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On the Benefits of In-Flight System Identification
for Autonomous Airdrop Systems

Michael Ward∗ and Mark Costello†

Georgia Institute of Technology, Atlanta, Georgia 30332

and

Nathan Slegers‡

University of Alabama in Huntsville, Huntsville, Alabama 35899

A unique feature of airdrop systems is the inherent and large variability in flight dynamic characteristics. The

same physical article dropped on two different occasions will exhibit significantly different dynamic response. The

problem only becomes worse for different test articles. Control systems for autonomous airdrop systems explicitly or

implicitly assume knowledge of the flight dynamic characteristics in some way, shape, or form. A question facing

autonomous airdrop designers is whether to use precomputed dynamic characteristics inside the control law, or to

compute the needed flight dynamic characteristics in-flight and subsequently employ them in the control law. This

paper establishes conditions when in-flight identified characteristics, with a focus on the turn rate dynamics, should

be used, and when it is better to use precomputed results. It is shown that with expected levels of system variability,

sensor noise, and atmospheric wind, in-flight identification generally produces significantly more accurate dynamic

behavior of the lateral dynamics than a precomputed model of the nominal system, even when the in-flight

identification is performedwith highly inaccurate sensor data. The only exception to this rule observed in this work is

the situationwhere atmosphericwinds are high and adirect headingmeasurement is not available. In this situation, a

precomputed estimate of the time constant of the lateral dynamics is more accurate than an in-flight estimate. These

conclusions are reached though a comprehensive simulation study using a validated airdrop flight dynamic model

applied to both a small and large parafoil.

Nomenclature

A, B, C,
P, Q, R

= apparent mass and inertia coefficients

b = canopy span
CD;P = payload drag coefficient
CL;i, CD;i = lift and drag coefficients of the ith canopy

element
d = canopy arc radius
�I� = identity matrix
�IT � = total system inertia matrix
LAM,MAM,
NAM

= components of apparent mass moment in the
body reference frame

m = total system mass
p, q, r = angular velocity components expressed in the

body reference frame
�SBx � = skew symmetric cross product matrix for vector

x in body frame
�SB!� = skew symmetric cross product matrix for system

angular velocity
�SBcg;i� = skew symmetric cross product matrix for

distance vector from system center of gravity to
ith canopy element

�SBcg;M � = skew symmetric cross product matrix for
distance vector from system center of gravity to
apparent mass reference point

�SBcg;P� = skew symmetric cross product matrix for
distance vector from system center of gravity to
payload

SC, SP, Si = canopy, payload, and canopy element reference
areas

u, v, w = velocity components of system mass center
expressed in body frame

~ui, ~vi, ~wi = aerodynamic velocity components of ith canopy
element in ith canopy frame

V = projection of velocity vector on horizontal plane
V0 = projection of velocity vector on horizontal plane

in wind-fixed frame
Vw = wind vector
XA;i, YA;i,
ZA;i

= components of aerodynamic force on ith canopy
element in body frame

XA;P, YA;P,
ZA;P

= components of aerodynamic force on payload in
body frame

XAM, YAM,
ZAM

= components of apparent mass force in body
frame

XW , YW , ZW = components of weight vector in body frame
x, y = north and east position
� = sideslip angle
� = canopy arc angular span
�L, �R = normalized left and right brake deflections
� = azimuthal rate time constant
�e = correlated measurement noise time constant
�, �,  = Euler roll, pitch, and yaw angles
� = azimuth angle (course over ground)
�0 = wind-relative azimuth angle (course in wind-

fixed frame)
_�0;ss = steady-state wind-relative azimuthal rate

w = wind vector heading angle

I. Introduction

AUTONOMOUS guided parafoils are an attractive option for
payload delivery due to their low weight and packing volume

and their ability to penetrate winds and maneuver to achieve high
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placement accuracy. These systems require an onboard guidance,
navigation, and control system to generate and track a desired path to
the target. Either directly or indirectly, current autonomous airdrop
system control laws contain an embedded model of the flight
dynamics that is loaded into the automatic guidance unit (AGU)
before each flight [1–8]. In the case of model predictive control, the
controller contains the actual dynamic model, but in the more
traditional control schemes the model is embedded in the form of the
preselected control gains and logic gates. For control system design
purposes, a flight dynamic model is typically created from analytical
modeling or a best fit to flight data [9–12]. A unique feature of
parafoil and payload aircraft is the high degree of variability of the
basic flight dynamics from drop to drop, particularly the control
response. Parafoil canopies made to the same specifications will
exhibit some variation in canopy and rigging geometry, and the
weight and geometry of the payload will change from drop to drop.
Furthermore, airdrop systems are susceptible to preflight program-
ming errors (such as specifying an incorrect payload weight or
canopy), rigging errors (such as control line or riser adjustment), and
deployment malfunctions (such as partially inflated or torn canopies
and twisted rigging lines). Even with no apparent malfunctions, the
same parafoil and payload system will often tend to exhibit a
significantly different control bias with every drop. This means that
the nominal or averagemodel will differ substantially from the actual
flight dynamics, and this can induce substantial degradations in path
tracking ability and subsequently landing accuracy.

