solution cannot be used if there
are active objects in the application, because the active object has a more complex
structure than a row in a relational table. Special arrangements are then needed as
presented by Davis & Morgan (1993). Other solutions are based on using OBCD
specifications. The Open Database Connectivity (ODBC) is an interface that several
manufacturers like Microsoft supports that allows applications to access data in
database management systems (DBMS) using SQL as a standard for accessing the data
(North, 1997). However, the solutions that are based on OBCD specifications are
probably not possible because the database usually works differently with different
operating systems. Because of this difficulty, not all database functions are in the
OBCD and therefore one has to find another solution. Factory classes can be mentioned
as such a solution (Rofrano, 1999).

Special solutions for combining the object-oriented paradigm with relational databases
like the Strix object persistence engine can also be used (Perez, 2001). Reinwald et al.
(1996) present another approach of combining relational databases and the object-
oriented paradigm. In this approach an RDBMS extender called SMRC is used. SMRC
provides the ability to store objects created in object-oriented programming languages
like C++ into a relational database. One can read about the problems with storing
objects in relational databases in the article by Reinwald et al. (1996), where problems
with normalisation for objects, encapsulation and relational databases, inheritance and
relational databases, etc. are considered.

125

Lauesen (1998) presents a solution where database wrappers are used to connect
traditional databases with the object-oriented paradigm. Database wrappers mirror the
traditional database and receive data from the traditional database. The database
wrappers then write modified data back to the database. Database wrappers serve as
well suited buffers for fast updating of screen objects. However, database wrappers are
not pure objects, they are degenerate objects, which means that they are object-oriented
objects that have been modified. (Lauesen, 1998)

When working with characteristic, pure, object-oriented databases everything is
encapsulated. Therefore, ad hoc queries through a common interface like SQLCI cannot
be made. This is a significant problem in many business applications (Miah, 1997; Ooil,
2002). The solution would be to develop predefined queries when using pure object-
oriented databases (Miah, 1997). SQLCI is a term that is used in Non-Stop SQL on
Tandem mainframes.

There are of course several object-oriented databases on the market. Wilkie (1993, p. 5)
presents the following: Ontos, GemStone (used for example, in the HELIOS program,
(Jean, 1992)), Objectivity, ObjectStore, Versant and O2. Khoshafian & Abnous (1995,
p. 23) present the object-oriented databases ObjectStore from ObjectDesign, Inc., OBD-
II from Fujitsu, Objectivity / DB from Objectivity, POET and Itasca from Itasca Inc.

Object-oriented databases have advantages and disadvantages compared with relational
databases. Wilkie (1993, pp. 248-249) proposes the following advantages (quotation):

• Potentially better performance than relational technology through
the use of object IDs.

• Improved maintenance through the use of object-oriented
techniques – conventional DBMS tend to offer very limited
facilities for the expansion or modification of existing data
structures because of the loose coupling between the database
schema and the application programs. The tight coupling between
applications and data in the object-oriented model offers
considerably more scope for schema evolution through the
extension and refinement of existing data structures and the
effective use of application code through inheritance.

• More powerful modelling capabilities through the use of
inheritance and user-defined types. The ability to store more
semantic information within the database using abstract data types
and unique identifiers. Also the ability to represent many-to-many
relationships.

• A single language interface removes the problems of impedance
mismatch associated with embedding SQL in a 3GL with a
relational DBMS. This eliminates many of the inefficiencies, which
occur in translating from one language to another.

• Applicability to environments in which relational technology is not
suitable, such as computer-aided design (CAD), computer-aided
software engineering (CASE), geographical information systems
and office information systems (OIS).

126

Because of the potential advantages of using object-oriented databases, it would of
course be a pity if an object-oriented database were desired but could not be found.
Note also that the advantages presented above can naturally be discussed. For example,
Bruegge & Dutoit (2000, p. 205) are of a different opinion to Wilkie (1993, pp. 248-
249) regarding the performance of object-oriented databases, and argue that object-
oriented databases are usually slower than relational databases for typical queries.

Analysis, summary and discussion. When building object-oriented information
systems the persistence issue has always to be considered. Usually a database of some
kind is used. When building object-oriented information systems an object-oriented
database would usually be the most natural choice. However, there is still a lack of
tested and accepted object-oriented databases on the market. Though Graham (2001, p.
231) proposes that object-oriented databases are presently in everyday commercial use,
they are usually applied to applications where complex objects predominate, such as
web servers, multimedia databases, geographical information systems and CAD/CAM
systems.

One can always use a relational database when there is no suitable object-oriented
database available. Different solutions on how to combine the object-oriented paradigm
and relational databases are available.

The following possible associations between problems have been identified:

o The object-oriented paradigm is still IMMATURE in some areas (like
databases), which results in -> A LACK OF OBJECT-ORIENTED
DATABASES.

o The OBJECT-ORIENTED paradigm has resulted in few object-oriented
databases and these object-oriented databases have a -> LACK OF COMMON
INTERFACES for ad hoc queries.

3.4.13 Discussion of the problems with object-oriented paradigm in general

There are several problems with the object-oriented paradigm and some of them are
quite obvious. Nevertheless, if these problems were solved the object-oriented paradigm
could give a lot of new valuable strength to information system development. Different
information systems development paradigms can be compared but it is difficult to
conclude if one information systems development paradigm like the object-oriented
paradigm is superior to others like the traditional functional paradigm. Hatton (1998)
proposes that the object-oriented paradigm is a new paradigm but not necessarily a
better one.

The finding from the Survey of Advanced Technology 1996 (Pickering, 1996, p. 6-2)
that states that using the object-oriented paradigm is complex is rather interesting. Are
object technologies really so difficult? If they are, how can anyone use complex
techniques to develop complex information systems? According to Booch (1994, pp. 3-
25) the object-oriented paradigm is well suited for developing complex information
systems.

127

The claim by Booch (1994, p. 289) that starting costs are often huge when one starts to
develop a completely new object-oriented information system because there is nothing
that can be reused and everything has to be developed from scratch is also interesting.
This could be true. However, the experiences of the large and complex object-oriented
information systems development project reported by Berg et al. (1995) were that the
initial development costs amounted to less than if traditional methods had been used.

One also has to remember that the object-oriented paradigm matures from year to year;
many problems have already disappeared and others will probably fade away in the
future. In the study by Johnson (2000) the information systems developers did not
recognize any real problems with the object-oriented paradigm.

128

4 EMPIRICAL STUDY

4.1 Introduction

When doing an empirical study there are several different research methods that can be
used. Sometimes quantitative methods are the best choice for the research process in
question, other times qualitative methods are better suited (Gummesson, 1991, pp. 2-3).
It is also possible to use both quantitative and qualitative methods in the same research
(Alasuutari, 1994, p. 23).

In information system research qualitative research methods are useful where
information systems are studied in a natural setting. Quantitative research methods are
useful when an area is scanned (Benbasat et al., 1987). In case studies the researcher
can ask ‘how’ and ‘why’ questions and thereby gain some understanding of information
systems and processes associated with them. Case studies in the information system
area often concern questions regarding implementation and its success or failure.
(Benbasat et al., 1987) In case studies the researcher has little control over the events
and the focus is on contemporary phenomena within some real-life setting (Yin, 1994,
p. 1).

4.2 Research method and research design

The research design is the sequence of events between the initial research questions and
the eventual findings (Yin, 1994, p. 19). The sequence of events could include the
research domains, asking meaningful research questions and using adequate research
methodologies to address the research questions (Nunamaker et al., 1991). In this
section both the research method and the research design will be presented.

After considering the different approaches presented in chapter 1 of this study, the

overall empirical research design and research method will be the evaluation research

method with a combination of a survey and case studies.

Surveys are a popular research method among many information systems researchers
because they are easy to administer, easy to score, easy to code, allow the researcher to
determine the values and relations of variables and constructs, provide responses that
sometimes can be generalised, can be reused and therefore provide an objective way of
comparing responses over different groups, times and places, help confirm and quantify
the findings of qualitative research, can be used to predict behaviour and permit
theoretical propositions to be tested in an objective fashion (Newsted et al., 1998).
Surveys in this research were, however, chosen for other reasons, the main reason was
that surveys are appropriate for scanning the market in order to get a general picture of
the experienced benefits and problems with the object-oriented paradigm in Finnish
software companies.

The author of this study concluded that case studies are especially useful when one
wants to study experiences of benefits and problems of the object-oriented paradigm in

129

Finnish software companies. This is because case studies are suitable when one
searches for some understanding of the benefits and problems being studied (Gable,
1994).

When two or more methods in social sciences are used for the same research problem in
order to increase the reliability of the results, this is called triangulation (Gummesson,
1991, pp. 121-122). Triangulation and the combination of qualitative with quantitative
evidence are recommended and discussed by Gable (1994), Jick (1979), Kaplan &
Duchon (1988), Eisenhardt (1989, p. 538) and Yin (1994, pp. 90-94). Combining
quantitative and qualitative research methods provides a richer contextual basis for
validating and interpreting results and can lead to new insights and modes of analysis
for the researcher while introducing testability and context to the research. Moreover, a
more complete understanding of the phenomena being studied is achieved if different
research methods are used. (Gable, 1994; Kaplan & Duchon, 1988)

Gummesson (1991, p. 122) gives an example of how a statistical quantitative survey can
be supplemented by interviews. If the interviews are of a qualitative nature there is a
combination of a quantitative and a qualitative method. This approach is often
beneficial and frequently used (Alasuutari, 1994, p 23) especially for strengthening
statistical results, for validation of results, for interpretation of statistical relationships
and for clarification of puzzling findings (Jick, 1979). Mixing of methods utilises the
strengths of the different methods (Jick, 1979). When computer systems are studied, it
is often important to consider the cultural environment, social interaction and
negotiation that could affect the outcome of the study and the phenomena being studied;
qualitative research approaches are therefore often needed (Kaplan & Duchon, 1988).

Analysing the results of triangulation research might be difficult; the researcher is left to
search for a logical pattern in the results of a mixed-method approach (Jick, 1979). In
addition, Kaplan & Duchon (1988) experienced some difficulties and frustrations when
carrying out research using quantitative survey and qualitative interview methods,
especially in the analysing phase of the research. The triangulation approach also has
some other problems, replication is difficult, the focus of the research and the research
problems must be adequate and triangulation should not be used to legitimate a method
that is preferred by the researcher (Jick, 1979).

Moreover, in a case study several different research approaches like observation,
documentation, interviews and physical artefacts can also be combined (Gable 1994;
Yin, 1994, pp. 79-94). If qualitative and quantitative research approaches are combined,
they are usually combined so that first there is a qualitative pilot study and then there is
a quantitative main study. This is because qualitative studies are often a good base from
which hypotheses can be formulated. (Alasuutari, 1994, p. 203)

In this study, however, the survey was carried out before the case studies, mostly
because it would probably produce information that could be taken into consideration
when doing the interviews. Furthermore, the survey would also give some clues as to
which types of companies would be most suitable for case studies.

130

The research design for the empirical study based on the evaluation study research
method including a survey and case studies was the following:

1. Select the population. Find and select all Finnish software companies with
more than four employees.

2. Send a letter by ordinary mail to all the companies in the population. Make a
survey of the total population.

3. Expect a 15 % response rate.

4. Carry out the statistical analysis of the questionnaires.

5. Do the case studies with some of the companies. Difficult access might
threaten this step.

6. Carry out the analysis of the case studies.

7. Compare the results of the survey with the results of the case studies and utilise
the strengths of triangulation.

8. Write the conclusions and findings.

The response rate was considered the main problem with the survey; the pilot study in
this study had this problem. There are of course problems with doing case studies after
the survey; case studies cannot contribute to the model building exercise and to
generating hypotheses for the survey (Gable, 1994). In this study, however, no
hypotheses are generated and consequently this approach was not a problem. Note that
previous studies revealed several suggestions and findings regarding the benefits and
problems of the object-oriented paradigm. The research questions in this study were
based on these and therefore formed the base for the questions in the survey and in the
case studies.

4.3 Research questions

The research questions are the basic questions for the survey and the case studies. They
are why-questions and other questions that have resulted from the investigation into
previous studies in the field. Especially issues that are commonly known, but have not
yet been scientifically studied are issues that can often be developed into research
questions.

When formulating research questions some things have to be considered. The research
questions ought to have both substance and form (Yin, 1994, p. 7). The questions
cannot be trivial, as trivial questions are usually of no particular interest. The research
questions also have to be questions to which there must be an answer otherwise they
have to be rejected (Alasuutari, 1994, p 189).

Research questions are defined after previous studies have been considered. This means
that many questions have a theoretical foundation and presumption of the answer, which
is based on the findings from previous studies. The presumption can also be seen as a
justification for selecting the research question. Some research questions could
therefore be considered as hypotheses, instead of research questions. However, there is

131

a difference; research questions are often considered as why-questions, whereas
hypotheses are in reality the answers to those why-questions, the validity of which are
tested against the empirical material (Alasuutari, 1994, pp. 188-189).

The theoretical foundation is actually tested empirically, although it is only tested
through one presumption, which is the presumption based on previous studies. It would
be more rigorous to test the theoretical foundation through several presumptions (Lee,
1989). The presumption (and theoretical foundation) for the research questions is,
however, rather comprehensive for most research questions in this study.

In this study the research questions are based on the research problems. Because the
answers from the survey and the case studies are based on experiences and subjective
opinions hypotheses cannot be developed. This is the case because hypotheses are based
on answers that can be transformed into fixed figures or facts, and such answers are not
obtained in this study.

When a research question has a presumption of the answer the researcher has to be very
careful. The researcher has to avoid a “besserwisser” attitude where the truth (that the
researcher thinks he or she knows, because of the presumption of the answers) is
compared with the answers from the people participating in the (case-) studies
(Alasuutari, 1996). The presumptions of the answers can of course be compared with
the answers of the people studied, but the answers of the people studied can also be the
‘truth’. In this study the subjective opinions of some people working in Finnish software
companies are studied and compared with assertions found in previous studies. Whether
the assertions or the subjective opinions are the truth is not analysed in this study.

When working out the research questions, some interesting research questions for
object-oriented analysis and design have furthermore been developed. Object-oriented
analysis and object-oriented design are presented in this study because these areas are
important in object-oriented information systems development, they are claimed to be
more powerful but also inferior to traditional analysis and design and can be seen as
important parts of the object-oriented paradigm.

The research questions have also been analysed in order to become suitable questions in
the survey or the case studies or in both. All research questions are included in the case
studies, but not in the survey.

The research questions are not listed in this section as to prevent repetition. They are,
however, all presented in the section on the analysis of theory and empirical findings.

4.4 Pilot study

A pilot study was made in co-operation with Christine Charpentier, who was an
undergraduate student writing her master’s thesis on the use of the object-oriented
paradigm and software development methods, especially in the analysis phase
(Charpentier, 2000). The author of this study was the supervisor of this work. The
survey was carried out in such a way that it could also be used as a pilot study for this
dissertation; part C of the survey on object-oriented projects was developed with this

132

study in mind. The aim with the pilot study was to get a general picture of the usage of
the object-oriented paradigm, some experienced benefits and problems (the terms
success and failure were used in the questionnaire) and some reasons why companies do
or do not use the object-oriented paradigm.

Charpentier sent a questionnaire to 132 companies in the information systems
development business. The population consisted of all Finnish information system
development companies with more than 20 employees found in the database of
Statistics Finland. The response rate was 15.2 %; 20 questionnaires were returned.

The questionnaire was divided into three parts:

• The company, part A.
• Software development projects, part B.
• Object-oriented projects, part C.

The third part was interesting for the purposes of this study. The questionnaire consisted
of four pages with a total of 27 questions. Both open and scientific study based
questions were used. The questionnaire was designed so that the respondent could
answer it in a very short time. The questionnaire was sent on March 10, 2000 and the
last answers were received on April 17, 2000. The questionnaire is found in the
Appendix 1.

The results of the survey were the following:

The companies that answered the questionnaire were in the following fields of business:

Information systems, maintenance, e-business 6 companies
Trade, industry 9 companies
Insurance 6 companies
Public sector 2 companies
Other 3 companies

Some of the companies were in several businesses and therefore the total sum is more
than 20.

Over 50% of the companies had a total sale of more than 8.3 billion Euros and most
companies in the survey had 101-150 employees. The smallest company had 3
information systems developers, and the largest company had 217.

In the second part of the survey questionnaire the questions were about software
projects. Interesting was the finding that 95% of the companies used some kind of
information system development method. In addition, worthy of note was that only 35%
of the companies used an object-oriented software development method and that 50% of
the companies used two software development methods. The results also indicated that
the object-oriented paradigm was mostly used in large projects and that most companies
which used it had done so for only 1-2 years.

133

In the third part (part C) of the questionnaire the questions about the object-oriented
paradigm were presented. When the respondent was asked to estimate the benefits of
the object-oriented paradigm on a scale from 1 to 5 the average was 3.4. The following
question was “Is the object-oriented paradigm your most important technique?” The
results of this question were:

Now 5%
In one year 15%
Later 40%
Never 15%
No answer 30%

From these results one can estimate that the object-oriented paradigm will be more
important in the future. One company answered both ‘later’ and ‘never’.

The three last questions in the questionnaire were open with no ready options to choose
from. The questions and results were the following:

Question: What are the reasons for the success or failure of the object-oriented
paradigm?

Answers:

• Know-how.
• No year 2000 support.
• The benefits of object directories become unused in commercial applications.
• Depends on the customer.
• The benefits of reuse are only found later.
• It takes a long time to learn the object-oriented paradigm.
• Training.
• Experience.
• The same as in traditional models.
• Difficult to say if it has been successful or unsuccessful in such an early phase.

Question: The most important reasons for using the object-oriented paradigm?

Answers:

• Requirements of customers.
• The integration of the PC with the mainframe.
• A part of the used document management program.
• Reuse.
• Standard solutions.
• Supports the development tools.
• Is a good part of the technology of today.
• The component architecture.
• Encapsulation of functions.
• Reuse.

134

• Learning.
• We see a remarkable future for object-oriented models and tools.

Question: Why is the object-oriented paradigm not used in all projects?

Answers:

• Requirements of customers.
• The construction model is based on components.
• Not needed.
• Not enough benefits/efficiency in the object-oriented paradigm.
• Difficult to implement the entire object-oriented paradigm, however, object-

oriented effects are used.
• Difficult to say.
• Difficult to put object-oriented information systems development apart from

development based on the object-oriented paradigm.
• Does not fit in all surroundings.
• We do not program that much.
• We do projects with traditional tools, however, we use the object-oriented

paradigm in newer projects.
• Most of the development is on the mainframe, many projects are considered with

existing systems.
• Enterprise resource planning.
• The time of objects is forthcoming.

When the results of the last three questions are examined, one can see that in 2000 the
companies were not using the object-oriented paradigm as much as expected.
Interesting was that reuse as a benefit was mentioned twice. Other benefits were know-
how, support of development tools and encapsulation of functions, etc. Among the
problems, training and learning the object-oriented paradigm were presented. Other
problems mentioned were no year 2000 support, not enough benefits / efficiency and
does not fit in all surroundings, etc.

As a conclusion, one can say that the companies had experienced some of the benefits
and problems that are presented in other studies. However, the companies had not
experienced all the proposed benefits and problems, and the picture of the situation in
Finland was somewhat unclear. All in all the fact that only 7 companies out of 20 that
answered were actually using object-oriented information development methods, means
that the results obtained can only be used for identifying questions for more elaborate
studies carried out later. The need for a more comprehensive study of the benefits and
problems was therefore accentuated.

4.5 Survey, planning of the survey and statistical issues

The empirical study started with a descriptive quantitative survey of Finnish software
companies. The author of this study analysed the survey by using descriptive statistics
where the experienced benefits and problems of the object-oriented paradigm among

135

Finnish software companies were presented. Descriptive statistics consist of procedures
to summarize the information in a set or sample and to describe the characteristics of
the set or sample (Mendenhall et al., 1993, p. 6). In this section the planning of the
survey is presented. Blom (1984, p. 164) presents several stages in planning a statistical
examination and these stages have been considered in this study.

When analysing the research questions it was found that they were all classified (in
other words on the nominal scale) and therefore qualitative. On a nominal scale,
numbers are simply used as labels for groups or classes (Aczel, 1999, p. 10).

If a random sample is used then the sample from the population has to be picked in the
correct way so the sampling design is important. In descriptive statistics, a random
sample is required, and any disturbing factors are not allowed to occur (Blom, 1984, p.
165). In the survey there was no random sample because the questionnaire was sent to
all Finnish software companies (with a few exceptions as presented in the sub section
on the selection of the population).

The questionnaire is based on the research problems and the research questions. The
connection between research problems, research questions and questions in the
questionnaire are as follows: first some broad-spectrum research problems have been
stated, then some more detailed research questions have been developed. These research
questions are based on the research problems. Then the research questions were
modified and became questions for the questionnaire. These research questions have no
other theoretical background than the previous studies.

When doing the survey the next step after selecting the sample is to collect data. The
collection of data can be performed in several different ways and there are several
methods available. Körner & Wahlgren (2002) present the data collection methods of
mail survey, phone interview and personal interview. Gunn (2002) presents web-based
methods. The methods are presented below:

• Mail survey. A cheap alternative with a high risk of people not responding.
Lundahl & Skärvad (1999, p. 172) mention the following advantages; usable
for questions with many possibilities for answering, no effect from the
interviewer, utilizable for sensitive questions, pictures and other visual material
can be used. There are of course also disadvantages such as: time consuming,
no control over the answering process (people might intentionally fill in wrong
answers), difficulties in following up (if anonymous) and not very suitable for
open questions (Lundahl & Skärvad, 1999, p. 172). Further, there are practical
problems like writing envelopes and checking addresses, etc.

• Phone interview. The researcher might affect the respondent, which is a
problem. There is in other words an interview effect. Phone interviews might
also be rather expensive. It might be difficult to find the right person to talk
with and several new connections and recalls might be necessary. According to
Gunn (2002) respondents also tend to agree with the interviewer because of his
or her presence. Of course, the privacy of the respondent is very low or even
non-existent in phone interviews.

136

• Personal interview. Probably the alternative that demands most work. These
kinds of interviews are presented more thoroughly by Lundahl & Skärvad
(1999, p. 172). Personal interviews are based on the interviewer personally
visiting the respondent in the respondent’s office. These kinds of interviews
have several advantages; they can be conducted rather quickly, they can be
useful when one has complicated questions, one can also use pictures and other
visual equipment. The interviewer can pose follow-up questions and the
interview process is as a whole controlled. Among the disadvantages with
these kinds of interviews are the rather high costs, the possible interview effect,
the difficulty in asking sensitive questions and the difficulties in finding
respondents willing to participate. (Lundahl & Skärvad, 1999, p. 172)

• Web-based surveys. Web-based surveys are presented and discussed by Gunn
(2002). They are not dealt with here because web-based surveys were
considered unsuitable for this study at rather an early stage. The main reason
was that the author of this study had no former experience in how to build web-
based survey instruments on the web. Another reason was the problem with
finding the appropriate way of informing the potential respondents of the
existence of the web-based survey. E-mails or regular post could have been
used. However, if regular post had been used, the difference to a mail survey
would have been diminutive.

As mentioned earlier the survey in this study is based on a mail survey. At first phone

interviews were considered but after a few phone calls it was clear that it would be very

difficult to get into contact with the right persons for the survey because they are often

away from the office and seldom have the time to answer a long questionnaire by phone

without prior arrangement. By sending questionnaires by mail the letter would

hopefully be handed over to the right person and it could then wait until the person in

question had the time to answer the questionnaire.

With all data gathering methods the problem with persons not responding has to be
solved. The problem is associated with the gaining of access. Often companies or
presumptive respondents do not want to participate in surveys or give access to
organisations. This is due to several reasons, which Saunders et al. (2000, p. 114)
present as follows:

• The respondent or the organisation cannot see any value in participating, and
participating is time consuming and labour intensive.

• The research topic is sensitive to the respondent or organisation or they are
concerned with the confidentiality of the information that is asked for.

• The respondent or the organisation has perceptions about the credibility of the
researcher or they have doubts about the competence of the researcher.

Lundahl & Skärvad (1999, p. 119) recommend that one should promise to give the
respondent something in order to encourage them to participate; for example, one can
offer to give a copy of the final study. If the researcher also appears competent, the
chances of ‘getting in’ are increased (Lundahl & Skärvad, 1999, p. 119).

137

Even if the researcher acquires access into an organisation, he or she has to be aware of
some dangers. The researcher has to select a representative sample of organisational
participants and has to be aware of the danger that the participants might lie,
misunderstand the question or tell things that are mistrustful (Saunders et al., 2000, p.
115; Undheim, 1985, p. 19). Saunders et al. (2000, p. 115) call this issue cognitive
access. Buchanan et al. (1998) further discuss the problems of gaining access into
organisations and companies in their comprehensive article on the topic.

When analysing the research questions and the possible answers it was found as
mentioned earlier that they are based on qualitative variables. The qualitative variables
were also all non-ranked categorical variables on a descriptive (also called nominal)
scale. For qualitative variables, the measurement of frequency is usually shown in a
table also called a frequency distribution. Bar charts and pie charts are often used for
qualitative variables (Körner & Wahlgren, 2002). For variables with a large number of
categories, one has to group the data into categories of interest (Saunders et al., 2000, p.
338).

For qualitative variables that are measured on the nominal scale, there are several
statistical tests that can be used for examining relationships among categorical
descriptive data. According to Saunders et al. (2000, p. 357) there are two main
statistical tests for categorical descriptive data; the Chi-Square test that is used to test
whether two variables are significantly associated, and the Kolmogorov-Smirnov test
that is used to study whether the distribution of an observed set of values for each
category of a variable differs significantly from a specified population. However, the
researcher must always be aware that relationships are usually complex and they should
therefore be managed with great care (Undheim, 1985, p. 28).

In this study only descriptive data is used and no statistical tests were considered
necessary in order to answer the research questions.

Surveys also have problems that have to be considered. They often take only a snapshot
of the situation at a certain time giving little insight into the background of the data
(Gable, 1994). The response rate might also be low and the reliability of the answers
can be suspicious because the respondents might misunderstand the questions (Gable,
1994). The questions of reliability and validity also have to be considered. Such
questions are discussed in connection with the case studies in this dissertation where
most of the issues presented are valid for surveys as well. Some additional questions for
surveys regarding reliability and validity are, however, shortly presented below.

Reliability and surveys. In order to draw conclusions, the reliability of the study must
be high. Reliability can be defined as the freedom from random influence from an
instrument of measurement, independently of what measurements the instrument of
measurement is used for (Rudberg, 1990, p. 129). Boudreau et al. (2001) define
reliability as a declaration on measurement correctness, in other words (quoting): ‘The
extent to which an instrument produces consistent or error-free results’.

Reliability is concerned with matters like the exactitude among the observations and the
sample, the accuracy of the figures that are based on the observations and the sample,

138

the registration, the usage and the treatment of the observations, etc. (Undheim, 1985, p.
18). High reliability is a presupposition but no guarantee for high validity (Rudberg,
1990, p. 133).

Validity and surveys. There are several definitions of validity. Boudreau et al. (2001)
present content validity and construct validity. In order to achieve content validity the
observations or the sample has to represent the issues that the researcher is working
with (Undheim, 1985, p. 20). Construct validity is defined as the trustworthiness that an
instrument is measuring the phenomenon it ought to measure (Rudberg, 1990, p. 130).

Validity can be further divided into several parts, of which the two following, according
to Rudberg (1990, p. 131), are the most important for statistical studies:

• Contemporaneous validity, the reliability that an instrument (like a statistical
test) can make diagnoses or specifically tell how something is now.

• Prognostic validity, the reliability that an instrument (like a statistical test) can
make prognoses or expressly tell how something will be in future.

As a summary one can say that the higher the extent to which an instrument is
measuring the item it is supposed to measure, the higher the validity is (Rudberg, 1990,
p. 131). Note also that validity in a statistical test is expressed as a correlation
coefficient that can be between 0 and +1 (Rudberg, 1990, p. 132). The validity
correlation coefficient has of course to be recognized when administering statistical
tests.

4.5.1 Selection of questions for the survey

When selecting questions for the survey out of the research questions, the author of this
study tried to select questions that were important and suitable for the survey. All the 57
research questions are presented in Section 4.7. Some of the research questions are very
difficult to study in a survey and therefore are only used in the case studies.

When planning a survey it is important to consider the statistical issues before the
survey is conducted. In this study all the research questions were analysed and the
following grouping was made:

1. The following research questions will not be included in the survey but only in the
case studies:

(Q5), (Q7), (Q9), (Q12), (Q13), (Q15), (Q16), (Q17), (Q18), (Q19), (Q22), (Q23),
(Q24), (Q25), (Q26), (Q27), (Q28), (Q30), (Q38), (Q39), (Q42), (Q45), (Q48),
(Q49), (Q50), (Q51), (Q52), (Q55) and (Q56).

2. The statistical issue that the answer can be ‘yes’, ‘no’ or ‘not sure’, for the research
questions:

(Q1), (Q3), (Q4), (Q6), (Q8), (Q10), (Q11), (Q14), (Q20), (Q21), (Q29), (Q32),
(Q33), (Q34), (Q36), (Q37), (Q40), (Q41), (Q43), (Q44), (Q46), (Q47) and (Q53).

139

Data is qualitative, categorical, and descriptive. The analysis and presentation of this
question is based on showing the proportion of occurrences of categories for one
variable and therefore a pie chart is appropriate (Saunders et al., 2000, p. 339).

3. The statistical issue that data is qualitative, categorical and descriptive for the
research questions:

(Q2), (Q35), (Q36) and (Q54).

The analysis and presentation of this question is based on showing the frequency of
occurrences of categories for one variable so that the highest and lowest are clear;
therefore, a bar chart is appropriate (Saunders et al., 2000, p. 339).

4. For the two open research questions (Q31) and (Q57) special statistical solutions will
be used in the form of listing and grouping.

After excluding the research questions mentioned above the survey still consisted of 25
questions. The questionnaire for the survey is presented in Appendix 2.

4.5.2 Selection of population and carrying out the survey

For the survey population all software companies in Finland were first considered. In
January 2003 the author of this study received a list from Statistics Finland with
information regarding the number of software companies in Finland in different size
categories. This information is presented in Table 2 and Table 3:

Table 2: The number of Finnish software companies in different turnover categories

Turnover € Number Turnover € Number

Unknown 515 1 000 000 – 1 999 999 163
No turnover 1 2 000 000 – 9 999 999 176
1 –199 999 2915 10 000000 – 19 000000 28
200 000 – 399 999 358 20 000 000 - 17
400 000 – 999 999 317

140

Table 3: The number of Finnish software companies in different size categories

Number of employees Number of companies
Unknown 636
1 – 4 3046
5 – 9 295
10 – 19 238
20 – 49 179
50 – 99 56
100 – 249 37
250 – 499 1
500 – 999 2
1000 - 0
Total number of software companies 4490

When one sets up size categories for companies, one can take into consideration several
definitions of small, medium and large sized companies. For example, Riihimaa (2004,
p. 1) proposes that in the US manufacturing branch enterprises with less than 500
employees are considered small or medium sized. In Japan the figure is 300 and in EU
250. Fayad et al. (2000) propose that companies that have fewer than 50 employees are
small, which corresponds well with the definition from EU presented in Table 4.

From these tables one can conclude that as a general rule software companies in Finland
are small, especially when one compares the table (Table 3) with the criteria of SMEs in
the EU (Table 4) as presented by Bradford (2002):

Table 4: Criteria of the SMEs in the EU

Criterion Micro sized Small sized Medium sized

Max number of
employees

10 50 250

Max annual turnover - 7 Million Euros 40 Million Euros
Max annual balance
sheet total

- 5 Million Euros 27 Million Euros

Max % owned by one,
or jointly by several
enterprise(s) not
satisfying the same
criteria

- 25 % 25%

As many as 3046 + 295 = 3341 of the Finnish software companies on the list had less
than 10 employees and are classified as micro sized by the EU. The large number of
micro sized Finnish software companies was reduced by the author of this study by only
selecting those companies from the list with five or more employees; the subjective
reasoning behind this decision is as follows:

• Very small Finnish software companies with 1-4 employees probably have
limited experience of object-oriented information systems development.

141

• They are unlikely to answer the survey.

• They are numerous and would make the selected population too large to
manage in an efficient way.

The population of Finnish software companies for the survey in this study thus became
295+238+179+56+37+1+2 = 808 software companies. Note that software companies
with an unknown number of employees were excluded from the selected population.

The information regarding name, address and phone number for all Finnish software
companies was obtained from Statistics Finland in the beginning of February 2003. The
final population amounted to 799 Finnish software companies (9 software companies
had gone out of business).

As many as 404 (50%) of the Finnish software companies in the selected population
were from the greater Helsinki area (Helsinki, Espoo, Vantaa, Kauniainen, Klaukkala,
Kerava, Tuusula and Järvenpää); the rest were located in other parts of Finland (85 from
Tampere, 54 from Oulu and 42 from Turku).

For the survey a questionnaire was developed and based on the research questions in
this study. The questionnaire was first developed and written in English and after that
was translated into Finnish. The questionnaire for the survey in Finnish is presented in
Appendix 3.

When the questionnaire was complete, it consisted of 16 pages and 25 questions. It was
posted in a first class envelope with the name and logo of the Swedish School of
Economics and Business Administration.

When some of the homepages of the selected Finnish software companies were studied,
some interesting things were found:

• Some were obviously not carrying out software development; the companies
were importers of software from abroad and consulting companies, etc.

• Some of the companies had gone out of business.

Because the actual number of software companies involved in software development
was smaller (due to the reasons mentioned above) than expected, the author of this
dissertation decided to do a study of all Finnish software companies in the selected
population, in practice this meant all (see the exception above) Finnish software
companies on the list from Statistics Finland that were still in business.

On April 25, 2003, the questionnaire with a cover letter was first sent to 100 software
companies randomly picked from the list from Statistics Finland. The 100 software
companies came from the Helsinki area and from the cities of Jyväskylä, Pori and
Tampere. By searching through the homepages of the 100 selected software companies
the most promising person to answer the questionnaire was selected (usually a
production manager or a software development manager). When this person was found
his or her name was used on the envelope. In other cases, the title ‘application
development manager’ was used.

142

An email was also sent to all the persons who had an email address and to whom the
questionnaire was directly addressed. In the email, the author of this study wrote that
‘an important questionnaire’ will soon arrive by regular post and that by participating in
the survey one is supporting Finnish information systems research. It was also
mentioned that one could participate in the survey anonymously.

Then the first 100 questionnaires were posted with the address hand written. After a few
days, the author of this study received some emails from the persons who had been
emailed, with rather positive remarks like ‘nice questionnaire’, ‘nice that one can
answer the questionnaire anonymously’, and ‘can I have the questionnaire in English?’
etc. One respondent even asked for a copy of the questionnaire by email because he
claimed that no questionnaire had come with the ordinary mail.

Four days after the questionnaire had been posted answers started to arrive. After one
month 25 answers had been received, a response rate of 25%. In these 25 answers 20
had used the object-oriented paradigm and 5 had not. All 25 answers were well written
and had to be considered relevant. On May 22, a reminder email was sent to all the
persons that had an email address and to whom the first 100 questionnaires had been
directly addressed. One answer by email came from a person who wrote that they are
not involved in software development in the company in question and therefore they are
not participating in the survey. Two further answers came later resulting in a final tally
of 27.

On May 23, 2003 a new set of 200 questionnaires were posted, however, this time no
homepages were checked. The 200 software companies had been selected from the
population and list from Statistics Finland so that they were from the south, the east, the
west and the north of Finland (but not from the central parts). The addresses were again
all written by hand and the letter was addressed to the production manager. The
production manager was chosen because among the 25 answers in the first set the title
‘production manager’ was the most frequent. The remaining 499 companies in the
population and on the list from Statistics Finland were left to the third set.

On September 12, the third set of 488 questionnaires was posted and again no
homepages were checked. The 488 software companies were the rest of the software
companies in the population and on the list from Statistics Finland. Eleven software
companies were left out because they were suspicious (exactly the same address as
another company or odd address, etc.) or they had unquestionably gone out of business.
The letters were addressed to the production manager.

A total of 130 answers were received from all three sets together, of these:

• 104 were valid responses.

• 24 were received as ‘return to sender’ presumably due to the following
reasons; inaccuracies in the mailing list, companies had gone bankrupt or
companies had moved, etc. Some information regarding this issue was obtained
from the Finnish Post who returned the mail.

• 2 surveys received were incomplete.

143

Thus, a total of 104 valid answers were obtained. The 104 valid surveys out of 788
surveys sent, reflected a valid response rate of 13,2%. This was considered sufficient for
this study because of the large number of answers (104) and because the questionnaire
had been sent to all valid companies in the population (total survey).

The general quality of the answers received further increased the satisfactoriness of the
responses. This quality was reflected in a review of the job titles of the respondents,
which suggested that over 70% of the surveys were completed by managers, consultants
and system analysts, etc. (Question IV).

One can argue that the validity of the survey was appropriate because Statistics Finland
provided the population and the survey was made for all software companies in the
population. The questions in the questionnaire were gathered from the review of
previous studies and theory.

The reliability of the survey was adequate because the number of answers was sufficient
and the quality of the answers was high.

Because the questionnaire was sent to all adequate software companies in the
population and the number of answers was as high as 104, one can profess that one can
generalise about all (more than 4 employees) Finnish software companies. No
systematic drop out of software companies among the responses was found (for
example, the questionnaires received after a remind message had been sent, were
compared with the questionnaires received earlier), and one can argue that the software
companies that participated in the survey most likely reflect a good sample of all (more
than 4 employees) software companies in Finland involved in software development.
However, one has to be aware of the danger that software companies involved in object-
oriented information systems development were more willing to answer the survey than
companies not involved.

As mentioned earlier, the author of this dissertation also studied the homepages of
approximately 50 of the software companies in the population. Out of the studies on this
randomly selected sample it was found that several of the companies classified as
“software” companies by Statistics Finland were in fact not involved in software
development. The companies imported software or were retail sellers of software
produced by other companies. When considering this fact, one can conclude that the
response rate among software companies actually involved in software development
was actually higher than the total response rate.

The results cannot be generalized to populations outside Finland. However, the sample
represented a wide variety of information systems developers. Respondents varied from
those only slightly familiar with the object-oriented paradigm to those who were very
experienced with it. There was a broad spectrum of jobs including executive chiefs,
managers, analysts, programmers, consultants and even a ‘share holder’.

Note further that the results obtained in the study were collected from:

• Information systems developers that had experience in conventional and object-
oriented information systems development.

144

• Information systems developers in organisations of different size.

4.5.3 Survey results concerning the software companies

The results will be presented and analysed in Section 4.7. The questions in the
questionnaire regarding the company are, however, presented here.

I. Approximate number of employees in your company:

The results are presented in Figure 8.

Figure 8: Number of employees

Number of Employees

0

10

20

30

40

50

1-10 11-50 51-100 101-200 201-300 301-400 401-500 501-

II. What is the approximate turnover of your company?

The results are presented in Figure 9.

Figure 9: Turnover of the companies in the survey

Turnover in 1 000 000 €

0

5

10

15

20

25

0,1 - 0,5 0,5 - 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5

145

III. In what field are most of your clients?

The results are presented in Table 5.

Table 5: Main clientele in the survey

 Number of answers

Industry 15

Telecommunications 15

Several 13

Public Sector 7

Information Technology 4

There were additionally 9 fields with 3 answers and 9 fields with 2 answers and 30
fields with 1 answer.

IV. What is your position in the company?

The results are presented in Table 6. There were also 2 positions with 3 answers and 4
positions with 2 answers and 23 fields with 1 answer.

Table 6: Position of respondent in the survey

 Number of answers

Executive Chief 16

Production Manager 8

Software Development Manager 8

Technology Manager 7

Manager 5

Product Development Manager 5

Project Manager 5

CTO (Chief Technology Officer) 4

Program Analyst 4

4.6 Case study

After the survey was completed, the qualitative case study of some selected software
companies in Finland started. The case study followed the steps that Yin (1994, p. 49)
presents:

1. Develop Theory. During the review of previous studies several research questions
were developed. These research questions are presented in Section 4.7.

