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Abstract

Let 9 be a complex semisimple Lie algebra. In ([8], Prop. 12) Duflo
gave a remarkable sum formula interrelating induced ideals. The main
result of this paper provides a natural generalization of this formula
and more precisely gives a resolution for certain primitive quotients
of the enveloping algebra U (g). The proof has three distinct steps.
One, the extension of the Bernstein-Gelfand-Gelfand (in short,
B.G.G.) resolution of a simple finite dimensional U(g) module to
certain simple highest weight modules. Two, the description of the
so-called t-finite part of the space of homomorphisms of any one
Verma module to any other. Three, the proof of exactness of a certain
functor. The last can be viewed as a non-trivial generalization of the fact
that a Verma module with dominant highest weight is projective in the
so-called C category. A by-product gives some results on a problem of
Kostant relating U (g) to the t-finite part of the space of endomorphisms
of a simple highest weight module.

1. Preliminaries

1.1: Let g be a complex semisimple Lie algebra,  a Cartan subal-
gebra for 8, R the set of non-zero roots, R+ C R a system of positive
roots, B C R+ the set of simple roots, p the half sum of the positive
roots, sa E Aut(t)*) the reflection corresponding to the root « E R, and
W the group generated by the sa : a E B. Let Xa be the element of a

0010-437X/8104107-25$00.20/0
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Chevalley basis for g corresponding to the root a and set

1.2: For each À E *, set RA = {03B1 E R : 2(À, a)/(a, a ) E Z} (which is
itself a root system) and R1 = R. n R+, with BA C R1 the correspond-
ing set of simple roots. Call À regular (resp. dominant) if (À, 03B1) ~ 0
(resp. (03BB,03B1)~0) for all 03B1 ~ R+. For each B’ ~ B03BB, let WB, be the

subgroup of W generated by the sa : a E B’ and wB- the largest
element of WB, with respect to its Bruhat order s (as defined in [7],
7.7.3). If B’ = B03BB we write WB’ = WA, wB- = w,. Let M(À) denote the
Verma module with highest weight À-p associated to the quadruplet g,
, B, À (see [7], 7.1.4), M(À) the unique maximal submodule of M(À),
and set L(À)=M(À)/M(À), J(À) = Ann L(À). For each  module V
we set VA = {03BD E V : Hv = (À, H)v, for all H E }. Let e03BB denote the
canonical generator of M(À) (which has weight À-p). Set R003BB =
{03B1 ~ R : (03B1, 03BB) = 0}.

1.3: Let u ~  (resp. u H ’u) denote the involutory antiautomor-
phism of U (g) defined by  = -X : X ~ g (resp. tX03B1 = X-03B1 : 03B1 ~ R,
tH = H : H E ). Identify U : = U (g) Q9 U (g) canonically with U (g x g).
Define j : g ~ q x () through j(X) = (X, -tX), set f = j(g), so U() may
be regarded as a subalgebra of U. Let t’ denote the set of equivalence
classes of finite dimensional irreducible representations of f. For each
locally finite f module L and each u E t’, we let Lu denote the

isotypical component of type 03C3 of L. Let :U()~U(g) be the C
algebra isomorphism sending (- tX, X) to X for every X E g. If R -;:S
is a ring homomorphism and M is a left S module, we let M~ denote
the left R module which consists of the underlying abelian group imi
of M together with the operation (r, m) H ~(r) · m of R on IMI.

1.4: Let 0 denote the category of finitely generated U(g) modules
which are  semisimple and b locally finite (see [1-3, 6]). Each M E
0bÙ has finite length [2]. This category has enough projectives and so
the extension groups Extk(· , ·) relative to C are thereby defined. Let
Z(g) denote the centre of U(g). Then Max Z(g) is isomorphic to */W
such that for each À E *,  : = W03BB corresponds to the elementz(q) ~
J(A) of Max Z(8). Let 6g denote the subcategory of C of all modules
annihilated by a power of this maximal ideal. Each M EE Ob 0 admits a
primary decomposition and we denote by pi : 0b Ù - 0b  the projection
onto the primary component defined by À. It is an exact functor on 0.

1.5: Given M, N e Ob 0, consider Homc(M, N) (resp. (M Q9 N)*) as
a U module through ((a ~ b) · x)m = (tx)m (resp. ((a~b)·y,
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m~n ) = (y, m ~ n)) where a, b E U (g), m ~ M, n E N, x E

Hom(M, N), yE(M(g)N)*. We remark that (M(-À)0M(-IL»* is
isomorphic to the 9  g module co-induced from the b x b module

C03BB+03C1,03BC+03C1. Let L(M, N) (resp. L(M 0 N)*) denote the set of all t-finite
elements of Hom(M, N) (resp. (M 0 N)*) which we remark is again a
U module. For À, IL E *, we set L(À, IL) = L(M( - À) 0 M (- li»*.

1.6: Let E be a finite dimensional U (g) module and given M E Ob 0,
consider E ~ M as a U (g) module through the diagonal action. One has
E ~ M E 0b  and the functor M H E 0 M is exact. Again one has the
natural isomorphisms

Homg(E, Homc(M, N))  Homg(E ~ M, N)  HomA(M, E* Q9 N).

The latter gives on taking projective resolutions natural isomorphisms

1.7: Let X denote the category of all U modules which satisfy the
following properties. One, each L ~ 0b H is locally finite as a f

module. Two, dim L03C3  ~ for each u E t’. Three, each L ~ 0b H
admits a finite filtration such that the centre of U acts by scalars on
each subquotient. Clearly X is stable under tensoring with finite

dimensional U modules. It follows from the classification ([21], 1,
Sect. 4) of the simple modules in 7Je that each L ~ 0b H has finite

length (for example, as shown in ([2], 4.2)). For each M, N E 0b Ù, one
has L(M, N) ~ H. Indeed, the first property holds by construc-

tion. The second obtains from the isomorphism valid for any simple
finite dimensional U(g) module E, namely Homt(El, L(M, N»,
Homq(E Q9 M, N), the last space being finite dimensional (since
E ~ M, N have finite length). The third obtains by taking com-
position series for M, N. We have shown that

LEMMA: For each M, N ~ 0b, the U module L(M, N) has finite
length.