A solution to the above problem is to identify the needed dynamic
and control characteristics in-flight using a system identification
algorithm. A significant literature database on parafoil and payload
aircraft system identification has been reported including estimation
of flight dynamicmodels and atmospheric wind velocity.Whilemost
of this work has focused on batch processing, some work is directed
toward in-flight estimation [1,2,5,6]. The key quantities to estimate
for autonomous parafoil and payload aircraft are the atmospheric
wind velocity vector and the lateral control response. Atmospheric
wind estimation is obtained by subtracting an estimate of the wind-
relative velocity vector from the observed ground track velocity
[1–5]. Airspeed of the airdrop system is assumed known from a
preflight analysis. Preflight models include a constant assumed
airspeed [5], airspeed determined from a constant reference dynamic
pressure [13], and airspeed determined from a constant reference
glide slope and measured sink rate [6]. Jann developed a nonlinear
filter for simultaneous estimation of the wind and airspeed using
Global Positioning System (GPS) data [5], though the effectiveness
of the filter in estimating airspeed is not mentioned specifically.
Calise and Preston pointed out that it is simple to obtain an airspeed
estimate from GPS data by flying a complete circle, though they do
not perform this maneuver in every flight [2]. Beyond wind and
airspeed determination, transient and steady-state lateral control
characteristics are estimated. Calise and Preston developed an
adaptive stability augmentation system for guided parafoils and
demonstrated the effectiveness of the approach in simulation [1,2].
Their approach identifies a set of reference dynamics for a particular
system and then applies an adaptive correction to account for flight-
to-flight variability in the system dynamics. This approach requires
high quality measurements and has led them to pursue a control
scheme based on bank angle feedback using a GPS/inertial
measurement unit combination rather than traditional heading angle/
heading rate feedback.

If the system identification task is performed in-flight, the
controller can be designed online so that it is always tuned to the
actual flight dynamics. While this is advantageous, it is not without
problems. Any system identification scheme requires measurement
of appropriate control inputs and response outputs to estimate air
vehicle properties. While autonomous airdrop systems already
incorporate a sensor suite for feedback control, the sensor suite
required for system identification requires more accurate measure-
ment of more vehicle states than the sensor suite required for flight
control. Also, errors associated with sensors can be sufficiently large
to render estimation of dynamic characteristics inaccurate. On the
other hand, dynamic characteristics generated before flight from

analysis and prior flight testing do not have sensor requirements, but
are not capable of adapting to the peculiar dynamics of each dropped
item. The purpose of the current article is to explore the tradeoff
between precomputed and preloaded dynamic characteristics versus
in-flight estimated characteristics. The approach presented here is
meant to be generally applicable in that it does not depend on specific
guidance, navigation, and control strategies.

Toward this end, a straightforward and robust prototype procedure
to perform the entire system identification task in-flight is defined.
The procedure is based on using an extended Kalman filter observer
to estimate the wind-relative azimuth angle and rate in-flight. The
process is demonstrated with simulatedmeasurements for aGPS unit
operating alone and a GPS unit and heading measurement combina-
tion. Windows of estimated azimuthal rate data from a few key flight
segments are then used to generate a model of the lateral dynamics.
To compare the differences between use of precomputed models and
in-flight estimatedmodels, a 6 degrees of freedom, nonlinear parafoil
and payloadflight dynamicmodel is employed.Appropriate levels of
uncertainty are injected into the dynamic model to represent drop to
drop variability in the basic vehicle dynamics and appropriate levels
of atmospheric wind are also injected into the simulation. Sensor
noise and bias are added to the simulation data that is fed into the in-
flight estimation algorithm to simulate low-cost, commercially avail-
able sensors. Results are generated for two exemplar systems,
namely, a microparafoil flight tested by Slegers et al. [14] and the
Airborne Systems 30k Megafly [15]. These systems have a total
weight of approximately 5 and 30,000 lb, respectively. These
systemswere chosen to demonstrate that the in-flight system identifi-
cation procedure is applicable to airdrop systems of any scale with
minimal modifications. Example results are given to demonstrate the
ability of the observer to estimate the wind and wind-relative
dynamics. A Monte Carlo simulation is performed to evaluate the
benefits of in-flight system identification with expected levels of
sensor noise and variation in the parafoil and payload system.Results
are presented in terms of the quality of the estimated characteristics
rather than in terms of overall performance measures such as landing
accuracy to preserve the separation of the methods described here
from any particular guidance, navigation, and control strategies. The
sensitivity of these results to changes in the assumed levels of sensor
noise, system variation, and wind levels is studied to enable state-
ments to be made regarding when it is most appropriate to use
precomputed dynamic characteristics andwhen it ismost appropriate
to use in-flight estimation of dynamic characteristics.