2. Select Cases. Selecting cases has to be done carefully. The cases have to
correspond to the population. Eisenhardt (1989) also recommends selecting cases
that are extreme and that replicate or extend the emergent theory. Yin (1994, p.

146

46) proposes that cases must be selected so that the cases either predict similar
results (in a literal replication) or produce contrary results but for predictable
reasons in a theoretical replication. Lundahl & Skärvad (1999, p. 191) also
discuss the selection of cases and present the ideas of selecting typical cases and
special cases.

How many cases ought to be done in order to get the desired understanding and
knowledge? According to Gummesson (1991, p. 85) the number of cases is
determined by saturation (the diminishing marginal contribution of each
additional case). When new cases give very little new knowledge or information
there is no actual need to study any more. Lundahl & Skärvad (1999, p. 191)
emphasize that the number of cases depends on the desired depth and width of the
study. Eisenhardt (1989) also proposes that case studies can involve either single
or multiple cases. A number between 4 and 10 cases usually works well when
doing case studies for theory development (Eisenhardt, 1989). Yin (1994, p. 50)
recommends a number of five, six or more cases. However, the number of cases is
connected to the question of external validity. In an earlier similar study,
seventeen method specialists and IS managers in eight Finnish companies were
interviewed (Smolander et al., 1990). In this study six cases were selected.

3. Design Data Collection Protocol. The data collection protocol consists both of an
instrument and of the rules and procedures that ought to be followed when using
the instrument. The data collection protocol should have the sections that Yin
(1994, pp. 63-74) presents. These sections were thoroughly considered when the
author of this study developed the data collection protocol, which is presented in
Appendix 4. When developing a data collection protocol a pilot case study can
also be used (1994, pp. 74-77). In this study no pilot case study was performed.
There is already a survey and a pilot study preceding the case studies, so doing a
further pilot case study would not have added much more insight.

4. Conduct Case Studies. When conducting the case studies the answer to the
research questions are of course sought, and some other matters regarding the
experienced benefits and problems of the object-oriented paradigm in the software
companies are examined in the open questions. When doing the case studies the
chain of evidence has to be maintained so that one can follow the case studies
from the early research questions to the final conclusions (Yin, 1994, pp. 98-99).

The case studies consisted of interviews of one or two hours in length with either
one or a couple of persons who were working with the object-oriented paradigm
in information systems development. Of course, other techniques than interviews
could have been used. The interview questions were open-ended in nature and the
pre-planned interview questions were followed. The interview questions were the
same as the research questions.

The interviews were carried out in Finnish because it is important to consider the
native-language of the person being interviewed. A tape recorder was used. The
use of a tape recorder is discussed by Yin (1994, p. 86), who presents some
circumstances when it should not be used. The interviews were transcribed from
the tapes.

147

5-8. Write Individual Case Report from every Case Study, Draw Cross-Case
Conclusions, Modify Theory and Develop Policy Implications.

After the case studies had been done and transcribed, the analysing and reporting
phases started. Eisenhardt (1989) presents some analysis approaches and
strategies. It is important, however, to have a general analytic strategy in the first
place. Yin (1994, pp. 102-106) presents two general strategies: relying on
theoretical propositions and developing a case description.

In this study there is a theoretical proposition: the previous studies. When
considering different analysis techniques, the pattern-matching technique (Yin,
1994, pp. 106-119), seemed to be a good technique for this study. An empirical
based pattern (the result of the case studies) is compared with a predicted one (the
‘assumptions’ from the review of previous studies). In this study, the cases are
studied for observations that occur several times, in other words patterns. The
observations are presented as observations and not as general rules or new theory.

Write Cross-Case Report. The final step is to compose the case study report.
Important aspects and ethical topics to take into consideration when writing case
study reports are presented and discussed by Altheide & Johnson (1994, pp. 491-
492) and Yin (1994, p. 128).

When carrying out research and especially when doing case studies there are some key
questions and problems that the researcher has to be aware of and remember.
Qualitative studies like case studies have problems such as the inability to manipulate
independent variables, the risk of defective interpretation, the lack of ability to
randomise, the lack of controllability, the lack of possibilities for deduction, the lack of
repeatability, the question of access, the question of generalisation, the question of
reliability, the question of validity, the question of credibility, the question of which
case study method to choose, the question of how to analyse the result from a case study
and how to make a compound observation and the question of giving information about
the case studies, etc. (Gable, 1994).

Access. When considering which Finnish software companies to study the question of
access is important. The most interesting companies might not allow one to do case
studies and interviews. There is also a possibility that the companies do not give correct
information. Incorrect information can also be given in surveys of course. Alasuutari
(1994, pp. 80-86) discusses the question of the truthfulness of the given information or
honesty of the informant. Some practical advice on how to get in (getting access) the
company is given by Buchanan et al. (1988).

Generalisation and case studies. According to Lee & Baskerville (2003) it is possible
to make generalisations from empirical or theoretical statements and end up with
empirical or theoretical statements in the generalisations. Yin (1994, pp. 35-36)
discusses generalisation and external validity. He argues that from case studies
analytical generalisation can be made where the researcher is attempting to generalise
some results into some more common theory. There are, however, problems associated
with making generalisations from individual case studies. If there is no need to make
generalisations, there is also no problem (Alasuutari, 1994, p 207). In this study, no

148

generalisations were needed from the case studies because all generalisations are made
from the survey.

Reliability and case studies. Reliability means that if another researcher would carry
out the same research with the same methods, the results ought to be the same (Yin,
1994, p. 36). In order to make this possible the documentation of the case studies has to
be made carefully, and the researcher has to remember that the case studies might be
checked and read by several researchers later on (Yin, 1994, pp. 36-37).

Validity and case studies. Validity means that the evidence from the research really
reflects the reality under examination (Gummesson, 1991, p. 159). According to Yin
(1994, pp. 35-36) validity can be divided into internal validity and external validity.
Internal validity is a problem only when doing explanatory case studies and when the
researcher is trying to explain whether an event A led to an event B without knowing
that some third factor C may actually have been involved (Yin 1994, p. 35). Internal
validity is also a concern when making inferences (Yin 1994, p. 35). External validity is
concerned with the problems of making generalisations from case studies.

Data collecting techniques used in the case studies. Several different techniques can
be used when doing case studies. Case studies often consist of archives, questionnaires
and observation, and the evidence can be in words (qualitative), or numbers
(quantitative) or both (Eisenhardt, 1989). Yin (1994, pp. 79-90) presents the following
case study techniques: documentation, archival records, interviews, direct observations,
participant-observation and physical artefacts. In this study interviews were used. The
other case study techniques did not seem appropriate with the exception of observations
and perhaps documentation. These case study techniques and methods have already
been succinctly discussed in the earlier sub section on selecting research design and
research methods in this dissertation but are anyway briefly discussed below.

Documentation and archival records could be used because most information systems
have some documentation that could be examined. This is a laborious procedure and the
documentation is probably well protected and not available to the researcher. The
design decisions and programming issues can also be difficult to understand for a
person who has not been in the information systems development project. Observation
will be used to some extent; if something interesting happens during the interviews, it
will be written down. But systematic observations would probably give very little
information because information system developers are mostly working with computers
and one ought to see the screen and understand the context of the work in order to get
some information from such an activity. Participant-observation and using physical
artefacts are methods that are probably not suited for this study because information
systems development is a complex activity and one cannot start doing it without
adequate prior experience. Physical artefacts are hard to find because an information
system is very intangible by nature. A software program could be considered a physical
artefact but then the problem is that it might be difficult to analyse and understand the
program if one is not familiar with the programming culture in the company or the
programming language in question.

149

Result from case study and compound observation. What is important, however, is to
remember that when doing a qualitative study and when working with raw observations
obtained from, for example, case studies that all the raw observations have to be the
same, or stand for the same thing, in order to join the raw observations to a compound
observation (Alasuutari, 1994, p. 33). A single exception is enough to break the rule,
and shows that one has to rethink the whole thing again. Often the level of abstraction is
raised or the theoretical framework is changed in order to make compound observations
(Alasuutari, 1994, p. 33). The theoretical framework is an explicitly defined view of the
observations in question (Alasuutari, 1994, p. 69). After the raw observations have been
compounded, the next step is to interpret the findings. This analysing phase means in
qualitative research that based on the compound observations and other hints, we make
an interpretation of the phenomena studied (Alasuutari, 1994, pp. 34-35).

When the companies for the case studies were selected, the largest software companies
in Finland were considered. The largest software companies were selected because the
author of this work thought that the there is a higher possibility that larger companies
have experiences on object-oriented information systems development than that smaller
companies have such. An email was sent to the 20 largest software companies and an
answer was attained from nine companies. Six of the companies were willing to
participate in an interview.

The case study protocol in Finnish is presented in Appendix 5.

The interviews were carried out as presented in Table 7:

Table 7: Interviews

Place Date Position Time Comments

Helsinki 8.12.2003 Development
Manager

64 min. Drew a picture

Helsinki 19.1.2004 Two Software
Developers

78 min. Very talkative

Helsinki 9.2.2004 Technology
Manager

66 min.

Vaasa 5.5.2004 Main Software
Developer

40 min. Integrated analysis and
design with implementation;
questions regarding analysis
and design were omitted.

Espoo 18.6.2004 Manager 55 min. Mainframes and PCs. Long
time in business. Older
software developers

Espoo 23.6.2004 Manager 65 min. Business in Vietnam

The questions and answers can be found in the next chapter of this study. During the
translation from Finnish to English great precision has been used. Still the answers were
a bit modified when translated. Some words and sentences that the author of this study

150

found irrelevant were deleted in the answers. The mission was, however, to transcribe
the interviews with constant great care.

4.7 Theoretical propositions and empirical findings

In this section the research questions will be analysed from a theoretical and an
empirical view. The main concern is to compare the empirical findings with the
theoretical statements found in the review of previous studies.

All companies (104) answered the first question (Q1) that concerned the use of the
object-oriented paradigm in information systems development. As many as 89
companies out of 104 use the object-oriented paradigm, and the population N is 89 for
the survey in the following research questions. If there are no answers to a survey
question this is pointed out in the survey results.

When the possible associations between the benefits and the possible associations
between the problems have been empirically checked, the following has been done:

1. First, all the respondents that have experienced the benefit or problem in
question have been selected. The selected respondents become a population.

2. Out of the population, the respondents that have also experienced the connected
benefit or problem have been selected.

Because the associations have been validated in this rather unpretentious way one can

only consider them as hypotheses.

Note further that the one can discuss the direction of the associations. In this work the

direction of the associations has been developed in the way the author of this study

found most appropriate.

General

(Q1) Has the software company been using the object-oriented paradigm in
information systems development?

Theory – Studies: According to Johnson et al. (1999) and Sircar et al. (2001) the
adoption of object-oriented methodologies has progressed slowly. In a study by Glass
(1999) that focussed on information systems managers, it was found that only 39% of
the organisations had adopted the object-oriented paradigm in some form (Sircar et al.
(2001). In addition, Zhang (1999, p. 66) found that many companies did not employ
object-oriented information systems development.

Pilot study: In the pilot study it was found that 35% of the companies use an object-
oriented information systems development method.

151

Survey: 85 % had been using the object-oriented paradigm.
1 % did not know.
14 % had not been using the object-oriented paradigm.

Case studies: All the companies used the object-oriented paradigm.

Discussion and conclusions: Since the time of the above-mentioned study in 1999 and
the pilot study in 2000 a great majority of the companies have obviously started to work
with the object-oriented paradigm. One can present a supposition that the object-
oriented paradigm is nowadays a major information systems development paradigm.

(Q2) If the software company has not been using the object-oriented paradigm in
information systems development, then why not?

Pilot study: The reasons for not using the object-oriented paradigm were the following:

• Requirements of customers.
• The construction model is based on components.
• Not needed.
• Not enough benefits/efficiency in the object-oriented paradigm.
• Difficult to implement the entire object-oriented paradigm, however, object-

oriented effects are used.
• Difficult to say.
• Difficult to keep pure object-oriented development paradigm apart from

development that is only based on the object-oriented paradigm.
• Does not fit in all surroundings.
• We do not program that much.
• We do projects with traditional tools, however, we use the object-oriented

paradigm in newer projects.
• Most of the development is on a mainframe, many projects are considered with

existing systems.
• Enterprise resource planning is our main business.
• The time of objects is forthcoming.

Survey: The results are presented in Table 8.

152

Table 8: Reason why companies in the survey have not used the object-oriented paradigm

Number of
answers

Don't know what the object-oriented paradigm is 4

Don't want to use the object-oriented paradigm 2

The object-oriented paradigm is too complex 1

The object-oriented paradigm is still too immature 0

Difficult to do object-oriented testing 0

Lack of software developers trained in the object-oriented paradigm 1

Lack of software developers that are experienced in the object-oriented paradigm 1

Object-oriented software development is too expensive 1

There is a lack of object-oriented components to reuse 0

Object-oriented reuse is problematic 1

Object-oriented analysis is problematic 1

Object-oriented design is problematic 1

Lack of object-oriented databases 2

Difficulties to integrate the object-oriented paradigm with traditional databases 1

Difficulties to integrate the object-oriented paradigm with legacy systems 4

Other reason 8

Don't know why the object-oriented paradigm is not used 1

Problems with efficiency and cross-platform support 1

No development environment 1

No programming 1

Slow and expensive to train old software developers 1

Software development is not a part of our business 1

The products of today are still character based 1

Use Progress software developed during a 15 years period 1

Case studies: All the companies use the object-oriented paradigm.

Discussion and conclusions: Many of the arguments for not using the object-oriented
paradigm are rather subjective and expressive like ‘don’t know what the object-oriented
paradigm is’ and ‘don’t want to use the object-oriented paradigm’.

Better-argued reasons are the reasons ‘difficulties to integrate the object-oriented
paradigm with legacy systems’ and ‘lack of object-oriented databases’. The problem
concerning the lack of object-oriented databases is discussed in this study. The problem
with the integration with traditional procedural legacy systems is an old problem that is
slowly diminishing when new information systems are replacing older legacy systems.

Benefits – Management of Complexity

(Q3) Has the object-oriented paradigm been found useful when developing large-
scale and complex information systems?

Theory – Studies: Due to the experiences of Berg et al. (1995) and the assertions by
Booch (1994), Coad & Yourdon (1991, pp. 6-9) and Henderson-Sellers & Edwards

153

(1994, p. 5) the object-oriented paradigm is useful when developing large and complex
systems.

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 10.

Figure 10: The object-oriented paradigm is useful for large and complex applications

Useful for Large & Complex applications

Yes

94%

No

3%
Not sure

3%

In the review of previous studies a possible association between reuse and easier
management of complexity was identified. This is also the case according to 96% of the
companies that had used a lot of reuse.

Case studies:

Company A: Yes, the benefits come when there is a large system development project or a

product development project. In a small customer project there is not much advantage.

Company B: With objects have come competent tools for managing several things, but many of

the things that help maintenance and management are not purely connected to objects. We use a

lot of Java and it consists of many other things than objects that we think are good. We not only

handle large applications, we also take advantage of many good ways of doing things that are

partly object-oriented, and partly have been learnt already with the programming language C. We

have also put a lot of effort and money into configuration management and have to manage the

maintenance of parallel versions.

We have good experience of the object-oriented paradigm but when programming drivers

connected to kernels one cannot always use the object-oriented paradigm; one has to use a lower

level programming language like C. This is also the case when developing extremely resource

critical (fast) programs.

Company C: Yes, if one has taken the object-oriented technology into ‘real’ use. The difficulties

come in different stages in large complex applications, depending on the complexity of the

application. However, the usage of the object-oriented paradigm has often not been successful

mostly because of a lack of full knowledge of the object-oriented paradigm or because of technical

problems when the used software development method has not been taken into consideration.

Typically, technical problems arise when interfaces and components are developed. As a

conclusion, one can say that the challenges when developing a large application are not

automatically handled by the object-oriented paradigm.

Company D: Yes, particularly when developing large applications.

154

Company E: Yes we have experienced this, now we have in production systems with large overall

solutions. We now have general components, both technical and domain specific; one can call

them general reusable subsystems that consist of several components. There are benefits, also cost

benefits, but the road is rather long when one starts from the very beginning, this does not happen

during the first year, the second year nor the third year, but when one has the reusable parts.

Company F: We use the object-oriented paradigm in all information systems development

projects where it is feasible. There are some things that are that simple that we do not go into the

object-oriented paradigm, for example, simple support tools. When developing small applications

with a short time limit the object-oriented paradigm is not our first choice. When carrying out

more sophisticated product development we usually use object-oriented software development; in

the beginning there was a lot to do but now we can utilise reuse, which makes things much easier.

Summary of case studies: The object-oriented paradigm seems to be useful when
developing large applications, though other programming languages and techniques are
used when developing principally technical solutions.

Discussion and conclusions: The object-oriented paradigm has been useful when
developing large-scale and complex information systems by software companies in
Finland with five or more employees. This is the task-related belief that best
corresponds to the review of previous studies and theory because as many as 94% of the
respondents in the survey were of the opinion that the object-oriented paradigm seemed
to be useful when developing large-scale information systems. No other question
generated such high a percentage.

The findings from the empirical parts of this study are in correspondence with the
proposition found in the previous studies.

Benefits – Productivity, faster development and reduced costs

(Q4) Has object-oriented information system development been more productive and
faster than traditional information system development?

Theory – Studies: Improved productivity was an experienced benefit of the object-
oriented paradigm in the Survey of Advanced Technology 1996 (Pickering, 1996).
According to Henderson-Sellers & Edwards (1990) object-oriented information system
development is faster than traditional information system development. In the results of
12 empirical studies reported by Johnson (2002) better productivity was considered a
major benefit.

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 11 and Figure 12.

155

Figure 11: The object-oriented paradigm is more productive

More Productive

Yes

68%

No

21%

Not sure

11%

Figure 12: The object-oriented paradigm is faster

Faster

Yes

53%No

36%

Not sure

10%

No answer

1%

In the review of previous studies, a possible association between reuse and faster and
more productive information systems development was identified. This is also the case
according to 71% (for more productive) and 59% (for faster) of the companies that had
used a lot of reuse (had given this answer in the survey).

Case studies:

Company A: In a short time period the answer is: no. The time period should be longer before

one can experience that object-oriented information systems development is more productive.

Company B: For applications suitable for the object-oriented paradigm, the productivity has

been good, partly because of the object-oriented paradigm and partly because there are such

mature tools in the object-oriented world.

Company C: With productivity the case is, especially in the J2EE projects where there is

architecture with several layers, that the complexity of the environment and the large number of

different options lead to the fact that productivity actually becomes worse. The problem can,

however, be tackled by using frameworks. We still, however, have to build frameworks, and

usually the frameworks are built in the first project, in the second project the frameworks are

corrected and developed further, and finally in the third project the experience can be utilized.

This situation then often generates frameworks that are not finished, and the benefits of these

frameworks can therefore be questioned.

156

The productivity issue is actually one reason why tailor-made applications are not as popular as

before. One cannot get the same productivity with Java as with the fourth generation tools that

were used before. However, it is more productive to perform information systems development

with the object-oriented paradigm than with traditional software development tools and

programming languages.

Company D: Yes it has, one can work faster and when the software grows it can still be

administered.

Company E: Let us say it like this; it is now turning into productive, in the beginning it was not

productive. It will certainly be productive in the future.

Company F: Yes I think it is more productive; it is more complex and more challenging but more

productive, and even more interesting.

Summary of case studies: For developing information systems where the object-
oriented paradigm is suitable, the object-oriented paradigm is usually more productive
than traditional information systems development, but not as productive as using fourth
generation tools. However, one has to take into consideration issues like the learning
curve and the experience of the information systems developers.

Discussion and conclusions: The case studies probably give a possible hint as to when
object-oriented information systems development is more productive than traditional
information systems development, in other words: ‘when the object-oriented paradigm
is suitable’. The knowledge and experience of the object-oriented paradigm probably
also affects the productivity. Because a clear majority of the companies in the survey
found object-oriented information systems development as more productive than
traditional information systems development this is probably the case among software
companies in Finland with five or more employees.

The findings from the empirical parts of this study are in correspondence with the
proposition found in the previous studies.

(Q5) Has object-oriented information system development generated fewer lines of
code than traditional information system development?

Theory – Studies: According to Cockburn (1993) object-oriented information system
development generates fewer lines of code than traditional information system
development.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: It differs from case to case; the system should be rather large before there are

benefits.

Company B: It is often difficult to compare different ways of carrying out software development

because they are on different levels. With C we program lower level programs and with Java,

C++ and Python we program applications on a higher level, for example, GUI components.

Company C: See the answer to question 4.

157

Company D: There are more lines of codes but it looks better.

Company E: Yes, I have the view that this is the case. It probably depends on the developer.

Company F: It is difficult to say; one could say that if one makes use of reuse there is a smaller

number of code lines. Nevertheless, using reuse leads to a program that gets larger with more

feasibility.

Summary of case studies: The companies are not in agreement about this contention.
This is probably because it is difficult to compare traditional information systems
development work with object-oriented information systems development work. The
opinion which company E presented i.e. that it depends on the developer is interesting.

Discussion and conclusions: This question was only included in the case studies and
because the companies were not in agreement one has to propose that this question had
no appropriate answer. One reason for the uncertainty is probably that different
programming languages give birth to different number of lines of code.

Benefits – Quality and usability

(Q6) Has the quality of object-oriented systems been better than the quality of
traditional systems?

Theory – Studies: Due to the object-oriented paradigm, the quality of the information
system can be improved, because programs are made of existing tested components and
not developed from scratch every time (Gillach & Deyo, 1993; Sheetz & Tegarden,
1996; Smith & McKeen, 1996; Taylor, 1990, p. 104). Based on the results of 12
empirical studies reported by Johnson (2002) better quality was considered a major
benefit. In the question a more general quality term is used, although one has to
remember that there are several different types of quality (Reeves & Bednar, 1994).

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 13.

Figure 13: The object-oriented paradigm is generating better quality

Better Quality

Yes

70%

No

17%

Not sure

13%

158

In the previous studies a possible association between reuse, the one model concept and
better quality was identified. 68% of the companies that had used a lot of reuse had also
experienced better quality in their information systems development projects. 72% of
the companies that had used the one model concept had also experienced better quality
in their information systems development projects.

Case studies:

Company A: Yes.

Company B: It is difficult to compare the quality because in Java the quality problems have

changed. All that Java solves on a lower level does not require so much time for testing because,

for example, buffer overflows can be found more easily. Memory overflows are, however, just as

troublesome in Java as in C.

One thing that affects the number of errors is the fact that when Java was developed the

developers tried to avoid constructs that cause problems. Java is in other words a rather ’secure’

programming language.

In Java one can make things easily and quickly but this is not the same as productivity.

Productivity means that one gets the expected result in a short time. In order to develop products

of high quality in Java one has to be just as skilled in Java as in any other programming

language. One can easily also do things wrong in Java.

Company C: It is difficult to say because it is intricate to compare information systems (made

only once) with each other. However, I think that a certain level of quality has become much

better if one thinks of how different issues specified by users are handled. In J2EE projects data

security is, for example, remarkably better, usage of the Web is better and the user interfaces

become better when one uses the object-oriented paradigm.

The decrease in productivity can probably be explained by the higher quality of object-oriented

information systems.

Company D: Very much.

Company E: Lets say it like this; it depends very much on the developer. This is connected to the

working skills of the developer; if there is an unskilled developer on the “old” side, the systems

there also’ fall’ (there are dumps; if there is a skilled developer on the “new” (OO) side, then the

systems do not ’fall’; but if there is a new and novice developer still learning object-oriented

development on the new side, there will probably be problems all the way to production;

especially the testing process has been difficult. But as a general rule I would say that the

supporting tools for testing on the “new” side like “C test” and free open source tools better

support the process that we have slowly been developing, but the process will still continue for a

long time. I suggest that we will have code with fewer errors in the future.

Company F: Quality has certainly become better, but I am not sure that it is because of object-

oriented information systems development. One can get information systems of both good and

poor quality with both functional and object-oriented information systems development. However,

the object-oriented paradigm has better possibilities for higher quality because of reuse; if a

component has been tested and is then reused this should impose better quality. The use of reuse

gives birth to some new requirements concerning testing.

Summary of case studies: Although a certain amount of reservation exists one can
argue that better quality is a result of the object-oriented paradigm. The issue of the role
of the developer’s working skills is interesting.

159

Discussion and conclusions: A clear majority of the Finnish software companies were
of the opinion that object-oriented information systems are of better quality than
traditional information systems. The case studies supported this finding.

The findings from the empirical parts of this study are in correspondence with the
proposition found in the previous studies because as many as 70% of the respondents in
the survey were of the opinion that using the object-oriented paradigm results in better
quality.

(Q7) Has the usability of the object-oriented information systems in the software
company been better than the usability of the information systems that have been
developed with traditional software development methods and programming
languages?

Theory – Studies: According to Sheetz & Tegarden (1996) using object-oriented
analysis and design reduces the difficulty in mapping problem constructs from the
problem domain with structures for the computer. This leads to higher quality and
higher usability and maintainability (Sheetz & Tegarden, 1996). Therefore, the one
model concept in analysis and design leads to higher quality, usability and
maintainability. (Mellor & Johnson, 1997)

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No, they have been more difficult.

Company B: We have no real experience of usability because we develop parts of larger

applications. See the answer to the next question.

Company C: Yes, because the user interfaces are better in object-oriented information systems.

Company D: Yes I think that one can develop better programs with the object-oriented paradigm

and that this can also be seen for the end- user.

Company E: The information systems developers that come from the old side (non OO)

experience the object-oriented support tools as being more difficult and more difficult to study

than the tools on the old side. The threshold is very high. Nevertheless, the end users experience

the object-oriented user interfaces as very pleasant. This is the general rule; there are, however,

exceptions; some end users like the older, usually character based user interfaces.

Company F: If I think of the situation for the end user I think the information systems today are

much easier to use than, lets say 6-7 years ago. This is not due only to the object-oriented

paradigm because other things have happened too; for example, the application environments

also have many good components that one can use, especially when developing the user interface.

Summary of case studies: Because the first company had a different opinion and two
companies mixed user interfaces with the usability of the whole information system one
can make no conclusions. That still there are end users that prefer the usually character
based user interfaces was a small surprise.

Discussion and conclusions: No conclusions can be made.

160

Benefits – Natural and better mapping to problem domain

(Q8) Has there been a better and more ‘natural’ communication between information
systems developers and end users because of using the object-oriented
paradigm?

Theory – Studies: In the empirical study by Johnson (2000) improved communication
with users was a found a benefit. In addition, Davis & Morgan (1993) and Gillach &
Deyo (1993) propose that using object-oriented software development makes it possible
for the users and software developers to speak the same language.

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 14.

Figure 14: The object-oriented paradigm produces better communication between information

systems developers and end users

Natural Communication

Yes

22%

No

57%

Not sure

21%

Comments: No - Because of limitations of organisation. Yes / No - Classified as "Not sure": Among
users there are experts on information systems development.

Case studies:

Company A: No, there have been no benefits, in practice, we have been using “utilization”

analysis and “usage” analysis and we have not been talking of objects at all.

Company B: We have not experienced this because we develop products that are part of larger

applications and we therefore have very little communication with the end users.

Company C: If the end users are involved in the analysis work one can say that this has been

beneficial for the project; however this is only true on a higher level of analysis, for example,

when working with use cases. A presumption is also that the information systems developers really

want to solve the problems of the end users, and not only present their software analysis method.

One should also avoid discussing more complicated object-oriented issues like inheritance with

end users (which information systems developers too often do) because this makes communication

between information systems developers and end users more complicated.

Company D: There has been no communication between the end users and the programmers and

technical issues are totally internal. The end user does not see that the information system has

161

been made using the object-oriented paradigm. From the customers we only get wishes regarding

functions and needs, comments on what can be made better and of course feedback. The

customers do not participate in our work.

Company E: Yes we have the end users participating in the analysis stage and we use UML

based information objects, which is an innovation that we have further developed from a product

that the company Tietoenator sells. We always have the end users participating in the analysis

phase when working with this tool, in the analysis process there is a stage where we define the use

cases and in this stage the cooperation between end users and software developers is very good.

Company F: Our customers participate very much in the analysis stage, but I do not think the

analysis is easier with the object-oriented paradigm. The result from the analysis is more a result

of the software developers that carry out analysis than a result of the communication between

software developers and end users. One has to remember that the end users do not necessarily

know so much about software development. However, if the communication between software

developers and end users is favourable then the results from the analysis are usually better.

Summary of case studies: Because the end users do not work together with the
information systems developers in most of the companies, this question cannot be
answered properly. Only in company E and company F do the end users participate in
the analysis work, and in these companies other factors are more important for the
success than the object-oriented paradigm. In company E the analysis tool is the key
factor and not object-oriented analysis per se. In company F the working skills of the
software developers is the key factor.

Discussion and conclusions: A majority (57%) of the companies that participated in
the survey were of the opinion that there is no better communication between
information system developers and end users. It seems rather obvious that the findings
by Johnson (2000) in the US cannot be compared with the results from the survey. In
Finland the companies are generally smaller than in the US (as discussed in sub section
4.5.2) and the information systems projects are probably also smaller. In small
information systems development projects there is often no communication between
end users and information systems developers (finding from the case studies).

The findings from the empirical parts of this study contradict the proposition found in
other studies regarding Finnish software companies. This is mostly due to the lack of
co-operation between end users and information systems developers. When the end
users cooperate with the information systems developers, the problem seems to be the
lack of knowledge of software engineering among end users.

(Q9) Is object-oriented analysis more natural for users?

Theory – Studies: Objects are natural ensembles for many concepts in the real world
according to Booch (1994, p. 78) and Jacobson et al. (1992, p. 44).

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

162

Case studies:

Company A: No.

Company B: No experience, see the answer in the previous question.

Company C: No.

Company D: No.

Company E: Yes, depending on how our tool is used the experiences are different, but one can

argue that end users experience use cases as easier to develop than, for example, structured

activity models.

Company F: No.

Summary of case studies: Only one company was of the opinion that object-oriented
analysis is more natural for users than traditional analysis. This might of course be due
to the fact that in most companies the end users do not participate in analysis in the
information systems development work that the companies carry out.

Discussion and conclusions: This question was asked only in the case studies, and
because only one of the companies had actual experience of end users participating in
the information systems development analysis work, one cannot answer this question.

Benefits – Maintenance

(Q10) Has maintenance of object-oriented applications been easier or harder than
maintenance of traditional functional applications?

Theory – Studies: Many researchers like Agarwal et al. (2000), Booch (1994, pp. 77-
78), Caliò et al. (2000), Johnson (2000), Nowicki & Kosiak (1996) and Radin (1996)
argue that maintenance of object-oriented information systems is easier than
maintenance of traditional functional information systems. However, researchers like
Wilde & Huitt (1993) propose that maintenance of traditional functional information
systems in reality is easier than maintenance of object-oriented information systems.
Hatton (1998) and Wilde & Matthews (1993) propose that the complexity of object-
oriented information systems is one reason why they are more difficult to maintain than
traditional functional information systems.

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 15.

163

Figure 15: The object-oriented paradigm generates more maintainable applications

Maintenance

Easier

64%

Harder

10%

Not sure

26%

Comments: One respondent answered "Not sure" because he/she had not experienced any difference.

In the review of previous studies a possible association between reuse and easier
maintenance was identified. This is also the case according to 71% of the companies
that had used a lot of reuse. In the review, another possible association between using
software components and easier maintenance was also identified. This is also the case
according to 66% of the companies that had used a lot of software components.

Case studies:

Company A: Yes, the main reason is that because the object-oriented ‘field’ is harder, it is done

in one way; among traditional development projects the divergence is larger, which affects

maintenance.

Company B: It is easier to read C code than object-oriented code, but this might be due to the

reader. In the object-oriented world, different parts of the application are more logical. The

object-oriented paradigm gives a better probability of easier maintenance, but easier maintenance

is due to several other things. In the object-oriented world, there are two things that effect

maintainability, the amount of ready-made components and the lack of lower level routines and

the structure of the object-oriented programming language that supports documentation. A large

library supports maintenance, but this is the fact with C as well.

Company C: If the object-oriented information system is built without interfaces in a more

traditional way, then maintenance is the same as before. However, if the object-oriented

information system is built with real components and with a real application framework, then

maintenance is easier. The situation today is that many organisations that made object-oriented

software development in the late 1990’s now have a lot of Java code that is hard to maintain.

Company D: It is much easier. If one makes the object oriented program thoroughly one knows

that a change in one part of the program only affects the part in question and not any other parts

of the program.

Company E: It depends on the information systems that we have in production and on the

information system developer that works with the information system. There are information

system developers that find maintenance very easy and there are those who find it difficult. This is

probably an issue of working skills and how working skills improve when the information system

developers become more experienced.

Company F: Maintenance is always difficult; we have a lot of products and some of the code is

written by us and then integrated with the source code of mainstream products. However, the

object-oriented paradigm makes maintenance a little bit easier.

164

Summary of case studies: If the object-oriented paradigm is used appropriately then
maintenance of the object-oriented information system is in all probability easier. The
skills of the information system developer must also be taken into account.

Discussion and conclusions: It appears that the theoretical proposition is true for
Finnish software companies. The maintenance of object-oriented information systems is
easier than the maintenance of traditional information systems according to a clear
majority of the Finnish software companies.

The findings from the empirical parts of this study are in correspondence with the
proposition found in the previous studies.

Benefits – Software components

(Q11) Have readymade components been used and been considered beneficial for
information system development?

Theory – Studies: Pancake (1995) claims that the greatest advantage of the object-
oriented paradigm is the fact that objects can be used as software components; however,
components can also be analysis components, design components or programming
components (Coad & Yourdon, 1991, p. 124), etc.

Pilot study: In the pilot study one respondent answered ‘Standard solutions’ and
another answered ‘The component architecture’.

Survey: The question was not included in the survey.

Case studies:

Company A: We are using readymade components and they are beneficial; for example, we are

using Stratch and in a way, Stratch supports the development of programming code that is of

better quality.

Company B: We have developed components in-house and we have bought ready made

components. We have not been participating in any open source community. We also have a

managed reuse of code, but this can also be made of course in a traditional programming

environment.

Some open source components can, however, be found in our company. The quality of the open

source components is very different; out of ten components one might be very good and nine are

rubbish and do not work. When using open source components one has to spend a lot of time in

order to check the quality of the component. This time one can just as well spend in programming

a new similar component.

Company C: As a general rule we develop our own components and usually only for the needs of

one or two projects. We have been evaluating readymade components for the last five years, and

we have found several interesting components. Nevertheless, there are also several problems like

the ‘black box’ phenomena where one is not allowed to get the source code, which means that

customers cannot develop the components. When one cannot drop the readymade components and

cannot further develop them one has often to pay expensive licence fees for a long period of time.

Therefore, we have not found readymade commercial components as appropriate to use.

Concerning open source components, the situation is that we use them, but we are not very fond of

them because one can never be secure of their quality. An exception is components that are, for

165

example, already in the product palette of IBM or some other known company. These components

are usually reliable, but on the other hand, they are not necessarily components any more; they

are often net services, application modules or something else. The Strux Framework is a typical

example of this.

Company D: We use readymade components to some extent, especially for network

implementations and cryptology parts of the information system. However, we try to develop as

much as possible by ourselves. We have used both open source components and components that

we have bought.

Company E: We use technical readymade components that we have developed in-house and we

have found these very useful; for example, error management components that we use in all new

information systems that we develop. This results in a nice situation for the end users who switch

between information systems; in all information systems the error management is performed in the

same manner. We do not use commercial components that can be bought from other companies.

Company F: Yes we use components and try to develop them if we have enough time and

resources. Time is indispensable because testing components that will be used in the future is

important.

Summary of case studies: All the companies use readymade components and they
have found readymade components beneficial in their information systems development
work. The companies are not very fond of open source components because of their
varying quality.

Discussion and conclusions: One cannot generalize matters based on case studies but
most probably readymade components are used a great deal and found beneficial by
many software companies in Finland. The companies, however, seem to avoid open
source components because of their varying quality.

(Q12) Have the companies developed software components? If they have, are the
companies of the opinion that the object-oriented paradigm has made the
development of software components easier?

Theory – Studies: Eriksson (1992, p. 54) argues that software components or modules
are easier to develop due to the object-oriented paradigm. Kaasböll (1993) is of the
same opinion and claims that the easier development of components is due to object-
oriented software development methods for application development, Caliò et al. (2000)
also feel the same and present UML as such an object-oriented software development
method

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Yes we have, but less today, more before when our software development was more

about developing software for the client.

Company B: Yes, it depends on the component, but as a rule, the object-oriented paradigm has

not made the development of components easier. It is not easier to program components in Java

than in C, though C might be an easier programming language to learn and use.

166

Company C: Yes but mostly small components. Some larger components have, however, been

developed for banking applications.

Company D: Yes, we have, coding is faster, but one does have to know what one is doing.

Company E: Yes, we have. It is not easier or more difficult to develop components using the

object-oriented paradigm than using some other older paradigm. The point is to find the “glue”-

the interface between the components.

Company F: The object-oriented paradigm has made it a little bit easier. It was not that difficult

before but is perhaps somewhat easier nowadays. The measurement and comparison of older

functional and newer object-oriented component development is of course tricky.

Summary of case studies: The companies have developed software components of
their own; the question whether the object-oriented paradigm has made the development
of components easier is rather unclear, probably because the companies have not
developed many components using traditional information systems development
techniques; only company F was an exception.

Discussion and conclusions: One cannot generalize matters based on case studies but
most probably many software companies in Finland have developed software
components of their own.

Benefits – End – User computing

(Q13) Are the software companies using End-User Computing? If the software
companies are using End-Using Computing, has the object-oriented paradigm
made it easier in the software company?

Theory – Studies: Winblad et al. (1990, p. 49) point out that perhaps in the future the
users of today can develop and build applications of their own easier, using the object-
oriented paradigm in an End-User Computing manner.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Some clients have started to maintain our software and continued to program our

software. This has been done when the software is office based and not when it is independent and

object-oriented.

Company B: We have active clients (often larger companies), and in these companies software

developers further develop our programs. The quality of applications developed by end users is

often a problem. There are, however, very skilful end users.

Company C: Yes, there is often some kind of special evolution to the information systems that we

have developed. Nowadays the object-oriented technology is such that if end users start to build

information systems of their own the whole work process goes into a ‘knot’, and this ‘knot’ cannot

easily be opened. We have experienced cases where end users have made so much with Excel that

the whole thing had became a huge ‘knot’, and then a software house is connected in order to get

the ‘knot’ opened. For end users the technology is not mature enough for developing larger

information systems. Nevertheless, they can of course develop small applications.

167

Company D: No, our customers have no access to the source code.

Company E: We have a rule that our customers are not allowed to develop information systems

of their own. There are, however, some eager engineers that have developed some very small

applications with Excel. The maintenance of end user information systems is always difficult and

therefore end users are not allowed to develop information systems of their own.

Company F: Our customers do not develop much software anymore because most of the software

development tasks are outsourced to us. There are some hobby programmers but the quality of

work is usually poor.

Summary of case studies: Most of the companies have experienced end users
developing information systems. The quality of software that end users develop is,
however, often rather defective. None of the companies commented whether the object-
oriented paradigm has encouraged end-user information systems development.

Discussion and conclusions: End user computing is probably a fact in many Finnish
companies (the ‘clients’), though the quality of the information systems they develop is
not always very good. Whether the object-oriented paradigm has promoted end-user
development cannot be determined. According to one of the companies in the case
studies, some end users develop information systems with Microsoft Excel. Because
this question was not included in the survey, no generalisations can be made.

Benefits – One model

(Q14) Has the object-oriented system development process been seen as a uniform
‘one model’ from problem domain to code and maintenance in the software
company?

Theory – Studies: The object-oriented paradigm has a uniform paradigm throughout
development from analysis to implementation and maintenance (Coad et al., 1995, pp.
481-485; Henderson-Sellers & Edwards, 1990).

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 16.

Figure 16: The object-oriented paradigm as one model

One model

Yes

42%

No

42%

Not sure

16%

168

Comments: One respondent answered "Differs from one project to another", classified as "Not sure".

Case studies:

Company A: We have not been using the waterfall model; we have been using a model with

boundaries that can be seen as one model though we have developed the system part by part,

sometimes according to the waterfall model.