1.8: Observe that 03C4:a~t is an involutory automorphism of

U(g). Given M E ObC, we let 03B4(M) denote the submodule of (M*)03C4 of
all  finite elements. Through the existence of a non-degenerate
contravariant form on L(03BB) (see [11], 1.6), one has L(À) ~= 5(L(À».
In particular E* ~ ET for any finite dimensional module E. Again each
M ~ 0b  has finite length, so 03B4(M) ~ 0b  and 03B4(M) has the same

composition factors as M (with the same multiplicities).



110

1.9: For each M, N ~ 0b , define 03C3 : Homc(M, (N *)T ) ~ (N 0 M)*
through (03C3(x),m~n)=(xm,n). From (03C3((a~b)·x), m ~ n) =
(((a~b)·x)m,n) = (’âx6m,n) = (xbm, ân) = (03C3(x), n~m) =
((a ~ b) · 03C3(x), n 0 m), it follows that is a U module homomorphism.
Again is obviously injective. Given y E(N0M)*, then for each
m E M the map g(y, m) : n H (y, n ~m) of N to C is C-linear. It follows
that the map q (y): m - g(y, m) of M to (N *)T is C-linear and the map
q : y - q (y) is inverse to 03C3.

LEMMA: The map au restricts to a U module isomorphism of
L(M,5(N» onto L(N 0 M)*. In particular L(N ~ M)* has finite
length as a U module.

If x E L(M, 5(N», then 03C3(x) is obviously t-finite. Conversely for
each y E L(N 0 M)*, m E M, X E g, we have X(~(y)m) =
~(j(t)y)m + ~(y)Xm, and so the local finiteness of  on M implies
that ~(y)m E S(N). Hence the surjectivity of the restriction of cr. The
last part follows from 1.7.

1.10: Define an ordering on ZB through p a v if 03BC - 03BD ~ NB.
Given M ~ 0b , set 03A9 (M) = {03BB ~ * : M03BB ~ 0}. If M ~ 0, then f2 (M)
admits at least one maximal element. Note that Ho(n-, M) = Mln-M is
a locally finite semisimple f) module.

LEMMA: Suppose M, N E ObO with N a submodule of M. If
Ho(n-, M), Ho(tt-, N) are isomorphic as  modules, then M = N.

Assume Q : = M/N ~ 0. Let 03BC ~ 03A9(Q) be maximal. Through the
maximality of li one has (n-M)p. = 03A3X-03B1M03BC+03B1 = 03A3X-03B1N03BC+03B1 = (n-N)03BC.
Yet dim N03BC/(n-N)03BC, = dim M03BC/(n-M)03BC, by hypothesis. This gives M03BC =
Np., which is a contradiction.

l.11: For each M E Ob 0, let [M] denote the corresponding element
in the Grothendieck group 19 of 0. For each Â E */ W, let C1jÂ denote
the subgroup of C1j corresponding to (Ji.. It is well-known that

{[L(03BC)] : it E } is a basis for G. Again each M(À): A E * has finite
length with simple factors amongst the L(03BC) : 03BC E Â and we denote by
[M(A): L(li)] the number of times L(li) occurs in M(À). The resulting
matrix is invertible (by [7], 7.6.23) and (by [7], 7.6.14) one has

for any finite dimensional U(9) module E.
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1.12: Let P(R) denote the lattice of integral weights. Let P(R)+
(resp. P(R)++) denote the dominant (resp. dominant and regular)
elements of P (R). For each v E P (R), let E(v) denote a (unique up to
isomorphism) simple finite dimensional U (g) module with extreme
weight v. The map v H E(-v)’ identifies the ^ of classes of finite

dimensional simple U(f) modules with P(R)/W and hence with

P(R)+. Frobenius reciprocity gives dimHomt(E(-v)’, L(03BB, 03BC)) =
dim E(03BD)03BC-03BB for all À, li E *, v E P(R). In particular, L(À, g) 7é 0 if
and only if 03BB - 03BC E P (R ). Now assume À - IL ~ P(R). Then by 1.9,
L(À, 03BC) has finite length. Since dim E (À - 03BC)03BB-03BC = 1, it follows that

L(À, 03BC) admits a unique simple subquotient, which we denote by
V(À, 03BC), satisfying dim Homt(E(À - li), V(À, 03BC)) = 1. We shall need
the following

THEOREM: 

(i) Every simple module in H is isomorphic to some V(À, 03BC).
(ii) V(À, 1£) is isomorphic to V(À’, IL’) if and only if there exists

w E W such that À’ = wÀ, li’= wp.
(iii) Suppose À ~ * is dominant. Then if L(M(À), L(03BC)) ~ 0 (which

holds in particular if À is regular), it is isomorphic to V(-li, -03BB).
Furthermore every simple V E 0b H is so obtained.

(i), (ii) are just ([9], 1, 4.1, 4.5) and (iii) follows from ([14], 4.7) and
(i), (ii).

1.13 : Given -À Et)* dominant, then for each - 03BC ~ - 03BB + P(R)
dominant we define following Jantzen ([11], Sect. 2) a translation
operator T03BC03BB:  ~  through T03BC03BBM = p(E (03BC - 03BB) ~ p(M)). If R003BB ~
R003BC, then for all w E W,, we have T03BC03BBM(w03BB) ~ (w03BC) (see [10], 2.10).
Let E be a finite dimensional U(g) module. Through the natural
U module isomorphisms L(M, N) ~ (C ~ E) L(M ~ E*, N),
L(M, N) ~ (E ~ C)  L(M, N 0 E03C4), it is obvious how to define exact
functors on ’Jf satisfying R03BC03BBL(M, N) ~ L(T03BC03BBM, N), S03B803BBL(M, N) ~
L(M, TIN) for M, N E ObO. Again by 1.6, T03BC03BB is both left and right
adjoint to T03BB03BC.