II. Parafoil Dynamic Simulation Model

This section describes the nonlinear simulation model of the
parafoil and payload system used to generate the simulated measure-
ments that serve as inputs to the system identification process. The
simulation model described here is not part of the linear dynamic
model identified in-flight.
The combined system of the parafoil canopy and the payload are

modeled with 6 degrees of freedom, including three inertial position
components of the total systemmass center as well as the three Euler
orientation angles.With the exceptionofmovable parafoil brakes, the
parafoil canopy is considered to be a fixed shape. Canopy aerodyn-
amics are modeled by splitting the canopy into five discrete elements
as shown in Fig. 1 and determining the lift and drag on each element
basedon the local angle of attack.This aerodynamicmodel is a simple
way of simulating a parafoil canopy. The lift and drag coefficients are
not varied across the span. The lift and drag coefficients are set to
match steady-state longitudinal data from flight tests, and the canopy
arc is matched to the actual system geometries so that the orientation
of the panels produces the aerodynamic moments and side force.

The kinematic equations for the parafoil and payload system are
provided in Eqs. (1) and (2). A shorthand notation for trigonometric
functions is employed where sin�x� � sx, cos�x� � cx, and
tan�x� � tx.
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The matrix �TIB� represents the transformation matrix from the
inertial reference frame to the body reference frame
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The dynamic equations are formed by summing forces and
moments about the system center of gravity, both in the body
reference frame, and equating to the time derivative of linear and
angular momentum, respectively
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S is the skew symmetric operator, used to express the cross product
of two vectors as a matrix multiplication of the components of the
vectors in a specified frame. For example, if thevectorsa,b, andc are
expressed in terms of their components in frame B
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Forces appearing in Eq. (4) have contributions from weight,
aerodynamic loads on the canopy and payload, and apparent mass.
The weight contribution is given in Eq. (7)

8

<

:

XW
YW
ZW

9

=

;

�mg

8

<

:

�s�
s�c�
c�c�

9

=

;

(7)

Defining the transformation from the body frame to the frame
attached to the ith element of the canopy as �TB;i� and defining the

wind velocity components in the inertial frame as fVW;x; VW;y;
VW;zgT , the aerodynamic velocity of the ith element is given by
Eq. (8). The aerodynamic velocity of the payload is givenby the same
equation with the body frame to element transformation equal to the
identity matrix
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The aerodynamic forces on the canopy elements are expressed in
terms of lift and drag coefficients, which are functions of the angle of
attack of each element �i � tan�1� ~wi= ~ui� and the brake deflections�i
if a brake spans the element, as shown in Eqs. (9) and (10).
Equation (11) defines the canopy aerodynamic forces in the body
reference frame

CL;i � CL0;i � CL�;i�i � CL�3;i�
3
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The aerodynamic force on the payload consists entirely of profile
drag and is given by Eq. (12)
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Parafoils with small mass to volume ratios can experience large
forces and moments from accelerating fluid. These are termed
apparent mass effects. A precise accounting of these effects can
substantially complicate the dynamic equations [14], but it is
possible to obtain a good approximation of the effects with only a few
of the terms. The approximate forms used for the apparent mass
forces and moments are given in Eqs. (13) and (14). Parametric
approximations given by Lissaman and Brown [16] are used to
determine the apparent mass and inertia coefficients in Eq. (15)
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Fig. 1 Canopy schematic.
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The dynamic equations of motion are found by substituting all
forces and moments into Eqs. (4) and (5), resulting in the matrix
solution in Eqs. (16–18)
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Equation (16) represents a set of coupled, nonlinear differential
equations. Thematrix on the left hand side of Eq. (16) is a function of
themass and geometry properties of the parafoil. Thegeometry of the
parafoil is assumed to be fixed, so this matrix is constant and only
needs to be inverted once at the beginning of the simulation. With
specified initial conditions, the states can be numerically integrated
forward in time.

III. In-Flight System Identification

A. Overview of Process

With current autonomous parafoil and payload systems, typically
only lateral control is used to guide the parafoil to the target [1–8].
This reduces the parafoil trajectory planning problem to generating a
desired trajectory in the horizontal plane in the form of heading
commands, which in turn reduces the control problem to tracking a
desired heading with a single lateral control input. In the presence of
wind, it is normally desirable to generate the trajectory in a wind-
relative reference frame so that the commanded heading to be tracked
is actually the wind-relative azimuth angle �0. This quantity
corresponds to the Euler yaw angle  , when the sideslip is zero, as
shown in Fig. 2. This means that the autonomous control law is
designed based on an estimate of the wind-relative azimuthal rate
dynamics. Determination of these dynamics relies on the solution of
the vector diagram in Fig. 2. The forward airspeed component V0 is
assumed to remain constant during each flight and will be identified
in-flight. If a heading measurement is available, the sideslip is
neglected ( 
 �0), so that the vector diagram in Fig. 2 is fully
defined. Without a heading measurement, the wind-relative velocity
vector can be determined over a series of measurements by assuming
that the wind vector changes slowly, similar to Jann [5], as well as
Carter et al. [6].