Company B: The project management model is not connected to the software development

paradigm. With pure object-oriented concepts one cannot manage all necessary things. With UML

one can specify requirements but we also use “end-user concepts” in our work.

Company C: Yes, in several projects we have experienced this phenomenon; artefacts from

analysis have become components or objects with the same name in the implementation phase.

However, the benefit from this is usually not very big because in the implementation phase the

component does not only consist of the artefacts from the analysis phase; in fact often about 90%

of the component (or object) consists of code for technical issues. The possibility to trace back

from the component to the artefact in analysis is often not very clear.

Company D: In our software house the analysis part is very limited. Design is also made at the

same time as we program. We do not develop large class libraries and structures that we then

start to implement.

Company E: We have a very iterative way of performing information systems development. We

might return to analysis or design, and check how to do something in a very iterative manner. The

older software development work was much harder than the iterative work we do today.

Company F: The process has become more straightforward, our company is so large that we

have to use clear working procedures. We still see the different phases, but the boundaries

between the different phases have become indistinguishable. The placement of the boundaries also

depends on which software developer plans the information system; some software developers

skilled in UML carry out pure requirements analysis and other software developers do a lot of

design. However, the iteration concept is of course known and used.

Summary of case studies: Because the companies use different information systems
development practices this question cannot be properly answered. Two of the
companies had, however, experienced the ‘one model’ phenomena.

Discussion and conclusions: Because of the results one cannot argue that the ‘one
model’ development process is recognized a lot among Finnish software companies.
Because the number of ‘yes’ answers were exactly the same as the number of ‘no’
answers the conclusions in the next paragraph are rather weak.

The findings from the empirical parts of this study contradict the proposition found in
other studies regarding Finnish software companies. Though the case studies do indicate
that the question is easily misinterpreted and therefore one ought to be careful when
analysing the results. The lack of the ‘one model’ development process is probably due
to the used company specific development processes. These company specific working
processes often have a rather weak connection to a theoretical development process and
propositions found for theoretical development processes are thus seldom very well
supported.

(Q15) Have the companies found that there is a benefit because there are the same
building artefacts in object-oriented analysis and object-oriented design?

169

Theory – Studies: Mylopoulos et al. (1999) stress the fact that the whole software
development process can be made easier when the designer has the same building
artefacts from analysis to design and implementation. The artefacts are the object, the
classes, methods, messages and inheritance, etc. (Mylopoulos et al., 1999).

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Yes, in one case objects were found rather early, but typically; no.

Company B: In design the use of objects makes things easier to understand.

Company C: Yes, the building artefacts in analysis and design are often very much alike. This is,

however, not the case anymore when the information systems development project reaches the

implementation phase. See question 14.

Company D: No question was asked and no answer was received because the company does not

carry out analysis.

Company E: Yes.

Company F: No real benefit.

Summary of case studies: It seems that the companies that perform proper object-
oriented information systems analysis have also experienced that one can recognize
some objects that are the same objects in analysis and design.

Discussion and conclusions: In the case studies the respondents talked about ‘normal’
objects that come from true analysis and more ‘technical’ objects that are needed for
network communication etc. Among the ‘normal’ objects there are objects that run from
analysis through design into implementation. One cannot generalize matters based on
case studies.

Benefits – Frequent tangible working results and reliability

(Q16) Has object-oriented information system development given frequent tangible
working results?

Theory – Studies: Coad et al. (1995, pp. 481-485) and Radin (1996) propose that
frequent tangible working results are considered a benefit of the object-oriented
paradigm.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No.

Company B: Yes, when ready-made components were used.

170

Company C: Only infrequently.

Company D: Not asked because of an error by the author of this study.

Company E: We have a number of software developers that are real virtuosos who are able to

develop smaller applications in a few days.

Company F: Yes, especially when developing parts of systems. We have used commercial

components and put them together and then further developed the mix. This is very productive and

easy; one can buy the component and it’s source code on WWW, pay with a credit car, and then

use and modify the new component.

Summary of case studies: This is not generally the case. Two companies had,
however, experienced this. One company argued that this is more due to personal skills
among software developers than it is due to the used software development paradigm
(company E).

Discussion and conclusions: The possibility to gain frequent tangible working results
is probably connected to reuse. Although reuse is performed (see answers on question
20) frequent tangible working results are not always accomplished. One cannot of
course generalize matters based on case studies.

(Q17) Have the object-oriented information systems in the software company been
more reliable than the information systems that have been developed with
traditional software development methods and programming languages?

Theory – Studies: Lim (1994) and Page-Jones (1992b) also claim that reliability is a
benefit of object orientation.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Yes.

Company B: No.

Company C: Yes.

Company D: Yes, they are, if one can develop objects that are isolated and only have connections

with the environment through the procedures and parameters of the object. In traditional

maintenance global variables were often difficult to manage.

Company E: No, it depends more on the skills of the software developer who has developed the

information systems. If the software developers are not very skilled then sometimes the

information systems are not that reliable.

Company F: Yes, if reuse is used properly.

Summary of case studies: Four out of six of the companies had experienced this.
Company E again presented the issue of the significance of the skills of the information
systems developers. Company E is a software company with long experience in the
information systems development field.

171

Discussion and conclusions: The four Finnish software companies in the case studies
had experienced that the reliability of object-oriented information systems is better than
the reliability of traditional information systems. One cannot of course generalize
matters based on case studies.

Benefits – Suitability for embracing new technologies and sound academic basis

(Q18) Have the companies experienced that the object-oriented paradigm is a good tool
for embracing new technologies like graphical user interfaces or client-server
applications?

Theory – Studies: Regarding this benefit, graphical user interfaces and client-server
applications are mentioned as new technologies that can be developed straightforwardly
with the object-oriented paradigm (Coad et al., 1995, pp. 481-485).

Pilot study: In the pilot study it was found that the object-oriented paradigm has a
significant future benefit regarding object-oriented models and tools.

Survey: The question was not included in the survey.

Case studies:

Company A: Developing the user interface is a large part of the development work and in this

work the benefits of the object-oriented paradigm are not that considerable. Few good ready

made components have been found for developing graphical user interfaces.

Company B: When developing graphical user interfaces Java is a very suitable tool. Generally,

objects are suitable for developing graphical user interfaces. Regarding client – server

applications objects are not necessary the right solution; lower level languages are usually more

productive.

Company C: Yes, or one can say that we try to use the object-oriented paradigm in all new

information systems development projects. There are, however, still some customers that want

information systems that have been built in a traditional way.

Company D: Yes.

Company E: Yes I think this is the case. However, the model of thinking is important. One is

forced, however, to comprehend the object-oriented way of thinking, if one still thinks in the old

functional way then the object-oriented paradigm is not suitable for developing new information

systems. Nevertheless, generally I think that all the 50 information systems developers who

develop object-oriented software in our company would answer “Yes” to this question.

Company F: Today I do not think there are many other alternatives than the object-oriented

paradigm.

Summary of case studies: The companies had all experienced this. One company,
however, did not find the benefits especially extraordinary. Another company presented
the problems with older software developers who had difficulties in starting to think in
an object-oriented way.

Discussion and conclusions: When developing information systems today that are
client – server based, and have graphical user interfaces, the choice of the object-
oriented paradigm is not far away. Of course these kinds of information systems can

172

also be developed with traditional information systems development tools like the
programming language C and D-Screen. One cannot of course generalize matters based
on case studies.

(Q19) Are the companies of the opinion that the sound academic basis of the object-
oriented paradigm is a benefit?

Theory – Studies: There is a strong theoretical background for the object-oriented
paradigm. Academic research will also support the development of the object-oriented
paradigm. (Smith & McKeen, 1996)

Pilot study: In the pilot study, one respondent answered “know-how”.

Survey: The question was not included in the survey.

Case studies:

Company A: Yes, books and people can be found. Nowadays there are several students coming

from universities with good knowledge of the object-oriented paradigm and these students have a

positive attitude towards it.

Company B: That there is knowledge based on experience is a benefit, but not all knowledge is of

good quality.

Company C: Yes, books (from Amazon, for example) and people can be found. Nowadays there

are several students coming from universities that have studied an object-oriented programming

language as their first programming language. They also have good knowledge of the object-

oriented paradigm. Furthermore, students have a positive attitude towards it.

Company D: Yes it is beneficial when studying that suitable academic material exists so that one

learns the object-oriented way of thinking, because it is different from the traditional way of

thinking.

Company E: Yes, definitely, for example, in different discussion groups there is a lot of

information available. This possibility was not available before the Internet.

Company F: Before we adopt any new technique, we always first evaluate the quality of the

documentation of the technique.

Summary of case studies: Companies A – D probably understood the question in the
right way and had found the academic basis of the object-oriented paradigm beneficial.
Companies E and F did not answer the question and probably misunderstood the
question. What is interesting is that an academic base per se is not good; one has to
understand the object-oriented way of thinking as well.

Discussion and conclusions: In order to learn the object-oriented paradigm and the
object-oriented way of developing information systems one can use books and journals
etc. There is no lack of material about the object-oriented paradigm on the market. This
is the ‘benefit’ that was reported by the Finnish software companies that participated in
the case studies. One cannot of course generalize matters based on case studies.

173

Benefits – Reuse

(Q20) Have the software companies used much reuse? Has reuse in the object-oriented
paradigm been as beneficial as several researchers propose it to be?

Theory – Studies: Reuse often results in less rework in the development process (Basili
et al., 1996a). However, Mili et al., (1999) propose that the benefits of reuse are not
always realised.

Pilot study: In the pilot study it was found that the benefits of reuse are only found
later, but anyway that it is still important.

Survey: The results are presented in Figure 17 and Figure 18.

Figure 17: Companies used much reuse

Much Reuse

No

13%

Not sure

4%

Yes

83%

Comments: one respondent answered "Yes/No" and one respondent answered "No/Not sure", both are
classified as "Not sure"

174

Figure 18: Reuse considered beneficial

Reuse Beneficial

Not sure

3%

No

3%

No answer

2%

Yes

92%

The findings from the empirical parts of this study are in correspondence with the
proposition found in the previous studies because as many as 92% of the respondents
were of the opinion that reuse is beneficial.

Case studies:

Company A: Looking back, on can say that in practice it has not been beneficial, and we have

not been using reuse. But now we are using another software development environment and

nowadays reuse is used more and can be considered beneficial. The reuse of components is,

however, seldom happening.

Company B: See question 21 and corresponding answer.

Company C: We have levels of reuse. For example, in the Open Method application development

method that we use we have made reuse solutions that are much deeper than those that we have

made in ordinary work. We have, for example, ready made document skeletons and use structures,

and by using these we can rapidly develop analysis that is cohesive and highly useful. This way of

working has supported reuse on the analysis and design levels.

In the implementation phase the reuse of classes has not been successful. However, reuse has in

practice been beneficial when working with Frameworks. The Framework includes the model for

programming, a ready-made program skeleton and often there are also some ‘generators’ that

can be utilized in the programming work. One can also ‘glue’ several things to the Framework

like log components and user interface elements, etc. Reuse with Frameworks has been most

successful. On the component level there are few good components to reuse, and reusable

components do not pop up by themselves. Because we have a lack of time and the technology

develops so fast we cannot start to develop reusable components.

Company D: Yes, we have some components that can be used in almost all programs. We do not

try to maximize reuse; we use reuse where it is suitable and where we can save some effort.

Company E: We have used reuse but not very much. We have found reuse good in the few cases

when we have used it. Mostly we have used it in technical settings, but also in some business cases

concerning customers. When utilizing reuse the interfaces have to be very properly defined; this

definition work is not always very easy.

Company F: We use a lot of reuse; we have a substantial class library and we reuse classes from

this library when possible.

175

Summary of case studies: All the companies utilized reuse though the experiences of
the benefits of reuse were different. Reuse is probably not considered as a major benefit
for information development work.

Discussion and conclusions: Because a vast majority of the Finnish software
companies had used reuse and found it beneficial, one can only argue that one of the
most promising benefits of the object-oriented paradigm.

The findings from the empirical parts of this study are in correspondence with the
proposition found in the previous studies.

(Q21) What do the software companies reuse?

Theory – Studies: Software reuse was studied by Gehringer & Manns (1996) by asking
managers who directed object-oriented programming projects and according to the
findings class libraries purchased from vendors and class libraries developed in-house
were reused. Note that objects can also be reused because there are object-oriented
programming languages like Smalltalk where everything is an object (Khoshafian &
Abnous, 1995, p. 16). In programming languages like C++ and Java, objects are of
course not reused.

Pilot study: The question was not included in the pilot study.

Survey: The results were the following:

 Number of answers

Objects 32
Classes 74
Class libraries purchased from vendors 25
Class libraries developed in-house 65
Analysis 25
Design 26
Components 62
Other 10
Of which:

Documentation (for end users, etc.) 1
Frameworks 3
Free libraries 1
Inheritance of "schemas" 1
Open source libraries 1
Patterns 1
Teaching material 1
Testing material 1

Comment: Of those that had used components all considered them useful.

The respondents gave several answers and therefore no chart was made.

Case studies:

Company A: We have a standard library that we reuse, all Java applications that we develop

should be built upon this standard library, but Stratch is connected to the standard library, and it

176

should also work in all projects. We have also our own library, which we use when developing

products that are more complex.

Company B: We develop applications in different phases and reuse components from the

standard library. In our project management we have an important goal that components will be

reused.

Company C: Analysis and design, see question 20.

Company D: We use, for example, the database components of Linux. We also use network

components.

Company E: Mostly we have used components, but we have also developed some small

subsystems for some special tasks.

Company F: We use classes, class libraries developed in-house, components, analysis, design

and documentation, etc.

Summary of case studies: The companies reuse components, components from
standard libraries, analysis and design, database components of Linux, subsystems,
network components and documentation.

Discussion and conclusions: The Finnish software companies reuse classes and
components to a high degree. This is not surprising, because this is a base within the
object-oriented paradigm. What is interesting, however, is that most Finnish software
companies like to reuse components they have developed in-house. For example, open
source components are not very popular for reuse. This finding is somewhat
unexpected. One would expect that companies would share components with each other
and not only share components inside the company.

The findings from the empirical parts of this study are in correspondence with the
proposition found in the previous studies.

(Q22) Do information system developers prefer to reuse rather than to build from
scratch, or do they consider reuse so difficult that they rather build components
from scratch?

Theory – Studies: According to Frakes & Fox (1995) they prefer to reuse. However,
according to Sparling (2000) many developers think that it is better to build a
component from scratch than to reuse an existing one.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Yes, sometimes we have had to struggle in order to get the software developers to

use readymade components. There is also a problem because some software developers are afraid

to change components that are in the standard library, which leads to a way of working where the

software developers take a copy of the component. This practice makes project administration

more difficult and the component becomes “project specific” and not suitable for the standard

library.

177

Company B: One has to be aware of the components, which means that components have to be

documented. The second question is if the existing component is suitable for the job in question.

One has to work in order to get reuse; reuse does not come by itself.

Company C: There are different types of programmers, but as a rule, the programmers prefer to

develop their own components. See also question 20. Sometimes the programmers find interesting

components but then they recognize that the components do not fulfil their requirements, which

makes them even more unwilling to reuse existing components. However, project managers who

are responsible for the timetable often try to find readymade components in order to get the work

done faster.

Company D: If the information systems developers have a readymade component that can be

used, they use this. However, it is the quality level requirement of the final product that determines

what the information systems developers do. For example, when they used open source

components they often got a lot of bugs (errors) and therefore they often had to develop

components of their own.

Company E: Yes, we have experienced this problem in some projects, I do not know if this is a

result of shortages in understanding, informing or something else. We have young enthusiastic

men that like to develop components of their own, though we might have ready-made components

that could be used.

Company F: They prefer to reuse.

Summary of case studies: Three of the companies had experienced this problem. This
problem is in other words not unknown, though it seems that it can be managed without
any big difficulties.

Discussion and conclusions: This problem exists in Finnish software companies.
Because this question was not included in the survey, no generalisations can be made.

(Q23) Are finding suitable components a hindrance for reuse?

Theory – Studies: According to Nokso-Koivisto (1995) reuse of components cannot
often be carried out because no adequate component can be found. Glass (1998)
proposes that in order for a component to be reusable it has to have 80% or more of the
specifications and functionality that is needed.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Yes to some extent, but if this is due to the difficulty in finding a suitable component,

or if this is due to the unwillingness to use a component, is hard to say.

Company B: Yes, one has to be aware of a component in order to be able to reuse it.

Company C: Yes.

Company D: No, we know very well what we have.

Company E: Yes, although we have scanned the component market.

Company F: No.

178

Summary of case studies: When using libraries that have not been developed in-house,
this seems to be a problem for most of the companies.

Discussion and conclusions: To find a suitable component from outside the software
company seems to be a problem. Because this question was not included in the survey,
no generalisations can be made.

(Q24) Have the producers of reusable components in the software company considered
the needs of the future users of the components? (Both people and systems.)

Theory – Studies: According to Coleman et al. (1994, p. 230) producers of reusable
components have to think about the needs of the future users of the components.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Software developers are not in contact with end users (people). The project

managers are, however, considering this issue. Budgeting is the main obstacle. If the customer

has to pay for the software development work, it is not fair to have the customer also pay for the

extra work connected to the development of reusable components. When working with joint

projects where there has been both software development and software enhancement this has been

working.

Company B: Yes, it is a part of the project management. This has been done very much when

developing components for graphical user interfaces. It has been important to build a special level

of components that makes the graphical user interfaces more alike.

Company C: There is a fascinating phenomenon; when the information systems developers

recognize a place for a ready made component they do not even search for such a component,

instead they start to develop a new ‘reusable’ component by themselves, which means that the

information systems developers do ‘extra’ work which will be a burden for the ongoing

information systems development project. One can talk of ‘reuse for the future’ that is happening

in the wrong direction; one makes reusable components though there is no real need for this. This

problem must me managed by the project management.

Company D: Yes, when we develop components we try to develop components that have as few

constraints as possible. We do not consider all possible future needs, but we try to develop

components that do not prevent forthcoming needs.

Company E: Some projects can be called “harvest projects” because they can utilize components

that have been developed in other projects. We also try to consider forthcoming projects when

developing components.

Company F: Yes.

Summary of case studies: All the companies are aware of this issue, and also of the
problem as to how to divide the costs for developing ‘for the future’.

Discussion and conclusions: The Finnish software companies that took part in the case
studies were aware of this dilemma. Because this question was not included in the
survey, no generalisations can be made.

179

(Q25) Has multiple inheritance been used? If multiple inheritance has been used, has it
been successful?

Theory – Studies: According to Koskimies (1995) multiple inheritance is considered
by most researchers as having more disadvantages than advantages.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No.

Company B: In Java one can use multiple inheritance only when working with interfaces, and

this has been done. Pure multiple inheritance is not used in our company, and it is better so.

Company C: Very seldom, mostly because Java does not support pure multiple inheritance.

Multiple inheritance is a mechanism that is very difficult to master. We try to use delegation

instead of multiple inheritance.

However, theoretically we think that multiple inheritance is useful in some cases. For example, in

C++ the Persistence Framework, one inheritance is for the Persistence implementer and the other

inheritance is for the application hierarchy.

Company D: We use object-oriented Delphi and there is no multiple inheritance. This is good

because multiple inheritance might make things more convoluted.

Company E: No. We use mostly Java.

Company F: Yes, we use it to some extent in our C++ code. We have not experienced any notable

problems with multiple inheritance.

Summary of case studies: Only one company used multiple inheritance. Though most
of the companies did not use multiple inheritance the answers indicated that they were
probably aware of the dangers with it.

Discussion and conclusions: Most of the Finnish software companies avoided multiple
inheritance and some of them used programming languages like Java where there is no
multiple inheritance. The Finnish software companies seemed to be aware of the
dangers with multiple inheritance. Because this question was not included in the survey,
no generalisations can be made.

Benefits – Object-oriented analysis

(Q26) Can the users switch from the object-oriented paradigm to the functional
paradigm and back in a smooth way?

Theory – Studies: According to Sommerville (1992, p. 66) users can switch from the
object-oriented paradigm to the functional paradigm and back in a smooth way.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

180

Case studies:

Company A: The users are not aware of what approach is used; only the application manager is

interested in this issue.

Company B: We have no real contact with end users.

Company C: We have different kinds of information systems development projects. For example,

in a large project that lasted for several years, the customer had developed the analysis phase by

himself; with use cases several customers can develop analysis by themselves. Many customers

have some understanding of the object-oriented technique today. However, we have also had

information systems development projects where we have recognized that the object-oriented

technique was too difficult for the customer to comprehend.

Company D: We do not use analysis.

Company E: The end users are only in one world; the functional or the object-oriented. There

are a few exceptions, but then the end users have found it difficult to move from the functional

world to the object-oriented world.

Company F: Our customers and end users give us the requirements but do not participate in the

pure analysis work. The end users, however, participate in issues related to the analysis of the

requirements for the graphical user interface. When the customers work with the requirements

they can define the requirements without problems.

Summary of case studies: Only one company answered the question. The main reason
is the limited contact between end users and the information system development
project members. The company that answered the question was of the opinion that the
users are not able to switch from the object-oriented paradigm to the functional
paradigm and back in a smooth way. Another problem was that the companies talked
about end users and the question involved all kind of users.

Discussion and conclusions: Unfortunately, no conclusions can be made because of the
fact that the companies misunderstood the question, which was due to an error made by
the author of this study who made the interviews.

(Q27) Have the companies used prototyping for finding requirements in object-
oriented information systems development?

Theory – Studies: Prototyping is often used for finding the requirements in analysis (de
Champeaux et al., 1993, pp. 7-8).

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Prototyping has been used but it has not been especially beneficial.

Company B: No comments.

Company C: Yes, especially in large information systems development projects and in user

interface and stress testing. We have, however, never built a prototype of a whole information

system together with end users.

Company D: No comments.

181

Company E: No, though we are aware of the concept.

Company F: Yes, we use a lot of prototyping. We develop small prototypes that we present to our

customers, especially when we develop large information systems. The small prototype is then a

part of the larger system. Prototyping is especially useful when developing user interfaces.

Summary of case studies: Prototyping is known and used by three of the companies,
but it seems to be a rather uninteresting issue for all of them, with the exception of
company F.

Discussion and conclusions: This question is not a core question regarding the object-
oriented paradigm. The interest in this question was low among Finnish software
companies. Because it was not included in the survey, no generalisations can be made.

Benefits – Object-oriented design

(Q28) Has the transition to object-oriented design from object-oriented analysis been
easy or difficult?

Theory – Studies: The information that is developed in the analysis phase becomes an
integrated part of the design instead of only being the ‘input’ to the design (Korson &
McGregor, 1990). Here lies the benefit of object-oriented design in comparison with
traditional structured design. In traditional structured information systems development
(in theory), analysis and design are strictly different activities. However, some
researchers like Kaindl (1999) think that this is not very true.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No differences have been found regarding the move from object-oriented analysis

into object-oriented design, in comparison with the move from traditional analysis into traditional

design.

Company B: No differences have been found regarding the move from object-oriented analysis

into object-oriented design, in comparison with the move from traditional analysis into traditional

design.

Company C: No problems in the transition process.

Company D: We do not use design.

Company E: It has been somewhat easier in the object-oriented world due to the possibility to

iterate.

Company F: It depends on the software developer and the usage of UML, probably no real

difference.

Summary of case studies: The transition from object-oriented analysis to object-
oriented design is considered as difficult or easy as the transition from traditional
analysis to traditional design. Only one company was of the opinion that it is easier in
the object-oriented world, due to the possibility to perform iteration.

182

Discussion and conclusions: It seems that the transition from object-oriented analysis
to object-oriented design is as easy or as difficult as the transition from traditional
analysis to traditional design. Note that not all the Finnish software companies worked
with design. Because this question was not included in the survey, no generalisations
can be made.

Benefits – Portability

(Q29) Has portability of the object-oriented system been a benefit?

Theory – Studies: Theoretically portability is considered a benefit of the object-
oriented paradigm (Agarwal et al., 2000). The idea is that an object-oriented program
can run on every computer with the assistance of a virtual machine. This is the case if,
for example, the programming language Java has been used.

Pilot study: In the pilot study it was found that the object-oriented paradigm does not
fit in all surroundings.

Survey: The results are presented in Figure 19.

Figure 19: Portability useful

Portability useful

Yes

55%

No

24%

Not sure

20%

No answer

1%

Case studies:

Company A: Yes, mostly because one can perform software development on both Windows and

Unix. Usually the customers want Windows based applications, but there are some that want Unix

based applications.

Company B: One should not talk so much about portability; one can move traditional

applications as well as object-oriented applications. Java has, however, a better portability than

C.

Company C: Yes, there is a benefit, but the portability does not come up automatically; every

information systems developer has to work with this issue and consider that the final information

system might be used on a Unix or Aix computer. The possibility to relocate an information system

that is in production to another operating system on another computer is never utilized.

183

Company D: Yes, on our server for the school administration we have the same source code for

both Linux and Windows based information systems.

Company E: Yes, we have utilized portability in a pilot project and our experiences are that the

mainframe “eats” the application surprisingly well.

Company F: Yes, we have utilized portability between Windows and Linux, but portability of an

object-oriented system is not without problems. However, class libraries can be moved nicely, and

user interfaces too.

Summary of case studies: The portability issue is considered a benefit and the
companies have moved information systems from the Windows platform to different
kinds of Unix platforms and even to a mainframe platform (the operating system of the
mainframe was not mentioned).

Discussion and conclusions: The portability of object-oriented information systems is
undoubtedly considered a benefit among Finnish software companies. As an example,
one software company in the case studies mentioned the transition of an information
system from a Windows environment to a Unix environment.

The findings from the empirical parts of this study are in correspondence with the
proposition found in the previous studies.

Benefits - Other

(Q30) Has the total independence of classes given advantages in system development
compared with the traditional solution with modules with common data?

Theory – Studies: In traditional programming independent modules can be developed,
but as long as these modules use common data with other modules, they are not totally
independent of the environment in the same manner as the class with its objects that
have both methods and data encapsulated.

Pilot study: In the pilot study it was found that the encapsulation of functions is a
benefit of the object-oriented paradigm.

Survey: The question was not included in the survey.

Case studies:

Company A: Yes, the quality of the product becomes better.

Company B: Yes.

Company C: Yes, it is a very good idea that the data of the object is in the object itself.

Company D: Yes.

Company E: No actual benefits. It has been as difficult to develop object-oriented information

systems, as it has been to develop traditional information systems.

Company F: No comments.

184

Summary of case studies: All but one of the companies considered this a benefit. A
manager that represented the company with a different view might have been unaware
of practical programming issues.

Discussion and conclusions: The Finnish software companies found the solution with
independent classes better than the traditional solution with global variables. Because
this question was not included in the survey, no generalisations can be made.

(Q31) What other benefits than those already presented have the companies
experienced in information systems development?

Pilot study: In the pilot study it was stated that the object-oriented paradigm is a part of
the information systems development technology of today.

Survey: The following answers were reported:

General:

• Because the object-oriented paradigm is commonly accepted and used, this makes for better
cooperation both in the home organisation and between organisations.

• The developer has integrated the theory in his thinking model.
• Programmers like the object-oriented paradigm.
• Generally, the possibility to develop systems that are more sophisticated compared with earlier

solutions.
• Good uniformity, logical, good structure and lack of faults.
• Makes it easier to divide the working tasks (implementation of components) among the system

analysts / programmers.
• Systematic approach, easier to distribute.
• Easy to expand.
• Easy maintenance.
• We still do not have much experience of the object-oriented paradigm. We have no good

CASE tools for object-oriented software development.

Programming and design:

• Design & implementation of Model-View-Controller.
• Interfaces, hooks -> runtime switching of functionality.
• Modularity, two answers.
• In order to be able to reuse objects one has to use encapsulation and this has made it easier to

be more disciplined; 'taking wrong paths' has become more difficult.
• Information encapsulation.
• One can concentrate better on the task and not on how the task is implemented.
• Patterns (design models); there is a connection between code cases and use cases.
• Possible to write code that is clearer and more intuitive. Management of large code masses

becomes easier.
• The development of new objects by inheritance from existing objects.
• The development of unified conceptions is easier. With metaphors one can easier move the

logics among persons. Using object-oriented languages makes it possible to use metaphors.
• The smaller amount of code due to the object-oriented paradigm.
• The modelling of the problem domain.
• The presentation of the domain and the analysis is easier with objects than with traditional

sequential presentation. One has to remember that it is not feasible to make everything into
objects.

185

• UML Design is more important than code in OOP. Design takes longer time but coding is
predictable.

Case studies:

Company A: Yes, in the traditional way of working, a project has been made for a specific client,

and the project has then later on been used as a base for another project for another client. In

object-oriented projects this has not been the case; instead the standard library has been used in

several projects. The usage of layers and reuse has also been utilized. This makes it possible to

start new projects with less work.

The usage of the object-oriented paradigm also makes the administration of versions easier.

Company B: In the object-oriented world, the solutions are compound and documentation is

more straightforward.

Company C: The object-oriented paradigm is acclaimed in the community. If one wants to

develop information systems using another paradigm one has to justify for this. The object-

oriented paradigm is accepted and has good creditability, which means that there is no need to

discuss the choice of technique. There is a remarkable benefit because ‘all road-users are driving

on the same side of the road’.

Company D: Difficult question; actually no, as the total picture I see is that the code is much

more understandable, there are less bugs and the maintenance is easier.

Company E: No other benefits.

Company F: The transition from design into implementation is often easier, because many things

are already clear when one starts with implementation.

Summary of case studies: The companies did not present any real new benefits. The
first company presented a benefit that is more a project management issue than an
object-oriented issue. The third company presented an issue that has to do with
acceptance on the market, which is not an object-oriented issue. The sixth company
presented a benefit concerning the transition from design into implementation, but this
benefit probably does not have much to do with the object-oriented paradigm per se.

Discussion and conclusions: One can analyse the benefits found in the survey and
recognize that most of them are connected to benefits that have already been presented.
There are also, however, some more detailed benefits and even some rather ‘new’
benefits like ‘Management of large code masses becomes easier’.

Problems - Complexity

(Q32) Has the object-oriented paradigm been considered complex?

Theory – Studies: According to the findings from the Survey of Advanced Technology

1996 (Pickering, 1996), the object-oriented paradigm is considered complex. According
to the results of 12 empirical studies reported by Johnson (2002) object-oriented design
was considered complex.

Pilot study: In the pilot study it was found that it takes a long time to learn the object-
oriented paradigm.

186

Survey: The results are presented in Figure 20.

Figure 20: The object-oriented paradigm is considered complex

OO Complex

Yes

35%

No

58%

Not sure

7%

In the review of previous studies a possible association was established between
difficult object-oriented concepts like reuse (difficulties for information systems
developers to learn how a component works) and experienced complexity of the object-
oriented paradigm. This association is not very well supported by the survey results.
Only about half (43%) of the Finnish software companies that had considered reuse
difficult also considered the object-oriented paradigm as complex.

Case studies:

Company A: Yes, some of the programmers with a background in traditional software

engineering have had difficulties in starting to work in the object-oriented way.

Company B: No, we develop so complex systems that in comparison the object-oriented

paradigm cannot be considered complex.

Company C: The complexity issue has to be compared with how things were done before; if one

tries to see everything as it was seen before plus tries to see it in the object-oriented way then the

complexity rises dramatically. If one keeps to the object-oriented world from the beginning, then

one cannot argue that the object-oriented paradigm is complex.

Company D: There is a certain obstruction for learning; when this obstruction has been

managed then life is easy. Often one ponders why the object-oriented source code is so

complicated and why one cannot make it simpler.

Company E: It depends on the person asked. Most “older” software developers consider the

move from traditional information systems development to object-oriented development as a huge

step.

Company F: If the software developer starts to work with the object-oriented paradigm from the

beginning then the object-oriented paradigm is not complex. If the software developer moves from

the “old” part to the new object-oriented part of software development there might be some

hurdles in the beginning, but we have not experienced any real problems.

Summary of case studies: For an information systems developer with training in the
object-oriented paradigm, object-oriented systems development is not complex. Neither
is the object-oriented paradigm considered complex if the information systems
developer has no earlier experience in traditional information systems development.

187

Discussion and conclusions: The truth is probably close to findings from the case
studies; for an information systems developer with training in the object-oriented
paradigm and for an information systems developer with no “burden” of traditional
information systems development, object-oriented systems development is not complex.
The finding from the pilot study does not necessarily mean that the object-oriented
paradigm has been seen as complex, the long time to learn it might be as a consequence
of some other reason.

The findings from the empirical parts of this study contradict the proposition found in
studies regarding Finnish software companies.

Problems – The object-oriented paradigm is still immature

(Q33) Have the companies considered the object-oriented paradigm as being
immature?

Theory – Studies: The object-oriented paradigm is still considered immature by some
researchers. Object-oriented projects are often criticized as promising too much and
delivering too little (Bhattacherjee & Gerlach, 1998).

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 21.

Figure 21: The object-oriented paradigm is considered immature

OO Immature

Yes

28%

No

66%

Not sure

6%

Case studies:

Company A: No.

Company B: It is in a good phase, some nice technical improvements are coming.

Company C: There are still some areas in the object-oriented world that are immature; one good

example is the connection between relational databases and the object-oriented paradigm.

Company D: No, it is not immature according to me.

188

Company E: No, the object-oriented paradigm is not immature. The newer versions of most tools

on the market today (from IBM and other companies) support the object-oriented paradigm very

well.

Company F: No it is not immature. Object-oriented modelling is not difficult and we have found

most tools we need.

Summary of case studies: The object-oriented paradigm is not considered immature by
the companies, though some areas can be found where the object-oriented paradigm can
still be developed, like the connection between the object-oriented paradigm and
relational databases.

Discussion and conclusions: A substantial majority of the Finnish software companies
were of the opinion that the object-oriented paradigm is not immature.

The findings from the empirical parts of this study contradict the proposition found in
studies regarding Finnish software companies. This is probably due to the fact that the
previous studies were done in the 1990’s and the empirical study was made in 2004.
When the previous studies were completed the object-oriented paradigm was still
considered immature but today it can be considered as mature.

(Q34) Have the companies experienced difficulties in finding object-oriented CASE
tools, object-oriented databases, object-oriented system development tools or
perhaps even objects to reuse?

Theory – Studies: There is a lack of tools like CASE tools and object-oriented
databases that support the object-oriented paradigm, and there is little experience of the
tools available. There is also a lack of objects and components to reuse, and companies
have to put a great deal of effort in developing objects and libraries that can be reused
later on. (Bhattacherjee & Gerlach, 1998; Henders, 1998; LaBoda & Ross 1997; Smith
& McKeen, 1996)

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 22, Figure 23, Figure 24 and Figure 25.

Figure 22: Difficulties in finding CASE tools

Difficult to find OO CASE Tools

Yes

19%

No

37%

Not sure

15%

Not used

27%

No answer

2%

189

Comments: One respondent who answered that it is difficult to find CASE tools wrote that one could
find them but that most are of poor quality.

Figure 23: Difficulties in finding object-oriented databases

Difficult to find OO Databases

Yes

19%

No

20%

Not sure

12%

Not used

48%

No answ er

1%

Figure 24: Difficulties in finding object-oriented software development tools

Difficult to find Tools

Yes

10%

Not used

7%

Not sure

7%

No answer

1%

No

75%

Figure 25: Difficulties in finding reusable objects

Difficulties to find Objects

Yes

17%

Not sure

27%

Not used

8%

No

48%

190

Case studies:

Company A: I would say that in practice, yes. The price is often too high. It is difficult to find

affordable tools of good quality. Objects have been used although finding them has not been easy.

Databases are also too expensive, we use relational databases, and most clients also want us to

use relational databases.

Company B: Yes, and regarding databases we are still working with compromises; our SQL

databases do not work very well with objects, and we have not been working with object-oriented

databases because no mature standard can be found.

Company C: No real problems.

Company D: No problems.

Company E: No problems anymore.

Company F: No. Some products are expensive.

Summary of case studies: The only problem seems to be the price of some object-
oriented products. The availability of object-oriented tools is no problem.

Discussion and conclusions: Most of the companies did not use any object-oriented
database. Whether this is due to a possible lack of object-oriented databases is difficult
to say, there might be some other reason why the companies do not use any such
database. Other object-oriented tools are not difficult to find. Neither is it difficult to
find objects.

The findings from the empirical parts of this study contradict the proposition found in
the other studies regarding the other issues and Finnish software companies. This is
probably due to the evolution of the object-oriented paradigm that is more mature
nowadays and therefore tools and reusable objects can be found more easily. Whether
there is a good support for object-oriented databases cannot be confirmed because
almost half (48%) of the companies did not use any.

Problems – No support for several important areas like testing

(Q35) Have the companies experienced that there are concepts in the object-oriented
world that are not well supported?

Theory – Studies: Current systems have little information on object reliability,
performance or resource utilisation. In addition, security capabilities are often poor.
(Pancake, 1995)

Pilot study: In the pilot study it was found that the object-oriented paradigm does not
have year 2000 support. A year 2000 support would have been a special feature of the
object-oriented paradigm.

Survey: The question was not included in the survey.

Case studies:

Company A: Today the situation is better, but still one can perceive problems like these.

191

Company B: No.

Company C: The complexity of the architecture of larger information systems is a problem.

Nevertheless, nowadays performance problems and other ‘minor’ problems are more or less

solved.

Company D: No.

Company E: No.

Company F: No.

Summary of case studies: One company out of six ones answered that the complexity
of the architecture of larger information systems is a problem; otherwise no problems
were recognized.

Discussion and conclusions: The year 2000 support is not an interesting issue
anymore. That the architecture of larger information systems becomes complex is no
surprise. One can conclude that there is no substantial lack of anything in the object-
oriented world according to five out of six Finnish software companies. Because this
question was not included in the survey, no generalisations can be made.

The findings from the empirical parts of this study contradict the proposition found in
the other studies regarding Finnish software companies. The object-oriented paradigm
is more mature today than it was when the previous studies were completed.

(Q36) Have the companies found testing object-oriented applications or information
systems difficult? What testing problems have the companies experienced?

Theory – Studies: There is often little support for testing object-oriented systems in the
object-oriented paradigm and in many object-oriented software development methods
(Malan et al., 1995). Kung et al. (1995) present major testing problems.

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 26.

Figure 26: Object-oriented testing is difficult

Testing difficult

Yes

29%

No

62%

Not sure

9%

192

Number of answers

Difficult to test structures, several member functions, call in a chain 23
Difficult to test complex relationships 27
Difficult to test because of few CASE tools for testing 13
Other testing problems 12
Of which the following were given:

Technical:

• The endurance of the load.
• Difficulties in automatically making calls for the compiler -> hard to find the errors.
• Making series of objects when testing distributed systems.

Graphical user interface:

• It is difficult to test the GUI and connections to other systems (this is not necessarily due to the
object-oriented paradigm).

• GUI - difficult to "mechanize" the testing.

Programming:

• The same dangers with endless loops are present in the object-oriented world as in the
traditional world.

• Finding the problem and slow starting of the application service.

Testing tools:

• There are no automatic object-oriented testing tools.
• Lack of good automatic tools for testing.

General:

• Difficulties with components from a third part, the components do not work as expected
(problems with different versions, with dependence of operating systems, bugs).

• Special cases.
• Takes a lot of time.

Comment: One respondent answered that testing problems were much more dependent on
language idioms than on object-oriented idioms.

Among the possible associations between problems found in the review of previous
studies, the immaturity of the object-oriented paradigm was expected to result in poor
support for several areas like testing. This association is, however, poorly supported by
the results from this survey because only 40% of the respondents that had considered
the object-oriented paradigm as immature were of the opinion that the immaturity had
resulted in poor support for information systems development concepts like testing.

Case studies:

Company A: No, even rather large systems can be tested without any particular difficulties.

Company B: Testing never comes automatically; one has to do code for testing and Java is good

because one can make testing code faster.

Company C: Unit testing has become more difficult; there are good testing tools but the

largeness of the application area is challenging when testing.

Company D: Testing has not been problematic.

Company E: Testing has been more problematic although we have good testing tools. Especially

the end users have found the testing of object-oriented information systems as more difficult than

testing traditional information systems. The comprehension of the whole information system has

often been difficult when testing object-oriented information systems.

193

Company F: Object-oriented systems are more demanding to test. System testing is, however,

easier.