1.14: For each jGN, 03BC ~ *, N ~ 0b , one has Extj(M(03BC), N) ~
Hj(n+, N)03BC-03C1 == (Hj(n-, 8(N»p.-p)*, the first isomorphism being due to
Delorme ([6], Thm. 2), the second a formal consequence of the

appropriate standard complexes.
1.15: Take À, 03BC E fj* and let us note the almost obvious fact that

L(M(À), M(03BC)) = 0 unless À - IL E P(R). This latter condition further
implies that W03BB = W03BC.
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LEMMA: Fix - 03BB, - 03BC, ~ * dominant with A-ILEP(R). Then for
each w Ei W, and each finite dimensional U(9) module E one has

dim Homt(Et, L(M(wAÀ), M(w03BC)))
= dim Homr(EB L(M(w-1w03BB03BB), M(03BC))).

We show that both sides equal dim Ew03BC - w03BB03BB. For the right hand side
this follows from the fact that M(¡L) is simple (and so isomorphic to
03B4M(03BC)), 1.9 and 1.12, noting that f2 (E) is W stable. The left hand side
equals (by 1.7) dim Hom,,(M(wAA), E* ~ M(w03BC,)); since M(wAA) is

projective in 0, we have by 1.11 that the latter equals dim(E*)w03BB03BB-w03BC =
dim Ew03BC-w03BB03BB.

Remarks: Although this also follows from ([14], 4.10) the above

proof is much simpler. It is not difhcult to extend the above to a

further proof of ([14], 4.3) and hence of Duflo’s theorem ([8], Thm. 1);
but then this becomes essentially the proof given in ([3], 4.4).

1.16: Take 03BB ~ * dominant. Z(9) acts on M(À) by a homomor-
phism ~03BB : Z(g) ~ C. Let C=À+P(R), and let Ce be the full sub-

category of 6 consisting of those modules M that satisfy 03A9(M) ~ C.
Define a functor T : C - H by T(N) = L(M(À), N) (cf. 1.7). T is

exact since any M(03BB) ~ E (E being a finite dimensional U (9) module)
is projective in 0. Let H consisting of those M E Ob (k) on which

1 ~ Z(g) acts through 10 z H ~03BB(). The image of T lies in H, and in
the following theorem we view H as the target category of T.

THEOREM:

(i) T has a left adjoint T’.
(ii) The unit map q : IdH ~ TT’ is an isomorphism of functors.
(iii) If À is regular, then T is an equivalence of categories.

We indicate a proof for the theorem, which has also been proved
by Bernstein and Gelfand ([3], 6.3, 6.1 (ii), 5.9 (i)).

(i). If M ~ 0b(H), we make M into a two-sided U(g) module by
amb = (t ~ ) · m for all m ~ M, a, b E U (g). Define T’(M) =
M~AM(03BB), where A = U(g)/U(g)ker(~03BB). Now T’(M)G0b(fic)
because if E C M is a finite dimensional t stable generating subspace
(so M = EU(g)), then we get a surjective g linear map Ei-1~M(03BB)~
T’(M). If M E 0b(H) and N E 0b(C), one defines an isomorphism
e(M, N) : (Hom,(M Q9 AM(À), N) ~ Homu(M, L(M(À), N)) by ’(cp) =
(rn H cp(m 0 u))). This makes T’ a left adjoint to T.

(ii). We have to show that for any M E 0b(H) the map q (M): M -
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L(M(À), M ~AM(03BB)) (given by m - (n - m ~ n))) is bijective. We
make A into a U module by (a ~ b) · x = tx, for all x E A, a,

b E U(g). Then -q(A) is an isomorphism by ([13], 6.4).
If E is a finite dimensional U(g) module we have natural isomor-

phisms

Using these isomorphisms, one shows that if q(M) is an isomorphism
then so is ~((E03C4~C)~M). In particular, ~((E03C4~C)~A) is an

isomorphism. This implies that q(M) is an isomorphism for any
M e Ob (H), by observing that TT’ is right exact and that for suitable
finite dimensional U (g) modules El, E2 there exists an exact sequence
(E1~C)~A ~ (E2 ~ C) ~ A ~ M ~ 0 m H.

(iii). We have to show that the counit map e : T’T - Idn, is also an
isomorphism of functors. The composition T ~ TT’T ~ T is IdT,
so by (ii) Te is an isomorphism. Thus, as T is exact, 0 =

T(ker(~(N))) = T(coker(~(N))) for any N E Ob (Cc). So it remains to
show that if N E 0b(C) and TN = 0 then N = 0. Indeed, if N ~ 0, then
N contains a simple submodule L(li): JL E C, so TN D TL(bt); but by
([14], 4.7) TL(03BC) ~ 0, and we get a contradiction.

2. The generalized B.G.G. resolution

Throughout this section we fix -03BB E * dominant and regular.
2.1: Given 03B1 ~ B03BB, one can choose 03BD03B1 ~ P(R) such that -03BB03B1 : =

-03BB + 03BD03B1 is dominant and (03B2, 03BB03B1)=0:03B2 ~ R+ is equivalent to 03B2 = 03B1.
Following Vogan ([22]) we set 0,,, = T03BB03BB03B1 o T03BB03B103BB :  ~ . Using 1.13, ea is

left adjoint to Ba. So we obtain natural isomorphisms

Extj(03B803B1M, N)  Extj(M, BaN):j E N, M, N E Ob 0.