The overall flight procedure requires four key flight segments:
1) zero control input, 2) track a heading command, 3) complete a
circle in one direction, and 4) turn briefly in the other direction. The

flight segments can be executed separately at any time during the
flight and in any order. After the flight segments have been
completed, the in-flight system identification process is executed as
follows: 1) estimate the forward airspeed and initialize the wind
estimate, 2) generate a stream of wind-relative azimuthal rate data for
key flight segments, 3) derive a mapping of control input to steady-
state turn rate from the azimuthal rate data, and 4) identify the turn
rate dynamics from azimuthal rate data.

The first two flight segments correspond to the typical initial
segments of a guided parafoil drop (allow the system to reach an
initial equilibrium then point at somewaypoint), and they are used to
estimate the control bias. The circling segment is used to estimate the
forward airspeed, and the circling segment combined with the last
segment constitutes a brake doublet, which is used to estimate the
turn rate dynamics.

B. Estimating Forward Airspeed

The circling segment of the fight procedure is flown until it is
apparent from the ground track azimuth measured with GPS that at
least one complete circle has been flown. The ground track azimuth
data is then processed to precisely estimate the beginning and end of a
single complete circle. The instantsmarking the beginning and end of
the complete circle are denoted as i and f, respectively. Equation (19)
is then used to estimate the forward airspeed, where themeanvalue is
computed over the entire set of measurements for the complete circle
(i � k � j). The drift in the system position over the complete circle
is also used to initialize the wind estimates

V0 �mean
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C. State Estimation

Thegoal of the state estimation process is to produce an estimate of
thewind and a streamofwind-relative azimuthal rate data _�0�t�, from
which the system dynamics can be identified. The observer is an
extended Kalman filter [17]. The system state vector xk and
measurement vector zk are considered to be nonlinear functions

�

xk�1 � fk�xk� � �Nk�xk��nk
zk � gk�xk� � wk

(20)

wherenk is the process noise vector, andwk is themeasurement noise
vector, both of which are assumed to be zero-mean Gaussian white
noise sequences.

The wind vector and the aerodynamic velocity vector are defined
as states in the observer xk, so the state update equations fk�xk� are
defined by the vector geometry that relates these states to the
measured ground track velocity vector (Fig. 2). These equations
assume that the wind vector, airspeed, and wind-relative azimuthal
rate are all constants that are perturbed by a process noise vector nk
consisting of independent perturbations to the north and south wind
components, airspeed, and azimuthal rate (�Vwx, �Vwy, �V0, and � _�0,

respectively). The observer state update equations are given in
Eq. (21)

Fig. 2 Decomposing measured velocity vector (top view).
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There are two measurement cases considered, GPS only and GPS
with a heading measurement. The measurement vector from GPS
(zk) consists of north and east position and north and east velocity
components, and the heading measurement is assumed to represent
the wind-relative azimuth (zero sideslip assumption). To make the
process more robust to measurement error, biases in the velocity
vector and heading angle measurements are also estimated by
appending them to the state vector [zb in Eq. (21), where zb �
fzb _x; zb _ygT for GPS only and zb � fzb _x; zb _y; zb gT for GPS with a

heading measurement]. The measurement vector is shown in
Eq. (22); the last entry z is not present for the GPS only case
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D. Steady-State Turn Rate

Themapping of control input to steady-state turn rate is performed
separately from the estimation of the transient characteristics of the
lateral dynamics. The idea is that there is a deterministic mapping
from each left and right brake position to steady-state turn rate, and
while this mapping is not generally linear [10,18] the dynamics that
describe how the turn rate reaches the given steady-state valuemaybe
approximated as linear. The current work assumes that the control

deflection is limited to a region where the steady-state turn rate is
approximately proportional to control deflection, so the control to
turn rate mapping need only account for control bias and asymmetric
control sensitivity. Four points of steady-state turn rate data
corresponding to the four key flight segments are computed from the
azimuthal rate estimates produced by the observer. These four points
are used to generate the linear mapping from control input to steady-
state turn rate as shown in Fig. 3.

E. Turn Rate Dynamics

The open-loopwind-relative azimuthal rate dynamics are approxi-
mated as a first order filter of the steady-state turn rate

_� 0;k�1 � _�0;k � � _�0;ss � _�0;k�=� (23)

This leaves only the azimuthal rate time constant � to be estimated
from the data stream produced by the observer. The assumption that
the turning dynamics can be approximated as a first order systemwas
made based on the authors’ experience flight testing small parafoils.
Nonlinear simulation results for the example systems also appear to
be approximately first order, and there is at least one example in the
literature where the turning dynamics from flight-test data of a
medium sized (250 lb) system appeared to be reasonably
approximated as first order [19]. However, second-order turning
dynamics have been observed for some systems in-flight test [3,20].
The approach described in the present work can be applied to these
systems bymodifying Eq. (23) to account for second-order dynamics
so that two dynamic parameters (e.g., natural frequency and damping
ratio) would need to be identified rather than one. Another possibility
is that the rate limit on the brake deflection may be such that the
lateral dynamics are never excited, so that the system is always flying
at the steady-state turn rate [18,21]. In this case, only the mapping of
control input to steady-state turn rate would need to be identified.