Summary of case studies: Testing is not considered difficult by most of the companies,
although one company answered that unit testing is more difficult in object-oriented
testing than in traditional testing and another company even reported that testing object-
oriented information systems is more difficult than testing traditional information
systems.

Discussion and conclusions: Testing object-oriented information systems is not
complicated according to most of the Finnish software companies. Among the claimed
testing problems, the most frequent was the “It has been difficult to test complex
relationships that exist in an object-oriented system” problem.

The findings from the empirical parts of this study contradict the proposition found in
studies regarding Finnish software companies. Nowadays the object-oriented paradigm
is more mature than it was when previous studies were completed, so there are probably
better testing tools on the current market and the software developer also has more
experience in object-oriented testing.

Problems – Difficulties in measuring object systems

(Q37) Has a lack of metrics for measuring the object-oriented system been considered
a problem?

Theory – Studies: According to Pancake (1995) there are no reliable measurement
units for predicting progress, assessing productivity and evaluating costs of object-
oriented systems. However, researchers like Chidamber & Kemerer (1994) and
Henderson-Sellers (1994, Chapter 10) have made considerable contributions to the field
of metrics for object-oriented systems.

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 27.

Figure 27: Lack of metrics

Lack of Metrics

Yes

10%

No

35%

Not sure

55%

194

Among the possible associations between problems found in the review of previous
studies, the immaturity of the object-oriented paradigm was expected to result in
difficulties in measuring object-oriented systems. Unfortunately, this association cannot
be studied because of the large amount of ‘Not sure’ answers.

Case studies:

Company A: No, metrics are not used.

Company B: No metrics are used. It is very difficult. Experience is more important.

Company C: We have a doctor’s suitcase with metrics; when an information systems

development project gets into trouble, we use metrics in order to find the problems so that we then

can elucidate them. The metrics are included in the information systems development tools that we

use.

Company D: We use no metrics.

Company E: We use no metrics, mostly because we do not find metrics reliable due to some

earlier experiences on the mainframe side.

Company F: No comments.

Summary of case studies: Only one of the companies uses metrics; when solving
problems that projects run into.

Discussion and conclusions: The Finnish software companies are not so aware of
metrics. Probably this issue is too theoretical.

Problems – Training & lack of experience

(Q38) Has the software company been using a mentor in order to solve the problem
with training of the software developers?

Theory – Studies: Using a mentor is recommended by, for example, Eriksson & Penker
(1996, pp. 183-184) and Henderson-Sellers & Edwards (1994, p. 426).

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No, we have only been using support people when inspecting programming code.

Company B: No.

Company C: Actually yes, we have continuous mentoring both internally and externally for our

customers.

Company D: No, we use Google; one can find a lot of information on the Internet as long as one

knows what one is looking for.

Company E: We use mentors; both from our company and mentors (consults) from other

companies.

195

Company F: Our programmers are very active and enterprising and take full responsibility for

their own progress. However, we have offered some training and education.

Summary of case studies: Only one of the companies uses mentors. However, another
of the companies uses support people to help customers, who are mentors in a way.
Moreover, another of the companies uses support people to help information systems
developers; and one even uses Google as a ‘mentor’.

Discussion and conclusions: The Finnish software companies do not use genuine
mentors, but some kind of support exists. Because this question was not included in the
survey, no generalisations can be made.

(Q39) Has there been a resistance to learning the object-oriented paradigm because
there is such a huge paradigm shift between the traditional functional paradigm
and the object-oriented paradigm?

Theory – Studies: This might be the case according to Pancake (1995).

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No, problems have been more organizational; the managers of object-oriented

projects have not been able to induce the old programmers. Nevertheless, most old experts

(‘gurus’) have started to work with the object-oriented paradigm with enthusiasm.

Company B: No.

Company C: Some resistance has been recognized. The step from traditional information systems

development to object-oriented information systems development has been surprisingly large for

some information systems developers. My understanding is that it takes about one year to move

from traditional information systems development to object-oriented information systems

development. It is not very difficult to learn Java, but it is significantly more difficult to master

object-oriented programming and be productive.

Company D: Yes, but we have only one software developer that does not want to move to the

object-oriented world.

Company E: Yes, we have a lot of “older” software developers who do not want to switch from

traditional information systems development into object-oriented information systems

development. The average age of our software developers is rather high, over 40, and this

probably explains why we have this problem.

Company F: No.

Summary of case studies: This problem is recognized by the companies, but not
considered a major problem because in most companies (company E is an exception)
there are only a few persons unwilling to move from traditional information systems
development to object-oriented information systems development.

Discussion and conclusions: There seem to be only a few information systems
developers that are dedicated to some older software paradigm left in the Finnish
software companies who do not want to move into new information systems

196

development and programming paradigms. Because this question was not included in
the survey, no generalisations can be made.

(Q40) Has it been difficult to find experienced object-oriented software developers and
system analysts?

Theory – Studies: According to Noack & Schienmann (1999) and Radin (1996) it
might be difficult to find experienced object-oriented information systems developers.

Pilot study: In the pilot study it was found that learning, training and experience
regarding the object-oriented paradigm is important.

Survey: The results are presented in Figure 28.

Figure 28: Difficult to find people that know the object-oriented paradigm

Difficult to find OO People

Yes

65%

No

22%

Not sure

13%

In the review of previous studies a possible association between the immaturity of the
object-oriented paradigm and the difficulties in finding software developers trained in
the object-oriented paradigm was presented. This association is well supported by the
results from the survey as 80% of the respondents who considered the object-oriented
paradigm as immature had also had difficulties in finding software developers trained in
the object-oriented paradigm.

In the review a possible association between the considered complexity of the object-
oriented paradigm and the difficulties in finding software developers trained in the
object-oriented paradigm was presented. This association is also well supported by the
results from the survey as 78% of the respondents who considered the object-oriented
paradigm as complex had also had difficulties in finding software developers trained in
the object-oriented paradigm.

Case studies:

Company A: No.

Company B: No, but differs from time to time. School only gives the basics.

Company C: No.

197

Company D: No. A skilful programmer can also learn new programming languages and even

object-oriented programming easily without formal education. The problem is more how to find

skilful programmers. Students, who have studying programming and graduate, often have poor

knowledge of programming if they have not had any experience before they start working.

Company E: Today one can find trained software developers with knowledge of object-oriented

information systems development issues. The situation has changed very much in recent years.

Company F: No.

Summary of case studies: This is not a problem according to the companies. What is
interesting is the statement from one company that a skilful programmer can easily
move from one programming language to another, even if there is a switch from one
information systems development paradigm to another information systems
development paradigm.

Discussion and conclusions: In the survey, but not in the case studies, it was found that
it is difficult to find experienced object-oriented software developers and system
analysts. It is worthy of note that the results from the survey are different from the
results from the case studies. However, because the results from the survey can be
generalized, the findings there are somewhat more interesting.

The findings from the survey in this study are in correspondence with the proposition
found in the previous studies.

Problems – Efficiency

(Q41) Have the companies experienced computer efficiency problems in their object-
oriented software development projects?

Theory – Studies: There are often problems with computer efficiency because some
object-oriented designing takes up a lot of computer processing time (Booch, 1994, pp.
288-289).

Pilot study: In the pilot study it was found that there are not enough benefits/efficiency
in the object-oriented paradigm.

Survey: The results are presented in Figure 29.

198

Figure 29: Experienced computer efficiency problems

Efficiency problems

Yes

49%No

47%

Not sure

4%

Comment: One respondent who answered, "Yes,” wrote that Java is a rather low-level language.

In the review of previous studies a possible association between the considered
immaturity of the object-oriented paradigm and experienced efficiency problems was
presented. This association is supported by a small majority (56%) of the respondents in
the survey who considered the object-oriented paradigm as immature.

Case studies:

Company A: Yes, to some extent.

Company B: Yes, but these kinds of problems have also been found in software that has been

developed with traditional tools.

Company C: Yes, we have experienced efficiency problems that we have been working with on

the framework level. We mostly develop large commercial information systems, and efficiency

problems are often connected to the selection of data from very large databases. When these

problems are handled then the efficiency problems also diminish.

Company D: No. However, when we have developed object-oriented software we have been

working, in particular, with efficiency issues. If the object-oriented paradigm is used wrongly, the

information systems become slower than traditional systems. In addition, the fragmentation of

memory has been problematic sometimes.

Company E: No.

Company F: No.

Summary of case studies: If not developed correctly it seems that object-oriented
information systems have computer efficiency problems.

Discussion and conclusions: The results from the pilot study have to be omitted
because they are too common. Probably the truth is somewhere in the direction that was
identified in the case studies; if not developed correctly it seems that object-oriented
information systems often have computer efficiency problems. The computer efficiency
issue is probably also associated with the type of information system being developed.

(Q42) If there has been no suitable collection of objects to reuse, has it influenced the
object-oriented development project efficiency in a negative way?

199

Theory – Studies: Project efficiency is discussed by Page-Jones (1992b) who warns
about starting to use the object-oriented paradigm if effective information systems
software development is desired and there is no suitable repository with objects for
reuse available.

Pilot study: In the pilot study it was found that there are not enough benefits/efficiency
in the object-oriented paradigm.

Survey: The question was not included in the survey.

Case studies:

Company A: No, we have built our own objects when suitable objects have not been found.

Company B: Yes, one has to consider the resources when starting a new project.

Company C: Yes, we have very few objects that we reuse.

Company D: We have not experienced any problems in finding objects to reuse.

Company E: No comments.

Company F: No comments.

Summary of case studies: This question was difficult to understand for the companies,
mostly because of the part about project efficiency. Probably project efficiency is often
difficult to measure because one ought to compare projects that might be very different
from each other. The companies were therefore more interested in talking about the
availability of objects for reuse.

Discussion and conclusions: Once again the results from the pilot study have to be
omitted because they are too common. No conclusions can be made. The question was
only included in the case studies, and unfortunately the persons interviewed in all six
Finnish software companies had no substantial experience of project efficiency.

Problems – Costs

(Q43) Have the starting costs been high when launching a completely new object-
oriented information system development project, due to a lack of artefacts to
reuse?

Theory – Studies: The starting costs are often huge when one begins a new object-
oriented information system project because there is nothing to reuse and everything has
to be developed from scratch (Booch, 1994, pp. 288-289).

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 30.

200

Figure 30: Experienced high starting costs

High Starting Costs

No

37%

Not sure

17%

Yes

46%

Comment: One respondent who answered "No" wrote that there are almost too many reusable parts.

In the review of previous studies there was a proposed association between the
considered immaturity of the object-oriented paradigm and the experienced high
starting costs. This is also the case according to a majority (64%) of the respondents
who considered the object-oriented paradigm as immature.

Case studies:

Company A: It is always important to manage costs, but starting costs are difficult to measure.

Company B: No comments.

Company C: We have the application framework Open Frame and the building of this product

has been very resource consuming and costly. This product makes software development more

efficient, but we have to build many information systems before we get the invested money back.

Company D: We do not record how much it costs to start different projects.

Company E: No comments.

Company F: Starting costs have been high.

Summary of case studies: Because the companies do no genuine recording of their
starting costs this question was difficult to answer.

Discussion and conclusions: It seems that starting costs are high when launching a
completely new object-oriented information system project, due to a lack of artefacts to
reuse.

The findings from the empirical parts of this study are in correspondence with the
proposition found in the previous studies.

Problems – Limited usability of components

(Q44) Has the company had problems finding components to reuse?

201

Theory – Studies: Finding the components to reuse is a serious problem in many
object-oriented projects. The usability of the components has to be good too, and for
example, banks nowadays are defining usable standard business components.
Nevertheless, it might still be difficult to find good components to reuse. (Radin, 1996)

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 31.

Figure 31: Hard to find components to reuse

Hard to find Components for reuse

Yes

46%

No

39%

Not sure

15%

In previous studies the considered immaturity of the object-oriented paradigm was
estimated to result in experienced difficulties in finding components for reuse. This is
also the case according to a clear majority (68%) of the Finnish software companies that
considered the object-oriented paradigm as immature.

Case studies:

Company A: No.

Company B: Sometimes.

Company C: Yes, see earlier questions.

Company D: No.

Company E: Sometimes.

Company F: No.

Summary of case studies: Some companies have problems in finding components and
others have no problems finding components to reuse. Of course, this is also something
that has to do with the management of components in the company in question.

Discussion and conclusions: Probably the reality is close to the findings from the case
studies; some Finnish software companies have had problems in finding components
and some others have had no problems finding components to reuse. This has probably
to do with the management of components in the software company in question.
Another issue that has to be taken into consideration is the length of time a company has
been involved in object-oriented information systems development. The longer the time
the smaller the problems in finding components for reuse probably are.

202

(Q45) Has there been a problem in managing the different versions of a component?

Theory – Studies: An important problem with components is when there are several
different versions of one component (Jarzabek & Knauber, 1999).

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No, we do not use different versions of objects.

Company B: No.

Company C: This issue has been handled with traditional methods. Earlier we had some

problems with different versions of DLL, but not anymore.

Company D: No.

Company E: We have a very good version management system. We have no problems in

managing different versions of components.

Company F: No.

Summary of case studies: The management of versions of a component is no problem.

Discussion and conclusions: The management of versions of a component is probably
not a problem. Because this question was not included in the survey, no generalisations
can be made.

Problems – Problems with reuse

(Q46) Has there been a problem with reuse in the sense that software developers do not
want to reuse a component, because they claim that it does not work, or it is too
troublesome to learn how the component works?

Theory – Studies: According to Nokso-Koivisto (1995) and Radding (1999) system
developers often avoid reusing existing modules, because they claim that the modules
‘do not work anyway’ or ‘it is not worth the effort to figure out what the module
(component) does and how it works’.

Pilot study: The question was not included in the pilot study.

Survey: The answers are presented in Figure 32 and Figure 33.

203

Figure 32: No reuse because components do not work

No reuse - Component does not work

Yes

28%

No

61%

Not sure

11%

Comment: One respondent who answered "Yes" wrote that the reason was that developers often do not
"approve" others’ code.

Figure 33: No reuse because troublesome to learn how a component works

No reuse - Troublesome to learn

Yes

47%

No

42%

Not sure

11%

Comment: One respondent who answered "Yes" wrote that it was, however, not troublesome if the
source code and/or interface presentation is available.

In the review of previous studies the considered immaturity of the object-oriented
paradigm was expected to result in experienced problems with reuse (that were
connected to difficulties for information systems developers in learning how a
component works). This is the case according 50% of the Finnish software companies
that considered the object-oriented paradigm as immature.

Case studies:

Company A: Yes, see earlier answers.

Company B: No.

Company C: Yes, see earlier answers.

Company D: No.

204

Company E: Yes.

Company F: No.

Summary of case studies: Some of the companies have experienced this problem while
others have not.

Discussion and conclusions: It seems that Finnish software companies do not have a
problem with software developers not wanting to reuse a component because they feel
that it does not work.

The findings from the empirical parts of this study contradict the proposition found in
studies regarding Finnish software companies. There are probably a lot of ‘approved’
components on the market today and not using such components would be
discomforting for an information systems developer.

A small majority of the Finnish software companies were of the opinion that it is
troublesome to learn how components work; because of this one cannot conclude if the
findings from the empirical study are in correspondence with the findings from the
review of previous studies.

(Q47) Has the hierarchy of classes been a hindrance for reuse?

Theory – Studies: If a programmer needs a simple class that is down in the hierarchy
and has several superclasses, then he or she might get a lot of unnecessary classes and
code when taking in the whole hierarchy in the program just to get one class. Further,
the hierarchy in a class library can be difficult to integrate into the existing class
hierarchies in the software company (Eriksson, 1992, p. 356; Wrede, 1998).

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 34.

Figure 34: No reuse because of class hierarchy

No reuse - Class hierarchy hindrance

Yes

29%

Not sure

22%

No answer

2%

No

47%

205

Case studies:

Company A: Perhaps in debugging.

Company B: No, but deep hierarchies might have an affect on the efficiency and maintainability

of the application.

Company C: No. On the framework side there are usually three levels in a hierarchy, and on the

application side where these framework levels are used, there are at most two levels using the

framework. However, on the application side there might be more levels in a hierarchy but it has

not been a hindrance for reuse as long as the hierarchy does not become too deep.

Company D: If the hierarchy is very deep then one usually experiences problems. In debugging

the hierarchies are sometimes difficult to visualize.

Company E: We have little experience of this problem, mostly because we do not use that much

reuse.

Company F: We have hierarchies but we have not had any real problems with them or with

reuse.

Summary of case studies: The hierarchy of classes is no hindrance for reuse. What is
interesting, however, is that in debugging the hierarchy of classes might be a problem.

Discussion and conclusions: The hierarchy of classes is probably no obstruction for
reuse although as many as 29% of the Finnish software companies in the survey
actually were of this opinion.

The findings from the empirical parts of this study contradict the proposition found in
studies regarding Finnish software companies.

Problems – Problems with object-oriented analysis

(Q48) Has there been a problem with analysis when object-oriented analysis has been
used?

Theory – Studies: According to Höydalsvik & Sindre (1993) object-oriented analysis
does not fulfil the purposes of analysis. If this is true there ought to be documented
problems with object-oriented analysis.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Yes, it has been demanding to perform object-oriented analysis.

Company B: No.

Company C: No.

Company D: We carry out no real analysis.

Company E: No.

Company F: No.

206

Summary of case studies: Object-oriented analysis is not problematic to perform. One
company answered that it is demanding.

Discussion and conclusions: Object-oriented analysis is not problematic to perform
according to the Finnish software companies that took part in the case studies.
However, one cannot generalize here.

(Q49) Has object-oriented analysis been a good choice if the system that is to be
developed has limited responsibilities, or it is a system with few classes (< 10)
and objects?

Theory – Studies: According to Coad & Yourdon (1990, p. 32) this would not be the
case.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: Principally one can develop such systems just as well with both the object-oriented

paradigm as with traditional approaches, but we are moving into the object-oriented paradigm

for all kinds of applications in order to get a uniform way of developing systems.

Company B: No answer (lack of time).

Company C: No answer (lack of time).

Company D: We perform no real analysis.

Company E: Yes, we use UML for all kinds of systems.

Company F: Differs from case to case.

Summary of case studies: This question cannot be answered because only one
company answered this question clearly.

Discussion and conclusions: No conclusions can be made.

(Q50) Has the software company experienced one or several of the following problems
with object-oriented information systems development in the analysis phase?

The problems are presented in the case study section.

Theory – Studies: Aksit & Bergmans (1992) found these obstacles in object-oriented
software development. The problems related to preparatory work.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

207

Case studies:

a) Identification of Problem-Domain Structures has been difficult. It might often
be difficult to identify classifications in the problem domain that could be mapped
to inheritance hierarchies.

Company A: Yes.

Company B: No answer (lack of time).

Company C: Finding the right structure is not easy. Using an object-oriented model might even

have the result that one starts talking the wrong path. For example, one can find actual data and

historical data; in the object-oriented data model these data are the same objects, but for the

information system these data are of course very different.

Company D: No.

Company E: No.

Company F: No. Our programmers are experienced.

Summary of case studies: This was considered a problem by two of the companies. The
hierarchies are probably difficult to develop when working with very large information systems
development projects.

b) Dealing with Excessive Domain Objects has been difficult. Integrating the
domain knowledge with the user’s requirement specifications can yield a lot of
objects. Only few of these objects may be relevant to the problem area.

Company A: No.

Company B: No answer (lack of time).

Company C: No, experienced information systems developers can manage a large number of

objects in the analysis phase of the information systems development project. The “trash” objects

can usually be found without problems.

Company D: No.

Company E: Yes, we have a problem when we do not know where objects should be, who should

pay for them and who should maintain them, etc.

Company F: It is a small problem.

Summary of case studies: Only one company recognized this as a real problem. Another
company considered it as minor.

c) Problems with Early Decomposition. If subsystems are not identified before
objects are identified problems might arise, because objects have to be placed into
some subsystem when identified. If the subsystems are identified before object
identification, the boundaries of the subsystems may not be optimal.

Company A: No idea.

Company B and C: No answer (lack of time).

Company D: No.

Company E: See answer to question 50 b.

Company F: It is challenging but not problematic.

208

Summary of case studies: Only one company recognized this as a problem (company E).
Another company recognized the issue but did not recognize it as a problem.

d) Subsystem-Object Distinction has been difficult. In the analysis phase objects
may act as subsystems if they are complicated. Subsystems can also be defined as
objects if they can be structured in a hierarchy and reused.

Company A: No idea.

Company B and C: No answer (lack of time).

Company D: No.

Company E: No idea.

Company F: No.

Summary of case studies: This issue has probably not been a problem, though only two of the
companies answered the question.

e) Problems with Commonality versus Partitioning. Because subsystems partition
the system, classes that are members of the same hierarchy can be spread over
several subsystems. Finding the appropriate inheritance hierarchies becomes
difficult.

Company A: No idea.

Company B and C: No answer (lack of time).

Company D: No.

Company E: No idea.

Company F: No idea.

Summary of case studies: This issue cannot be discussed because none of the companies
answered the question.

f) Subsystems Identification Using Object Interactions has been problematic.
Subsystems are often used for structuring interactions among objects; however,
most object-oriented methods only have intuitive techniques for subsystem
identification.

Company A: No idea.

Company B and C: No answer (lack of time).

Company D: No.

Company E: No idea.

Company F: No idea.

Summary of case studies: This issue cannot properly be discussed because only one of the
companies answered the question.

Discussion and conclusions: As can be read from the results of the case studies, only
the first problem was recognized by two of the Finnish software companies.

209

Problems – Problems with object-oriented design

(Q51) Has the transition from object-oriented analysis to object-oriented design been
easy or difficult?

Theory – Studies: According to Höydalsvik & Sindre (1993) object-oriented analysis
has no smooth transition to design.

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: The same.

Company B: No answer (lack of time).

Company C: It has been difficult; often the design phase becomes too short. It has even happened

that the information systems developers skipped the design phase and started with programming

right after the analysis phase. The larger the information systems development project is, the more

important it is to design well.

Company D: Because no analysis is carried out, this question is not relevant.

Company E: Yes, but with growing experience this problem becomes smaller. One has to

understand the issue of iteration appropriately in order to move properly from analysis to design

and back.

Company F: No. It depends, however, on the software developer.

Summary of case studies: Only one of the companies considered the transition from
object-oriented analysis to object-oriented design as difficult. Another company found
this issue problematic in the first object-oriented information systems development
projects but not later on.

Discussion and conclusions: One can argue that the transition from object-oriented
analysis to object-oriented design has been easy. Because this question was not included
in the survey, no generalisations can be made.

(Q52) If the transition from object-oriented analysis to object-oriented design has been
difficult, why has it been?

Theory – Studies: Out of the theory and review of previous studies the following
answers were expected:

• Difficulties in connecting concepts found in object-oriented analysis with
concepts in object-oriented design.

• Problems with this issue in the chosen object-oriented information systems
development method.

• Object-oriented analysis was poorly performed because it was difficult.
• Object-oriented analysis was poorly carried out because the object-oriented

analysis method was insufficient.

210

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No comments.

Company B: No answer (lack of time).

Company C: Usually the problems are connected to the fact that in the design phase there are

several unique objects that are technical. Therefore there are more objects in design than in

analysis. For the tracing of the paths of objects this issue is problematic.

Company D: Because no analysis is performed this question is not relevant.

Company E: The utilization of the analysis in the design phase has been problematic.

Company F: No comments.

Summary of case studies: One of the companies considered technical objects as a
problem; these objects occur in design but are not present in analysis.

Discussion and conclusions: Because the transition from object-oriented analysis to
object-oriented design has been easy this matter is of minor interest for this study.
Because this question was not included in the survey, no generalisations can be made.

Problems – Lack of object-oriented databases and common interfaces

(Q53) Has it been difficult to find an appropriate object-oriented database?

Theory – Studies: Unavailability of adequate object-oriented database systems is
usually a problem according to Johnson (2000).

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 35.

Figure 35: Difficult to find object-oriented databases

Difficult to find OO database

Yes

24%

No

18%

Not sure

58%

211

Comments: One respondent who answered ‘No’ wrote that they have not used object-oriented databases
because relational databases are the ‘de facto’ standard. One respondent who answered ‘Not sure’ wrote
that they do not use object-oriented databases.

In the review of previous studies the considered immaturity of the object-oriented
paradigm was expected to result in experienced difficulties in finding an object-oriented
database. Because most of the Finnish software companies (58%) were not sure about
this connection, no conclusions can be made.

Case studies:

Company A: Yes.

Company B: Yes.

Company C: Yes, the object-oriented databases have not become commonly used. We have been

evaluating Gemstone but not found it very suitable for our needs.

Company D: We use no object-oriented databases. We use file systems.

Company E: We do not use object-oriented databases, as we are not interested in them.

Company F: We use no pure object-oriented databases.

Summary of case studies: The lack of appropriate object-oriented databases is
considered a problem by two of the companies.

Discussion and conclusions: Because most of the Finnish software companies did not
use any object-oriented databases, the number of “not sure” answers was high. Among
those companies that used object-oriented databases, the lack of appropriate object-
oriented databases was considered a problem by a small majority of the companies.

The findings from the empirical parts of this study are somewhat in correspondence
with the proposition found in the previous studies.

(Q54) If a relational database has been used in the object-oriented system development
work, which approach for connecting the object-oriented system with the
relational database has been used?

Theory – Studies: Out of the theory and review of previous studies the following
answers were expected:

• The solution of mapping a class to a table has been used.
• A solution with factory classes has been used.
• The Strix object persistence engine has been used.
• SMRC as presented by Reinwald et al. (1996) has been used.

Pilot study: The question was not included in the pilot study.

Survey: The results are presented in Figure 36. The other solutions were the following:

• Own object-oriented database.
• Result of own development -> 1 object - N tables, development of the value – object.
• Object-Relational Mapping Frameworks (like Hibernate).

212

• Solution developed in company using Java and the "making of series"" of the database.
• Top link.
• Different solutions in different cases; two answers.
• Case tool takes care of it.
• JDBC.
• Object - Relational Mapping.
• OR - Mapping Layer (= a layer with persistence support classes and mappers).
• Other solution; two answers.
• SQL calls.

Figure 36: How to connect the object-oriented paradigm and RDB

Connecting OO and RDB

The solution

of mapping a

class to a

table has

been used

43%

Other

solution

15%

A solution

with factory

classes has

been used

11%

A solution

with

wrappers

has been

used

31%

Case studies:

Company A: Another solution; we have not mapped the relational database with the object-

oriented system.

Company B: Another solution; there are ready-made solutions based on object relational

mapping that we have been using, but we have modified a solution for our needs.

Company C: Different solutions and mapping have been used; the Open Framework has a

solution of its own; we have also used external frameworks, etc. When building simple information

systems the solution of mapping a class to a table is a good one. The Strix object persistence

engine has also been used.

Company D: We use file systems.

Company E: We use table specific procedures.

Company F: The solution of mapping a class to a table has been used. We have also used some

other solutions.

Summary of case studies: The solution of mapping a class to a table was considered a
good one when working with small object-oriented information systems. One of the
companies used the Strix object persistence engine. However, all the companies used
other solutions than the ones mentioned in the question.

Discussion and conclusions: The solution of mapping a class to a table was the most
used, followed by the solution with wrappers. The solution with factory classes had also

213

been used. Notable is that many of the Finnish software companies also had solutions of
their own.

(Q55) Has the lack of a common interface for ad hoc queries been considered a
problem when using pure object-oriented databases?

Theory – Studies: When working with most pure object-oriented oriented databases
everything is encapsulated and therefore ad hoc queries through a common interface
like SQLCI cannot be made (Ooil, 2002).

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No answer (lack of time).

Company B: We use relational databases so one can make ad hoc queries.

Company C: We use relational databases and we avoid making it possible for users to do ad hoc

queries.

Company D: No.

Company E: No.

Company F: No.

Summary of case studies: Because none of the companies used pure object-oriented
databases this is not a valid question.

Discussion and conclusions: This problem was recognized by some of the Finnish
software companies that took part in the case studies, but it was of minor interest and
because none of the companies used pure object-oriented databases, the question cannot
be answered. No generalisations can be made.

Problems - Other

(Q56) Have there been difficulties in mixing classes developed in different object-
oriented programming languages or produced by different vendors?

Theory – Studies: It is usually difficult to mix classes that have been developed in
different programming languages or by different vendors, according to Lam (1997).

Pilot study: The question was not included in the pilot study.

Survey: The question was not included in the survey.

Case studies:

Company A: No experience.

Company B: We do not mix components developed in different programming languages.

214

Company C: Yes, sometimes we have written the application code in Java and more hardware

specific functions in C++. The integration of modules written in different programming languages

is always difficult and has to be solved from case to case.

Company D: No.

Company E: We have experts who can easily solve problems like these.

Company F: We try not to mix classes developed in different programming languages. When

connecting older classes with .NET, we have sometimes met this problem.

Summary of case studies: One of the companies had experience of this and considered
it challenging. Another company had also experienced it, but it was no problem because
the experts there could easily deal with this kind of difficulty.

Discussion and conclusions: This is almost certainly done rather seldom but is
probably demanding when it is done. Because this question was not included in the
survey, no generalisations can be made.

(Q57) What other problems or obstacles of the object-oriented paradigm, other than
those presented, have the Finnish software companies experienced?

Theory – Studies: Are some of the problems or obstacles the same as those presented
by, for example, Taylor (1990, pp. 108-113) or Pancake (1995)?

Pilot study: The question was not included in the pilot study.

Survey: In the survey this question was divided into two parts (A and B). Not all 104
companies gave an answer. When more than one company gave the same answer this is
noted after the answer.

A. Have you experienced a lack of support for any concepts in the object-oriented
world? The results were the following:

Positive:
• Certainly nothing important is missing but there is some need for improvement.
• No; three answers.
• Don't know.

Tools:
• Lack of good automatic testing tool that is integrated with the design and would

make it possible to systematically test the application and generate test cases.
• Lack of ready object-oriented and cheap tools that small companies can use.
• Lack of testing tools and testing processes (customs). A tool and process for

connecting design, implementation, testing and documentation.
• More products and information.
• MS SQL relational object root hybrid. Not too expensive design tool that can be

used with our IDE.
• Shortages in the design and modelling tools for embedded systems, problems to

model parallel tasks.
• Commercial tools and components are expensive. The cheaper alternatives usually

have shortages and have a poorer usability.
• UML is not suitable for the communication between software developers and end

users.

215

• CASE tools.
• Programming languages and tools that increase productivity and quality. In this

field, we are still in the early stages.

Documentation:
• The documentation of classes and solutions in IDE is often not sufficiently

connected to reality.
• The documentation is too schematic or too simple.
• No systematic approach for documentation.

Programming and design:
• The move from functional/data oriented programming to the object-oriented

paradigm has been hard.
• As a result, we have object-oriented programs that are more functional than object-

oriented.
• Good class hierarchy: usually 3-4 iterations before one can get it right.
• Hard to build components in some circumstances.
• It should be possible to generate the interfaces of the database classes more easily.
• Natural division of work between objects and OODB – in which level should the

business logic be situated?
• Not from the object-oriented world but from the implementation of object-oriented

programming languages.
• New modelling of user interfaces.

General:
• The lack of understanding and skill to compare software systems and architectures

among the managers.
• Lack of clear guidelines.
• Lack of good and skilful developers.
• Object oriented databases.
• Silver bullet.

B. What other problems or obstacles of the object-oriented paradigm, other
than those presented, have you experienced? The results were the
following:

Positive:
• No problems.

Programming and design:
• Bugs and strange behaviour in tools and classes in IDE. One has to use special

solutions.
• Compulsory class hierarchy; should be: 'object has these features' not 'class has

these features'.
• Should reflect the real world better; for example, it should be possible to give 'value

€' though the object has not inherited the 'value' class.
• Hard to present and design the sequence of the messages.
• Large systems have so large libraries that often one builds one’s own components

though ready-made components are available. This usually happens when the
original model ages and one is building new things in the model, then old objects in
the model have to be updated and the functionality of the objects changes.

• MS XML -> Sun XML move.
• Object-oriented development gives a picture view of the problem that the software

developer has in his mind. Often one thinks in a too complex manner, and one
developer has difficulties in understanding the picture view of another developer

216

• One can write "sausage" code with object-oriented tools like Java.
• Problems when developing real-time systems (especially when developing with

Java).
• Problems with the usage of objects that are only needed in certain circumstances.
• The development and evaluation of components takes a lot of time (and costs).

Databases:
• The object-oriented databases are still in the early stages compared with relational

databases.
• Often the information behind objects is not sufficient. Often traditional relational

tables are needed in order to integrate the application with other applications.

Tools:
• The object-oriented tools have shortages. Testing could be improved.
• The prices of the tools are usually too high for our small company.
• High prices on system tools and object-oriented tools. The object-oriented world has

a rather good theoretical background, but there is a lack of CASE tools.

General:
• Customers do not always like it because of its complexity.
• First it was difficult to come into the 'object world thinking'.
• Many think that the object-oriented paradigm is something special
• Mostly the limitations of one’s own knowledge. We have used the object-oriented

paradigm very little.
• Normal attitude problems that can be solved.
• Resistance against change to the object-oriented paradigm.
• Slow application service. The difficulties in connecting different application

services.
• The change in thinking is the most important challenge in object oriented thinking

for the developer.
• The object-oriented paradigm is not a "miracle medicine"; with the object-oriented

paradigm one can develop just as bad or as good solutions as without it. All depends
on the working skills of the developer.

• The shortages of applications that have been developed by non-professional
developers.

Case studies:

Company A: In the Microsoft environment one has to use too many tools, J#, C# and Visual

Basic; this is too much. Programming in XML has been problematic.

Company B: People who have not been working in large object-oriented projects often forget

that memory management must still be performed.

Company C: No, the problems can be divided into those that are connected to knowledge and

experience of the object-oriented paradigm, those that are technical, those that are due to

project management flaws and those that are industrial; nowadays one has to produce

information systems faster and faster and the customers are more and more demanding.

Company D: No other problems.

Company E: No other problems.

Company F: No other problems.

Summary of case studies: Some of the six companies mentioned problems like ‘too
many tools to manage’, memory management and a lack of knowledge of the object-

217

oriented paradigm. No real problems connected to the object-oriented paradigm were
presented.

Discussion and conclusions: In the survey many problems connected with the object-
oriented paradigm were presented. Most of the problems were, however, variations of
the problems with the object-oriented paradigm that are presented earlier in this study.
No generalisations can be made.

218

5 RESULTS AND ANALYSIS

This chapter first summarises the major findings regarding the benefits and problems
with the object-oriented paradigm. Then the major empirical findings are discussed with
a focus on the explanation of the results.

5.1 Summary of empirical findings

When reading the summary one should note that the companies that did not answer the
survey question are presented in a “no answer” category. The population in the survey
is therefore always the 89 companies that use the object-oriented paradigm in
information systems development.

Benefits. The empirical study showed that most of the Finnish software companies are
very positive towards the object-oriented paradigm. One has, however, to take into
consideration the risk that companies that are more positive towards the object-oriented
paradigm also might be more willing to answer the survey. The response rate of 13,2%
was not very high.

A substantial majority of the Finnish software companies had experienced the following
benefits. The percentage figure in parentheses is the “yes” category.

1. The object-oriented paradigm is useful when developing large-scale and
complex information systems (94%).

2. Reuse is beneficial (92%).

3. The quality of object-oriented systems is better than the quality of traditional
systems (70%).

4. Object-oriented information systems development is more productive than
traditional information systems development (68%).

5. Maintenance of object-oriented information systems is easier than maintenance
of traditional information systems (64%).

The Finnish software companies had not experienced the following proposed benefits
with the object-oriented paradigm:

1. The companies had not experienced a better and more ‘natural’ communication
between information systems developers and end users due to the use of the
object-oriented paradigm. Only 22% of the companies had experienced a more
natural communication, when as many as 57% of the companies had NOT
experienced this. The case studies, however, indicate that this is a question that
is easily misunderstood and therefore one has to be careful when interpreting
the results.

2. The companies had not experienced that the object-oriented system
development process could be seen as a uniform ‘one model’ from problem

219

domain to code and maintenance. 42% of the companies had experienced a
uniform one model whereas the same number (42%) had NOT experienced
this.

The two exceptions above reflect unexpected empirical evidence when compared with

the findings in the review of previous studies.

Problems. It was also much unexpected that the Finnish software companies had
experienced so few of the proposed problems.

For the problems, the following were most commonly agreed:

1. It has been difficult to find experienced object-oriented software developers
and systems analysts (65%).

2. Companies have experienced computer efficiency problems in object-oriented
information systems development projects (49%).

When analysing the results regarding experienced problems, there are several problems
sighted in the review of previous studies that the Finnish software companies have not
experienced to a significant degree. The following are the most important:

1. Difficult to find object-oriented system development tools (10% ‘Yes’, 75%
‘No’, 7% ‘Not Sure’, 7% ‘Not used’ and 1% No answer).

2. The object-oriented paradigm is still immature (28% ‘Yes’, 66% ‘No’ and 6%
‘Not sure’).

3. Testing object-oriented information systems has been difficult (29% ‘Yes’,
62% ‘No’ and 9% ‘Not sure’).

4. There has been a problem with reuse for the reason that software developers do
not want to reuse a component, because they claim that it does not work (28%
‘Yes’, 61% ‘No’ and 11% ‘Not sure’).

5. The object-oriented paradigm is considered complex (35% ‘Yes’, 58% ‘No’
and 7% ‘Not sure’).

The exceptions above are interesting. These empirical results differ from the findings in
the previous studies. This discrepancy with mainstream studies on the object-oriented
paradigm seems, however, to be in agreement with recent findings by other researchers
(Johnson, 2000; Johnson, 2002), and may have to do with the fact that tools and
experience have changed in ten years.

220

5.2 Analysis of empirical findings

A look at scientific studies revealed several findings established earlier by other
researchers regarding the benefits and problems with the object-oriented paradigm. The
research questions in this study were then based on these.

In the empirical part of this study, some interesting findings regarding experienced
benefits and problems with the object-oriented paradigm in Finnish software companies
were found. By then comparing the findings from the empirical part of this dissertation
with other scientific studies, some issues on the benefits and problems with the object-
oriented paradigm could be discussed and presented. The major findings were the
following:

Experienced benefits:

The object-oriented paradigm is useful when developing large-scale and complex
information systems. 94% of the Finnish software companies had experienced this
benefit. Whether this result is based on the overall pre-eminence of the object-oriented
paradigm over the older functional paradigm or if it is based on the fact that most
companies use the object-oriented paradigm and find it suitable is difficult to say.
Probably a proper use of reuse has done the information systems development easier.

A proper use of reuse is beneficial and makes easier development of information
systems possible. 92% of the Finnish software companies reported that reuse is
beneficial. By reusing objects, classes, components, etc. one must not develop
everything from scratch, which is advantageous. However, in the older functional
paradigm reuse is also possible, one can, for example, reuse modules that might be
procedures, functions or subprograms. However, probably the companies have
experienced that the object-oriented paradigm has more reuse possibilities.

According to 70% of the Finnish software companies the quality of object-oriented
systems is better than the quality of traditional systems. Reuse of tested components
ought to initiate better quality. The complexity of the object-oriented paradigm might
threaten the quality aspects. However, the object-oriented paradigm includes also the
one model concept and the more natural concept that might affect the quality of the
information system favourably. Finally, one could expect that the concept of
encapsulation might produce higher quality of the object-oriented information system.

Object-oriented information systems development is more productive than traditional
information systems development. A majority (68%) of the Finnish software companies
were of this opinion. By reusing objects, classes, components, etc. the productivity of
the information systems development work should get higher. The skills of the
information systems developer is, however, a major factor when discussing
productivity. A trained, experienced and skilful information systems developer might be
very productive in traditional functional information systems development as well as in
object-oriented information systems development.

A majority (64%) of the Finnish software companies were of the opinion that
maintenance of object-oriented information systems is easier than maintenance of

221

traditional information systems. Once more reuse is the concept that most likely affects
the maintenance work positively. One would think that the complexity of the object-
oriented paradigm would affect maintenance negatively. However, one must take into
consideration the fact that 58% of the companies had not experienced that the object-
oriented paradigm would be complex. The ‘one model’ concept might also affect the
maintability because one can study the information system more easily from analysis to
implementation and documentation.