2.2: For each w E W03BB, let l(w) denote the reduced length of w with
respect to BA. For each w, w’ E Wk, we define an expression Pw, w’ in the
indeterminate q through

A result of Casselman and Schmid (proved also in [6], Thm. 4)
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implies that Pw,w,(q) is polynomial in q 1/2. Kazhdan and Lusztig ([19],
Conj. 1.5) have further conjectured that Pw,w-(q) is polynomial in q
and that this polynomial is determined by a particular purely com-
binatorial procedure which uses only the description of WA as a

Coxeter group. This has been shown to follow from certain other

conjectures ([10], [23]); but for the moment remains an open problem.
Here we just establish one of the identities which would follow from
the Kazhdan-Lusztig conjecture.

LEMMA: For each w, w’ E W,,, a E Bx, such that w’sa  w’, one has
that Pw,.,w,(q) = Pw,w’(q). In particular, for each B’ C BA, w E WB,, one
has that Pw, wB,(q) = 1.

We can assume ws03B1  w, without loss of generality. Then the
conclusion of the lemma is equivalent to the identity

(*) dim Extj+1(M(ws03B103BB), L(w’03BB)) = dim Extl(M(wÀ», L(w’03BB)), j e N.

Under the hypothesis w’s03B1  w’, it follows that M(w’s03B103BB) is a

submodule of M(w’À) and by ([10], 2.10a) that 03B803B1M(w’03BB)
03B803B1M(w’s03B103BB). Hence 03B803B1(M(w’03BB)/M(w’s03B103BB)) = 0. Since L(w’À) is a

quotient of M(w’À)/M(w’saÀ), it follows that 03B803B1(w’03BB) = 0, and

so Extj(03B803B1M(w03BB), L(w’À))=0 by 2.1. In particular L(wÀ) is not a

quotient of 03B803B1M(w03BB). Then from ([11], 2.17) we obtain an exact sequence

from which the corresponding long exact sequence for

Ext*(- , L(w’03BB)) gives (*).
2.3: From 1.8, 1.14 and 2.2 we obtain

COROLLARY: For each B’ C Bx, w E W03BB, one has

Remarks. As is well-known the remaining weight spaces of

Hj(n-, L(wB’03BB)) are null. This follows from the action of Z(g) and the
fact that w03BB - 03BB E ZB implies w E WÀ. This result then generalizes
the Bott-Kostant formula established for finite dimensional simple
modules (i.e. when -À E P(R)++ and B’ = B). 

2.4: Fix B’ C B03BB and set S = l(wB’). Then for each j E N, set WjB’ =
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f w E WB’ : l(w) = jl, and

As M(w03BB) is U(n-) free, we have for each y E WB’ that

2.5: For each w E WB,, fix a U(g) module embedding iw: M(w03BB) 
M(WB’03BB). For w, w’ ~ WB, such that w~w’, let iw,w’ :M(w03BB)~M(w’03BB)
be the embedding such that iw’ o iW,w- = iw.

Fix j~{1,2,...,s} and consider a U(g) module map ~j:Cj-1~Cj
defined by (xw)w~Wj-1B ~(yw’)w’~WjB’ when

where cjw,w’ E Z is non-zero and defined whenever w :5 w’, w E Wj-1B’,
w’~WjB’.

LEMMA: The natural surjection H0(h-, Cj-1) ~ H0(n-, Im ~j) is bijec-
tive.

Set K = ker ~j, V = Wj-1B’. We have an exact sequence 0 ~

K/K n n-Cj-1 ~ Cj-1/n-Cj-1 ~ ~jCj-1/n-(~jCj-1) ~ 0, so the lemma is

equivalent to K c EB n’M(wÀ), or to K c EB M(w03BB), that is to
wEV wEV

If K ~ 0, there exists w E V such that [K : L(wÀ)l &#x3E; 0, and so

[K:L(w03BB)]&#x3E;0. Yet equality of lengths in V implies through ([7],
7.6.23) that [Cj : L(wÀ)l = 1, so 0 = [C;/K : L(wA)] = [ajCj-1: L(wA)]. On
the other hand since there exists w’E W1’ such that w:5 w’ and by
hypothesis we then have cjw,w’ ~ 0, it follows that a; is injective on the
summand M(wÀ) of Cj-1. Thus ajCj-1 contains a copy of M(w03BB), which
implies [ajCj-1: L(w03BB)]  1. This contradiction proves the lemma.

2.6: An appropriate combinatorial property of the Bruhat ordering
enables one to choose the cjw,w’ of 2.5 such that ~j~j-1 = 0, for all

j = 2, ..., s. (See [2], Sect. 11 or [7], 7.8.14). Furthermore
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PROPOSITION: The sequence

is exact.

Set X,+, = Ys+i = L(wB’03BB), Ys = ker(Cs- Xs+i), and for each j E
{1, 2, ..., s}, set Xj = Im ~j, Yj-1 = ker a;. For each j E {1, 2, ..., s + 1},
Xj is a submodule of Yj and we show that Xj = Yj. Fix r - 1 and
assume that this has been established for all j &#x3E; r. This means that we

have the short exact sequences

By 2.4, the associated long exact sequence for homology implies
for all IL E t)* and r  j :5 s that

Then from 2.3 and 2.4 we obtain

for all j &#x3E; r and in particular for j = r + 1.

Finally from the long exact sequence associated to 0 ~ Yr ~ Cr ~
Xr+1 ~ 0, 2.4 and the above we eventually obtain

dim Ho(n-, Yr), = dim Ho(n-, Cr-1)03BC

for aIl IL E Then by 2.5, Ho(n-, Yr) and H0(n-, Xr) are isomorphic
as b-modules and so Xr = Yr by 1.10. Noting that a 1 is injective
completes the proof of the proposition.