The time constant is determined from the estimated azimuthal rate
data by aGauss–Newton optimizer tominimize the error between the
observed azimuthal rate and the azimuthal rate predicted with
Eq. (23). The optimization process was found to be robust in the
presence of large disturbances during the system identification
maneuvers. Also, while the use of an optimizer in system identifi-
cation is normally one of the more computationally intensive
approaches, the current problem can be solved very quickly because
there is only one parameter, the objective function is quickly
determined by propagating Eq. (23), and the problem is well
conditioned so that it normally converges in less than five iterations.

IV. Simulation Parameters

A. Example Parafoil and Payload System Parameters

To investigate the characteristics of the in-flight estimation
procedure, a large and a small parafoil system were considered
(Fig. 4). These two systems span the entire range of autonomous
airdrop systems. The physical and aerodynamic parameters for both
parafoils can be found in Tables 1 and 2, while Fig. 5 defines some of
the geometry parameters used in the tables. Parameters for both
parafoils were chosen to match flight-test data [4,14]. The values for
these parameters represent a nominal model of each vehicle. A
significant amount of variability in theflight dynamics fromflight-to-
flightwas observed in theflight-test data. Estimates for these levels of
uncertainty form the basis for theMonte Carlo simulations discussed
below.

The canopy brakes are assumed to extend across both outer panels
for the Megafly (panels 1, 2, 4, and 5 in Fig. 1) and across only the
outermost panels for the microparafoil. The control sensitivities
(CL�;i andCD�;i) are normalized so that a control input of 1 produces a
5 deg =s turn rate for the Megafly and a 20 deg =s turn rate for the
microparafoil. The Megafly turn rate limit was chosen based on the
turn rate limit specified in [4]. The microparafoil turn rate limit was
chosen to avoid a nonlinear spiraling behavior at high brake
deflections. Rate limits are imposed on the brake deflections so that itFig. 3 Mapping left and right brake to steady-state turn rate.



takes 5 s to reach full brake deflection for theMegafly, and 1 s to reach
full brake deflection for the microparafoil.

B. Simulated Measurement Parameters

Measurements from a GPS unit are assumed to be available for all
flights, and a heading measurement is added for some flights. GPS
sensor errors aremodeled as exponentially correlated Gaussian noise
and heading sensor error is modeled asGaussianwhite noise [22,23].
In addition, each sensor is given a bias that is constant over eachflight
and follows a Gaussian distribution over a series of flights. The form
of themeasurement signals is given in Eq. (24), where yk is the actual
value, zk is themeasured value,nk is themeasurement noise, and �B is
the measurement bias. Sensor parameters were selected to represent
low-cost, commercially available sensors. The position measure-
ments are given a standard deviation of 2 m for the noise, a standard
deviation of 1m for the bias, and a time constant of 20 s. The velocity
measurements are given a standard deviation of 0:2 m=s the noise, a
standard deviation of 0:1 m=s for the bias, and a time constant of 1 s.
The heading measurement noise is given a standard deviation of
2 deg and the bias is given a standard deviation of 10 deg. The
sampling interval�t is set for a 4Hz update rate for all measurements
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The observer requires estimates of the variances of the process
noise and measurement noise components. The measurement noise
variances are set to the actual values for each measurement. For the
process noise, standard deviations of 1 m=s for the aerodynamic
velocity perturbation �V0 and 0:001 rad=s for the azimuthal rate
perturbation � _�0 are assumed. If only GPS measurements are
available, the wind perturbations ��Vwx; �Vwy� are assumed to have

standard deviations of 0:0001 m=s, but if a heading measurement is
added, this value is increased to 0:01 m=s. The standard deviations
for the GPS velocity measurement biases (�B _x, �B _y) are set to
1E � 5 m=s, and the standard deviation for the heading measure-
ment bias is set to 1E � 6 rad.

C. Wind Model

A simplified Dryden turbulence model [24] is used to simulate
atmospheric winds with the wind magnitude and direction
represented as exponentially correlated Gaussian random variables.
The standard deviation of the wind magnitude is assumed to be 10%
of the mean wind magnitude, and the standard deviation of the wind
direction is assumed to be 10 deg. The time constants for the wind
magnitude and direction were both chosen to be 10 s. Vertical winds
are not simulated.

Fig. 4 Megafly and microparafoil systems.