Not experienced benefits:

The Finnish software companies had not experienced a better and more ‘natural’
communication between information systems developers and end users due to the use of
the object-oriented paradigm. Merely 22% of the companies had experienced a more
natural communication, when as many as 57% of the companies had not experienced
this. This question is difficult because in many cases the end users are probably not
involved in the information systems development work. In many companies end users
are involved in the work but almost certainly to a rather low degree. Because the
question of whether the communication between information systems developers and
end users is ‘better’ is a very subjective one that might differ from one information
system developer to another, this result can be criticised.

The Finnish software companies had not experienced that the object-oriented system
development process could be seen as a uniform ‘one model’ from problem domain to
code and maintenance. 42% of the companies had experienced a uniform one model
whereas the same number (42%) had not experienced this. Because the number of ‘yes’
answers is the same as the number of ‘no’ answers, this question has no other actual
response than that one can argue that the ‘one model’ benefit is not widely recognised.
The used analysis and design method in object-oriented information systems
development might further affect the comprehension of the transition from analysis and
design into implementation.

Experienced problems:

A majority (65%) of the Finnish software companies were of the opinion that it has
been difficult to find experienced object-oriented software developers. Because the
object-oriented paradigm nowadays is taught in most universities and polytechnics one
can assume that this problem will disappear in the future. However, it might still in the
near future be difficult to find experienced object-oriented information systems
developers.

Though the number is not high, 49% of the Finnish software companies have
experienced computer efficiency problems in object-oriented information systems
development projects. The used computer, operating system, programming language,
and database, etc. might be the factors that affect the efficiency the most and not the
object-oriented paradigm per se. The more mature the object-oriented paradigm
becomes the better the computer efficiency might also become due to better operating
systems, better tools, etc.

222

Not experienced problems:

As many as 75% of the Finnish software companies were of the opinion that it has not
been difficult to find object-oriented system development tools. Because the object-
oriented paradigm was more mature when the survey was done than when the previous
studies were done, one can argue that the maturity of the object-oriented paradigm is
nowadays rather high, which means that object-oriented system development tools are
now available. An interesting question is, however, whether the companies can afford
these tools.

A majority (66%) of the Finnish software companies were of the opinion that the
object-oriented paradigm is not immature. The reason is the same as presented above;
the object-oriented paradigm was more mature when the survey was done than when the
previous studies were done. Further, there are nowadays several years of experience of
object-oriented information systems development in many Finnish software companies.

62% of the Finnish software companies were of the opinion that testing object-oriented
information systems has not been difficult. The experience of the information system
developer, used testing tools, testing strategies, etc. are issues that might affect the
difficulty to test object-oriented information systems more than the used software
engineering paradigm.

There has been a problem with reuse for the reason that software developers do not
want to reuse a component, because they claim that it does not work. 61% of the
Finnish software companies had not experienced this problem. If one has no
background in functional information systems development then one probably has an
obvious understanding of the need for reuse and software component quality, which an
information system developer that is used to work in co-ordinance with the functional
paradigm where reuse is utilised but probably to a smaller extent, does not have.

A small majority (58%) of the Finnish software companies were of the opinion that the
object-oriented paradigm is not considered complex. Whether a paradigm is complex or
not is a rather subjective issue where the information system developer’s background
and training are factors that most likely affect the view of the developer, which purports
that an inexperienced information systems developer might consider the object-oriented
paradigm as complex, when an experienced developer considers it rather simple.

223

6. DISCUSSION

This chapter consists of the parts that Järvinen (2004, p. 172) recommends: repetition of
results, limitations, recommendations to practitioners and recommendations to
researchers.

6.1 Repetition of results

As mentioned earlier in this study the empirical results differ from the findings in the
previous studies. This divergence with mainstream studies on the object-oriented
paradigm seems, however, to be in agreement with recent findings by other researchers
(Johnson, 2000; Johnson, 2002).

However, though the results of this study are in agreement with the results of the studies
by Johnson (2000) and Johnson (2002) there are differences in how this study was
carried out and how the other two studies were conducted.

Some interesting differences are presented in Table 9.

Table 9: Differences in studies on object-orientation

 Present study Johnson 2000 Johnson 2002

Topic Benefits and
problems with the
object-oriented
paradigm

Benefits and problems
with object-oriented
systems development

Object-oriented
analysis and design

Type of survey Mail Internet Study of 12 empirical
studies

Number of
answers

104 150 -

Country Finland The US -

Source -
Respondents

Statistics
Finland

US subscribers to
Communications and
OOPS Messenger plus
registrants at recent
OOPSLA conferences
(in the US).

Miscellaneous

Selection All in the
population

Randomly selected
sample

-

As can be read from the table above there are some interesting differences in how this
study was carried out in comparison with the two other studies. The study by Johnson
(2002) was very different from this study because it included no pure empirical study,
but a study of some empirical studies, and it was focused mainly on object-oriented

224

analysis and design. The study by Johnson (2000) is rather similar to this study although
some significant differences exist:

• This study can be generalised over all Finnish software companies (with the
exception mentioned earlier in this study) because the population was all
companies. The study by Johnson (2000) can only be generalised over the rather
limited selected population.

• This study was a mail survey. The study by Johnson (2000) was Internet based.

• In this study all companies in the population were selected. In the study by
Johnson (2000) a sample was selected from the population.

• This study is concerned with software companies in Finland and the study by
Johnson (2000) is concerned with companies in the US.

One could compare the studies regarding validity, reliability, generalisation, etc.
nevertheless, no such comparison will be made. However, one can conclude from the
comparison in Table 9 that this study most probably is an adequate study and in any
case not of inferior quality to the study by Johnson (2000).

As a summary, one can state that a major finding from the empirical part of this study is
the following:

It is interesting to note how positive the Finnish software companies that took

part in the empirical part of this study are towards the object-oriented

paradigm. Most of the companies had experienced many of the proposed

benefits but had not experienced many of the proposed problems. Out of these

results, one can argue that nowadays (2005) the object-oriented paradigm is

a leading information systems development paradigm among Finnish

software companies, and that the Finnish software companies do not

experience significant problems with it.

One could further argue that many of the benefits of the object-oriented paradigm are
not always so strong and obvious. One could also further conclude that many of these
problems have been solved, or at least partly.

The results of this study will hopefully be used for improving the understanding of how
the benefits with the object-oriented paradigm can be realised, and correspondingly,
how the problems with the object-oriented paradigm can be avoided in object-oriented
information system development in the future.

The most important outcomes of this study are twofold:

1. To improve the knowledge of the benefits and problems with the object-oriented
paradigm.

2. To offer some rather practical advice to organisations on the possibilities and
problems with the object-oriented paradigm.

225

Finally, another quite concrete result of this study is the comprehensive presentation of
benefits and problems of the object-oriented paradigm. In none of the studies
investigated was a presentation of the same kind found.

However, probably the most significant outcome of this study was the difference

between the results of previous studies on the benefits and problems of the object-

oriented paradigm and the empirical findings concerning Finnish software companies.

6.2. Limitations

When doing a study like this several limitations have to be considered. Already in the
introduction chapter of this study some boundaries were stated. There are, however,
some other limitations connected to this study of which the following are the most
significant:

1. When the literature review was made great care was taken in order to find all
major benefits and problems presented in previous studies. However, there is
certainly always a possibility that some major proposed benefits and / or
problems have not been found.

2. The selection of research questions could have been done in another way, now
some proposed benefits and problems are associated with several research
questions and some other benefits and problems are associated with only one
research question.

3. All research questions were included in the case studies but the selection of
research questions for the survey was difficult and could probably have been
done in another way.

4. In the population for the survey all software companies with five or more
employees in Finland were considered. In the case studies five software
companies were selected from the Helsinki area and one from Vaasa. There is a
difference in the distribution of the answers.

5. When doing the case studies the interview was rather long and in the end some
of the respondents become tired which reflected the answers.

6. Out of the benefits, problems, connections between benefits and connections
between problems, two theoretical models are presented. These theoretical
models have not been acceptably proven in this study and have consequently
been developed as hypotheses for further research.

Other limitation could undoubtedly be found. In this study the author of this work has
strived to lay emphasis on the reporting of the research process and the empirical study,
and subsequently the reader can hopefully make some conclusions of his or her own.

226

6.3 Recommendations to practitioners

The major contribution for practitioners is the identification and presentation of the
major benefits and problems with the object-oriented paradigm in information systems
development. In order to do feasible software development the software developer has
to be aware of the possibilities and dangers with the chosen software development
paradigm. Although one can be read from the results of this work that most practitioners
seem to be aware of the major benefits and problems it is always good to have them
arranged in one source for repetition and further studies.

Hopefully the two theoretical models with the associations of the 57 questions
considered give some understanding for practitioners on how different benefits (and
problems) are connected. This knowledge makes it hopefully easier to perform object-
oriented information systems development work in the future.

6.4 Recommendations to researchers

6.4.1 A look in the future

The era of programming and building information systems in a predominantly
functional way or in some other ‘older’ way is probably coming to an end. Information
system developers are now realizing that there are several interesting ways of building
information systems, and the object-oriented way is one. The main task in the future
will probably be to select the most appropriate information systems development
approach for a specific information system development project. The solution can also
be of course a mixture of several information system development approaches. When
selecting the appropriate information system development approach or the appropriate
mixture of information systems development approaches there are many things to take
into consideration. One of the things to consider is the benefits and problems with an
information system development paradigm. (Martin & Odell, 1995, p. 1) If problems
with the object-oriented paradigm can be managed, and benefits of the object-oriented
paradigm can be realised, information systems development can certainly be promoted
by it. Therefore, this study can hopefully be of some help for both managers and
information system developers.

One also has to keep in mind of course that new ways of carrying out information
system development are evolving all the time. The object-oriented paradigm has a
connection to the traditional functional approach in several ways; for example, object
orientation stores the segments of code (the methods) in a similar way as the functional
approach uses functions. Out of object orientation, for example, grew a new way of
developing software with agents. Software agents have their own control mechanism
and work with code, state and invocation of the software agents. The software agents
can even have individual rules and can be considered active objects with initiative.
(Odell, 2000) Software agents will not of course be the last information systems
development approach. New ways of performing information systems development will
undoubtedly come in the future.

227

This investigation can be seen as a beginning of research on how one can perform more
efficient object-oriented information systems development. There are many other issues
that can be studied; for example, what shortages are there in the object-oriented
paradigm theory and what new theory is needed in order to improve the object-oriented
paradigm? Other study issues could address the questions of how to develop new tools
for object-oriented information system development, as according to Bhattacherjee &
Gerlach (1998), there still seems to be a lack of efficient and easy-to-use object-oriented
information systems development tools.

6.4.2 Two theoretical models

In this section two theoretical models for future research are presented. These
theoretical models can be seen as interesting topics for future academic research.

When pondering about theory, one must remember that theory is the answer to
questions (Sutton & Staw, 1995). Sutton & Staw (1995) propose that theory considers
the connections among phenomena; why acts, events, structure and thoughts occur; the
nature of causal relationships is discussed as well. The most interesting questions in this
study consider the realisation of benefits and the avoidance of problems when working
with the object-oriented paradigm.

The connections (associations) between different benefits and problems are also of
interest in this study; if a software company has experienced a benefit, it is interesting to
study further benefits connected to the initial benefit. In the empirical part of this study
the connections (associations) presented in the models were evaluated. It was found that
the empirical survey results in this study support the theoretical models rather well,
though one has to remember that the number of respondents in some of the presented
connections was rather low.

Because of the low number of respondents and the often rather low percentage of

respondents that had experienced the following benefit, the connections (associations)

must be considered as weak and they have to be interpreted as hypotheses and not

proven connections.

One also has to take into consideration that the possible connections were investigated
in an unpretentious way where:

1. All respondents that had experienced a certain benefit or problem were
selected.

2. Out of this population the number of respondent that also had experienced the
following (connected) benefit or problem was selected.

In this section, theoretical models of the connections between the benefits (CBB model)
and the connections between the problems (CBP model) are developed as hypotheses
for further research. The models describe how one benefit gives birth to another benefit
and how one problem gives birth to another problem and so on. The connections are
selected from the identified connections presented in the sections on benefits and

228

problems with the object-oriented paradigm. One can anticipate that the models will
give some kind of answer to the questions 'Why are there benefits?’ 'Why are there
problems?’ ‘How are benefits connected?’ and ‘How are problems connected?’

6.4.2.1 The CBB model - Connection Between Benefits

When the CBB model was developed, the main issue was to utilise the findings from
the review of previous studies concerning connections between benefits. Some of the
connections were further tested in the empirical study.

In the section on benefits of the object-oriented paradigm, object-oriented analysis and
object-oriented design were presented but regarded as activities and not benefits. They
are consequently not discussed here.

The first benefit that was presented, discussed and analysed in the above-mentioned
section was the one model benefit. This benefit has its roots in the object-oriented
paradigm because it is a uniform paradigm from analysis to implementation and
maintenance (Henderson-Sellers & Edwards, 1990; Radin, 1996).

THE OBJECT-ORIENTED PARADIGM is usually based on a -> ONE MODEL
information systems development life cycle.

The next benefit dealt with was the management of complexity benefit. Object-oriented
systems better reflect the real world (Webster, 1995, p. 58; Wilkie, 1995, p. 39), which
decreases complexity.

The object-oriented paradigm is considered more NATURAL -> which makes
MANAGEMENT OF COMPLEXITY easier.

When the benefit of management of complexity was further analysed it was found that
by utilising reuse, one can manage complexity, because the information system under
construction can be built out of existing tested building blocks that are reused.

The REUSE concepts makes it possible to reuse components and other artefacts -
> which makes MANAGEMENT OF COMPLEXITY easier.

This connection was tested in the empirical study and found valid.

The following benefit that was considered in the section on the benefits of the object-
oriented paradigm was the benefit of productivity, faster development and reduced
costs. According to Bhattacherjee & Gerlach, 1998; Caliò et al., 2000; Henderson-
Sellers & Edwards, 1990; Love, 1993, p. 85; Manhes, 1998; Musakka, 1996; Nowicki
& Kosiak, 1996; Sheetz & Tegarden, 1996; Smith & McKeen, 1996) reuse leads to
faster development and better productivity. Reuse further leads to better efficiency and
reduced costs. It also makes maintenance easier, and easier maintenance decreases the
costs. Faster development also leads to lower costs of course (Jenz, 1999a; Räisänen,
1997a, p. 11).

229

The utilisation of REUSE results in -> FASTER DEVELOPMENT because
readymade artefacts like components can be used, which results in higher ->
PRODUCTIVITY -> which affects the EFFICIENCY of the information systems
development project -> which leads to REDUCED COSTS.

The connection between the reuse benefit and the more productive benefit was

tested in the empirical study and found valid.

The connection between the reuse benefit and the faster development benefit was

tested in the empirical study and also found valid.

The next considered benefit was the benefit of quality and usability. Reuse of existing
software components is actually connected to two benefits (reuse and software
components), and these two benefits give birth to better quality and usability (Gillach &
Deyo, 1993; Jenz, 1999b; Lim, 1994; Love, 1993, p. 80; Martin & Odell, 1992, p. 32;
Räisänen, 1997a, p. 13; Sheetz & Tegarden, 1996; Smith & McKeen, 1996; Taylor,
1990, p. 104). This is only true of course if one reuses tested components of high
quality. The one-model benefit is also connected to the benefit of quality and usability,
because as Love (1993, pp. 188-189) proposes, the model in the software designers
mind can be expressed in software itself.

Utilising REUSE and reusing tested components -> results in HIGHER
QUALITY.

This connection was tested in the empirical study and found valid.

The ONE MODEL concept that makes it possible to save design issues in the
programming code -> results in HIGHER QUALITY because the information
system is easier to understand.

This connection was tested in the empirical study and found valid.

Using SOFTWARE COMPONENTS like classes -> results in better USABILITY
because tested components can be used.

Natural and better mapping to the problem domain was the following benefit that was
presented, discussed and analysed. The software parts that are a result of object-oriented
design are proposed by several researchers to be more natural (Bozowski, 1997;
Koehler, 1992, Korson & McGregor, 1990; Martin & Odell, 1992, p. 31). However,
because object-oriented design was not considered a benefit in the section on benefits of
the object-oriented paradigm, the connection between object-oriented design and the
object-oriented paradigm as more natural is excluded. On the other hand, it is rather
obvious that the benefit of ‘natural’ comes from the object-oriented paradigm itself so it
is possible to identify the following connection:

The OBJECT-ORIENTED PARADIGM with objects are considered as more - >
NATURAL for human beings.

The next benefit that was considered was the benefit of enhanced maintenance. The
easier maintenance because of the object-oriented paradigm is a significant benefit that

230

is connected to the reuse of existing components. Object-oriented analysis and design
also makes maintenance easier if the appropriate classes have been identified
(Gillibrand, 2000). However, as mentioned above, in the presentation, discussion and
analysis of object-oriented benefits, object-oriented analysis and object-oriented design
were considered activities and not benefits, and they are therefore omitted here.

The utilisation of REUSE makes it easier to maintain the information systems
because tested and existing components can be used -> MAINTENANCE
becomes consequently easier.

This connection was tested in the empirical study and found valid.

The use of SOFTWARE COMPONENTS makes it possible to avoid
programming new parts for an information system, which makes ->
MAINTENANCE easier and faster.

This connection was tested in the empirical study and found valid.

Software components are very central in the object-oriented paradigm, and one
important base for reuse. Object-oriented information systems and applications are also
more robust, more extensive, are more flexible and have higher integrity due to software
components (combined with some other issues like encapsulation), according to
Henderson-Sellers (1992, p. 68), Henderson-Sellers & Edwards (1994, p. 15) and Petre
(2000, pp. 2-3). With this in mind, the following connections can be presented:

The OBJECT-ORIENTED PARADIGM uses -> SOFTWARE COMPONENTS.

Using SOFTWARE COMPONENTS results in higher -> FLEXIBILITY because
one can reuse premade artefacts.

Using tested SOFTWARE COMPONENTS results in higher -> ROBUSTNESS.

Making use of SOFTWARE COMPONENTS leads to -> easier
EXTENSIBILITY possibilities.

Using SOFTWARE COMPONENTS results in higher -> INTEGRITY because
the components are encapsulated without things like global variables.

Easier End-user computing was the following benefit that was dealt with. Easier End-
user computing is a benefit that has its foundation in the object-oriented paradigm itself.
The basic idea is that end users can more easily start building their own applications by
reusing existing software components.

The OBJECT-ORIENTED PARADIGM with readymade components makes it
easier to develop information systems which results in -> better possibilities for
END-USER COMPUTING.

The next benefit that was considered was reuse. Reuse is probably the most interesting
and important benefit of the object-oriented paradigm. It is also a benefit that has its
origin in the object-oriented paradigm itself. Earlier in this section a connection

231

between reuse and faster development, better productivity, efficiency and reduced cost
was presented. Earlier in this section another connection between reuse and
maintenance was presented as well. However, reuse gives birth to several other benefits,
and the following connections were found:

The OBJECT-ORIENTED paradigm is connected to the -> REUSE concept.

By performing REUSE -> MANAGEMENT OF COMPLEXITY can be
controlled more easily because the complexity of an information system is often
due to a hierarchy that can be built by using reuse.

By utilising REUSE -> HIGHER QUALITY can be achieved because the
information system is built out of readymade and tested components.

The last benefit was portability. Portability is considered a benefit that has its basis in
the object-oriented paradigm itself (Agarwal et al., 2000).

The OBJECT-ORIENTED paradigm -> has a good support for PORTABILITY in
the Java programming language (and some other programming languages).

The whole model is presented in Figure 37.

232

Figure 37: The CBB Model

Note that the * symbol stands for the fact that the benefit comes from the object-
oriented paradigm itself. There are thus benefits (boxed in the diagram) with no
connections. These benefits come from the object-oriented paradigm itself and have no
connections to other benefits.

Discussion. It is a subjective approach of course to connect the benefits to each other,
though the connections do have a modest verification in this study. Some of the benefits
are connected in a rather obvious way and other benefits are more difficult to connect.
The model that is presented here is the result of an analysis of the benefits that was
carried out by the author of this study. One cannot perceive the model as the only
“right” model. Several other models could certainly be developed out of the benefits.
For example, Räisänen (1997a, p. 11) has developed a slightly different model, albeit
more limited.

An interesting issue one can notice when looking at the model is that there are two
benefits that act like ‘spiders in the net’, and that out of these two benefits most other
benefits come. The two ‘spiders’ are REUSE and SOFTWARE COMPONENTS. One

INTEGRITY

ROBUSTNESS

EXTENSIBILITY

QUALITY
ONE MODEL

*

NATURAL

*

FLEXIBILITY SOFTWARE
COMPONENTS

*

USABILITY

REUSE

*

MAINTENANCE

PRODUCTIVITY FASTER
DEVELOPMENT

MANAGEMENT OF
COMPLEXITY

EFFICIENCY REDUCED COSTS

END-USER
COMPUTING

*

PORTABILITY

*

233

could certainly conclude that these two benefits are the ‘main’ benefits of the object-
oriented paradigm. By reusing software components several other benefits arise.

6.4.2.2 The CBP model – Connections Between Problems

When the CBP model was developed the main issue was to utilise the findings from the
review of previous studies concerning connections between problems. Some of the
connections were tested in the empirical study.

In the section on problems with the object-oriented paradigm, complexity was first
presented, discussed and analysed. The object-oriented paradigm is complex according
to several researchers like Harrison et al. (1996), Maring (1996), Noack & Schienmann
(1999) and Johnson (2000). In the aforementioned section, it was found that the
complexity of the object-oriented paradigm comes from the object-oriented paradigm
per se.

The OBJECT-ORIENTED paradigm is based on rather complex concepts like
polymorphism and inheritance hierarchies. This results in higher ->
COMPLEXITY in the information systems development work.

This connection between problems was tested in the empirical study and found

rather valid because 43% answered “yes” and 47% answered “no”.

Many researchers like Bhattacherjee & Gerlach (1998) and Webster (1995, p. 39) claim
that the object-oriented paradigm is still immature, though this is an issue that is
improving. On the other hand, some researchers are of a different opinion, and think
that nowadays the object-oriented paradigm is more mature. Having said that, one can
still propose that the object-oriented paradigm is still somewhat immature.

The OBJECT-ORIENTED paradigm is still -> IMMATURE in some areas.

Poor support for several important areas like testing is a problem that is rather broad.
Again, this poor support is most likely based on the immaturity of the object-oriented
paradigm (Henderson-Sellers, 1994, p. 21; Pancake, 1995; Wolber, 1997). Therefore,
the following connection between problems was identified:

The object-oriented paradigm is still IMMATURE in some areas -> which results
in POOR SUPPORT FOR SOME AREAS.

The following problem that was considered was the problem of difficulties in measuring
object-oriented systems. This is a problem that will probably disappear when the object-
oriented paradigm becomes more mature. The connection between problems is
therefore:

The object-oriented paradigm is still IMMATURE in some areas -> one area is
software metrics which results in DIFFICULTIES IN MEASURING OBJECT-
ORIENTED SYSTEMS.

234

The following problem that was dealt with was the problem of training & lack of
experience. There are two problems that are connected to this difficulty, namely the
immaturity and complexity of the object-oriented paradigm. Numerous software
developers have not become skilled at the object-oriented paradigm yet.

The object-oriented paradigm is still IMMATURE in some areas -> and it might
be difficult to find TRAINED and EXPERIENCED information systems
developers in these areas.

This connection between problems was tested in the empirical study and found

valid because 80% answered “yes”.

The object-oriented paradigm has high COMPLEXITY -> which makes
TRAINING more difficult and there are several information systems developers
that have a LACK OF EXPERIENCE.

This connection between problems was tested in the empirical study and found

valid because 78% answered “yes”.

Efficiency was the following problem that was presented, discussed and analysed in the
section on problems with the object-oriented paradigm. This problem has to do with its
immaturity.

The object-oriented paradigm is still IMMATURE in some areas, which results in
-> EFFICIENCY problems.

This connection between problems was tested in the empirical study and found

rather valid because 56% answered “yes”.

The starting costs for a new object-oriented software development project are still often
high today because there are not many components that can be reused. However, when
the object-oriented paradigm becomes more mature there will be more reusable
components both on the market and in-house, and therefore the costs will become
lower.

The object-oriented paradigm is still IMMATURE in some areas, which results in
-> higher COSTS.

This connection between problems was tested in the empirical study and found

valid because 64% answered “yes”.

The next problem considered was the limited usability of components. There are
problems like how to find components (Garland et al., 1994) and how to handle the
complexity of components (Jarzabek & Knauber, 1999), etc. When the object-oriented
paradigm becomes more mature, these problems will probably disappear.

The object-oriented paradigm is still IMMATURE in some areas which results in
-> LIMITED USABILITY OF COMPONENTS because there are no suitable
components to reuse or existing components are complex or difficult to reuse

235

The connection between the problems of immaturity and finding components for

reuse was tested in the empirical study and found valid because 68% answered

“yes”.

Reuse or problems with reuse, was the following problem presented, discussed and
analysed. As was said in an earlier sub section of this study reuse is probably one of the
main benefits of the object-oriented paradigm. However, this major benefit also has
some troubles. Several different problems with reuse were analysed and the conclusion
was that many of these would disappear when the object-oriented paradigm becomes
more mature. Reuse is a complex activity, which also often makes the object-oriented
paradigm more complex.

The object-oriented paradigm is still IMMATURE in some areas (for example, a
lack of good textbooks), which results in -> PROBLEMS WITH REUSE.

This connection between problems was tested in the empirical study and found

valid to a certain extent because 50% answered “yes”.

By using REUSE inheritance structures can be developed which increases the ->
COMPLEXITY of the information system.

In the section on problems with the object-oriented paradigm, object-oriented analysis
and object-oriented design were presented but regarded as activities and not problems.
They are accordingly not presented here.

The last problem that was dealt with was the problem with the lack of object-oriented
databases and common interfaces. The conclusion was that the lack of object-oriented
databases is a result of the immaturity of the object-oriented paradigm, and that the lack
of common interfaces is due to the object-oriented paradigm itself.

The object-oriented paradigm is still IMMATURE in some areas (like databases),
which results in -> A LACK OF OBJECT-ORIENTED DATABASES.

This connection between problems was tested in the empirical study and NOT

found valid because 32% answered “yes” and 68% answered “not sure”,

probably because so few of the respondents use object-oriented databases.

The OBJECT-ORIENTED paradigm has resulted in few object-oriented databases
and these object-oriented databases have a -> LACK OF COMMON
INTERFACES for ad hoc queries.

The whole model is presented in Figure 38.

236

Figure 38: The CBP Model

Note that the * symbol stands for a problem that has its origin in the object-oriented
paradigm itself.

Discussion. It is a subjective approach of course to connect the problems to each other,
although a modest verification of the connections in this study does exist. As one can
further notice it is probably not even possible to connect all the problems to each other.
The model that is presented here is the result of an analysis of the problems that was
carried out by the author of this study. One cannot perceive the model as the only
“right” model. Several other models could certainly be developed out of the problems.

When looking at the model one can notice that the problem of immaturity is a
considerable one. Immaturity means the difficulty in finding appropriate information
system development tools and artefacts like object-oriented databases. Many other
problems originate from the object-oriented paradigm itself. Whether the object-
oriented paradigm is immature or not is a difficult question; one result of the empirical
part of this study was that a majority of the Finnish software companies were of the
opinion that the object-oriented paradigm is not immature.

OO STILL IMMATURE

*

POOR SUPPORT FOR
IMPORTANT AREAS

DIFFICULTIES IN
MEASURING OO

SYSTEMS

LACK OF OO
DATABASES

COMPLEXITY

*

TRAINING & LACK OF
EXPERIENCE

EFFICIENCY

COSTS

PROBLEMS WITH
REUSE

LIMITED USAGE OF
COMPONENTS

LACK OF COMMON
INTERFACES

*

237

REFERENCES

Aczel, A. (1999): Complete Business Statistics. Singapore: McGraw-Hill
Book Co.

Agarwal, R., De, P., Sinha, A. & Tanniru, M. (2000): On the Usability
of OO representations. Communications of the ACM, Vol. 43, No. 10, pp.
83-89.

Airikkala, J. (1996): Comptel pitää oliosta. SAS Institute oy:n
asiakaslehti, No. 2, p. 5. In Finnish.

Aksit, M. & Bergmans, L. (1992): Obstacles in Object-Oriented Software
Development. OOPSLA’92, ACM SIGPLAN Notices, Vol. 27, No. 10, pp. 341-
358.

Al-Ahmad, W. & Steegmans, E. (2000): Inheritance in Object-Oriented
Languages: Requirements and Supporting Mechanisms. Journal of Object-
Oriented Programming, Vol. 12, No. 8, January 2000, pp. 15-24.

Alasuutari, P. (1994): Laadullinen tutkimus. Tampere, Finland:
Vastapaino. 3 Ed. In Finnish. English edition: Researching Culture:
Qualitative Method and Cultural Studies. London: Sage Publications
Ltd. 1995, 1 ed. based on the earlier version of the Finnish original
from 1993.

Alasuutari, P. (1996): Personal presentation. Course in qualitative
methods at Tampere University in Finland on October 27, 1996.

Alencar, P., Cowan, D., Lucena, C. & Nova L. (1998): A Model for
Gluing Components. Weck, W., Bosch, J. & Szyperski, C. (Eds.).
Proceedings of the WCOP’98 Third International Workshop on Component-
Oriented Programming, Brussels, Belgium, July 21, 1998. Turku Centre
for Computer Science, TUCS General Publication, No 10, September 1998.

Alexander, C. (1979): The Timeless Way of Building. New York: Oxford
University Press.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fixdahl-
King, I. & Angel S. (1977): A Pattern Language. New York: Oxford
University Press.

Altheide, D. & Johnson, J. (1994): Criteria for assessing
interpretative validity in qualitative research. Denzin, N. & Lincoln,
Y. (eds.): Handbook of Qualitative Research. London: Sage, pp. 485-
499.

Ambler, S. (1994): In search of a generic SDLC for object systems.
Object Magazine, Vol. 4, No. 6, pp. 76-78.

Ambler, D. (1998): Building Object Applications That Work. Cambridge,
UK: Cambridge University Press. Copublished by the press syndicate of
the University of Cambridge and SIGS books.

Andersen, E. (1996): Systemutveckling – principer, metoder och
tekniker. Lund, Sweden: Studentlitteratur. In Swedish.

Bansiya, J. & Davis, C. (1997): Automated Metrics and Object-Oriented
Development. Dr. Dobb’s Journal, Vol. 272, December 1997, pp. 42-48.

238

Bansiya, J., Davis, C. & Etzkorn, L. (1999): An Entropy-Based
Complexity Measure for Object-Oriented Designs. Theory and Practice of
Object Systems, Vol 5, No 2, pp. 111-118.

Barondes, S. (1998): Mood Genes. London: Penguin Books Ltd.

Basili, V., Briand, L. & Melo, W. (1996a): How Reuse Influences
Productivity in Object-Oriented Systems. Communications of the ACM,
No. 10, pp. 105-116.

Basili, V., Briand, L. & Melo, W. (1996b): A Validation of Object-
Oriented Design Metrics as Quality Indicators. IEEE Transactions on
Software Engineering, Vol. 22, No. 10, pp. 751-761.

Benbasat, I., Goldstein, D. & Mead, M. (1987): The Case Research
Strategy in Studies of Information Systems. MIS Quarterly, Vol. 11,
No. 3, September 1987, pp. 369-386.

Berard, E. (1992): Essays on Object-Oriented Software Engineering.
Englewood Cliffs, New Jersey, US: Prentice Hall, Inc.

Berard, E. (1998): Metrics for Object-Oriented Software Engineering.
The Object Agency, Inc. Available from:
http://www.toa.com/pub/moose.htm [Accessed 11 October 2002].

Berg, W., Cline, M. & Girou, M. (1995): Lessons Learned from the
OS/400 OO Project. Communications of the ACM, Vol. 38, No. 10, pp. 55-
64.

Bhattacherjee, A. & Gerlach, J. (1998): Understanding and Managing OOT
Adoption. IEEE Software, Vol. 15, No. 3, May/June 1998, pp. 91-96.

Binder, R. (1999): Testing Object-Oriented Systems. Models, Patterns
and Tools. Reading, Massachusetts, US: Addison-Wesley Longman, Inc.

Blair, G. S & Lea, R. (1992): The impact of distribution on support
for object-oriented software development. Software Engineering
Journal, Vol. 7, No. 2, pp. 130-138.

Blom, G. (1984): Statistikteori med tillämpningar. Lund, Sweden:
Studentlitteratur. In Swedish.

Boehm, B. (1986): A spiral model of software development and
enhancement. ACM Software Engineering Notes, Vol. 11, No. 4, pp. 14-
24.

Bohrer, K., Johnson, V., Nilsson, A. & Rubin, B. (1998): Business
Process Components for DISTRIBUTED OBJECT APPLICATIONS The San
Francisco project offers developers extendible components to simplify
the transition to distributed, easily customizable applications.
Communications of the ACM, Vol. 41, No. 6, pp. 43-48.

Booch, G. (1994): Object-oriented Analysis and Design with
Applications. Redwood City, California: The Benjamin/Cummings
Publishing Company, Inc.

Booch, G. & Vilot, R. (1990): Object-oriented design, Inheritance
relationships. C++ Report, Vol. 2, No. 8, pp. 11-13.

239

Bosch, J. (1997): Adapting Object-Oriented Components. Weck, W.,
Bosch, J. & Szyperski, C. (Eds.). Proceedings of the WCOP’97 Second
International Workshop on Component-Oriented Programming, Jyväskylä,
Finland, June 9, 1997. Turku Centre for Computer Science, TUCS General
Publication, No 5, September 1997.

Bosch, J., Szyperski, C. & Weck, W. (1997): Summary of the Second
International Workshop on Component-Oriented Programming (WCOP’97).
Weck, W., Bosch, J. & Szyperski, C. (Eds.). Proceedings of the WCOP’97
Second International Workshop on Component-Oriented Programming,
Jyväskylä, Finland, June 9, 1997. Turku Centre for Computer Science,
TUCS General Publication, No 5, September 1997.

Boudreau, M-C., Gefen, D. & Straub, D. (2001): Validiation in
Information Systems Research: A State-of-the-Art Assessment. MIS
Quarterly, Vol. 25, No. 1, March 2001, pp. 1-16.

Boulanger, D. & Dubois, G. (1998): An Object Approach for Information
System Cooperation. Information Systems, Vol. 23, No. 6, pp. 383-399.

Bozowski, N. (1997): Philosophizing about objects. Computing Canada,
October 14, p. 48-49.

Bradford (2002): Web pages of Overseas Trade Support for SMEs (OTSS) –
project, without named editor, The University of Bradford Management
Centre. Available from:
http://www.brad.ac.uk/acad/mancen/otss/geninfo.htm#team [Accessed 11
February 2005].

Brancheau, J. & Brown, C. (1993): The Management of End-User
Computing: Status and Directions. ACM Computing Surveys, Vol. 25, No.
4, pp. 437-482.

Brooks, F., Jr. (1979): The Mythical Man-Month. Reading,
Massachusetts, US: Addison-Wesley.

Brooks, F., Jr. (1987): No Silver Bullet; Essence and Accidents of
Software Engineering. IEEE Computer, Vol. 20, No. 4, April 1987, pp.
10-19.

Bruegge, B & Dutoit, A. (2000): Object-Oriented Software Engineering.
Conquering Complex and Changing Systems. Upper Saddle River, New
Jersey, US: Prentice Hall, Inc.

Brunet, J, Cauvet, C., Meddahi, D. & Semmak, F. (1994): Applying
Object-Oriented Analysis on a Case Study. Information Systems, Vol.
19, No. 3, pp. 199-209.

Buchanan, D., Boddy, D. & McCalman, J. (1988): Getting In, Getting On,
Getting Out and Getting Back. Bryman, A. (ed.), Doing Research in
Organizations. London: Routledge, pp. 53-67.

Buchholz, J. (1999): Component-Based Development: Methodik und
Toolunterstutzung. Diplomarbeit im Fachbereich Wirtschaftsinformatik
an der Fachhochschule Furtwangen. Available from: http//:
www.joachimbuchholz.de/ cbd/_abstract_o-bg.html [Accessed 19 September
2002}. Abstract. In German.

240

Buxton, J. (1993): On the Decline of Classical Programming.
Sommerville, I. & Paul, M. (Eds.). Fourth European Software
Engineering Conference (ESEC). Garmisch-Partenkirchen, Germany,
September 13-17, 1993. Proceedings, Springer-Verlag, Lecture Notes in
Computer Science, pp. 1-9.

Bäumer, D., Knoll, R., Gryczan, G. & Zullighoven, H. (1996): Large
Scale Object-Oriented Software-Development in a Banking Environment.
An experience Report. Pierre Cointe (Ed.). ECOOP '96 - Object-Oriented
Programming, 10th European Conference, Linz, Austria, July 1996.
Proceedings, Springer Verlag, Lecture Notes in Computer Science 1098,
pp. 73-90.

Cackowski, D., Najdawi, M. & Chung, Q. (2000): Object analysis in
organizational design: A solution for matrix organisations. Project
Management Journal, Vol. 31, No. 3, pp. 44-51.

Caliò, A., Autiero, M. & Bux, G. (2000): Software Process Improvement
by Object Technology. 22nd International Conference on Software
Engineering (ICSE), University of Limerick, Ireland, 4-11 June 2000.
Proceedings of ACM and SigSoft, pp. 641-647.

Canning, L. & Nethercott, R. (1996): Using Fusion for Commercial
Fixed-Price Bespoke Development. Chapter 4 in Malan, R., Letsinger, R.
& Coleman D. (1996): Object-Oriented Development at Work. Fusion in
the Real World. Upper Saddle River, Englewood Cliffs, New Jersey, US:
Prentice Hall, Inc.

Capper, N., Colgate, R., Hunter, J. & James, M. (1994): The impact of
object-oriented technology on software quality: Three case histories.
IBM Systems Journal, Vol. 33, No. 1, pp. 131-157.

Carr, D. (1999): Building with blocks. Internet World, Vol. 5, No. 26,
p. 69.

Cartwright, M. & Shepperd, M. (2000): An Empirical Investigation of an
Object-Oriented Software System. IEEE Transactions on Software
Engineering, Vol. 26, No. 8, pp. 786-795.

Casais, E. (1995): Managing Class Evolution in Object-Oriented
Systems. Nierstrasz, O. & Tsichritzis, D. (Eds.), Object-Oriented
Software Composition, pp. 201-244. Englewood Cliffs, New Jersey, US:
Prentice Hall, Inc.

Castelluccio, M. (1997): Why all the noise over OOP (Object-oriented
programming)? Management Accounting, Vol. 79, No. 3, pp. 53-56.

Champeaux de, D., Anderson, A. & Feldhousen, E. (1992): Case Study of
Object-Oriented Software Development. OOPSLA’92, ACM SIGPLAN Notices,
Vol. 27, No. 10, pp. 377-391.

Champeaux de, D., Lea, D. & Faure, P. (1993): Object-Oriented System
Development. Reading, MA: Addison-Wesley Publishing Company.

Champeaux de, D. (1996): Object-Oriented Development Process and
Metrics. Englewood Cliffs, New Jersey, US: Prentice Hall, Inc.

Charpentier, C. (2001): Kravanalys. En empirisk undersökning om
användningen av systemutvecklingsmodeller i företag. Svenska
handelshögskolan. Masters thesis. In Swedish.

241

Chidamber, S. & Kemerer, C. (1994): A Metrics Suite for Object-
oriented Design. IEEE Transactions on Software Engineering, Vol. 20,
No. 6, pp. 476-493.

Clements, P. (1995): From Subroutines to Subsystems: Component Based
Software Development. American Programmer, Vol. 8, No. 11, November
1995.

Coad, P., North, D. & Mayfield, M. (1995): OBJECT MODELS Strategies,
Patterns & Applications. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc.

Coad, P. & Yourdon, E. (1990): Object-Oriented Analysis. Englewood
Cliffs, New Jersey, US: Prentice-Hall, Inc.

Coad, P. & Yourdon, E. (1991): Object-Oriented Design. Englewood
Cliffs, New Jersey, US: Prentice-Hall, Inc.