Remark. This generalizes the B.G.G. resolution originally
established [2] for the case -03BB E P(R)++, B’ = B. The original proof is
different to ours and can only be generalized to the case when B’ C B
(see [20] for this). The present proof was found following con-
versations with M. Duflo and P. Delorme.
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3. Mappings of Verma modules

3.1: Take -À E t)* dominant. Then M(03BB) is a simple module and so

isomorphic to 5(M(À». Then by 1.9 one has for all IL E b* that

L(M(IL), M(03BB)) = L(M(IL), 5M(À» = L(-À, -IL),

up to isomorphisms. This relationship of mappings of Verma modules
to the principal series has been known for some time. Here we

consider the most general form this takes when -03BB is not necessarily
dominant. Some results in this direction were already obtained in ([5],
5.5) and in ([14], 4.10).

3.2: Fix -03BB, - 03BC ~ b* dominant with 03BB - 03BC ~ P(R) (recall 1.15).
Choose wi, w2 ~ W03BB and a E BA such that sawl &#x3E; wl, saw2  W2. The

second relation implies that M(s03B1w203BB) is a submodule of M(w203BB).

LEMMA: Under the above hypotheses, one has L(M(w103BC),
M(w2À)/M(saw2À» = 0.

Equivalently for any finite dimensional U(g) module E one has
Homq(M(w103BC), (E (D (M(W2À)/M(saW2À»» = 0. To establish this it is

enough to show that L(w103BC) is not a subquotient of

p(E~M(w203BB)/M(s03B1w203BB)). Now by 1.11 and the invariance of fi(E)
under W one has

and so

Through the hypothesis sawl &#x3E; wl, one has by ([10], 5.19) that

Combined with (*) this establishes the assertion of the lemma.

Remarks. A technically easier proof of (**) follows from ([11],
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2.16) and ([3], 4.5 (6)). Again the analysis of ([14], 5.4) can be
combined with the operators of coherent continuation to give an
alternative proof of the fact that L(w1¡.L) is not a subquotient of
E Q9 (M(w203BB)/M(s03B1w203BB)).

3.3: Let W be a Coxeter group with S the corresponding set of
simple reflections and length function 1 (.). It is well-known that there
exists an associative product * on W uniquely defined through

(Up to a sign, these are the defining relations for the generators of the

"singular Hecke algebra" obtained say from ([19], Sect. 1) by putting
q = 0.)

LEMMA: For all w, y E W, s E S, one has

The top lines of (i), (ii) are immediate from the definition of *. For the
bottom line in say (ii), set w’ = sw. Then sw’ &#x3E; w’ and so s * w =

s*(s*w’) = (s*s)*w’ = s*w’ = w.
We prove (iii) by induction on l(w). For l(w) = 0, 1, it follows from

(i), (ii). Otherwise write w = s*z : l(z)  l(w). Then (w*y)-1=
((s*z)*y)-1 = (s*(z*y))-1 = ((z*y)-1*s) = (y-1*z-1)*s = y-1*(z-1*s) =
y-l * w-1. (iv) follows from (i), (ii).

3.4: Fix -03BB ~b* dominant. For all w1, w2 E W03BB, one has from 3.3
(iv) that W-12*w1w03BB ~ w, wa and so w3 : = (w-12*w1w03BB)w03BB ~ wi.

PROPOSITION: Assume -A, -IL E $* dominant with À - IL E P(R).
Given WI, w2 E WÀ, define w3 ~ Wx as above. Then the U-module
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homomorphism of L(M(w103BB), M(w203BC)) into L(M(w3À), M(w203BC))
defined by restriction is injective with image L(M(w303BB), M(03BC)).

The assertion is clear for W2 = 1. If W2 ;j; 1, choose a E Bk such that

s03B1w2  w2. If sa w &#x3E; w1, then by 3.2 the natural embedding L(M(w103BB),
M(s03B1w203BC))  L(M(wlJÀ), M(w203BC)) is surjective. If SaWl  wl, then by
([13], 6.1) the map of L(M(w103BB), M(w203BC)) into L(M(s03B1w103BB), M(w203BC))
defined by restriction is injective and so, by 3.2 again, we obtain an
embedding of L(M(wiÀ), M(w203BC)) into L(M(s03B1w103BB), M(s03B1w203BC)). In
either case we obtain an embedding of L(M(w103BB), M(w203BC)) into

L(M((s03B1*w1w03BB)w03BB03BB), M(s03B1w203BC)), and so by induction an embedding
into L(M(w303BB), M(03BC)). On the other hand we can take a E BA such
that SaW1  W14 Then a similar argument gives an embedding of

L(M(S,,,WlÀ), M«Sa*W2)1L») into L(M(WIA), M(w203BC)). By induction
this gives an embedding of L(M(w03BB03BB), M((w03BBw-11*w2)03BC)) into

L(M(w103BB), M(w203BC)) which we saw above further embeds in

L(M(w3À), M(03BC)), both maps having been defined by restriction.
Now by 3.3, we have (W2 1*WlWÀ)-l = wAwll*w2 and so by 1.15 the

combined map is surjective. Consequently the second map must also
be surjective, proving the assertion.

3.5: Assume - 03BB, -03BC ~ b* dominant with 03BB - 03BC ~P(R) and fix

B’ C Ba.

COROLLARY: For each W E WB, and each finite dimensional U(g)
module E, one has

dim Homg(Q, M(w03BC)) = dim Homg(Q, 03B4M(w03BC)),

where Q = E ~ M(wB’03BB).

From l(ww03BB) = l(w03BB) - l(w) for all w E Wx and an analogous asser-
tion for WB,, we obtain l(w-1wB,wA) = l(w-1) + l(wB,wA). Since w203BB= 1,
it follows from the definition of * that (w-1*wB’w03BB)w03BB = W-lWB’, so by
3.4, 3.1 one has the isomorphisms L(M(wB’03BB), M(w03BC)) 
L(M(w-1wB’03BB), M(03BC))  L(-03BC, -w-1wB’03BB). On the other hand, by
1.9 we have L(M(wB,À), 03B4(M(w03BC))) ~ L(-w03BC, -wB’,03BB). Combined

with 1.7 and 1.12, these isomorphisms imply the assertion of the
corollary.