Table 1 Megafly and microparafoil physical parameters

Parameter Megafly Microparafoil Units

d 30 1.2 m
� 120 70 deg
b 51.8 1.37 m
c 16.3 0.64 m
SC 840 0.93 m2

SP 9.0 0.033 m2

Total mass 13,605 2.37 kg
IXX 361,650 0.42 kgm2

IYY 328,200 0.40 kgm2

IZZ 131,400 0.05 kgm2

IXZ �2; 283 0.03 kgm2

A 293 0.01 kg
B 3,133 0.05 kg
C 9,858 0.40 kg
P 78,960 0.008 kgm2

Q 102,560 0.007 kgm2

R 84,590 0.002 kgm2

Table 2 Megafly and microparafoil

aerodynamic parameters

Coefficient Megafly Microparafoil

CL0;i 0.45 0.30
CL�;i 2.2 0.723
CL�3;i �1:0 �0:35
CL�;i 0.125 0.0065
CD0;i 0.15 0.12
CD�2;i 1.5 0.90
CD�;i 0.125 0.010
CD;P 0.8 0.3



V. Example Trajectory Predictions

Figure 6 shows 10 s of a simulated trajectory of the microparafoil
with a 50% step left brake input. Figure 6a represents the nominal
simulation model, and Fig. 6b represents a modified model with a
15% right control bias and the left brake effectiveness reduced by
15%. The fixed linear model trajectory was generated from a linear

model of the azimuthal rate dynamics that was tuned to match the
nominal simulation model. This represents the fixed model that
would normally be derived from an initial set of flight tests and
loaded on to the flight computer before each drop. The other two
trajectories were generated using azimuthal rate models derivedwith
the in-flight system identification procedure with and without the
specified sensor errors.

Figure 6 demonstrates the tradeoff with in-flight identification.
The in-flight identification process uses data that is corrupted by
sensor noise and wind disturbances, so a perfect realization of the
system dynamics cannot be achieved. If there is very little variability
in the parafoil dynamics, then a precomputed model of the nominal
system will always be a good representation, but if the level of
variability is high enough relative to the sensor errors and wind
disturbances, then a better representation will be obtained with a
dynamic model identified in-flight. A challenge for autonomous
airdrop system designers is to understand when it is preferable to
perform system identification in-flight and when a precomputed
model should be used.

VI. Example Wind and Wind-Relative
Dynamics Estimation

The turn rate dynamics during a 50% left brake step input for the
Megafly and microparafoil simulation models are shown in Fig. 7.
There is no wind in these cases, so the azimuthal rate corresponds to
the wind-relative azimuthal rate. The azimuthal rate response of the
Megafly and microparafoil simulation models both appear to be

Fig. 5 Geometry parameters.

a) Nominal simulation model
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Fig. 6 Microparafoil example trajectories with a) nominal simulation model, and b) with 15% right control bias and left brake effectiveness reduced

by 15%.



approximately first order. However, the simulation models have very
different sideslip dynamics. The microparafoil turns with very little
sideslip, but the tendency of the Megafly to turn with a significant
sideslip causes the heading rate to initially lead the azimuthal rate.

Wind-relative azimuthal rate estimates obtained from the Kalman
filter observer during a left brake step input using the Megafly and
microparafoil simulation models are shown in Fig. 8. In both cases,
the mean wind magnitude is 10 m=s. The mean squared error for the
microparafoil is reduced by 37% with the addition of the heading
sensor, but the error for the Megafly is only reduced by 15%with the
addition of the heading sensor. It is expected that the benefit from the
heading sensor is reduced for the Megafly because of the increased
amount of sideslip compared with the microparafoil, as shown in
Fig. 7. A second factor contributing to the large reduction in
estimation error for the microparafoil is that the wind-relative
azimuthal rate estimation with GPS is very sensitive to the wind
estimate for themicroparafoil because the forward flight speed of the
microparafoil (�9 m=s) is close to the wind speed in this case, while
the forward speed of the Megafly (�20 m=s) is about double the
wind speed.

The associated wind estimates for these simulations are shown in
Figs. 9 and 10. Note that with GPS only, thewind estimate is a slowly
varying average magnitude and direction, while the addition of the
heading sensor provides a significant improvement in the wind
estimation for both the Megafly and the microparafoil.

VII. Monte Carlo Simulation Results

A. Results for Assumed Levels of Model Uncertainty, Sensor Noise,
and Wind

A Monte Carlo simulation was run to assess the benefits of
performing the system identification in-flight compared with using a
fixedmodel of the nominal system. Levels ofmodel uncertaintywere

selected based onflight-test experience.While every parameter listed
in Tables 1 and 2 has an associated uncertainty, the same overall
effects are achieved by varying a few key parameters. The wind
magnitude was set to vary from zero to the expected airspeed of each
system to cover the entire operational envelope. All of the random
variables in the Monte Carlo simulation were uniformly distributed
with the following ranges: 15% asymmetric control bias, 25%
left and right control sensitivities,25% payload weight, and5%
CL0 and CD0 for the entire canopy. The mean wind speed was varied
uniformly from 0–10 m=s for the microparafoil and from 0–20 m=s
for the Megafly. One hundred cases were run for each parafoil
system. All of the errors in the quantities estimated in-flight from the
simulatedmeasurement data are compared with the errors that would
results from the use of a fixed model that would normally be derived
from an initial set of flight tests and loaded on to the flight computer
before each drop. These fixed model errors also represent the
perturbations in each estimated quantity that are induced by the
assumed levels of model uncertainty.