Cockburn, A. (1993): The impact of object-orientation on application
development. IBM Systems Journal, Vol. 32, No. 3, pp. 420-444.

Cockburn, A. (1998): Surviving Object-Oriented Projects: a Manager’s
Guide. Reading, Massachusetts, US: Addison-Wesley Longman, Inc.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes,
F. & Jeremaes, P. (1994): Object-Oriented Development - The Fusion
Method. Englewood Cliffs, New Jersey, US: Prentice Hall, Inc.

Covaleski, M. & Dirsmith, M. (1990): Dialectic tension, double
reflexivity and the everyday accounting researcher: on using
qualitative methods. Accounting, Organizations and Society, Vol. 15,
No. 6, pp. 543-573.

Dahl, O-J. & Nygaard, K. (1966): Simula – an algol-based simulation
language. Communications of the ACM, Vol. 8, No. 9, pp. 671-678.

Dahl, S. & Lindqvist, K. (1993): Objektorienterad programmering och
algoritmer i Simula. Lund, Sweden: Studentlitteratur. In Swedish.

Davis, J. & Morgan, T. (1993): Object-Oriented Development at Brooklyn
Union Gas. IEEE Software, Vol. 10, No. 1, January 1993, pp. 67-74.

Davis, T. (2000): Object-Oriented Design in Procedural Environments.
Dr. Dobb's Journal, June 2000, pp. 68-72.

Deubler, H-H. & Koestler, M. (1994): Introducing Object Orientation
into Large and Complex Systems. IEEE Transactions on Software
Engineering, Vol. 20, No. 11, pp. 840-848.

Dijkstra, E. (1965): Programming considered as a human activity.
Proceedings of the 1965 IFIP Congress, North-Holland Publishing Co.,
Amsterdam, the Netherlands.

Eden, A. (2002): A Theory of Object-Oriented Design. Information
Systems Frontiers, Vol. 4, No. 4, pp. 379-391.

Eeles, P. & Sims, O. (1998): Building Business Objects. New York, US:
John Wiley & Sons, Inc.

242

Eisenhardt, K. (1989): Building Theories from Case Study Research.
Academy of Management Review, Vol. 14, No. 4, pp. 532-550.

Eliëns, A. (2000): Principles of Object-Oriented Software Development.
Harlow, England: Addison-Wesley Publishing Company.

Ellis, C. & Gibbs, S. (1989): Active Objects: Realities and
Possibilities. Kim, W. & Lochovsky, F. (eds.), Object-Oriented
Concepts, Databases and Applications. New York: ACM press, Addison-
Wesley Publishing Company, pp. 561-572.

Eriksson, H-E. (1992): Objektorienterad programutveckling med C++.
Lund, Sweden: Studentlitteratur. In Swedish.

Eriksson, H-E. & Penker, M. (1996): Objektorientering - handbok och
lexikon. Lund, Sweden: Studentlitteratur. In Swedish.

Erlikh, L. (2000): Leveraging legacy system dollars for E-business. IT
Pro (IEEE), May/June 2000, pp. 17-23.

Esch, J. (1995): A Fine MESS. Real-time manufacturing execution
systems bridge the gap between planning and the plant floor. Byte,
December, pp. 67-75.

Fagerström, J. (1993): Objektorienterad systemutveckling – en
introduktion. Lund, Sweden: Studentlitteratur. In Swedish.

Fagerström, J. (1995): Objektorienterad analys och design – en andra
generationens metod. Lund, Sweden: Studentlitteratur. In Swedish.

Fayad, M. (2000): Introduction to the computing surveys’ electronic
symposium on object-oriented application frameworks. ACM Computing
Surveys, Baltimore, Vol. 32, No. 1, March 2000, pp. 1-11.

Fayad, M., Laitinen, M. & Ward, R. (2000): Software Engineering in the
small. Communications of the ACM, Vol. 43, No. 3, pp. 115-118.

Fayad, M. & Schmidt, C. (1997): Object-Oriented Application
Frameworks. Communications of the ACM, Vol. 40, No. 10, pp. 32-38.

Fayad, M. & Tsai, W-T. (1995): Object-Oriented Experiences.
Communications of the ACM, Vol. 38, No. 10, pp. 51-53.

Fayad, M., Tsai, W-T. & Fulghum, M. (1996): Transition to Object-
Oriented Software Development. Communications of the ACM, Vol. 39, No.
2, pp. 109-121.

Fernandes, H. (1998): Important Concepts of Object Orientation. Free
Speech Online. Blue Ribbon Campaign. Available from:
http://www.geocities.com/fernanesh/ OT_Concepts.html [Accessed 11
October 2002]

Fichman & Kemerer (1993): Adoption of Software Engineering Process
Innovations: The Case of Object Orientation. Sloan Management Review.
Vol. 34, No. 2, Winter 1993, pp. 7-22.

Finch, L. (1998): So Much OO, So Little Reuse. Dr. Dobb's Journal,
Online op-Eds. Available from: http://www.ddj.com/documents/ [Accessed
23 September 2002]. Journal: May 7, 1998.

243

Fitzgerald, B. (1995): The Use of Systems Development Methods: A
Survey. ESRC Research and Discussion Papers. Cork: University College
Cork Ireland.

Fogarty, K. (2004): Object-Oriented Cobol. Baseline, Vol 1, No. 30,
May 2004, p. 78.

Frakes, W. & Fox, C. (1995): Sixteen Questions About Software Reuse.
Communications of the ACM, Vol. 38, No. 6, pp. 75-87.

Frakes, W. & Isoda, T. (1994): Success Factors of Systematic Reuse.
IEEE Software, Vol. 11, No. 5, September 1994, pp. 15-19.

Frakes, W. & Terry, C. (1996): Software Reuse: Metrics and Models. ACM
Computing Surveys, Vol. 28, No. 2, pp. 415-435.

Franz, M. (1998): The Java Virtual Machine: A Passing Fad? IEEE
Software, Vol. 15, No. 6, November/December 1998, pp. 26-29.

Gable, G. (1994): Integrating case study and survey research methods:
an example in information systems. European Journal of Information
Systems, Vol. 3, No. 2, pp. 112-126.

Gall, H., Klösch, R. & Mittermeir, R. (1995): Object-Oriented Re-
Architecturing. Schäfer, W. & Botella, P. (Eds.). 5th European Software
Engineering Conference (ESEC), Sitges, Spain, September 1995.
Proceedings, Springer Verlag, Lecture Notes in Computer Science 989,
pp. 499-519.

Galliers, R. (1992): Choosing Information Systems Research Approaches.
Galliers, R.D. (ed.), Information Systems Research. Issues, methods
and practical guidelines. Oxford: Blackwell Scientific Publications,
pp. 144-162.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995): Design
Patterns. Elements of Reusable Object-Oriented Software. Reading,
Massachusetts, US: Addison-Wesley Longman, Inc.

Garlan, D., Allen, R., & Ockerbloom, J. (1994): Architectural
Mismatch: Why Reuse is so hard. IEEE Software, Vol. 12, No. 6,
November 1995, pp. 17-26.

Gehringer, E. & Manns, M. (1996): OOA/OOD/OOP: What programmers and
managers believe we should teach. Journal of Object-Oriented
Programming, Vol. 9, No. 6, October, pp. 52-60.

Gibbs, S., Tsichritzis, D., Casais, E., Nierstrasz, O. & Pintado, X.
(1990): CLASS Management for Software Communities. Communications of
the ACM, Vol. 33, No. 9, pp. 91-102.

Gillach, J. & Deyo, N. (1993): Empowering the IT-business relationship
with objects. Object Magazine, Vol. 3, No. 3, September-October, pp.
69-71.

Gillibrand, D. (2000): Essential business objects design.
Communications of the ACM, Vol. 43, No. 2, pp. 117-119.

Glaser, B. & Strauss, A. (1967): The discovery of grounded theory:
Strategies of qualitative research. London: Wiedenfeld and Nicholson.

244

Glass, R. (1998): Reuse: What’s Wrong with This Picture? IEEE
Software, Vol. 15, No. 3, May/June, 1998, pp. 57-59.

Glass, R. (1999): A Snapshot of Systems Development Practice. IEEE
Software, Vol. 16, No. 3, May/June, 1999, pp. 111-112.

Graham, I. (1995): A non-procedural process model for object-oriented
software development. Report on Object Analysis and Design, Vol. 1,
No. 5, pp. 10-11.

Graham, I. (2001): Object-Oriented Methods. Principles & Practice.
Third Edition. Harlow, England: Addison-Wesley Publishing Company.

Grinzo, L. (1998): The Unbearable Lightness of Being Reusable. Dr.
Dobb's Journal, Online op-Eds. Available from:
http://www.ddj.com/documents/ [Accessed 23 September 1998].

Gummesson, E. (1991): Qualitative Methods in Management Research.
Newbury Park (US): Sage Publications, Inc.

Gunn, H. (2002): Web-based Surveys: Changing the Survey Process. First
Monday, Vol 7, No. 12. Available from:
http://firstmonday.org/issues/issue7_12/gunn/index.html [Accessed 16
December 2002].

Hamilton, S. & Ives, B. (1992): MIS Research Strategies. Galliers,
R.D. (ed.), Information Systems Research. Issues, methods and
practical guidelines. Oxford: Blackwell Scientific Publications, pp.
132-143.

Hanseth, O. & Monteiro, E. (1994): Modelling and the Representation of
Reality: Some Implications of Philosophy on Practical Systems
Development. Scandinavian Journal of Information Systems, Vol. 6, No.
1, pp. 25-46.

Harmon, P. (1995): Object-Oriented AI: A Commercial Perspective.
Communications of the ACM, Vol. 38, No. 11, pp. 80-86.

Harrington, J. (1995): C++ and the Object-Oriented Paradigm. An IS
Perspective. New York: John Wiley & Sons, Inc.

Harrison, R., Samaraweera, L., Dobie, M. & Lewis P. (1996): Comparing
programming paradigms: an evaluation of functional and object-oriented
programs. Software Engineering Journal, Vol. 11, No. 4, July 1996, pp.
247-254.

Harrison, W. & Ossher, H. (1993): Subject-Oriented Programming (A
Critique of Pure Objects). OOPSLA’93, ACM SIGPLAN Notices, Vol. 28,
No. 10, pp. 411-428.

Hatton, L. (1998): Does OO Sync with How We Think? IEEE Software, Vol.
15, No. 3, May/June 1998, pp. 46-54.

Heller, M. (2003): The Water Language (actually untitled). Byte.com,
2/10/2003. Business Source Premier Database on the Web.

245

Helton, D. (1998): The Impact of Large-Scale Component and Framework
Application Development on Business. Weck, W., Bosch, J. & Szyperski,
C. (Eds.) Proceedings of the WCOP’98 Third International Workshop on
Component-Oriented Programming, Brussels, Belgium, July 21, 1998.
Turku Centre for Computer Science, TUCS General Publication, No 10,
September 1998.

Henders, R. (1998): An Evolutionary approach to application
development with object technology. IBM Systems Journal, Vol. 37, No.
2, pp. 181-188.

Henderson-Sellers, B. (1992): A Book of Object-Oriented Knowledge.
Object-Oriented Analysis, Design and Implementation: A new approach to
software engineering. Englewood Cliffs, New Jersey, US: Prentice Hall,
Inc.

Henderson-Sellers, B. (1993): The economics of reusing library
classes. Journal of Object-Oriented Programming, Vol. 6, No. 4, July-
August, pp. 43-50.

Henderson-Sellers, B. (1996): Object-Oriented Metrics. Measures of
complexity. Englewood Cliffs, New Jersey, US: Prentice Hall, Inc.

Henderson-Sellers, B. & Edwards, J. (1990): Object-Oriented Systems
Life Cycle. Communications of the ACM, No. 9, pp. 143-159.

Henderson-Sellers, B. & Edwards, J. (1993): The fountain model of
object-oriented system development. Object Magazine, Vol. 3, No. 2,
pp. 71-79.

Henderson-Sellers, B. & Edwards, J. (1994): BOOK TWO of Object-
Oriented Knowledge: The Working Object. Object-Oriented Software
Engineering: Methods and Management. Englewood Cliffs, New Jersey, US:
Prentice Hall, Inc.

Hohmann, L. (1996): The First Step in Training: Analysis & Design or
Implementation Language? Journal of Object-Oriented Programming, Vol.
9, No. 6, October 1996, pp. 61-63.

Holm, P. (1998): Objektorienterad programmering och Java. Lund,
Sweden: Studentlitteratur. In Swedish.

Hopkins, T. (1992): Object-oriented systems. Software Engineering
Journal, Vol. 7, No. 2, pp. 82-83.

Hopkins, J. (2000): Component Primer. Communications of the ACM, Vol.
43, No. 10, pp. 27-30.

Hu, C. (2005): Dataless Objects Considered Harmful. Communications of
the ACM, Vol. 48, No. 2, pp. 99-101

Höydalsvik, G. & Sindre, G. (1993): On the purpose of Object-Oriented
Analysis. OOPSLA’93, ACM SIGPLAN Notices, Vol. 28, No. 10, pp. 240-
255.

Isoda, S. (2001): Object-oriented real-world modelling revisited. The
Journal of Systems and Software, Volume 59, Issue 2, November 2001,
pp. 153-162.

246

Ives, B., Hamilton, S. & Davis, G. (1980): A Framework for Research in
Computer-Based Management Information Systems. Management Science,
Vol. 26, No. 9, September 1980, pp. 910-934.

Jacobson, I. (1993): Is Object Technology Software’s Industrial
Platform? IEEE Software, Vol. 10, No. 1, January 1993, pp. 24-30.

Jacobson, I., Christerson, M., Jonsson, P. & Övergaard, G. (1992):
Object-Oriented Software Engineering, A Use Case Driven Approach.
Reading, Massachusetts, US: Addison-Wesley, Publishing Company.

Jacobson, I., Booch, G. & Rumbaugh, J. (1999): The Unified Process.
IEEE Software, Vol. 16, No. 3, May/June, 1999, pp. 96-102.

Jacobson, I., Ericsson, M. & Jacobson, A. (1995): The Object
Advantage: Business Process Reengineering with Object Technology.
Reading, Massachusetts US: Addison-Wesley, Publishing Company. ACM
Press.

Jaime, A., Irastorza, A. & Diaz, O. (2000): Dimensiones en el diseño
basado en componentes. IScDIS’ 2000, Ier Taller de Trabajo en
Ingeniería del Software basada en Componente Distribuidos. Valladolid,
9 de noviembre 2000, pp. 1-4. In Spanish.

Jarzabek, S. & Knauber, P. (1999): Generative Approaches. Nierstrasz,
O. & Lemoine, M. (Eds.). 7th European Software Engineering Conference,
Toulouse, France, September 1999. Proceedings Springer Verlag, Vol.
24, No. 6, Nov. 1999, pp. 429-445.

Jean, F-C. (1992): EEC embraces OT for hospital information systems.
Object Magazine, Vol. 2, No. 2, July-August 1992, pp. 49-53.

Jenz, D. (1999a): Einführung der Komponentenbasierten
Anwendungsentwicklung – Auswirkungen auf die Organisation. Jenz &
Partner – Views on organization. Available from:
http://www.jenzundpartner.de/download/voo.reuse.pdf [Accessed 19
September 2002]. In German.

Jenz, D. (1999b): Komponentenbasierte Anwendungsentwicklung – aber
nicht ohne organisatorischen Unterbau. Jenz & Partner – Views on
organization. Available from:
http://www.jenzundpartner.de/download/voo.reuse.pdf [Accessed 19
September 2002]. In German.

Jenz, D. (1999c): Komponentenbasierte Anwendungsentwicklung – ist
Return on Investment erzielbar? Jenz & Partner – Views on
organization. Available from:
http://www.jenzundpartner.de/download/voo.reuse.pdf [Accessed 19
September 2002]. In German.

Jézéquel, J-M. & Meyer, B. (1997): Design by Contract: The Lessons of
Ariane. Eiffel Software. Available from:
http://archive.eiffel.com/doc/manuals/technology/
contract/ariane/page.html [Accessed 1 January 2003]. A variant of the
article appeared in the journal IEEE Computer, as a part of the
Component and Object Technology department in the February 1997 issue.

Jick, T. (1979): Mixing Qualitative and Quantitative Methods:
Triangulation in Action. Administrative Science Quarterly, Vol. 24,
No. 4, pp. 602-611.

247

Johnson, L. (1997a): Object-oriented technology eases development.
National Underwriter (Life & health/financial services ed.), Feb 17,
Vol. 101, No. 7, pp 40-42.

Johnson, R.E. (1997b): FRAMEWORKS = (Components + Patterns).
Communications of the ACM, Vol. 40, No. 10, pp. 39-42.

Johnson, R.A. (2000): The Ups and Downs of Object-Oriented Systems
Development. Communications of the ACM, Vol. 43, No. 10, pp. 69-73.

Johnson, R.A. (2002): An Examination of Empirical Research in Object-
Oriented Analysis and Design. Journal of Computer Information Systems,
Vol. 42, No. No. 3, Spring 2002, pp. 11-15.

Johnson, R.A., Hardgrave, E. & Doke, E. (1999): An Industry analysis
of developer beliefs about object-oriented systems development.
Database for Advances in Information Systems, Vol. 30. No. 1, pp. 47-
64.

Jolin, A. (1996): Usability and Class Library Design. Dr. Dobb's
Journal, October, pp. 16-22.

Joos, R. (1994): Software Reuse at Motorola. IEEE Software, Vol. 11,
No. 5, September 1994, pp. 42-47.

Järvinen, P. (1994): On Research Methods. Tampere, Finland: Opinpajan
Kirja.

Järvinen, P. & Järvinen, A. (1995): Tutkimustyön Metodeista. Tampere,
Finland: Opinpaja Oy. In Finnish.

Kaasböll, J. (1993): Object-oriented Models of Functionally Integrated
Computer Systems. Bansler, J., Bödker, K., Kensing, F., Nörbjerg, J. &
Pries-Heje, J. (Eds.). Department of Computer Science, University of
Copenhagen. Proceedings of the 16th IRIS, 1993, pp. 236-251.

Kan, S. (1995): Metrics and Models in Software Quality Engineering.
Reading, Massachusetts, US: Addison-Wesley Publishing Company.

Kaindl, H. (1999): Difficulties in the Transition from OO Analysis to
Design. IEEE Software, Vol. 16, No. 5, September/October 1999, pp. 94-
102.

Kaplan, B & Duchon, D. (1988): Combining Qualitative and Quantitative
Methods in Information Systems Research: A Case Study. MIS Quarterly,
Vol. 12, No. 4, December 1988, pp. 571-586.

Khoshafian, S. & Abnous, R. (1995): Object Orientation. New York, US:
John Wiley & Sons, Inc.

King, R. (1989): My Cat is Object-Oriented. Kim, W. & Lochovsky, F.
(eds.), Object-Oriented Concepts, Databases and Applications. New
York, US: ACM press, Addison-Wesley Publishing Company, pp. 23-30.

Koehler, S. (1992): Objects in insurance. Gaining the competitive edge
in financial services. Object Magazine, Vol. 2, No. 2, July-August
1992, pp. 37-41.

248

Konstantas, D. (1995): Interoperation of Object-Oriented Applications.
Nierstrasz, O. & Tsichritzis, D. (Eds.), pp. 69-95, Object-Oriented
Software Composition. Englewood Cliffs, New Jersey, US: Prentice Hall,
Inc.

Korson, T. & McGregor, J. (1990): Understanding Object-Oriented: a
Unifying Paradigm. Communications of the ACM, Vol. 33, No. 9, pp. 40-
60.

Korson, T. & Vaishnavi, K. (1992): Managing Emerging Software
Technologies: A Technology Transfer Framework. Communications of the
ACM, Vol. 35, No. 9, pp. 101-111.

Koskimies, K. (1995): Olio-ohjelmointi ja oliokielet. Tampere,
Finland: Tampereen Yliopisto Tietojenkäsittelyopin Laitos,
Julkaisusarja C. C-1994-2, Syyskuu 1995. University of Tampere,
Department of Computer Science. In Finnish.

Koskimies, K. (1997): Pieni Oliokirja. Espoo, Finland: Suomen Atk-
kustannus. In Finnish.

Kozaczynski, W. & Kuntzmann-Combelles, A. (1993): What it Takes to
Make OO Work. IEEE Software, Vol. 10, No. 1, January 1993, pp. 20-23.

Krajnc, M. (1997): Why Component-Oriented Programming? Oberon
Microsystems, Zurich, Switzerland.

Kung, D., Gao, J., Hsia, P., Toyoshima, Y, Chen, C., Kim, Y. & Song,
Y. (1995): Developing an Object-Oriented Software Testing and
Maintenance Environment. Communications of the ACM, Vol. 38, No. 10,
pp. 75-87.

Kölling, M. & Rosenberg, J. (2002): BlueJ – The Hitch-Hikers Guide to
Object Orientation. Technical Reports 2002, No 2, September 2002, The
Maersk Mc-Kinney Moller Institute for Production Technology,
University of Southern Denmark.

Körner, S. & Wahlgren, L. (2002): Statistiska metoder. University
College of Borås, Sweden. Available from:
http://www.hb.se/vhb/student/schema/stat.htm [Accessed 3 December
2002]. In Swedish.

LaBoda, D. & Ross, J. (1997): Travellers Property Causality
Corporation: Building an Object Environment for Greater
Competitiveness. SIM International Paper Awards Competition. Available
from: http://www.simnet.org/public/
programs/capital/97paper/paper3.html [Accessed 3 December 2002].

Lam, J. (1997): Object-Oriented Technology. Available from:
http://disc.cba.uh.edu/~rhirsch/spring97/lam1/hope.htm [Accessed 11
October 11, 2002].

Larman, C. (2002): APPLYING UML AND PATTERNS. An Introduction to
Object-Oriented Analysis and Design and the Unified Process. Upper
Saddle River, New Jersey, US: Prentice Hall PTR.

Lauesen, S. (1998): Real-Life Object-Oriented Systems. IEEE Software,
Vol. 15, No. 2, March/April 1998, pp. 76-83.

249

Lawrence, R. & Pfleeger, S. (1995): Reuse Measurement and Evaluation.
American Programmer, Vol. 8, No. 11, pp. 25-30.

Lee, A. (1989): A Scientific Methodology for MIS Case Studies. MIS
Quarterly, Vol. 13, No. 1, March 1989, pp. 33-59.

Lee, A. & Baskerville, R. (2003): Generalizing Generalizability in
Information Systems Research. Information Systems Research, Vol. 14,
No. 3, pp. 221-243.

Liao, S., Cheung, L. & Liu, W. (1999): An Object-Oriented System for
the Reuse of Software Design Items. Journal of Object-Oriented
Programming, Vol. 11, No. 8, January 1999, pp. 22-28.

Lieberherr, K., Holland, I. & Riel, A. (1988): Object-Oriented
Programming: An Objective Sense of Style. Conference on Object-
Oriented Programming Systems, Languages & Applications, (OOPSLA)’88.
Proceedings, pp. 323-334.

Lieberherr, K. & Xiao, C. (1993): Object-Oriented Software Evolution.
IEEE Transactions on Software Engineering, Vol. 19, No. 4, pp. 313-
343.

Lieberherr, K. (2005): Law of Demeter. Available from:
http://www.ccs.neu.edu/home/lieber/LoD.html [Accessed 8 August 2005].

Lientz, B. & Swanson, E. (1981): Problems in application software
maintenance. Communications of the ACM, Vol. 24, No. 11, pp. 763-769.

Lim, W. (1994): Effects of Reuse on Quality, Productivity and
Economics. IEEE Software, Vol. 11, No. 5, September 1994, pp. 23-31.

Lotsson, A. (1996): Mycket objekt men lite orientering. Computer
Sweden, 15.11.1996, No. 71, P. 18. In Swedish.

Love, Tom (1993): Object Lessons. New York, New York, US: SIGS Books,
Inc.

Lundahl, U. & Skärvad, P-H. (1999): Utredningsmetodik för
samhällsvetare och ekonomer. Lund, Sweden: Studentlitteratur. In
Swedish.

Madsen, O. (1995): Open Issues in Object-oriented Programming - A
Scandinavian Perspective. Software - Practice and Experience, Vol. 25,
No. 4, December 1995, pp. 3-43.

Malan, R., Coleman, D. & Letsinger, R. (1995): Lessons from the
Experiences of Leading-Edge Object Technology Projects in Hewlett-
Packard. Conference on Object-Oriented Programming Systems, Languages
& Applications, (OOPSLA)’95, Austin, Texas, US. Proceedings, pp. 33-
46.

Malan, R., Letsinger, R. & Coleman, D. (1996): Object-Oriented
Development at Work. Fusion in the Real World. Upper Saddle River,
Englewood Cliffs, New Jersey, US: Prentice Hall, Inc.

250

Manhes, S. (1998): La réutilisabilité: Patterns et Frameworks. Les
patterns métiers: extraction dans l’existant logiciel, rapport de DEA,
IRIN, université de Nantes. Available from:
http://www.stm.tj/reuse/Accueil.htm [Accessed 11 October 2002]. In
French.

Maring, B. (1996): Object-Oriented Development of Large Applications.
IEEE Software, Vol. 13, No. 3, May 1996, pp. 33-40.

Martin, J. & Odell, J. (1992): Object-Oriented Analysis and Design.
Englewood Cliffs, New Jersey, US: Prentice Hall, Inc.

Martin, J. & Odell, J. (1995): Object-Oriented Methods: A Foundation.
Englewood Cliffs, New Jersey, US: Prentice Hall, Inc.

Martin, S., Yen, D. & Chou, D. (2001): Object-oriented technology for
electronic commerce systems. Human Systems Management, Vol. 20, No. 2,
pp. 161-169.

Mathiassen, L., Munk-Madsen, A., Nielsen, P. & Stage, J. (2000):
Object-oriented analysis and design. Aalborg, Denmark: Marko
Publishing ApS.

McCabe, T. & Butler, C. (1989): Design Complexity Measurement and
Testing. Communications of the ACM, December 1989, Vol. 32, No. 12,
PP. 1415-1425.

McClure, C. (1996): Experiences from the OO Playing Field. Extended
Intelligence, Inc., US. Available from:
http://www.reusability.com/papers6.html [Accessed 11 October 2002].

McGinnes, S. (1992): How Objective is Object-Oriented Analysis?
Loucopoulos, P. (Ed.). Advanced Information Systems Engineering, 4th
International Conference CAiSE ’92, Manchester, UK, May 1992.
Proceedings, Springer-Verlag, pp. 1-16.

McGregor, M. (1996): Too Many Cooks could spoil the Broth. Object
World UK 1996 Report and directory. EvolveIT.net. Available from:
http://markmcgregor.com/art_cook.htm [Accessed 11 October 2002].

Mellor, S. & Johnson, R. (1997): Why Explore Object Methods, Patterns
and Architectures? IEEE Software, Vol. 14, No. 1, January/February
1997, pp. 27-30.

Mendenhall, W., Reinmuth, J. & Beaver, R. (1993): Statistics for
Management and Economics. Belmont, California, US: Duxbury Press.

Meyer, B. (1988): Object-oriented Software Construction. Hemel
Hempstead, UK: Prentice Hall International Ltd.

Meyer, B. (1995): Object Success. A Manager’s Guide to Object
Orientation, its Impact on the Corporation, and its Use for
Reengineering the Software Process. Hemel Hempstead, Hertfordshire,
UK: Prentice Hall International (UK) Ltd.

251

Meyer, B. (1997a): A Really Good Idea. Eiffel Software. Available
from: http://archive.eiffel.com/doc/
manuals/technology/bmarticles/computer/idea/page.html [Accessed 1
January 2003]. A variant of the article appeared in the journal IEEE
Computer, as a part of the Component and Object Technology department
in the February 1997 issue.

Meyer, B. (1997b): The next software breakthrough. Eiffel Software.
Available from: http://archive.eiffel.com/doc/
manuals/technology/bmarticles/computer/breakthrough/page.html
[Accessed 1 January 2003]. A variant of the article appeared in the
journal IEEE Computer, as a part of the Component and Object
Technology department in the February 1997 issue.

Meyer, B (1998): The role of object-oriented metrics. Eiffel Software.
Available from: http://archive.eiffel.com/
doc/manuals/technology/bmarticles/computer/metrics/ page.html
[Accessed 1 January 1 2003}. A variant of the article appeared in the
journal IEEE Computer, as a part of the Component and Object
Technology department in the November 1998 issue.

Miah, S. (1997): Critique of the Object-oriented Paradigm: Beyond
Object-Orientation. Part of a book. Available from:
http://members.aol.com/shaz7862/critique.htm [Accessed 11 October
2002].

Mikhajlov, L. (1999): Software Reuse Mechanisms and Techniques: Safety
Versus Flexibility. Turku, Finland: Turku Centre for Computer Science
TUCS Dissertations No 21, Åbo Akademi University.

Mili, H., Mili, F. & Mili, A. (1995): Reusing Software: Issues and
Research Directions. IEEE Transactions on Software Engineering, Vol.
21, No. 6, June 1995, pp. 528-561.

Mili, A., Yacoub, S., Addy, E. & Mili, H. (1999): Toward an
Engineering Discipline of Software Reuse. IEEE Software, Vol. 16, No.
5, September/October 1999, pp. 22-30.

Monarchi, D. & Puhr, G. (1992): A Research Typology for Object-
Oriented Analysis and Design. Communications of the ACM, Vol 35, No.
9, pp. 35-47.

Monroe, R., Kompanek, A., Melton, R. & Garlan, D. (1997):
Architectural Styles, Design Patterns and Objects. IEEE Software, Vol.
14, No. 1, January/February 1997, pp. 43-52.

Morris, D., Evans, G., Green, P. & Theaker, C. (1996): Object Oriented
Computer Systems Engineering. London: Springer-Verlag.

Murer, T. (1997): The Challenge of the Global Software Process. Weck,
W., Bosch, J. & Szyperski, C. (Eds.). WCOP’97 Second International
Workshop on Component-Oriented Programming, Jyväskylä, Finland, June
9, 1997. Proceedings, Turku Centre for Computer Science, TUCS General
Publication, No 5, September 1997, pp. 359-363.

Murphy, N. (2001): What Have the Romans Ever Done For Us? Embedded
Systems Programming, Vol. 14, No. 10, September 2001, pp. 41-46.

Musakka, L. (1996): Oliotekniikka nopeuttaa sovelluskehitystä
huimasti. SAS Institute oy:n asiakaslehti, No. 2, p. 5. In Finnish.

252

Mylopoulos, J., Chung, L. & Yu, E. (1999): From object-oriented to
goal-oriented requirements analysis. Communications of the ACM, Vol.
42, No. 1, pp. 31-37.

Mörch, A., Stevens, G., Won, M., Klann, M., Dittrich, Y. & Wulf, V.
(2004): Component-Based Technologies for End-User Development.
Communications of the ACM, Vol. 47, No. 9, pp. 59-62.

Nandhakumar, J. & Jones, M. (1997): Too close for comfort? Distance
and engagement in interpretative information systems research.
Information Systems Journal, Vol. 7, No. 2, pp. 109-131.

Nerson, J-M. (1992): Applying Object-Oriented Analysis and Design.
Communications of the ACM, Vol. 35, No. 9, pp. 63-74.

Newsted, P., Huff, S. & Munro, M. (1998): Survey Instruments in
Information Systems. MIS Quarterly, December 1998, pp. 553-554.

Nierstrasz, O. (1989): A Survey of Object-Oriented Concepts. Kim, W. &
Lochovsky, F. (Eds.), Object-Oriented Concepts, Databases and
Applications. New York: ACM press, Addison-Wesley Publishing Company,
pp. 3-21.

Nierstrasz, O. & Dami, L. (1995): Component-Oriented Software
Technology. Nierstrasz, O. & Tsichritzis, D. (Eds.), Object-Oriented
Software Composition. Englewood Cliffs, New Jersey, US: Prentice Hall,
Inc., pp. 3-28.

Nierstrasz, O., Gibbs, S. & Tsichritzis, D. (1992): Component-Oriented
Software Development. Communications of the ACM, Vol. 35, No. 9, pp.
160-165.

Noack, J. & Schienmann, B. (1999): Introducing OO Development in a
Large Banking Organization. IEEE Software, Vol. 16, No. 3, May/June
1999, pp. 71-81.

Nokso-Koivisto, M. (1995): Oppi tulee kantapään kautta. Tietoviikko,
No. 35, P. 15. In Finnish.

North, K. (1997): ODBC Drivers. Available from:
http://www.sqlsummit.com/ODBCVend.htm [Accessed 7 February 2005].

Nowicki, A. & Kosiak, M. (1996): Premises of Object-Oriented Approach
Adoption in Information Systems. Research Experiences. Wrycza, S. &
Zupancic, J. (Eds.). Proceedings of the Fifth International Conference
on Information Systems Development, Gdansk/Poland, September 24-26,
1996.

Nunamaker, J., Chen, M. & Purdin, T. (1991): Systems Development in
Information Systems research. Journal of Management Information
Systems, winter 1990-1991, Vol. 7, No. 3, pp. 89-106.

O’Connor, J., Mansour, C. & Campbell, G. (1994): Reuse in Command –
and – Control Systems. IEEE Software, Vol. 11, No. 5, September 1994,
pp. 70-79.

Odell, J. (2000): Objects and Agents Compared. Journal of Object
Technology, Vol. 1, No. 1, May–June 2002, pp. 41-53.

253

Ooil, S. (2002): Object-oriented Programming Oversold! Laboratory
Report. Available from: http://www.geosities.com/SiliconValley/
Lab/6888/oopbad.htm [Accessed 11 October 2002].

Paetau, P. (1995): En studie av det objektorienterade paradigmets
tillämpbarhet för utvecklandet av en activity-based costing
applikation. Licentiate thesis in Computer Science and Information
Systems at Swedish School of Economics and Business Administration,
Helsinki, Finland. In Swedish.

Page-Jones, M. (1992a): Comparing Techniques by Means of Encapsulation
and Conscience. Communications of the ACM, Vol. 35, No. 9, pp. 147-
151.

Page-Jones, M. (1992b): Object orientation: the importance of being
earnest. Object Magazine, Vol. 2, No. 2, July-August 1992, pp. 11-14.

Page-Jones, M. (1998): The basic pitfalls of adopting object
orientation. Object Orientation: Making the Transition. Wayland
Systems, Inc, Washington, US. Available from:
http://www.elj.com/elj/v1/n3/mpj/ [Accessed 11 October 2002}.

Pancake, C. (1995): The Promise and the Cost of Object Technology: A
Five-Year Forecast. Communications of the ACM, Vol. 38, No. 10, pp.
33-49.

Pang, C. (1996): Systems modelling and design with objects and
patterns. Journal of Object-Oriented Programming, Vol. 9, No.2, May
1996, pp. 32-41.

Pant, Y., Henderson-Sellers, B. & Verner, J. (1996): Generalization of
object-oriented components for reuse: Measurements of effort and size
change. Journal of Object-Oriented Programming, Vol. 9, No. 2, May
1996, pp. 19-31.

Parnas, D. (1972): On the Criteria to be Used in Decomposing Systems
into Modules. Communications of the ACM, Vol. 15, No. 12, pp. 1053-
1058.

Parson, J. & Wand, Y. (1997): USING OBJECTS for Systems Analysis.
Communications of the ACM, Vol. 40, No. 12, pp. 104-110.

Pawson, R. (2002): The Naked Truth About Business Systems. Computer
Sciences Corporation. Available from:
http://www.csc.com/aboutus/cscworld/summer02/nakedtruth.shtml
[Accessed 11 October 2002].

Penker, M. (1994): Praktikfall av objektorienterad systemutveckling.
Lund, Sweden: Studentlitteratur. In Swedish.

Perez, C. (2001): The Strix Object Persistence Engine. Dr. Dobbs's
Journal, August 2001, pp. 40-47.

Petre, L. (2000): Components vs. Objects. Turku, Finland: Turku Centre
for Computer Science TUCS Technical Report No 370. TUCS is a centre
for University of Turku, Åbo Akademi University and Turku School of
Economics and Business Administration.

Pickering, C. (1996): Survey of Advanced Technology 1996. Overland
Park, US: Systems Development, Inc.

254

Pidd, M. (1995): Object-orientation, Discrete Simulation and the
Three-Phase Approach. Journal of the Operational Research Society,
Vol. 46, No. 3, pp. 362-374.

Pittman, M. (1993): Lessons Learned in Managing Object-oriented
Development. IEEE Software, Vol. 10, No. 1, January, pp. 43-53.

Pomberger, G. & Blaschek, G. (1996): Object-Orientation and
Prototyping in Software Engineering. Hemel, Hempstead, Hertfordshire,
UK: Prentice Hall Europe.

Prata, S. (1991/1992): C++ Programmering. Göteborg, Sweden: Pagina
International, AB. In Swedish.

Pree, W. (1997): Component-Based Software Development – A New Paradigm
in Software Engineering? Software – Concepts and Tools, Vol. 18, No.
18, pp. 169-174.

Pressman, R. (2000): Software Engineering. A Practitioner’s Approach.
European Adaptation. London, UK: McGraw-Hill International.

Putkonen, A. (1994): A Methodology for Supporting Analysis, Design and
Maintenance of Object-oriented systems. Kuopio, Finland: Kuopio
University Printing Office. Doctoral thesis.

Radding, A. (1999): Fast track to app success. InformationWeek,
Manhasset, July 26.

Radin, G. (1996): Object technology in perspective. IBM Systems
Journal, Vol. 35, No. 2, pp. 124-127.

Ralston, A. (editor), Reilly, E. & Hemmendinger, D. (2003):
Encyclopedia of Computer Science. New York, US: John Wiley & Sons Inc.

Ramaswamy, R. (2001): Mentoring Object-Oriented Projects. IEEE
Software, Vol. 18, No. 3, May/June, 2001, pp. 36-40.

Reeves, C. & Bednar, D. (1994): Defining Quality: Alternatives and
Implications. Academy of Management Review, Vol. 19, No. 3, pp. 419-
445.

Reinwald, B., Lehman, T., Pirahesh, H. & Gottemukkala, V. (1996):
Storing and using objects in a relational database. IBM Systems
Journal, Vol. 35, No. 2, pp. 172-189.

Repa, V. (1996): Object Life Cycle Modelling in the Client-Server
Applications Development Using Structured Methodology. Wrycza, S. &
Zupancic, J. (Eds.). Proceedings of the Fifth International Conference
on Information Systems Development, Gdansk/Poland, September 24-26,
1996, pp. 617-620.

Riihimaa, J. (2004): Taxonomy of information and communication
technology system innovations adopted by small and medium sized
enterprises. Tampere, Finland: Tampere University Press. Doctoral
thesis.

255

Rinat, R. & Magidor, M. (1996): Metaphoric Polymorphism: Taking Code
Reuse One Step Further. Pierre Cointe (Ed.). ECOOP '96 - Object-
Oriented Programming, 10th European Conference, Linz, Austria, July
1996. Proceedings, Springer Verlag, Lecture Notes in Computer Science
1098, pp. 449-471.

Rofrano, J. (1999): Java Portability by Design. Dr. Dobb's Journal,
June 1999, pp. 34-41.

Rosson, M. & Alpert, S. (1990): The Cognitive Consequences of Object-
oriented Design. Human-Computer Interaction, Vol. 5, No. 4, pp. 345-
379.

Rothering, D. (1994): Development of an OO Infrastructure for
Mainframe Database Applications. OOPSLA’94, ACM SIGPLAN Notices, Vol.
29, No. 10, pp. 205-211.

Rubin, K. & Goldberg, A. (1992): Object Behaviour Analysis.
Communications of the ACM, Vol. 35, No. 9, pp. 48-62.

Rudberg, B. (1990): De första stegen i statistik. Stockholm, Sweden:
Bokförlaget Natur och Kultur. In Swedish.

Rumbaugh, J. (1996): A matter of intent: How to define subclasses.
Journal of Object-Oriented Programming, Vol. 9, No. 5, September 1996,
pp. 5-9 & p. 18.

Rumbaugh, J. (1997): OO Myths: Assumptions from a language view.
Journal of Object-Oriented Programming, Vol. 9, No. 9, February 1997,
pp. 5-7 & p. 48.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W.
(1991): Object-Oriented Modelling and Design. Englewood Cliffs, New
Jersey, US: Prentice Hall, Inc.