3.6: Take; À, IL, w 1, W2, a as in 3.2.

LEMMA:

(i) L(M(w203BB)/M(s03B1w203BB), SM(W11L» = o.
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(ii) L(L(W2À), L(wlii» = 0.
(iii) The map of L(- w103BC, - w203BB) into L(- w103BC, - s03B1w203BB) defined by

restriction is injective.

For (i), observe that L(w103BC) is the unique simple submodule of
03B4M(w103BC), so it suffices to show for any finite dimensional module E

that

This obtains by an argument parallel to 3.2. Hence (i). Through
the embedding Homg(E~L(w203BB), L(w103BC))  Homg(E~(M(w203BB)/
M(SaW2À», L(w103BC,)) and (*) we obtain (ii). Recalling 1.9, (i)
gives (iii).

Remark. When a E B, the result in (iii) is due to Zelobenko (see
[8], Lemmes 4, 5).

3.7: We conclude this section with a result of obvious importance
which by virtue of ([4], 2.14) is a far reaching generalization of 3.6 (ii).
We start with the following

LEMMA: For all À, 03BC, v E b* one has

(i) L(L(JL), L(03BB)) ~ 0 ~ L(L(03BB), L(03BC)) ~ 0.
(ii) L(L(03BC), L(03BB)) L(L(v), L(03BC)) = 0 implies that one of these modules

must vanish.

(i) follows from the isomorphism 03B4(L03BC)L(03BC). (ii) follows from
the simplicity of L(03BC).

3.8: PROPOSITION: Let À E * be dominant and regular. Then for
each w, y E W,, one has

Suppose L(L(wÀ), L(y03BB)) ~ 0. Then there exists a finite dimen-
sional U(g) module E such that Homg(L(w03BB), L(y03BB)~ E) ~ 0 and so
L(w03BB) is a submodule of L(YÀ)0E. It follows that L(M(À), L(w03BB)) is
a submodule of L(M(À), L(y03BB) 0 E). Hence the right annihilator of
L(M(À), L(w03BB)) contains the right annihilator J of L : = L(M(À),
L(y03BB) 0 E). Since L is isomorphic to L(M(À), L(y03BB)) ~ (E03C4 ~ C), it
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follows that J coincides with the right annihilator of L(M(03BB), L(yÀ)).
By ([14], 4.7, 4.12) this gives J(w-103BB) ~ J(y-lA). By 3.7 (i), interchange
of w, y gives the reverse inclusion.

Suppose J(w-1A) = J(y-’À). By ([8], Prop. 8) U(g)/J(w-103BB) has a
unique U submodule which is furthermore isomorphic to some

V(-03C303BB, -03BB) with u an involution of Wk. By ([14], 4.12) it is clear that
J(O’A) = J(w-1A). After Vogan ([24], 3.5) there exists a finite dimen-
sional U (g) module E such that U(g)/J(w-103BB) (and hence

V(-03C303BB, -03BB)) is a submodule of V(-w-103BB,-03BB)~(C~E). From

1.12(i), we have V(-w-103BB, -03BB) ~ V(-03BB, -w03BB), and so V(-03C303BB, -03BB) is
a submodule of V(-wA, -À) 0 (E 0 C). Then by 1.12 (iii), L(M(À),
L(O’A» is a submodule of L(M(À), L(w03BB))~(E~C)) which

is isomorphic to L(M(À), L(w03BB) ~ E03C4). The resulting injection
i : L(M(03BB), L(03C303BB)~L(M(03BB), L(wA)0ET) must come by 1.16(iii) by
applying T to an injection L(03C303BB)~(w03BB)~E03C4. Hence L(L(uÀ),
L(w03BB)) ~ 0. Interchanging w,y and using 3.7 gives L(L(wÀ),
L(y03BB)) ~ 0, as required.

4. Exactness of the functor L(M(wB’03BB), ·).

In this section we fix -À ~ b* dominant and B’ ~ B03BB. Set ll =

{03BC ~ 03BB + P (R) : - p is dominant}.
4.1: Let 0" denote the subcategory of consisting of all those

modules (necessarily of finite length) whose simple factors are

amongst the L(w03BC) : li E A, w E WB,. By ([6], Thm. 4(iv)) it follows

that the M(wB’03BC) : 03BC E A are projective in OB’. On the other hand 0" is
not closed under tensoring with finite dimensional U(g) modules.
Nevertheless we have the

PROPOSITION: Suppose MI, M2, M3 E Ob of, with

exact. Then

is exact.

This is proved in sections 4.2, 4.3.
4.2: A module M E Ob 0 is said to admit a p -filtration if it has a

finite filtration with factors isomorphic to Verma modules. For
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example, by ([7], 7.6.14) E ~ E(03BC) (E finite dimensional, 1£ E b*) has a

p -filtration.

LEMMA: Suppose Q E Ob (J admits a p -filtration. Then for all li E

b*, k &#x3E; 0, one has

It is enough to prove the assertion for Q a Verma module, say
M(v) : v E b*. By 1.14, Extk(M(v), 8M(IL» = (Hk(n-, M(03BC))03BD-03C1)*, up to
isomorphism, so the assertion follows from the fact that M(li) is

U(n-) free.
4.3: Let E be a finite dimensional U(g) module and set Q =

E 0 M(WB,,k) and fix 03BC ~ 039B. We show that Ext1(Q,L(YIL»=0:yE
WB’ by induction on 1 (y). This will establish 4.1. When 1 (y) = 0, that is

y = 1, we have L(li) ~ M(03BC) == 8M(IL) and so the assertion follows
from 4.2. Now fix w E WB’ and suppose the assertion proved for all

y E WB’ such that l(y)  l(w). In particular this gives

From the exact sequence

and 4.2 we obtain an exact sequence

From the exact sequence

and (1) we obtain an exact sequence

(3) 0 ~ Hom(Q, M(w03BC)) ~ Hom(Q, M(w03BC)) ~ Hom(Q, L(w03BC)) ~ 0.