Figures 11 and 12 show the error distributions for the estimated
time constant of the azimuthal rate dynamics for the Megafly and
microparafoil. Estimates using GPS only and using GPS in conjunc-
tion with a heading measurement are shown. The time constant error
is the difference between the estimated time constant and an optimal
time constant obtained by fitting the actual wind-relative azimuthal
rate data from the nonlinear simulation model. The values for the
time constant error are on the order of 20%. Figure 13 demonstrates
the effect of a 20% change in time constant on the turn rate response
to a step input. Comparison of this figure to the example azimuthal
rate estimates in Fig. 8, provides some qualitative insight in the
difficulties of in-flight estimation of dynamic parameters with typical
levels of sensor noise and turbulence. Figures 11 and 12 show that the
standard deviation of the time constant estimation error is reduced by
the addition of the heading measurement for both parafoils, but the
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Fig. 7 Megafly (part a) and microparafoil (part b) azimuthal and heading rate response.



effect on themean of the time constant error is different. There is a lag
associated with the filtered azimuthal rate estimate, so it is expected
that the estimated time constant would be generally higher than the
optimal value, resulting in a positive shift to the mean error. The
dramatic shift in the mean time constant error for the Megafly can be
explained by the sideslip behavior shown in Fig. 7. The tendency of
the heading rate to initially lead the azimuthal rate for the Megafly
causes the wind-relative azimuthal rate estimate to appear to respond
artificially quickly to control input, which results in lower estimates

for the time constant when the heading sensor is added. The
microparafoil turns with very little sideslip, so no shift in the time
constant error is observed when the heading sensor is added.

Figures 14 and 15 show the error distributions for the in-flight
control bias and airspeed estimations. The techniques for estimating
the control bias and airspeed do not depend on the heading
measurement, so the results are the same for both sensor cases. Note
that the airspeed estimation error is skewed for the Megafly. This is
because the airspeed is estimated during a turn, and the Megafly

0 5 10 15 20 25 30
−15

−10

−5

0

5

Time (s)

A
zi

m
u
th

al
 R

at
e 

(d
eg

/s
)

 

Actual

Estimated (GPS)

Estimated (GPS+psi)

0 5 10 15 20 25 30
−8

−6

−4

−2

0

2

4

Time (s)

A
zi

m
u
th

al
 R

at
e 

(d
eg

/s
)

 

Actual

Estimated (GPS)

Estimated (GPS+psi)

a) Megafly

b) Microparafoil

Fig. 8 Megafly (part a) and microparafoil (part b) example wind-relative azimuthal rate estimation.
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system exhibits a tendency to slow down while turning due to the
large span of the canopy brakes. The microparafoil showed no such
tendency.

Figure 16 shows the steady-state turn rate response estimation
error. From each Monte Carlo run, an estimation of the steady-state
turn rate vs control input is obtained. By subtracting the actual
steady-state turn rate vs control input produced by the simulation
model for that particular run, a discrete value of turn rate error at each
control input is obtained. Compiling the results for all of the Monte
Carlo runs, these discrete values become distributions of turn rate
estimation error at each control input. By excluding the upper and
lower 5% of these distributions, upper and lower bounds enclosing
90% of the cases at each control input are determined. These bounds
are plotted in Fig. 16. The average widths of each of these 90% turn
rate error bounds are reported in the last row of Table 3 as mean 90%
turn rate error bound. The results show that the addition of a heading
sensor provides a slight improvement in turn rate estimation, but
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Fig. 10 Microparafoil example wind estimation.
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Fig. 11 Monte Carlo results: Megafly time constant error.
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Fig. 12 Monte Carlo results: microparafoil time constant error.
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overall the estimation of steady-state turn rate is robust for both
sensor cases.

All of the results from theMonte Carlo simulation are summarized
in Table 3. It is clearly beneficial to estimate all of the steady-state
characteristics of the system (airspeed, control bias, and turn rate) in-
flight. In-flight estimation of the airspeed for the microparafoil
significantly reduces the airspeed error, and for the Megafly the

airspeed error is cut in half. Control bias error is reduced bymore than
a factor of 3 for both parafoils. Turn rate error is reduced by a factor of
6 for themicroparafoil, and bymore than a factor of 4 for theMegafly.
The estimation of the azimuthal time constant in-flight with a
heading measurement produces similar standard deviations to the
fixed model, though there is a significant increase in the mean time
constant error. For the case where only GPS measurements are used,
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Fig. 14 Monte Carlo results: Megafly control bias and airspeed estimation error.

−10 −5 0 5 10
0

10

20

30

40

50

Control Bias Estimation Error (%)

N
o

. 
C

as
es

−10 −5 0 5 10 15
0

10

20

30

40

50

Flight Speed Estimation Error (%)

N
o

. 
C

as
es

Fig. 15 Monte Carlo results: microparafoil control bias and airspeed estimation error.
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in-flight estimation of the time constant results in larger errors than
the use of a fixedmodel. This indicates that in-flight estimation of the
time constant is not generally beneficial when only GPS measure-
ments are available.