Rumbaugh, J., Jacobson, I. & Booch G. (2000): The Unified Modelling
Language Reference Manual. Reading, Massachusetts, US: Addison-Wesley
Longman, Inc.

Räisänen, S. (1997a): Olioajattelun onnistunut käyttöönotto. Haapa-
aho, H., Hakulinen, H., Hirvonen, A., Kupias, T-K., Laine, H.,
Niinistö, H., Räisänen, S. & Virkki, P. (Eds.). Olioiden Maihinnousu.
Espoo, Finland: Suomen Atk-kustannus. In Finnish.

Räisänen, S. (1997b): Uudelleenkäyttö. Haapa-aho, H., Hakulinen, H.,
Hirvonen, A., Kupias, T-K., Laine, H., Niinistö, H., Räisänen, S. &
Virkki, P. (Eds.). Olioiden Maihinnousu. Espoo, Finland: Suomen Atk-
kustannus. In Finnish.

Sanguinetti, J. (2000): Future is Object-Oriented. Electronic
Engineering Times, July 24, No. 1123, p. 72.

Saunders, M., Lewis, P. & Thornhill, A. (2000): Research Methods for
Business Students. Essex, UK: Pearson Education Limited.

Schmidt, D. & Fayad, M. (1997): Lessons Learned. Building Reusable OO
Frameworks for Distributed Software. Communications of the ACM, Vol.
40, No. 10, pp. 85-87.

256

Selic, B., Gullekson, G. & Ward, P. (1994): Real-Time Object-Oriented
Modelling. New York, US: John Wiley & Sons Inc.

Sheetz, S. (2002): Identifying the difficulties of object-oriented
development. The Journal of Systems and Software, Volume 64, Issue 1,
October 2002, pp. 23-36.

Sheetz, s. & Tegarden, D. (1996): Perceptual complexity of object-
oriented systems: a student view. Object-oriented Systems, Vol. 3,
December 1996, pp. 165-195.

Shlaer, S. & Mellor, S. (1988): Object-Oriented Systems Analysis
Modelling the World in Data. Englewood Cliffs, New Jersey, US: Yourdon
Press, Prentice-Hall, Inc.

Shlaer, S. & Mellor, S. (1992): Object Lifecycles Modelling the World
in States. Englewood Cliffs, New Jersey, US: Yourdon Press, Prentice-
Hall, Inc.

Silveira da, G. (2000): Spontaneous Software: A Web-based, Object
Computing Paradigm. 22nd International Conference on Software
Engineering (ICSE), University of Limerick, Ireland, June 4-11, 2000.
Proceedings of ACM and SigSoft, pp. 719-722.

Sim, R. & Wright, G. (2002): The difficulties of learning object-
oriented analysis and design: An exploratory study. Journal of
Computer Information Systems, Winter 2001-2002, pp. 95-100.

Sircar, S., Nerur, S. & Mahapatra, R. (2001): Revolution or evolution?
A Comparison of object-oriented and structured system development
methods. MIS Quarterly, Vol. 25, No. 4, pp. 457-472.

Sklenar, J. (1997): Introduction to OOP in Simula. Available from
http://staff.um.edu.mt/jskl1/talk.html#Classes. [Accessed 13 October
2004].

Smith, H. & McKeen, J. (1996): Object-Oriented Technology: Getting
Beyond the Hype. The DATA BASE for Advances in Information Systems,
Vol. 27, No. 2, Spring 1996, pp. 20-29.

Smolander, K, Tahvanainen, V-P. & Lyytinen, K. (1990): How to Combine
Tools and Methods in Practice - a field study. Proceedings of the
Advanced Information Systems Engineering, 2nd Nordic conference CAiSE
’90, Stockholm, Sweden, May 8-10, 1992 / Steinholz, B., Sölvberg, A.,
& Bergman, L., (eds.), Springer-Verlag, pp. 195-214.

Snyder, A. (1993): The Essence of Objects: Concepts and Terms. IEEE
Software, Vol. 10, No. 1, January 1993, pp. 31-42.

Solomon, H. (1999): Modelling tools a software must. Computing Canada,
Vol. 25, No. 18, pp. 25-26.

Sommerville, I. (1992): Software engineering. 4th edition. Reading,
Massachusetts, US: Addison-Wesley Publishers Ltd.

Sommerville, I. (1996): Software engineering. 5th edition. Reading,
Massachusetts, US: Addison-Wesley Publishers Ltd.

257

Sparling, M. (2000): Lessons Learned Through Six Years of Component-
Based Development. Communications of the ACM, Vol. 43, No. 10, pp. 47-
53.

Staringer, W. (1994): Constructing Applications from Reusable
Components. IEEE Software, Vol. 11, No. 5, September 1994, pp. 61-68.

Steinmann, J, (1992): The Overselling of Object Technology, or How to
Fail On Your First Object Project. Object Magazine, Vol. 2, No. 3,
September 1992. With postscript 1995 & 1999, available from:
http://www.bytesmiths.com/ pubs/9209Overselling.html [Accessed 11
October 2002].

Stevens, P. & Pooley, R. (2000): Using UML: Software Engineering with
Objects and Components. Harlow, England: Addison-Wesley Publishing
Company.

Sutcliffe, A. & Mehandjiev, N. (2004): End-User Development.
Communications of the ACM, Vol. 47, No. 9, pp. 31-32.

Sutton, R. & Staw, B. (1995): What Theory is Not. Administrative
Science Quarterly, Vol. 40, No. 3, pp. 371-384.

Swanson, E. & Dans, E. (2000): System life expectancy and the
maintenance effort: Exploring their equilibration. MIS Quarterly, Vol.
24, No. 2, June 2000, pp. 277-298.

Szyperski, C. (1999): Component Software. Beyond Object-Oriented
Programming. England, Harlow: Addison-Wesley Publishing Company, Inc.

Taenzer, D., Ganti, M. & Podar, S. (1989): Object-Oriented Software
Reuse: The Yoyo Problem. Journal of Object-Oriented Programming, Vol.
2, No. 3, September/October 1989, pp. 30-35.

Taivalsaari, A. (1993): A Critical View of Inheritance and Reusability
in Object-oriented Programming. Jyväskylä, Finland: Jyväskylä studies
in computer science, economics and statistics, University of
Jyväskylä. Doctoral thesis.

Taylor, D. (1990): Object-Oriented Technology: A Manager’s Guide.
Reading, Massachusetts, US: Addison-Wesley. Second Printing, January
1992.

Taylor, D. (1992): Object-Oriented Information Systems: Planning and
Implementation. New York, US: John Wiley & Sons, Inc.

Tengvall, J. (2001): Ohjelmistotuotannon nopeuttaminen. Oulu, Finland:
Department of Electrical Engineering, University of Oulu. Diploma
Thesis.

Tepfenhart, W. & Cusick, J. (1997): A Unified Object Topology. IEEE
Software, Vol. 14, No. 1, January/February 1997, pp. 31-35.

Thomas, D. (1989): In Search of an Object-Oriented Development
Process. Journal of Object-Oriented Programming, Vol. 2, No. 1,
May/June 1989, pp. 60-63.

Tyma, P. (1998): Why are we using JAVA AGAIN? Communications of the
ACM, Vol. 41, No. 6, pp. 38-42.

258

Törnebohm, H. (1997): In the Focus 97 Dictionary. Stockholm, Sweden:
Nordstedts förlag AB.

Udell, J. (1994): Componentware. Byte, May 1994, Vol. 19, No. 6, pp.
46-56.

Undheim, J. (1985): Statistik från ord till formel. Lund, Sweden:
Studentlitteratur. In Swedish.

VanDoren, E. (1997): Cyclomatic Complexity. Available from:
http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html.
[Accessed 13 October 2004].

Verity, J. & Schwartz, E. (1991): SOFTWARE MADE SIMPLE; WILL OBJECT-
ORIENTED PROGRAMMING TRANSFORM THE COMPUTER INDUSTRY? Business Week,
September 30, 1991, pp. 58-63.

Verschoor, R. & Low, G. (1994): Software Reusability in Australia. The
Australian Computer Journal, Vol. 26, No. 4, November 1994, pp. 134-
142.

Villeneuve, A. & Fedorowicz, J. (1996): Usage Benefits of Object
Orientation. Boston University, School of Management, Boston, US.
Presented on the INFORMS Conference on Information Systems &
Technology, Washington DC, US, May 5-8, 1996.

Vossos, G., Dillon, T., Zeleznikow, J. & Taylor, G. (1991): The use of
object oriented principles to develop intelligent legal reasoning
systems. The Australian Computer Journal, Vol. 23, No. 1, February
1991, pp. 2-10.

Wadden, G. (1999): Object-oriented technology helps reduce programming
risks. Instrumentation & Control Systems, Vol. 72, No. 3, p. 83.

Walsham, G. (1995): Interpretative case studies in IS research: nature
and method. European Journal of Information Systems, Vol. 4, No. 2,
pp. 74-81.

Watanabe, S. (1997): Professionalism through OO and Reuse. IEEE
Software, Vol. 14, No. 1, January/February, 1997, p. 26.

Watson, D. (1999): Java: No Longer A Systems Language. Byte, September
2, 1999. Available from: http://www.byte.com/print [Accessed November
18, 2002].

Watson, R., Zinkhan, G. & Pitt, K. (2004): Object-Orientation: A Tool
For Enterprise Design. California Management Review, Vol. 46, No. 5,
Summer 2004, pp. 89-110.

Webster, B. (1995): Pitfalls of Object-Oriented Development. New York,
New York: M&T Books.

Webster’s Encyclopaedic Unabridged Dictionary of the English Language.
1996. New York, US: Gramercy books.

Weck, W. (1997): Inheritance Using Contracts & Object Composition.
Weck, W., Bosch, J. & Szyperski, C. (Eds.). Proceedings of the WCOP’97
Second International Workshop on Component-Oriented Programming,
Jyväskylä, Finland, June 9, 1997. Turku Centre for Computer Science,
TUCS General Publication, No 5, September 1997, pp. 1-21.

259

Wegenast, D. (1998): Object models speed system development. Computing
Canada, Vol. 24, No. 40, pp. 31-32.

Welke, R. (1994): The Shifting Software Development Paradigm. Data
Base. November, Vol. 25, No. 4, pp. 47-56.

Wieringa, R. (1998): A Survey of Structured and Object-Oriented
Software Specification Methods and Techniques. ACM Computing Surveys,
Vol. 30, No 4, pp. 459-527.

Wilde, N. & Huitt, R. (1992): Maintenance Support for Object-Oriented
Programs. IEEE Transactions on Software Engineering, Vol. 18, No. 12,
pp. 1038-1044.

Wilde, N. & Matthews, P. (1993): Maintaining Object-Oriented Software.
IEEE Software, Vol. 10, No. 1, January 1993, pp. 75-80.

Wilkie, G. (1993): Object-Oriented Software Engineering. The
Professional Developer’s Guide. Wokingham, England: Addison-Wesley
Publishing Company.

Winblad, A., Edwards, S. & King, D. (1990): Object-Oriented Software.
Reading, Massachusetts: Addison-Wesley Publishing Company, Inc.

Wirfs-Brock, R. & Johnson, E. (1990): Surveying Current Research in
Object-Oriented Design. Communications of the ACM, Vol. 33, No. 9, pp.
104-123.

Wirfs-Brock, R., Wilkerson, B. & Wiener, L. (1990): Designing Object-
Oriented Software. Englewood Cliffs, New Jersey, US: Prentice-Hall,
Inc.

Wolber, D. (1997): Reviving Functional Decomposition in Object-
Oriented Design. Journal of Object-Oriented Programming, Vol. 10, No.
6, October 1997, pp. 31-39.

Wrede, G. (1998): Using old classes in a hierarchy. Interview with
programmer and acting senior assistant George Wrede at the Swedish
School of Economics and Business Administration, October 1998.

Wybolt, N. (1992): Can it forge a partnership with object technology?
Object Magazine, Vol. 2, No. 2, July – August 1992, pp. 27-29.

Xenos, M., Stavrinoudis, D., Zikouli, K. & Christodoulakis, D. (2000):
Object-Oriented Metrics – A Survey. Proceedings of the FESMA 2000,
Federation of European Software Measurement Associations, Madrid,
Spain.

Yin, R. (1994): Case Study Research. Design and Methods. Second
edition. Thousand Oaks, CA, US: Sage Publications, Inc.

Yourdon, E. (1994): Object-Oriented Design: An Integrated Approach.
Englewood Cliffs, New Jersey, US: Yourdon Press.

Yourdon, E. & Argila, C. (1996): Case studies in object-oriented
analysis and design. Upper Saddle River New Jersey, US: Yourdon Press.

Zhang, X. (1999): User Participation in Object-Oriented Contexts –
From Methodological and Practical Perspectives. Lund, Sweden: Lund
Studies in Informatics, No. 13. Lund University. Doctoral thesis.

260

Zhou, X., Zaslavsky, A., Rasheed, A. & Price, R. (1998): Efficient
Object-Oriented Query Optimisation in Mobile Computing Environment.
The Australian Computer Journal, Vol. 30, No. 2, May 1998, pp. 65-74.

Zilles, S. (1973): Procedural encapsulation: a linguistic protection
technique. ACM SIGPLAN Notices, Vol. 8, No. 9, September 1973, pp.
142-146.

261

Appendix 1 – Pilot study: Survey of the use of software development techniques

The questionnaire was sent in Finnish and translated into English at a later stage.

Kysely eri sovelluskehitystekniikoiden käytöstä

Questionnaire on the use of software development techniques

Tämän kyselyn tarkoitus on kerätä teidän näkemyksenne oliotekniikan ja muiden
sovelluskehitysmetodien käytöstä yrityksessänne varsinkin määrittelyvaiheessa. Kysely on tehty niin että
pystytte vastaamaan siihen nopeasti. Kaikki Vastaukset käsitellään luottamuksellisesti.

The aim of this study is to gather your views on the use of the object-oriented paradigm and other
software development techniques, especially in the analysis phase. The questionnaire is designed so that
you can answer it rapidly. All the answers will be treated confidentially.

Osa A: Yrityksestänne

Part A: About Your Company

1. Mikä toimialanne on?
What is your field of business?

2. Kaupunki tai kunta missä yrityksenne sijaitsee
Town or municipality where your company is situated

3. Yrityksenne koko arvioituna bruttomyyntinä (tai kokonaisbudjetti sellaisille yrityksille jotka eivät ole
myyntiyrityksiä)

The gross sale of your company (or total budget for companies that are not selling)

4. Arvioitu määrä työntekijöitä
Estimated number of employees

5. Asiakaskuntanne tai ala johon erikoistutte?
The field of your customers or the field that you are specialized in?

6. Arvioitu määrä työntekijöitä tietojärjestelmien sovelluskehityksessä
Estimated number of employees performing software development

Osa B: Tämänhetkiset Sovelluskehitysprojektinne - The software development projects of today

1. Mitä menetelmiä käytätte sovelluskehityksessä?
What techniques (methods) do you use in software development?

Arvioitu prosentti projekteista joissa käytetään mainittua menetelmää
Estimated percentage of the projects where the method is used

Talon sisäinen menetelmä
In-house method

Strukturointimenetelmä
Structured method

262

Prototyyppimenetelmä
Prototyping method

Oliomenetelmä
Object-oriented method

Muu (kuvaile)
Other (describe)

Menetelmää ei käytetä
No method is used

2. Jos ette käytä menetelmää, niin mitkä ovat tärkeimmät syyt siihen?
 If you do not use any method, what are the main reasons for this?

3. Mikäli ette käytä menetelmää tällä hetkellä, oletteko aikeissa ottaa sellainen käyttöön?
 If you do not presently use any method, do you intend to start using one?

Vuoden sisällä Myöhemmin Ei tulevaisuudessa
In one year Later Not in the future

Mikäli aiotte, minkä menetelmän olette ottamassa käyttöönne?
If you intend, which method do you plan to use?

4. Minkä tyyppiset (sovellukset) projektit Teillä on meneillään tällä hetkellä
What kind of (applications) projects do you have right now?

Kirjanpito
Accounting

Markkinointi
Marketing

Yrityshallinto
Management

Taloushallinto
Finance

Henkilöstöhallinto
Human resource management

Muu, Mikä?
Other, Which?

5. Minkälaisissa projekteissa käytätte menetelmää?
In what kind of projects do you use a method?

Kirjanpito
Accounting

1 2 3 4 5
aina ei koskaan
always never

263

Markkinointi
Marketing

1 2 3 4 5
aina ei koskaan
always never

Yrityshallinto
Management

1 2 3 4 5
aina ei koskaan
always never

Taloushallinto
Finance

1 2 3 4 5
aina ei koskaan
always never

Henkilöstöhallinta
Human resource management

1 2 3 4 5
aina ei koskaan
always never

Muu, mikä?________________________
Other, which?

1 2 3 4 5
aina ei koskaan
always never

6. Kuinka suuret projektinne ovat?
How large are your projects?

Arvioikaa projektien määrä joka kokoluokalle (sekä valmiit että keskeneräiset projektit)
Estimate the number of projects for every size category (both completed projects and ongoing projects),
time ought to be estimated so that it is how much time it would take for one person to finish the project

Projektien määrä Käytetty menetelmä
Number of projects Used method

Vähemmän kuin 3 mieskuukautta
Less than 3 months

3-6 mieskuukautta
3-6 months

6-12 mieskuukautta
6-12 months

1-3 miesvuotta
1-3 years

enemmän kuin 3 miesvuotta
more than 3 man-years

7. Tärkeimmät työkalut joita käytätte sovelluskehityksessä
The most important tools that you use in software development

264

Ohjelmointikieli, mikä?
Programming language, which?

CASE

Tietokantasovellus
Database application

Sovelluskehitin
Application generator

Muu, mikä?
Other, which?

8. Käyttämänne aika sovelluskehityksen eri vaiheisiin, prosentteina kokonaisajasta
Used time for the different phases of software development in percentage of the total time

Määrittely
Analysis

Suunnittelu
Design

Käyttöönotto
Implementation

Ylläpito
Maintenance

9. Määrittelyn eri vaiheet, käyttämänne aika prosentteina kokonaisajasta
The usage of time in percentage of the total time for the different analysis phases

Vaatimusten määrittely
Requirements analysis

Vaatimusmäärittelyraportti
Requirements analysis report

Vaatimusten vahvistaminen
The conformation of the requirements

10. Mitä tiedonkeruumetodeja käytätte määrittelyvaiheessa ja kuinka menestyksellisiä ne ovat olleet?
What information gathering methods do you use in the analysis phase and how successful have they
been?

 1= epäonnistunut 5= Menestys
 1= Unsuccessful 5= Successful

Haastatteluja 1 2 3 4 5
Interviews

Ryhmähaastatteluja 1 2 3 4 5
Group interviews

Kysymyslomakkeita 1 2 3 4 5
Questionnaires

Tarkkailu 1 2 3 4 5
Observation

JAD – Joint Application Design 1 2 3 4 5

265

GSS – Group Support Systems 1 2 3 4 5

Prototyping 1 2 3 4 5

Videonauhoitus 1 2 3 4 5
Video recording

Olemassa olevien dokumenttien analysointi 1 2 3 4 5
Analysis of existing documents

Muu mikä?________________________ 1 2 3 4 5
Other, which?

11. Onko Teillä käytössä vaatimusten kirjaamiseen valmista dokumenttia?
Do you use a ready-made document for the writing of requirements?

 Kyllä Ei
 Yes No

12. Kuinka tärkeänä pidätte käyttäjien osallistuminen sovelluskehitykseen?
How important do you think it is that the end users participate in software development?

1 2 3 4 5

Ei Ollenkaan Tärkeänä Erittäin tärkeänä
Not important at all Very important

__

Osa C: Olioprojektit

Part C: Object-oriented projects

1. Mitkä ovat työkalut joita käytätte oliokehityksessä?
What tools do you use in object-oriented software development?

Ympäristö
Environment

Kieli
Language

CASE

Tietokanta
Database

Muu, Mikä?
Other, Which?

2. Minkälaisissa projekteissa käytätte oliotekniikkaa?
In what kind of projects do you use the object-oriented paradigm?

Jakauma prosentteina Percentage
Kehitys, Suunnittelu
Development, Design

Prosessien valvonta
Supervision of processes

266

Hallinto
Management

3. Minkälaisia luokkia käytätte?
What kind of classes do you use?

Jakauma prosentteina
Percentage

Käyttäjätehtävä
User task

Käyttöliittymä
User interface

Systeemitehtävä
System task

4. Arvioikaa kuinka pitkään organisaationne on käyttänyt oliokehitysmenetelmää
Estimate for how long your organisation has been using the object-oriented paradigm.

5. Arvioikaa havaitsemanne hyödyn oliomenetelmästä organisaatiossanne tällä hetkellä
Estimate the benefits of the object-oriented paradigm in your organisation at the moment

 1 2 3 4 5
Epäonnistuminen Menestyksellinen
Unsuccessful Successful

6. Onko oliotekniikka tärkein sovelluskehitysmenetelmä
Is the object-oriented paradigm your most important software development technique?

Right now In one year Later Never
Tällä hetkellä Vuoden sisällä Myöhemmin Ei koskaan

7. Mitkä ovat mielestänne tärkeimmät syyt oliotekniikan onnistumiselle tai epäonnistumiselle
yrityksessänne?
According to you, which are the most important reasons for the success or failure of the object-
oriented paradigm in your company?

8. Mitä ovat tärkeimmät syyt oliotekniikan käytöstä projekteissanne?
What are the most important reasons for the use of the object-oriented paradigm in your projects?

9. Jos ette käytä oliotekniikkaa kaikissa projekteissanne, niin miksi ette?
If you do not use the object-oriented paradigm in your company, please say why not?

267

Appendix 2 – Questionnaire for the survey

Survey of experienced benefits and problems with object-orientation in

information system development

The purpose of this study is to collect your perceptions of experienced benefits and problems with object-
orientation in information systems development in your organisation. The questionnaire has been
designed so that you can answer it quickly. All responses are confidential. Thank you for taking the time

to complete this survey.

Section A: General questions

I. Approximate number of employees in your company:

II. What is the approximate turnover of your company?

III. In what business field are most of your clients?

IV. What is your position in the company?

1.Have you been using object-orientation in information systems development?

Yes □
No □
Not sure □

If the answer to this question is ‘Yes’, please go to question 3.

If the answer to this question is ‘No’, please answer question 2, and then the interview is complete.

2. If you have not been using object-orientation in information systems development, please state why.

□ Don’t know what object-orientation is
□ Don’t want to use object-orientation
□ Object-orientation is too complex
□ Object-orientation is still too immature
□ Difficult to carry out object-oriented testing
□ Lack of software developers trained in object-orientation
□ Lack of software developers who are experienced in object-orientation
□ Object-oriented software development is too expensive
□ There is a lack of object-oriented components to reuse
□ Object-oriented reuse is problematic
□ Object-oriented analysis is problematic
□ Object-oriented design is problematic
□ Lack of object-oriented databases
□ Difficulties in integrating object-orientation with traditional databases
□ Difficulties in integrating object-orientation with legacy systems
□ Other reason, which?

268

Section B: Benefits

Management of Complexity

3. Have you found the object-oriented paradigm useful when developing large-scale and complex
information systems?

Yes □
No □
Not sure □

Productivity and faster development

4. Have you found that object-oriented information system development has been more productive and
faster than traditional information system development?

I. Has object-oriented information system development been:

 Yes No Not sure
More productive? □ □ □
Faster? □ □ □

Quality and usability

5. Have you experienced that the quality of object-oriented systems has been better than the quality of
traditional systems?

Yes □
No □
Not sure □

Natural and better mapping to the problem domain

6. Has there been a better and more ‘natural’ communication between information systems developers
and end users because of using the object-oriented paradigm?

Yes □
No □
Not sure □

Maintenance

7. Has maintenance of object-oriented applications been easier or harder than maintenance of traditional
functional applications?

Easier □
Harder □
Not sure □

One model

8. Have you seen the object-oriented system development process as a uniform ‘one model’ from the
problem domain to code and maintenance?

269

Yes □
No □
Not sure □

Reuse

9. Have you used much reuse? Has reuse in the object-oriented paradigm been considered beneficial?

I. Have you used much reuse?

Yes □
No □
Not sure □

II. Has reuse been considered beneficial?

Yes □
No □
Not sure □

10. What do you reuse?

□ Objects
□ Classes
□ Class libraries purchased from vendors
□ Class libraries developed in-house
□ Analysis
□ Design
□ Software components

IF you have used software components:

Have the software components been considered beneficial?

Yes □
No □
Not sure □

□ Other, what?

Portability

11. Have you experienced portability of object-oriented systems as a benefit?

Yes □
No □
Not sure □

Other

12. What other benefits of the object-oriented paradigm, other than those already presented, have you
experienced in information systems development?

270

 Section C: Problems

Complexity

13. Do you consider the object-oriented paradigm complex?

Yes □
No □
Not sure □

The object-oriented paradigm is still immature

14. Do you consider the object-oriented paradigm as immature?

Yes □
No □
Not sure □

15. Have you experienced difficulties in finding object-oriented CASE tools, object-oriented databases,
object-oriented system development tools or perhaps even objects to reuse?

Have you experienced difficulties to find:

 Yes No Not sure Not used

Object-oriented CASE tools? □ □ □ □
Object-oriented databases? □ □ □ □
Object-oriented system
development tools? □ □ □ □
Objects? □ □ □ □

16. Have you found testing object-oriented information systems, applications or systems as difficult?
What testing problems have you experienced?

I. Has testing been difficult?

Yes □
No □
Not sure □

II. What testing problems have you experienced?

□ It has been difficult to test structures where several member functions call each
other in a chain.

□ It has been difficult to test complex relationships that exist in an object-
oriented system. Examples of such relationships are inheritance and
polymorphism.

□ It has been difficult to test because there are very few CASE tools for testing
object-oriented systems.

□ Other testing problems, which?

271

Difficulties in measuring object systems

17. Do you think that a lack of metrics for measuring the object-oriented system is a problem?

Yes □
No □
Not sure □

Training & lack of experience

18. Has it been difficult to find experienced object-oriented software developers and system analysts?

Yes □
No □
Not sure □

Efficiency

19. Have you experienced computer efficiency problems in your object-oriented information system
development projects?

Yes □
No □
Not sure □

Costs

20. Have the starting costs been enormous when starting a completely new object-oriented information
system or application, due to the lack of artefacts to reuse?

Yes □
No □
Not sure □

Limited usability of components

21. Have you had problems with finding components to reuse?

Yes □
No □
Not sure □

Problems with reuse

22. Has there been a problem with reuse for some of the following reasons:

 Yes No Not sure

Software developers
do not want to reuse
a component, because
they feel that it does not work □ □ □

It is troublesome to learn
how the component works □ □ □

The hierarchy of classes has
been a hindrance for reuse □ □ □

272

Lack of object-oriented databases

23. Has it been difficult to find an appropriate object-oriented database?

Yes □
No □
Not sure □

24. If a relational database has been used in the object-oriented system development work, which
approach for connecting the object-oriented system with the relational database have you used?

□ The solution of mapping a class to a table has been used
□ A solution with factory classes has been used
□ A solution with wrappers has been used
□ Other solution, which?

Other & lack of support for several important areas like testing

25. Have you experienced a lack of support for something in the object-oriented world?

What other problems or obstacles of the object-oriented paradigm, other than those presented above
have you experienced?

273

Appendix 3 – Questionnaire for the survey in Finnish

Kysely oliotekniikan hyödyistä ja ongelmista tietojärjestelmien kehittelyssä

Tämän kyselyn tarkoitus on kerätä teidän näkemyksenne kokemistanne oliotekniikan hyödyistä ja
ongelmista tietojärjestelmien kehittelyssä. Kysely on tehty niin että pystytte vastaamaan siihen
nopeasti. Kaikki vastaukset käsitellään luottamuksellisesti. Kiitos ajastanne.

Osa A: Yleisiä kysymyksiä

I. Yrityksenne arvioitu työntekijämäärä:

II. Yrityksenne arvioitu liikevaihto:

III. Miltä toimialalta asiakkaanne enimmäkseen ovat:

IV. Asemanne yrityksessä:

1. Oletteko käyttäneet oliotekniikkaa tietojärjestelmätyössänne?

Kyllä □
Ei □
En osa sanoa □

Jos vastasitte edelliseen kysymykseen ”Kyllä”, olkaa ystävällinen ja menkää kysymykseen 3.

Jos vastasitte edelliseen tähän kysymykseen ”Ei”, vastatkaa vain kysymykseen 2.

2. Miksi ette ole käyttäneet oliotekniikkaa tietojärjestelmätyössä?

□ Emme tiedä, mitä oliotekniikka on
□ Emme halua käyttää oliotekniikkaa
□ Oliotekniikka on liian monimutkaista
□ Oliotekniikka on vielä liian kehittymätöntä
□ Oliojärjestelmiä on vaikea testata
□ Oliotekniikkaan koulutetuista sovelluskehittäjistä on pula
□ Kokeneista, oliotekniikan hallitsevista sovelluskehittäjistä on pula
□ Oliopohjainen sovelluskehitystyö on liian kallista
□ Uudelleenkäytettävistä oliokomponenteista on pula
□ Oliopohjainen uudelleenkäyttö on ongelmallista
□ Oliopohjainen määrittely on ongelmallinen
□ Oliopohjainen suunnittelu on ongelmallinen
□ Oliotietokannoista on pula
□ On vaikeata yhdistää oliotekniikkaa tavanomaisten tietokantojen kanssa
□ On vaikeata yhdistää oliotekniikkaa olemassa olevien tietojärjestelmien kanssa
□ Muu syy, mikä? ___________________________________

274

Osa B: Hyödyt

Monimutkaisuuden hallinta

3. Oletteko kokeneet oliotekniikan hyödylliseksi, kun olette kehittänyt laajoja ja monimutkaisia
tietojärjestelmiä?

Kyllä □
Ei □
En osa sanoa □

Tuottavuus, nopeampi kehitystyö ja alhaisemmat kustannukset

4. Oletko kokenut, että oliopohjainen sovelluskehitystyö on ollut tuottavampaa tai nopeampaa kuin
perinteinen sovelluskehitystyö?

I. Onko oliopohjainen sovelluskehitystyö ollut

 Kyllä Ei En osa sanoa

Tuottavampaa: □ □ □
Nopeampaa: □ □ □

Laatu ja käyttökelpoisuus

5. Oletteko kokeneet, että oliopohjaiset järjestelmät olisivat parempilaatuisia kuin perinteiset järjestelmät?

Kyllä □
Ei □
En osa sanoa □

Luonnollisuus ja parempi yhteensopivuus sovellusalueen kanssa

6. Onko oliomenetelmien käyttö sovelluskehitystyössä parantanut sovelluskehittäjien ja loppukäyttäjien
välistä kommunikaatiota?

Kyllä □
Ei □
En osa sanoa □

Ylläpito

7. Onko oliopohjaisten tietojärjestelmien ylläpito ollut helpompaa tai vaikeampaa kuin perinteisten
funktionaalisten tietojärjestelmien ylläpito?

Helpompaa □
Vaikeampaa □
En osa sanoa □

Yksi malli

8. Oletteko pitäneet oliopohjaisen kehitysprosessin yhtenäisenä ”yhtenä mallina’ sovellusalueesta
ohjelmointikoodaukseen ja ylläpitoon?

Kyllä □
Ei □
En osa sanoa □

275

Uudelleenkäyttö

9. Oletteko käyttäneet paljon uudelleenkäyttöä (reuse)? Onko uudelleenkäyttö oliopohjaisessa
sovelluskehitystyössä ollut hyödyllinen?

Kyllä □
Ei □
En osa sanoa □

II. Onko uudelleenkäyttöä pidetty hyödyllisenä?

Kyllä □
Ei □
En osa sanoa □

10. Mitä käytätte uudelleenkäytössä?

□ Olioita
□ Luokkia
□ Luokkakirjastoja joita olette ostaneet yrityksiltä
□ Luokkakirjastoja joita olette kehittäneet omassa yrityksessä
□ Määrittelyä
□ Suunnittelua
□ Komponentteja

Jos te olette käyttäneet:

Onko valmiita komponentteja pidetty hyödyllisenä?

Kyllä □
Ei □
En osa sanoa □

□ Muuta, mitä? _____________________

Siirrettävyys (portability)

11. Oletteko kokeneet, että oliopohjaisten järjestelmien siirrettävyys on hyöty?

Kyllä □
Ei □
En osa sanoa □

Muut

12. Mitä muita kun nyt esille tulleita oliotekniikan hyötyjä olette kokeneet sovelluskehitystyössä?

276

Osa C: Ongelmia

Monimutkaisuus

13. Pidättekö olioteknikoita monimutkaisina?

Kyllä □
Ei □
En osa sanoa □

Oliotekniikka on vielä kehittymätöntä

14. Pidättekö oliotekniikkaa vielä kehittymättömänä?

Kyllä □
Ei □
En osa sanoa □

15. Oletteko kokeneet, että on vaikeata löytää oliopohjaisia CASE työkaluja, oliopohjaisia tietokantoja,
oliopohjaisia sovelluskehitystyökaluja, tai jopa olioita jotka sopivat uudelleenkäyttöön?

Oletteko kokeneet että on vaikeata löytää:

Kyllä Ei En osa Emme
sanoa käytä

Oliopohjaisia CASE työkaluja □ □ □ □
Oliotietokantoja □ □ □ □
Oliopohjaisia sovellus-
kehitystyökaluja □ □ □ □
Olioita □ □ □ □

16. Oletteko kokeneet, että oliopohjaisia tietojärjestelmiä, oliopohjaisia sovelluksia tai oliopohjaisia
järjestelmiä ovat vaikeita testata?

I. Onko testaus ollut vaikeata?

Kyllä □
Ei □
En osa sanoa □

II. Mitä testausongelmia olette kokeneet?

□ On ollut vaikeaa testata rakenteita, joissa useamman olion funktiot kutsuvat
toisiaan ketjussa.

□ On ollut vaikeaa testata oliojärjestelmän monimutkaisia riippuvuuksia.
Esimerkkejä ovat periytyminen ja polymorfismi.

□ On ollut vaikeaa testata, koska oliojärjestelmien testaukseen tarkoitettuja
CASE työkaluja ei ole.

□ Muita testaukseen liittyviä ongelmia, mitkä?

277

Oliojärjestelmiä on vaikeita mitata

17. Pidättekö puutteena oliojärjestelmien mittaustavoissa olevia ongelmia?

Kyllä □

Ei □

En osa sanoa □

Koulutuksen ja kokemuksen puute

18. Onko ollut vaikeata löytää kokeneita oliotekniikkaan perehtyneitä sovelluskehittäjiä ja

suunnittelijoita?

Kyllä □

Ei □

En osa sanoa □

Tehokkuus

19 Oletteko kokeneet tehokkuusongelmia oliopohjaisissa projekteissanne?

Kyllä □

Ei □

En osa sanoa □

Kustannukset

20. Ovatko aloituskustannukset olleet suuret, kun olette aloittaneet täysin uuden oliopohjaisen

tietojärjestelmän tai sovelluksen, koska uudelleenkäytettävistä osista on ollut puute?

Kyllä □

Ei □

En osa sanoa □

Rajoitettu komponenttien käytettävyys

21. Onko teillä ollut vaikeuksia löytää sopivia komponentteja uudelleenkäyttöön?

Kyllä □

Ei □

En osa sanoa □

Ongelmia uudelleenkäytön kanssa

22. Oletteko kokeneet uudelleenkäyttöön liittyvän ongelmia joistakin seuraavista syistä:

 Kyllä Ei En osa sanoa

Sovelluskehittäjät eivät halua uudelleenkäyttää

komponenttia, koska he väittävät että komponentti ei toimi □ □ □

On vaikeata oppia miten komponentti toimii □ □ □

Luokkahierarkia on ollut uudelleenkäytön este □ □ □

278

Oliotietokantojen ja yleisten liittymien puute

23. Onko ollut vaikeata löytää sopivaa oliotietokantaa?

Kyllä □
Ei □
En osa sanoa □

24. Kun olette käyttäneet relaatiotietokantaa oliopohjaisessa sovelluskehitystyössä, niin mitä ratkaisua
olette käyttäneet, kun olette liittäneet oliojärjestelmän käyttämäänne relaatiotietokantaan?

□ Olemme käyttäneet ratkaisua missä luokka liitetään tauluun
□ Olemme käyttäneet yritysluokkia
□ Olemme käyttäneet kuoria (wrapper)
□ Muu ratkaisu, mikä? _____________________________________

Muut & puuttuva tuki monelle tärkeälle osalle kuten testaukselle

25. Puuttuuko oliomaailmasta mielestänne jokin oleellinen osa?

Mitä muita kuin edellä esiteltyjä oliotekniikan ongelmia tai esteitä olette kokeneet?

279

Appendix 4 - Data Collection Protocol of the Case Study

Data Collection Protocol

1. Overview of the case study project

When doing the case studies the researcher has to keep the aim of the study in mind. The aim is the
following:

The aim of this study is to investigate and gain some understanding into what benefits

and problems there are with the object-oriented paradigm in software development.

2. Field procedures

The first step is to gain access to the companies. This issue has been presented in the section on the case
studies in this study.

When conducting the interviews the investigator needs to remember that they are made on the premises
of the interviewee. The investigator also needs to remember that the interviewee might refuse to
cooperate fully in answering the questions.

A tape recorder will be used, but if the investigator feel that the interviewee is uncomfortable because of
it, or refuses to cooperate if a tape recorder is used, then written notes will be made.

The investigator should of course be polite and helpful when conducting the interview, and remember to
do everything possible in order for the interviewee to feel comfortable. The investigator is of course
forbidden to use threatening language or show what might be considered as unprofessional behaviour.

3. Case study questions

The case study questions are the same as the research questions, but have been modified in order to suit
the interview and the case study protocol. Note that all research questions are considered, and not just a
selection, as is the case in the questionnaire and survey.

General questions

1. Please tell me, has your company been using object-orientation in information systems development?

2. If your company has not been using object-orientation in information systems development, then why
do you think this is so?

Benefits – Management of Complexity

3. Has the object-oriented paradigm apparently been found useful in your company when developing
large-scale and complex information systems?

Benefits – Productivity, faster development and reduced costs

4. Do you think that object-oriented information system development has been more productive than
traditional information system development?

5. Do you think that object-oriented information system development has been faster and generated fewer
lines of code than traditional information system development?

280

Benefits – Quality and usability

6. Do you consider the quality of the object-oriented systems in your company better than the quality of
the traditional systems?

7. What about usability? Have the object-oriented information systems in your company been more
usable than the information systems that have been developed with traditional software development
methods and programming languages?

Benefits – Natural and better mapping to the problem domain

8. Have you experienced that there has been a better and more ‘natural’ communication between
information systems developers and end users because of using the object-oriented paradigm?

9. Do you think that object-oriented analysis is more natural for users than traditional analysis?

Benefits – Maintenance

10. According to your experiences, has maintenance of object-oriented applications been easier or harder
than maintenance of traditional functional applications?

Benefits – Software components

11. Have you been using readymade components in your company? If so, have they been considered
beneficial for information system development in your company?

12. Have you developed software components of your own in your company? If you have, are you of the
opinion that object-orientation has made the development of software components easier?

Benefits – End – User computing

13. Have your clients been using End-User Computing? If they have, according to your opinion, has
object-orientation made End-User computing easier?

Benefits – One model

14. Has the object-oriented system development process been seen as a uniform ‘one model’ from the
problem domain to code and maintenance in your company?

15. Have you found it a benefit that there are the same building artefacts in object-oriented analysis as in
object-oriented design?

Benefits – Frequent tangible working results and reliability

16. Has object-oriented information system development given frequent tangible working results?

17. Have the object-oriented information systems in your company been more reliable than those that
have been developed with traditional software development methods and programming languages?

Benefits – Suitability for embracing new technologies and sound academic basis

18. Have you experienced that object-orientation is a good tool for embracing new technologies like
graphical user interfaces or client-server applications?

19. What is your opinion about the statement that the sound academic basis of object-orientation is a
benefit?

281

Benefits – Reuse

20. Has your company used much reuse? What can you tell me about the benefits gained from reuse in
the object-oriented paradigm?

21. What do you reuse in your company? Classes? Objects? Components? Analysis? Design? Class
libraries purchased from vendors? Class libraries developed in-house?