Combining (2) and (3) gives
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The first term in curly brackets vanishes by the induction

hypothesis and the fact that 8M(w¡.t) and M(w¡.t) have the same
composition factors which are amongst the L(yli): y  w. The second

term vanishes by 3.5.
4.4: Let M be a simple U (g) module. The natural action of U (g) in

M defines an embedding of U(g)/AnnM into Hom(M, M) and in fact
the image lies in the t-finite part L(M, M). Kostant has asked if the
image is exactly L(M, M). This is generally false ([5], 6.5; [13], 9.3,
9.4); yet it is quite important to ascertain when it does hold, especially
for highest weight modules.

THEOREM: For each -03BB ~ b* dominant and B’ C B, one has

By 4.1, L(M(WB’03BB), L(wB’03BB)) is a quotient of L(M(wB,A), M(WB’03BB))
and the latter by ([14], 3.6) identifies with U(g)/AnnM(wB’03BB). Since
L(L(wB’03BB), L(wB’03BB)) is a submodule of L(M(wB’03BB), L(wB,A), this

proves the theorem.

Remark. In the special case when B’ C B the above result is due
to Conze-Berline and Duflo ([5], 2.12, 6.3). Their proof does not admit
further generalization since it uses induction from the parabolic
subalgebra defined by B’. When B’ = B, with À regular, the result is
noted in ([12], 5.7).

4.5: For IL ~ b*, we write A03BC : = U(g)/J(03BC),A’03BC: = L(L(IL),L(IL». The
embedding of A03BC into A’ 9 extends ([13], 4.3) to an embedding of Fract
As into Fract A’03BC. In order to compute the scale factors in the Goldie
polynomial defined by the Goldie rank of A03BC (see [15], 5.12) it is

useful to know when Fract A03BC = Fract A’03BC.
Since J(03BC) is a prime ideal, A03BC admits a unique simple submodule

V03BC which furthermore ([8], Prop. 4) has annihilator Je, : =
(03BC) ~ U(g) + U(g) ~ (03BC). We let l0(A’03BC) denote the number of

factors in a U composition series of A’ 9 having annihilator J,.

LEMMA: l0(A’03BC) = 1 o Fract A03BC = Fract A’03BC.
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If M is a finitely generated left U(g) module, let Dim M denote its
Gelfand-Kirillov dimension over U (g) as defined in ([17], 2.1). Now
let M be a simple U subquotient of A’03BC, which by k-finiteness is a

finitely generated left U(g) module. By ([17], 1.4, 3.1 and 3.3 Remark)
we have Dim M = Dim(U(g)/AnnU(g)M). Since AnnU(g)M ~ (03BC), it

follows from the primeness of (03BC) that Annu(q)M = (03BC) if and only if
Dim M = Dim V,. A similar argument on the right, taking account of
([8], Prop. 4), shows that Ann M = J03BC if and only if Dim M = dim V03BC.
Let S denote the set of regular elements of A,. Since A’03BC, is f-finite
and has finite length as a U module, it follows from ([18], 3.7) that S
is an Ore subset of the regular elements of A’03BC and S-’A’ = Fract A’03BC.
Hence it remains to show that S-’M = 0 if and only if Dim M 

Dim V03BC = Dim U(g)/J(03BC). This follows from ([ 16], 5.1, 5.2(i)).
4.6: Retain the above notation and take v e 1£ + P (R ) in the upper

closure of the W03BC facette containing p (for this see [11], 2.6).

LEMMA: Set H03BD03BC = R03BD03BCS03BD03BC (notation 1.13). Then
(i) H03BD03BCA’03BC = A’03BC.
(ii) H wAv = Av.
(iii) l0(A’03BC) = l0(A’03BC).
(iv) H03BD03BCV03BC = Vv.
(v) Fract A03BC = Fract A’03BC ~ Fract Av = Fract A’03BD.

By ([11], 2.10, 2.11) we have under the hypothesis of the lemma the
isomorphisms T03BD03BCL(03BC) L(v) (resp. T03BD03BCM(03BC) == M(v) and so by 1.13
the isomorphisms H03BD03BCA’03BC=A’03BD (resp. H03BD03BCL(M(03BC), M(03BC)) = L(M(v),
M(v))). Hence (i). Since L(M(03BC), M(03BC)  U(g)/Ann M(li) by ([13],
6.4) and A, is the image of U(g)/Ann M(03BC) in A’, exactness of
H03BD03BC gives (ii). Now let K be a simple U subquotient of A’03BC. Then by
1.12, K is isomorphic to some L(M(03BB1), L(03BB2)):03BB1, 03BB2~b* with À1
dominant. Furthermore from the action of the centre of U it easily
follows that À¡, À2 E Wli. Then from ([11], 2.10, 2.11) and 1.12, 1.13, it
follows that either H03BD03BCK = 0 or is a simple subquotient of Av; then, by
an argument similar to that given in ([4], 2.11), H03BD03BCK has the same
Gelfand-Kirillov dimension as K. Moreover by a trivial extension of
([4], 2.4), whether or not H03BD03BCK = 0 depends only on Ann K. Hence
(iii), (iv). Finally (v) follows from (iii).