B. Sensitivity to Levels of Model Uncertainty, Sensor Noise,

and Wind

An additional set of Monte Carlo simulations was run to
investigate the sensitivity of the results to changes in the assumed
levels of sensor error, model uncertainty, and wind levels. The model
uncertainty levels used in the first simulation were scaled from zero

(perfect knowledge of the system) to 1.5 times the given ranges. The
standard deviations for all of the sensor errors were scaled from zero
(perfect sensors) to 2 times the given levels. The microparafoil
simulation model was used for these runs. Cases were run with no
wind and with constant mean wind magnitudes of 5 m=s (�half
system airspeed) and 10 m=s (�equal to system airspeed). From the
results, the boundaries where the in-flight system identification and
the fixed model produce the same errors in the steady-state and
transient turn response were calculated as a function of the model
uncertainty and sensor error levels at the three different wind levels.
Figure 17 explains how these boundaries are plotted. With model
uncertainty on the y axis and sensor error on the x axis, the region
above and to the left of the boundaries represents the spacewhere the
model uncertainty is large enough and the sensor data is good enough
that it is better to perform the system identification in-flight as
opposed to using a fixed model of the flight dynamics. The actual
results are shown in Figs. 18 and 19.

Figure 18 shows that if there is any flight-to-flight variation in the
system at all, then it is better to estimate the steady-state
characteristics of the system in-flight. It also shows that with the
addition of a heading measurement, the in-flight estimation of the
steady-state characteristics is made more robust to large levels of
sensor noise. Figure 19 shows that when onlyGPSmeasurements are
available it is difficult to obtain a good estimation of the transient
response with moderate to high wind levels. The boundary for the
10 m=s wind case lies off the chart because it is better to use a fixed
model over the entire range of sensor error and model uncertainty
considered. For the results with the heading sensor included, the
boundaries run through the assumed levels of model uncertainty and
sensor errors, implying that it makes little difference if the time
constant is estimated in-flight or if a precomputed time constant is
used.

Table 3 Monte Carlo simulation resultsa

Microparafoil Megafly

Error description Fixed model GPS GPS�  Fixed model GPS GPS�  

Mean flight-test speed �0:2 1.1 �1:9 �3:1
Standard deviation flight-test speed 6.3 3.8 7.3 2.9
Mean control bias 0.0 0.0 0.0 0.0
Standard deviation control bias 6.8 2.1 7.1 2.1
Mean time constant �2:1 8.2 8.2 4.1 17.3 �6:3
Standard deviation time constant 5.6 9.5 5.0 6.5 13.9 9.8
Mean 90% turn rate error bound 33.1 5.7 5.0 36.4 8.8 7.3

aErrors are percentages.
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System identification relies on state estimates that are degraded by
atmospheric turbulence and sensor errors. The traditional scenario
when system identification is performed on the ground takes
advantage of the ability to estimate parameters over multiple
maneuvers andmultiple flights so that the effects of sensor errors and
turbulence are averaged out. The results presented here show that it is
always beneficial to estimate steady-state quantities in-flight with
reasonable levels of model uncertainty, sensor noise, and wind
because the estimation is performed by averaging over a series of
measurements. On the other hand, transient characteristics estimated
in-flight over the small windows of data during maneuvers are much
more sensitive to sensor noise and turbulence, and the results show
that it is not always beneficial to estimate these transient
characteristics in-flight. In other words, for transient characteristics,
the degradation in the quality of in-flight estimates from sensor noise
and turbulence is comparable to the degradation in the quality of
fixed estimates from model uncertainty.

VIII. Conclusions

Dynamic characteristics of airdrop systems vary substantially
from drop to drop, more than most other air vehicles. This paper
addresses the question of whether it is more appropriate to use
precomputed dynamic characteristics of an airdrop system inside an
autonomous control law or whether it is better to estimate these
characteristics in-flight. A simulation study was performed using a 6
degrees of freedom nonlinear parafoil and payload simulation with
an associated estimation algorithm. Simulation results with typical
levels of sensor errors and model uncertainty demonstrate that the
system identification procedure provides significantly better
estimates of the system dynamics than a precomputed, nominal
model. Errors in predicted steady-state turn rate were reduced by a
factor of more than 4 for the Megafly and by a factor of 6 for the
microparafoil. It was found by varying the assumed levels of sensor
errors, model uncertainty, and wind that the in-flight identification of
the steady-state characteristics of airspeed, control bias, and turn rate
behavior is always beneficial. This is because steady-state quantities
are estimated by averaging over a series of measurements so that the
detrimental effects of sensor noise and turbulence are reduced. In
contrast, the in-flight identification of the azimuthal rate time
constant was found to produce results that were comparable to a
fixed, nominal model if a heading measurement is available, and the
in-flight identification results when using only GPSwere not as good
as the fixedmodel for moderate to highwind levels. This result stems
from the more general conclusion that with typical levels of sensor
noise and atmospheric turbulence it is very difficult to obtain reliable
azimuthal rate estimates for an airdrop system during a maneuver
without a heading estimate. This suggests that the success of any

adaptive control scheme for airdrop systems is critically dependent
on the incorporation of high quality heading estimates.
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