22. Do information system developers in your company prefer to reuse rather than to build from scratch;
or do the information system developers consider reuse so difficult that they rather build components
from scratch?

23. Are finding suitable software components a hindrance for reuse in your company?

24. Do you think that the producers of reusable software components in your company usually consider
the needs of future users of the components? Future users of the components mean both people and
systems.

25. Has multiple inheritance been used in your company? If so, was it successful?

Benefits – Object-oriented analysis

26. Have you noticed that users can switch from the object-oriented paradigm (a way of thinking in an
object-oriented way) to the functional paradigm (a way of thinking in a functional way) and back in a
smooth way?

 27. In your company have you used prototyping for finding requirements in object-oriented information
systems development?

Benefits – Object-oriented design

28. Has the transition to object-oriented design from object-oriented analysis been easy or difficult in
your company when carrying out object-oriented software development?

Benefits – Portability

29. Has portability of object-oriented systems been considered a benefit in your company?

Benefits - Other

30. Have you experienced in your company that the total independence of classes has produced
advantages in system development, compared with the traditional solution of modules with common
data?

31. What further benefits of the object-oriented paradigm, other than those presented above, have you
experienced in information systems development in your company?

Problems - Complexity

32. Has the object-oriented paradigm been considered complex in your company?

Problems – The object-oriented paradigm is still immature

33. Do you consider object-orientation as immature?

282

34. Has your company experienced difficulties in finding object-oriented CASE tools, object-oriented
databases, object-oriented system development tools or perhaps even objects to reuse?

Problems – No support for several important areas like testing

35. Have you experienced a lack of support for any concepts in the object-oriented world? If you have,
what is lacking according to your opinion? Is it a lack of support for objects? Reliability? Better
performance? Or is it a lack of support for resource utilisation or security capabilities?

36. Have you found testing object-oriented information systems, applications or systems being difficult?
What testing problems have you experienced?

Problems – Difficulties in measuring object systems

37. Has a lack of metrics for measuring the object-oriented system been considered a problem in your
company?

Problems – Training & lack of experience

38. Have you in your company been using a mentor in order to solve the problem with training of the
software developers?

39. Has there in your company been a resistance to learning the object-oriented paradigm because there is
such a huge shift between the traditional functional paradigm and the object-oriented paradigm?

40. Has it been difficult to find experienced object-oriented software developers and system analysts?

Problems – Efficiency

41. Have you experienced computer efficiency problems in your company’s object-oriented software
development projects?

42. If there (in your company) has been no suitable collection of objects to reuse, has this lack been
defective for the efficiency of the object-oriented information systems development project in
question?

Problems – Costs

43. If there has been a lack of artefacts to reuse, have the starting costs been enormous when starting a
completely new object-oriented information system or application, due to the lack of artefacts to
reuse?

Problems – Limited usability of components

44. Have you had problems finding components to reuse in your company?

45. Has there been a problem managing the different versions of a component?

Problems – Problems with reuse

46. Has there in your company been a problem with reuse for the reason that software developers do not
want to reuse a component, because they claim that it does not work, or it is too troublesome to learn
how the component works?

47. Has the hierarchy of classes been a hindrance for reuse in your company?

283

Problems – Problems with object-oriented analysis

48. Have there been any kinds of problems with analysis when object-oriented analysis has been used in
your company? If there have been problems, what kind have they been?

49. According to you, has object-oriented analysis been a good choice, if the system that is to be
developed has limited responsibilities or is a system with few classes (< 10) and objects?

50. Have you in your company experienced one or several of the following problems with object-oriented
information systems development in the analysis phase?

Identification of Problem-Domain Structures has been difficult. It might often be difficult to identify
classifications in the problem domain that could be mapped to inheritance hierarchies.

Dealing with Excessive Domain Objects has been difficult. Integrating the domain knowledge with
the user’s requirement specifications can yield a lot of objects. Only few of these objects may be
relevant to the problem area.

Problems with Early Decomposition. If subsystems are not identified before objects are identified
problems might arise, because objects have to be placed into some subsystem when identified. If the
subsystems are identified before object identification, the boundaries of the subsystems may not be
optimal.

Subsystem-Object Distinction has been difficult. In the analysis phase objects may act as subsystems
if they are complicated. Subsystems can also be defined as objects if they can be structured in a
hierarchy and reused.

Problems with Commonality versus Partitioning. Because subsystems partition the system, classes
that are members of the same hierarchy can be spread over several subsystems. Finding the
appropriate inheritance hierarchies becomes difficult.

Subsystems Identification Using Object Interactions has been problematic. Subsystems are often used
for structuring interactions among objects; however, most object-oriented methods only have intuitive
techniques for subsystem identification.

Problems – Problems with object-oriented design

51. Has your company found the transition from object-oriented analysis to object-oriented design easy
or difficult?

52. If the transition from object-oriented analysis to object-oriented design has been difficult, then why
has it been difficult according to you? Difficulties to connect concepts found in object-oriented
analysis with concepts in object-oriented design? Problems on this issue in the chosen object-oriented
software development method? Object-oriented analysis was poorly performed because the object-
oriented analysis was difficult? Object-oriented analysis was poorly performed because the object-
oriented analysis method was insufficient?

Problems – Lack of object-oriented databases and common interfaces

53. Has it been difficult to find appropriate object-oriented databases in your object-oriented software
development projects?

54. If a relational database has been used in the object-oriented system development project, which
approach for connecting the object-oriented system with the relational database have you been used?
A solution of mapping a class to a table? A solution with factory classes? Has the Strix object
persistence engine been used?

284

 55. Do you think that the lack of a common interface for ad hoc queries has been considered a problem
when using pure object-oriented databases in your company?

Problems - Other

56. Have you experienced difficulties in mixing classes developed in different object-oriented
programming languages or classes produced by different vendors?

57. What further problems or obstacles of the object-oriented paradigm, other than those presented above,
has your company experienced?

4. Guide for the case study report with analysis plan

The analysis of the case study has been discussed in the case study sub section of the research method
and research design section of this study.

285

Appendix 5 - The Case Study Protocol in Finnish

Tapausselostusten keräysprotokolla

1. Tapausselostustutkimuksen yleiskatsaus

Tehdessään tapausselostustutkimusta tutkijan on pidettävä tutkimuksen tavoitetta muistissa. Tutkimuksen
tavoite on seuraava:

Tämän työn tavoitteena on tutkia ja saada ymmärrystä yleisistä oliotekniikan hyödyistä ja haitoista
sovelluskehitystyössä.

Tavoitteena on myös oliotekniikan hyötyjen ja haittojen eri näkökantojen esittäminen, jos sellaisia
näkökantoja on löydetty kirjallisuustutkimuksessa tai tämän työn empiirisessä osassa. Eri näkökantojen
esittäminen voidaan pitää esitellyiden hyötyjen ja haittojen vaatimattomana analyysina.

Toisin sanoin, tutkijan joka tekee tapausselostustutkimusta, tulisi yrittää saada jonkun verran ymmärrystä
yleisistä oliotekniikan hyödyistä ja haitoista sovelluskehitystyössä. Tutkijan tulisi myös yrittää löytää
oliotekniikan hyötyjen ja haittojen näkökantoja sovelluskehitystyössä. Esimerkkinä eri näkökannoista
voitaisiin mainita mahdollisuus että vastaaja antaa uuttaa tietoa liittyen hyötyihin ja haittoihin.

2. Kenttämenettelyt

Kenttämenettelyiden ensimmäinen askel on miten saada kontakti yrityksiin. Tämä seikka on esitelty
tämän työn tapausselostustutkimusluvussa.

Tehdessään haastattelut haastattelijan on muistettava että haastattelut tehdään haastatellun ehdoilla.
Haastattelijan on myös muistettava että haastateltu voi kieltäytyä täydestä yhteistyöstä kun hän vastaa
kysymyksiin.

Haastattelijalla on aikomus käyttää nauhuria, mutta jos haastattelija huomaa että haastatellulla on
epämiellyttävä olo, tai jos haastateltava kieltäytyy yhteistyöstä (mikäli nauhuria käytetään), niin
haastattelija tekee tavallisia muistiinpanoja.

Haastattelijan tulee tietysti olla ystävällinen ja auttavainen tehdessään haastattelun. Haastattelijan tulee
myös muistaa tehdä kaikkensa jotta haastateltavalla olisi mukava olo. Haastattelija ei tietenkään saa
käyttää uhkaavaa kieltä tai asennetta.

3. Tapausselostustutkimuksen kysymykset

Tapausselostustutkimuksen kysymykset ovat samat kuin tutkimuskysymykset.
Tapausselostustutkimuksen kysymykset on kuitenkin muokattu niin että ne olisivat haastatteluun ja
tapauskysymysprotokollaan sopivia. Huomatkaa että kaikki tutkimuskysymykset ovat mukana.
Lomakekyselyssä ja kyselylomakkeessa oli mukana vain valittu määrä tutkimuskysymyksiä.

Yleisiä kysymyksiä

1. Pyydän teitä ystävällisesti kertomaan onko yrityksenne käyttänyt oliotekniikkaa sovelluskehitystyössä?

2. Jos yrityksenne ei ole käyttänyt oliotekniikkaa sovelluskehitystyössä, niin miksi teidän mielestänne
näin on?

286

Hyödyt - Monimutkaisuuden hallinta

3. Oletteko kokeneet oliotekniikan hyödylliseksi, kun olette kehittänyt laajoja ja monimutkaisia
tietojärjestelmiä?

Hyödyt – Tuottavuus, nopeampi kehitystyö ja alhaisemmat kustannukset

4. Oletteko kokeneet, että oliopohjainen sovelluskehitystyö on ollut tuottavampaa kuin perinteinen
sovelluskehitystyö?

5. Oletteko kokeneet, että oliopohjainen sovelluskehitystyö on ollut nopeampaa ja tuottanut vähemmän
koodirivejä kuin perinteinen sovelluskehitystyö?

Hyödyt - Laatu ja käyttökelpoisuus

6. Oletteko kokeneet, että oliopohjaiset järjestelmät olisivat parempilaatuisia kuin perinteiset järjestelmät?

7. Miten on käyttökelpoisuuden kanssa? Ovatko teidän oliotekniikkaan perustavat järjestelmänne olleet
käyttökelpoisempia kuin järjestelmät jotka on kehitetty tavanomaisilla sovelluskehitysmenetelmillä ja
ohjelmointikielillä?

Hyödyt – Luonnollisuus ja parempi yhteensopivuus sovellusalueen kanssa

8. Onko oliomenetelmien käyttö sovelluskehitystyössä parantanut sovelluskehittäjien ja loppukäyttäjien
välistä kommunikaatiota?

9. Pidättekö oliopohjaista määrittelyä käyttäjille luonnollisempana verrattuna tavanomaiseen
määrittelyyn?

Hyödyt – Ylläpito

10. Onko teidän mielestä oliopohjaisten tietojärjestelmien ylläpito ollut helpompaa tai vaikeampaa kuin
perinteisten funktionaalisten tietojärjestelmien ylläpito?

Hyödyt – Ohjelmistokomponentteja

11. Oletteko käyttäneet valmiita ohjelmistokomponentteja yrityksessänne? Jos olette käyttäneet valmiita
ohjelmistokomponentteja, niin ovatko nämä olleet hyödyllisiä sovelluskehitystyössä yrityksessänne?

12. Oletteko kehittäneet omia ohjelmistokomponentteja yrityksessänne? Jos olette, niin oletteko sitä
mieltä että oliotekniikka on helpottanut ohjelmistokomponenttien kehitystyön?

Hyödyt – End – User computing

13. Ovatko asiakkaanne käyttäneet End-User Computing menettelyä? Jos asiakkaanne ovat käyttäneet
End-Using Computing:iä, onko mielestänne oliotekniikka tehnyt End-User computingin
helpommaksi?

Hyödyt – Yksi malli

14. Oletteko pitäneet oliopohjaisen kehitysprosessin yhtenäisenä ”yhtenä mallina’ sovellusalueesta
ohjelmointikoodaukseen ja ylläpitoon?

 15. Oletteko kokeneet hyödyksi että oliomäärittelyssä on samat rakennusosat kuin oliosuunnittelussa?

287

Hyödyt – Nopeita ja näkyviä työtuloksia ja luotettavuus

16. Onko oliotekniikka tuottanut nopeita ja näkyviä työtuloksia?

17. Ovatko oliojärjestelmät yrityksessänne olleet luotettavampia kuin järjestelmät jotka on kehitetty
tavanomaisilla sovelluskehitysmenetelmillä ja ohjelmointikielillä?

Hyödyt – Soveltavaisuus uusien teknologien omaksumiseen ja perusteltu akateeminen perusta

18. Oletteko kokeneet oliotekniikan soveltuvan uusien teknologien omaksumiseen? Uusilla teknologioilla
tarkoitetaan teknologioita kuten graafiset käyttöliittymät ja client – server sovellukset.

19. Mitä mieltä olette väittämästä että oliotekniikan akateemista perustaa pidetään hyötynä?

Hyödyt – Uudelleenkäyttö

20. Oletteko käyttäneet paljon uudelleenkäyttöä (reuse)? Onko uudelleenkäyttö oliopohjaisessa
sovelluskehitystyössä ollut hyödyksi?

21. Mitä käytätte uudelleenkäytössä? Olioita? Luokkia? Luokkakirjastoja joita olette ostaneet yrityksiltä?
Luokkakirjastoja joita olette kehittäneet omassa yrityksessä? Määrittelyä? Suunnittelua?
Komponentteja?

22. Käyttävätkö sovelluskehittäjät yrityksessänne mieluimmin uudelleenkäyttöä kuin rakentavat alusta
alkaen? Pitävätkö sovelluskehittäjät uudelleenkäyttöä niin vaikeana että he mieluimmin rakentavat
komponentteja alusta alkaen?

23. Onko oikeiden komponenttien löytäminen este uudelleenkäytölle yrityksessänne?

24. Oletteko sitä mieltä että uudelleenkäyttöön tarkoitettujen komponenttien tuottajat yrityksessänne
ottavat huomioon komponenttien tulevaisuuden käyttäjien tarpeet? Tulevaisuuden käyttäjillä
tarkoitetaan sekä ihmisiä että järjestelmiä.

25. Onko yrityksessänne käytetty moniperiytymistä? Jos moniperiytymistä on käytetty niin onko
moniperiytyminen onnistunut hyvin?

Hyödyt – Oliomäärittely

26. Oletteko kokeneet että loppukäyttäjät pystyvät siirtymään oliomaailmasta (loppukäyttäjät ajattelevat
oliotermein) funktionaaliseen maailmaan (loppukäyttäjät ajattelevat käyttäen funktioita) ja takaisin
helposti ja ongelmitta?

 27. Onko teidän yrityksessänne käytetty perusmuotoilua (prototyping) vaatimusten löytämiseen
sovelluskehityksen oliomäärittelytyössä?

Hyödyt – Oliosuunnittelu

28. Onko siirtyminen oliomäärittelystä oliosuunnitteluun ollut vaikeaa tai helppoa yrityksessänne?

Hyödyt – Siirrettävyys (portability)

29. Oletteko kokeneet, että oliopohjaisten järjestelmien siirrettävyys on hyöty?

288

Hyödyt - Muut

30. Oletteko kokeneet yrityksessänne että luokkien täydellinen itsenäisyys on ollut hyödyksi
sovelluskehitystyössä? Vertailukohteena on tavanomainen ratkaisu missä käytetään moduuleita joilla
on yhtenäistä tietoa.

31. Mitä muita kun nyt esille tulleita oliotekniikan hyötyjä olette kokeneet sovelluskehitystyössä?

Ongelmia - Monimutkaisuus

32. Pidättekö olioteknikoita monimutkaisina?

Ongelmia – Oliotekniikka on vielä kehittymätöntä

33. Pidättekö oliotekniikkaa vielä kehittymättömänä?

34. Oletteko kokeneet, että on vaikeata löytää oliopohjaisia CASE-työkaluja, oliopohjaisia tietokantoja,
oliopohjaisia sovelluskehitystyökaluja, tai jopa olioita jotka sopivat uudelleenkäyttöön?

Ongelmia – Puuttuva tuki monelle tärkeälle asialle kuten testaukselle

35. Monilta nykyisiltä oliojärjestelmiltä on vaikeata saada tietoja olioiden luotettavuudesta,
oliojärjestelmien suorituskyvystä ja oliojärjestelmien resurssien käytöstä.

Oletteko kokeneet puutteita jostakin oliomaailmassa? Mikäli te olette kokeneet puutteita, niin mistä?
Puutteen olioista? Puutteen luotettavuuden tuesta? Puutteen paremmasta suorituskyvystä? Puutteen
resurssien käytön tuesta? Puutteen turvallisuuden mahdollisuuden tuesta?

36. Oletteko kokeneet, että oliopohjaisia tietojärjestelmiä, oliopohjaisia sovelluksia tai oliopohjaisia
järjestelmiä on vaikeata testata? Mitä testausongelmia olette kokeneet?

Ongelmia – Oliojärjestelmiä on vaikeita mitata

37. Pidättekö puutteena oliojärjestelmien mittaustavoissa olevia ongelmia?

Ongelmia – Koulutuksen ja kokemuksen puute

38. Oletteko yrityksessänne käyttäneet ohjaajaa tai neuvonantajaa (mentor) jotta pystyisitte ratkaisemaan
sovelluskehittäjien kouluttamiseen liittyviä ongelmia?

39. Onko yrityksessänne ollut vastustusta oppia oliotekniikkaa koska oliotekniikan ja tavanomaisen
sovelluskehitystekniikan ero on niin suuri?

40. Onko ollut vaikeata löytää kokeneita oliotekniikkaan perehtyneitä sovelluskehittäjiä ja
suunnittelijoita?

Ongelmia – Tehokkuus

41. Oletteko kokeneet tehokkuusongelmia oliopohjaisissa projekteissanne?

42. Mikäli uudelleenkäyttöön sopivia olioita ei ole ollut, niin onko tämä puute ollut haitallinen kyseisen
oliopohjaisen projektin tuottavuudelle?

289

Ongelmia – Kustannukset

43. Ovatko aloituskustannukset olleet suuret, kun olette aloittaneet täysin uuden oliopohjaisen
tietojärjestelmän tai sovelluksen, koska uudelleenkäytettävistä osista on ollut puute?

Ongelmia – Rajoitettu komponenttien käytettävyys

44. Onko teillä ollut vaikeuksia löytää sopivia komponentteja uudelleenkäyttöön?

45. Onko ollut ongelmallista hallita komponenttien eri versioita?

Ongelmia – Ongelmia uudelleenkäytön kanssa

46. Oletteko kokeneet uudelleenkäyttöön liittyvän ongelmia koska sovelluskehittäjät eivät halua
uudelleenkäyttää komponenttia, koska he väittävät että komponentti ei toimi, tai on vaikeata oppia
miten komponentti toimii?

47. Onko luokkahierarkia ollut uudelleenkäytön este yrityksessänne?

Ongelmia – Oliomäärittelyn ongelmia

48. Oletteko kokeneet ongelmia kun olette käyttäneet oliomäärittelyä yrityksessänne? Mikäli olette
kokeneet ongelmia, niin minkälaisia ongelmia olette kokeneet?

 49. Onko oliomäärittely ollut mielestänne hyvä ratkaisu jos kehitettävällä järjestelmällä on vähän
vastuuta tai jos järjestelmällä on pieni määrä luokkia ja olioita (< 10)?

 50. Oletteko joskus kokeneet yhden tai useampia seuraavista ongelmista sovelluskehitystyössä
määrittelyvaiheessa?

Sovellusalueen struktuurit ovat vaikeita löytää. On usein vaikeata löytää sovellusalueen luokittelut
joita voidaan yhdistää periytymishierarkioihin.

Sovellusalueen ylimääräisiä olioita on vaikeita hallita. Sovellusalueen tietämyksen yhdistäminen
loppukäyttäjien vaatimusmäärittelyiden kanssa voi tuottaa suuria määriä olioita. Yleensä vain pieni
osa näistä olioista on sovellusalueelle kuuluvia.

Ongelmia aikaisella hajottamisella. Mikäli olioita löydetään ennen alajärjestelmiä niin ongelmia voi
syntyä koska oliot on sijoitettava alijärjestelmiin kun ne löydetään. Jos alajärjestelmiä taas löydetään
ennen olioita niin alajärjestelmien rajat eivät välttämättä ole optimaaliset.

Olioiden ja alajärjestelmien ero on epämääräinen. Määrittelyvaiheessa monimutkaiset oliot voivat
toimia alajärjestelminä. Alajärjestelmät voivat taas toimia olioina jos alajärjestelmät voidaan
strukturoida hierarkiaan ja uudelleenkäyttää.

Ongelmia: yleistää vai ositella? Koska alajärjestelmät osittavat järjestelmää, niin luokat jotka ovat
samassa hierarkiassa voidaan sijoittaa eri alajärjestelmiin. Oikean periytymishierarkian löytäminen
vaikeutuu.

Alajärjestelmien löytäminen käyttäen hyödyksi olioiden vuorovaikutusta on ollut vaikeata.
Alajärjestelmiä käytetään usein olioiden vuorovaikutusten strukturointiin, mutta useimmilla
oliomenetelmillä on ainoastaan vaistonvaraisia tekniikoita alajärjestelmien löytämiselle.

Ongelmia – Oliosuunnittelun ongelmia

51. Onko yrityksenne kokenut siirtymisen oliomäärittelystä oliosuunnitteluun helpoksi tai vaikeaksi?

290

52. Mikäli siirtyminen oliomäärittelystä oliosuunnitteluun on ollut vaikea, niin mikä on mielestänne syy
tähän? Ongelmia yhdistää oliomäärittelyn konseptit oliosuunnittelun konseptiin? Ongelmia liittyen
tähän kysymykseen sovelluskehityksen oliomenetelmässä? Oliomäärittely oli huonosti tehty koska
oliomäärittely on vaikea? Oliomäärittely oli huonosti tehty koska oliomäärittelymenetelmä oli
puutteellinen?

Ongelmia – Oliotietokantojen ja yleisten liittymien puute

53. Onko ollut vaikeata löytää sopivaa oliotietokantaa sovelluskehitystyöhön, edellyttäen että olette
etsineet sellaista?

54. Kun olette käyttäneet relaatiotietokantaa oliopohjaisessa sovelluskehitystyössä, niin mitä ratkaisua
olette käyttäneet, kun olette liittäneet oliojärjestelmän käyttämäänne relaatiotietokantaan? Oletteko
käyttäneet ratkaisua missä luokka liitetään tauluun? Oletteko käyttäneet tehdasluokkia? Oletteko
käyttäneet kuoria (wrapper)? Oletteko käyttäneet valmiita luokkia jotka olette ostaneet? Oletteko
käyttäneet “The Strix object persistence engine”?

 55. Oletteko sitä mieltä että yleisen liittymän puute (jolla voi tehdä tilapäisiä kyselyitä) on ongelma kun
käytätte oliotietokantoja yrityksessänne?

Ongelmia - Muita

56. Oletteko kokeneet ongelmia kun olette yhdistäneet luokkia joita on kehitelty eri ohjelmistokielillä tai
jotka eri valmistajat ovat kehittäneet?

57. Mitä muita kuin edellä esiteltyjä oliotekniikan ongelmia tai esteitä olette kokeneet?

4. Tapausselostustutkimuksen raportin ohje ja analyysin suunnittelu

Tapausselostustutkimuksen analyysi on käsitelty aikaisemmin tässä työssä.

291

Appendix 6 - Some secondary definitions for this study

Application domain. The organisation that administers, monitors, or controls a problem domain
(Mathiassen et al., 2000, p. 3). The application domain is a part of the user organisation (Mathiassen et
al., 2000, p. 6). For example, in a payroll information system the application domain includes the
personnel office, while the problem domain includes the employees, the contracts and the salary
information, etc.

Business objects. OMG (Object management group) gives the following (quotation) definition (cited in
Räisänen, 1997b, p. 32):

A business object is a representation of a thing active in the business domain, including at least its business name
and definition, attributes, behavior, relationships and constraints. A business object may represent, for example, a
person, place or concept. The representation may be in a natural language, a modeling language, or a programming
language.

One can of course develop business objects of different complexity, from simple plain objects like phone
calls to more complicated objects like companies.

Component. A component is a unit of software (or something else, see below) designed to integrate and
work with other units of software (Webster, 1995, p. 25).

According to Nierstrasz & Dami (1995, p. 4) a component is a component because it has been designed
to be used in a compositional way together with other components. A component is usually developed in
isolation, but a component can be one part of a framework of collaborating components (Nierstrasz &
Dami, 1995, p. 4). Nevertheless, more formally, Nierstrasz & Dami (1995, p. 5) give the following
definition of a component (quotation):

A component is a static abstraction with plugs

Radin (1996) and Sparling (2000) give another definition of a component; they propose that components
can be seen as encapsulated black boxes with specified behaviour. Examples of components are classes,
objects, functions, macros, procedures, templates, modules, specifications, documentations, test data and
applications. Examples that are more specific are buttons and lists (Räisänen, 1997b, p. 28).

The concepts of components and objects should not be considered the same, according to Petre (2000, p.
6); the difference is that objects are suitable for describing real world entities, and components are
suitable for describing the services of real world entities. Expressed differently, objects are suitable for
describing the problem domain of a system, and components are suitable for describing the functionality
of the problem domain (Petre, 2000, p. 6).

The First International Workshop on Component Oriented Programming (WCOP ’96), which was a part
of the ECOOP96, produced the following definition of a software component (Helton, 1998; Eliëns,
2000, pp. 178-179):

A component is a unit of composition with contractually specified interfaces and explicit context dependencies
only. Components can be deployed independently and are subject to composition by third parties.

Interesting is thus that a component’s specification is required, but the implementation of the component
is not required. An ‘interface’ conceals the particular implementation details, and the interface provides a
group of service specifications for the component. (Helton, 1998) Note that in this study, the object-
oriented paradigm is the main area of research, but component software is also considered in some cases
because component software and the object-oriented paradigm are considered the same by many
researchers. One has, however, to remember that some researchers like Szyperski (1999) consider
component software as a unique paradigm that should not be mixed with the object-oriented paradigm,
though he points out that there is a comprehensible connection because components are likely to come to
life through objects (Szyperski, 1999, p. 31).

292

Component-based software engineering. In component-based software engineering, applications are
built out of existing components that are reused (Pressman, 2000, p. 738). The following presentation of
component-based software engineering (quotation) is given by Clements (1995; cited by Pressman, 2000,
p. 738):

Component-based software engineering is changing the way large software systems are developed. Component-
based software engineering embodies the “buy, don’t build” philosophy espoused by Fred Brooks and others. In
the same way that early subroutines liberated the programmer from thinking about details, component-based
software engineering shifts the emphasis from programming software to composing software systems.
Implementation has given way to integration as the focus. At its foundation is the assumption that there is
sufficient commonality in many large software systems to justify developing reusable components to exploit and
satisfy that commonality.

Component-based software engineering is not presented or discussed in this study more thoroughly
because it is not a part of the purpose of this study. See also definition of component.

Composition. A composition is a fact when an object is built out of other objects. A composition defines
the has_a relationship (Webster, 1995, p. 24). Madsen (1995) says that with composition is an object that
can contain components that are part objects or references to other objects. For example, composition is
supported in object-oriented languages so that concerning part objects a class attribute can be an instance
of another class in C++ (Madsen, 1995).

CORBA. Konstantas (1995, p. 72) says that CORBA stands for Common Object Request Broker
Architecture and has its origin at Object Management Group (OMG). The Object Management Group is a
consortium of over two hundred technology vendors and users that can be characterised as technology
sponsors for the coordination of standards, subsidization of early adopters and promotion of the object-
oriented paradigm (Fichman & Kemerer, 1993). Helton (1998) says that Object Management Group is a
consortium with over 700 companies in 1998, and that it is usually used for plugging together
components in component oriented programming (other standards for plugging together components are
Microsoft’s Component Object Model, COM and Sun Microsystems’ JavaBeans).

The Object Request Broker (ORB) provides interoperability between applications or information systems
on different computers in distributed environments. ORB is a common layer through which objects
transparently exchange messages and receive replies. The Interface Definition Language (IDL) describes
both the interfaces that the client objects requests and the interfaces that the object implementations
provide. (Konstantas, 1995, p. 72) According to Watson (1999) CORBA is an API, which can be used,
for example, for binding legacy systems with new applications.

Design patterns. Design pattern and a pattern usually mean the same thing, though there are many
different types of patterns in the object-oriented world. Gamma et al. (1995) are probably the most widely
known persons when talking about design patterns. In the book by Gamma et al. (1995) the famous
statement by Christopher Alexander (often regarded as the father of design patterns) can be found, and it
goes like this (quotation):

Each pattern describes a problem, which occurs over and over again in our environment, and describes the core of
the solution to that problem, in such a way that you can use this solution a million times over, without ever doing it
the same time twice.

In the article by Eden (2002) another definition (quotation) is given (Alexander et al., 1977, Alexander,
1979):

A “pattern” is a prescription for solving a category of problems in a specific manner. This prescription is intended
for the dissemination of specialized knowledge and to create an instrumental vocabulary.

Though Alexander was talking about design patterns connected to building houses and towns, what the
writer says is true about object-oriented design patterns (Gamma et al., 1995, p. 2). In the book by
Gamma et al. (1995, p. 3) the design patterns are (quotation):

Descriptions of communicating objects and classes that are customized to solve general design problems in a
particular context.

293

Design pattern or object design pattern is a predefined design structure, which is used as a building block
when building a software architecture (Tepfenhart, & Cusick, 1997). According to Pressman (2000, p.
607) design patterns may become the software analogue of small circuits made from components (classes
would be seen as components). Often design patterns actually consist of classes, or objects, or the
communication between objects or the contracts between objects, etc. (Räisänen, 1997b, p. 27).

Monroe et al. (1997) state that the basic idea behind design patterns is that common idioms are found
several times in object-oriented software design and that these patterns should be made explicit, codified,
and applied properly to similar problems or tasks. Gamma et al. (1995, p. xi) state that design patterns
capture solutions that are considered good and that have been developed and evolved over time.
According to Tepfenhart, & Cusick (1997) there is a difference between design patterns and object
design patterns, because object design patterns can be architectural frameworks, design patterns and
idioms.

There is often confusion between design patterns and frameworks. Gamma et al. (1995, p. 28) explain the
differences between design patterns and frameworks (quotation):

1. Design patterns are more abstract than frameworks. Frameworks can be embodied in code, but only
examples of patterns can be embodied in code. A strength of frameworks is that they can be written down
in programming languages and not only studied but executed and reused directly. In contrast, the design
patterns in this book have to be implemented each time they’re used. Design patterns also explain the
intent, trade-offs and consequences of a design.

2. Design patterns are smaller architectural elements than frameworks. A typical framework contains
several design patterns, but the reverse is never true.

3. Design patterns are less specialized than frameworks. Frameworks always have a particular application
domain. A graphical editor framework might be used in a factory simulation, but it won’t be mistaken for
a simulation framework. In contrast, the design patterns in this catalog can be used in nearly any kind of
application. While more specialized design patterns than ours are certainly possible (say, design patterns
for distributed systems or concurrent programming), even these wouldn’t dictate an application
architecture like a framework would.

However, Pressman (2000, p. 607) say that there are still surprisingly few patterns catalogued on the
market, though this is an area where progress is made incessantly.

Domain. A domain is a given area of functionality or certain problem area (Webster, 1995, p. 25).

Frakes & Isoda (1994) offer the following definition; a domain is an application area, or more formally, a
set of systems that share design decisions.

Martin & Odell (1995, p. 20) define a domain as a selected area of interest that consists a set of objects
that are instances of the domain specification. The domain specification is then the collection of concepts
that apply to a domain.

Shlaer & Mellor (1992, p. 133) offer the following definition of a domain; a domain is defined as a
separate world inhabited by a distinct set of objects that behave according to rules and characteristics of
the domain

Framework. A framework is a set of classes (as a rule the classes are abstract classes) that collaborate to
carry out a set of common responsibilities (Gamma et al, 1995, p. 26; Taivalsaari, 1993, p. 159). There is
usually some kind of interconnection between the classes and to the classes there are often components or
subclasses connected (Johnson, 1997b; Räisänen, 1997b, p. 30). The code of the framework is in the
framework, and the framework calls the code outside the framework in the Hollywood style ‘Don’t call
us, we’ll call you’ (Räisänen, 1997b, p. 30).

Webster (1995, p. 25) almost offers the same definition when he writes: “a framework is a collection of
related objects that work together to provide a certain class of functionality”.

294

According to Pree (1997), “a framework is a collection of several single components with predefined co-
operations between them, for the purpose of accomplishing a certain task”. Here one can also note that
Pree (1997) proposes that frameworks require enormous development effort; in fact, Pree (1997)
proposes that the costs of developing a framework are significantly higher compared to the costs of
developing a similar application.

Frameworks make up, for example, a reusable design for an exclusive software class that provides the
entire domain-independent infrastructure you need to implement a system (Tepfenhart, & Cusick, 1997).
Frameworks can consist of design patterns, and mature frameworks often incorporate several design
patterns (Gamma et al., 1995, p. 27). The opposite is, however, never the case; a design pattern never
consists of frameworks (Gamma et al., 1995, p. 28).

Another definition of a framework is that it is an application specific class library (Winblad et al., 1990,
p. 34); in other words, a grouping of classes that is developed for a specific application, but still is so
general that it can be widely reused (Henderson-Sellers, 1992, p. 59). The frameworks can be application
frameworks or company frameworks, etc. (Fayad, 2000).

A further definition of a framework states that a framework is a reusable object-oriented analysis and
design for an application or subsystem; an application framework thus provides a template for an entire
application (Coleman et al., 1994, p. 219). However, Coleman et al. (1994, p. 219) go on and argue that a
framework is connected to its problem and solution space classes, which include abstract classes.
Therefore, the definition by Coleman et al. (1994, p. 219) supports the definition by Taivalsaari (1993, p.
159). In an article Liao et al. (1999) writes about a generic application for reuse when developing new
applications, this generic application can probably be classified as a kind of framework.

Problem domain. The part of a context that is administered, monitored or controlled by a system
(Mathiassen et al., 2000, p. 3). The problem domain describes the system’s purpose, as well as the parts
of reality that the system should help administer, monitor or control (Mathiassen et al., p. 6).

Repository. According to Jenz (1999a) a repository is almost the same as a library. Martin & Odell
(1992, p. 7) give a more common definition of a repository: “The repository is a mechanism for defining,
storing and managing information about an enterprise, its data and systems”. Martin & Odell (1992, p. 7)
goes on and propose that a repository stores models, specifications, designs and reusable constructs that
are used in software development. This gives the ultimate definition that a repository is an object-oriented
database, storing information about objects, storing information about libraries of reusable classes and
facilitating reusable design (Martin & Odell, 1992, p. 48).

Subject. Subjects are important when performing object-oriented software development. Subjects are
something that act upon objects like users, systems and other objects (Webster, 1995, p. 110).

Subsystem. A subsystem is a general term for a set of objects that interact with each other (Webster,
1995, p. 25). A subsystem is defined as a set of classes (and possibly other subsystems) working together
to fulfil a set of responsibilities (Wirfs-Brock et al., 1990, p. 30).

Wrappers. Wrappers are interesting concepts; if one wants to connect a traditional functional application
with an object-oriented application, this can often be done using object-oriented wrappers (Martin &
Odell, 1992, p. 35). Because there are a lot of traditional functional applications and traditional functional
information systems in society today one often has to use wrappers. Wrapping is a technique where
traditional functional software gets a layer of object-oriented code around it, and then the traditional
functional software appears to be object-oriented (Ambler, 1998, p. 343). A wrapper is a collection of
one or more classes that encapsulates access to technology that is not object-oriented. The following
wrapping techniques are presented by Ambler (1998, pp. 348-357); C APIs, dynamic shared libraries,
screen scraping, peer-to-peer and CORBA (CORBA is actually predominantly used for other purposes).

EKONOMI OCH SAMHÄLLE

Skrifter utgivna vid Svenska handelshögskolan

Publications of the Swedish School of Economics
and Business Administration

123. DAVID BALLANTYNE: A Relationship Mediated Theory of Internal Marketing.
Helsingfors 2004.

124. KRISTINA HEINONEN: Time and Location as Customer Perceived Value Drivers.

Helsingfors 2004.

125. CHRISTINA NORDMAN: Understanding Customer Loyalty and Disloyalty – The

Effect of Loyalty-Supporting and -Repressing Factors. Helsingfors 2004.

126. MATTS ROSENBERG: Essays on Stock Option Compensation and the Role of

Incentives and Risk. Helsingfors 2004.

127. BENJAMIN MAURY: Essays on the Costs and Benefits of Large Shareholders in

Corporate Governance. Helsingfors 2004.

128. HONGZHU LI: Conditional Moments in Asset Pricing. Helsingfors 2004.

129. MIREL LEINO: Value Creation in Professional Service Processes. Propositions for

Understanding Financial Value from a Customer Perspective. Helsingfors 2004.

130. MARKO S. MAUKONEN: Three Essays on the Volatility of Finnish Stock

Returns. Helsingfors 2004.

131. JAN ANTELL: Essays on the Linkages between Financial Markets, and Risk

Asymmetries. Helsingfors 2004.

132. HELENA ÅKERLUND: Fading Customer Relationships. Helsingfors 2004.

133. KIM SKÅTAR: Faktorer som initierar och påverkar prat i långsiktiga relationer.

Factors that Initiate and Influence Word of Mouth in Long-Term Relationships.
English Summary. Helsingfors 2004.

134. ROBERT WENDELIN: The Nature and Change of Bonds in Industrial Business

Relationships. Helsingfors 2004.

135. LI LI: Knowledge Transfer within Western Multinationals’ Subsidiary Units in

China and Finland. The Impact of Headquarter Control Mechanisms, Subsidiary
Location and Social Capital. Helsingfors 2004.

136. MINNA HIILLOS: Personnel Managers and Crisis Situations – Emotion-Handling
Strategies. Helsingfors 2004.

137. ÅKE FINNE: Hur den aktiva kunden konstruerar budskap. Ett synsätt inom

relationskommunikation. How the Active Consumer Constructs Messages. A
Relationship Communication Perspective. English Summary. Helsingfors 2004.

138. MARTIN SEPPÄLÄ: A Model for Creating Strategic Alliances. A Study of Inter-

Firm Cooperation in the North European ICT Sector. Helsingfors 2004.

139. HANNELE KAUPPINEN: Colours as Non-Verbal Signs on Packages. Helsingfors

2004.

140. TEEMU KOKKO: Offering Development in the Restaurant Sector - A Comparison

between Customer Perceptions and Management Beliefs. Helsingfors 2005.

141. BERNARD BEN SITA: Essays on the Role of Time in Price Discovery. Helsingfors

2005.

142. MARTIN FOUGÈRE: Sensemaking in the Third Space – Essays on French-Finnish

Bicultural Experiences in Organizations and Their Narratives. Helsingfors 2005.

143. PERNILLA GRIPENBERG: ICT and the Shaping of Society: Exploring Human –

ICT Relationships in Everyday Life. Helsingfors 2005.

144. TUA HALDIN-HERRGÅRD: Hur höra tyst kunskap? Utveckling av en metod för

studier av tyst kunnande. Helsingfors 2005.

145. SARI SALOJÄRVI: Increasing Knowledge Focus – a Means for Entrepreneurs to

Remain on a Growth Path. Essays on the Role and Nature of Knowledge
Management in Finnish SMEs. Helsingfors 2005.

146. MARJUT JYRKINEN: The Organisation of Policy Meets the Commercialisation of

Sex. Global Linkages, Policies, Technologies. Helsingfors 2005.

147. HENRI MÄNTTÄRI: Short-Term Price Behavior and the Effect of Foreign

Investors in Finnish Equity Markets. Helsingfors 2005.

148. MIA ÖRNDAHL: Stories of Survival. Knowledge Intensive Organisations and the

Finnish 1990s Recession. Helsingfors 2005.

149. OLGA KARAKOZOVA: Modelling and Forecasting Property Rents and Returns.

Helsingfors 2005.

150. TOMI HUSSI: Essays on Managing Knowledge and Work Related Wellbeing.

Helsingfors 2005.