4.7: COROLLARY: Fix -À ~ b* dominant, regular and take B’ C B,.
Then for each a E B’, one has
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With respect to À, a define 03BD03B1 as in 2.1. Then apply 4.6(v) to 4.4 with

IL = wB’s03B103BB, 03BD = WB’SA (À - va) = WB’(À - va).
4.8: For each W E WA, set S(w) = {03B1 ~ R+03BB : w03B1 ~ R-03BB}. Define an

ordering C on W03BB through y Ç w given S(y-1) C S(w-1). One checks
that y C w implies y :5 w and that y Ç w~(y-1*ww03BB)w03BB = y-1w. Thus
the obvious generalization of 4.1 shows that L(M(wÀ), .) is exact

when restricted to the subcategory of  of all modules with simple
factors L(yÀ):y6EWB where y satisfies y’ ~ y ~y’ ~ w. Since s03B1 ~ y,

Va E supp y it follows that supp y C S(w-’), that is y E WB’ where
B’ = B03BB nS(w-’). Though this rather weak generalization is probably
not the best the corresponding assertion with c replaced by ~ is false
for it implies that Kostant’s problem has always a positive answer
(which is false by ([5], 6.5)) for simple highest weight modules. This is
in spite of the fact that Ext1(M(w03BB), L(yÀ)) = 0 if w ~ y.

5. Main theorem

5.1: Fix -03BB, -03BC, ~ b* dominant, 1£ regular, with 03BB - 03BC ~P(R).
Take B’ C B,,. Let S = l (wB,), and for each j E {0, 1, 2, ..., s} set Dj =

EB. L(M(wB’03BB), M(w03BC)). Finally put

THEOREM: There is a long exact sequence

Apply 4.1 to 2.6.
5.2: When À = 03BC in 5.1, we have that L = U(8)/J(WB,,k) by 4.4.

Again by 3.4 one has that

In view of the definition of the maps in 5.1 this gives the
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COROLLARY: For each B’ C B, one has

Remark. When B’ C B, this result is due to Duflo ([8], Prop. 12).
When B’ = B03BB, it is just ([12], 4.4, 4.5). By ([12], 4.5) it implies that
J(WB’03BB)/J(03BB) is an idempotent ideal and has exactly card B’ distinct
maximal submodules.

5.3: Again take À = p in 5.1. Then by 3.1, 3.4

Combined with 1.12 this gives the following multiplicity formula for
simple t submodules of U(g)/J(wB’03BB).

COROLLARY: Fix -03BB ~ b* dominant and regular. Then for each
v E P (R) one has

Remarks. When B’ C B, Conze-Berline and Duflo ([5], 2.12, 6.3)
gave a formula for the left hand side above. Their formula obtains from

4.4 and Frobenius reciprocity with respect to induction from the
parabolic subalgebra defined by B’. The equivalence of these two
formulae imply a combinatorial statement concerning weight subspaces
of finite dimensional U(g) modules.

6. Duality

6.1: Some of our results can be given a dual form with the help of
the following. Fix 03BB, 03BC ~ b* with 03BB - 03BC ~ P(R). Then (see 6.3)
L(03BB, 03BC)  L(-03BB, -03BC) admits a bilinear form (,) satisfying
~(a ~ b)x, y~ = (x, ( ~ )y~, for all x ~ L(03BB,03BC), y ~L(-03BB,-03BC),
a, b E U(g). For each 03C3, 03C4 ~ k^, (,) restricts to a f-invariant bilinear
form on L(À, 03BC)03C3 x L(-03BB, -03BC)03C4 which is non-degenerate if T is contra-
gradient to 03C3 and zero otherwise.
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6.2: To apply 6.1 to the comparison of mappings of principal series
modules we start with the following observation. Suppose À, A’ E t)*
are chosen so that we have an embedding of M(À’) into M(À). Then
there exists a E U (n-)03BB’-03BB such that aex = eA’. (Furthermore a is

unique up to a non-zero scalar which can be fixed canonically as
follows. First, under the above hypothesis, À - À’ is a non-negative
integral linear combination of the a E B (with say coefficients ka ) and
second, with respect to the canonical filtration of U (n-), the leading
term of a is just

up to a non-zero scalar ([21], Lemma 1). Fix this scalar to be one.)

LEMMA: There exists an embedding of M(-À) into M(-À’) and
ae-A’ = se-x, with s = ± 1.

Fix « E B. Then [Xa, a] ex = 0 and so [Xa, 03B1] E Ann ek =

U(g)n+ + 03A303B2~B U(g)(H03B2 - (À - p, Hp». Since a E U(n-)A’-A and a is

simple, we have in fact the more precise result, namely

where q = A’ - À + a. Hence

Yet - (03BB + ~ - p, Ha = - À’ + p, Ha), and so X03B1e-03BB’ = [Xa, ]e-03BB’ = 0.

Since a was arbitrary, it follows that e-03BB’ is a highest weight vector

(necessarily non-zero) of weight (03BB’ - 03BB) - (03BB’ + 03C1) = -(03BB + 03C1) and

hence proportional to the canonical generator e-03BB of M(-À) embed-
ded in M(-03BB’) "canonically" as above. Comparison of leading terms
shows that the constant of proportionality is just (-1)03A3k03B1.

Remark. Of course the first part also obtains from ([7], 7.6.23).
When BA C B, the second part can also be derived from ([7], 7.8.8).

6.3: The bilinear form referred to in 6.1 has been defined purely
algebraically in ([7], 9.6.9) for the case À = p. We describe the

modifications needed in the general case. In this we denote by t, u, v

elements of U(), a, b elements of U(g), 03B8 an element of U()*, f an
element of L: = L(M(03BB) 0 M(03BC))*.
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Define an action of U(t) 0 U() on U()* through ((u 0 03BD) · 03B8)(t) =

0(ùtv) and set

By ([7], 2.7.12) the sum of the simple finite dimensional U(t)i sub-
modules of U()* coincides with the sum of the simple finite dimen-
sional U()r submodules of U()*, and we denote this subspace by
L(U()*). Let ~:U()~C be the augmentation. Ce occurs as the

unique one dimensional subrepresentation of L(U()*). Let

cpo : L( U (t)*) - C be the linear form on L(U()*) which takes the value
1 on E and zero on the U() ~ U (f) stable complement of Ce in

L(U()*).
Now for each v E b*, define Tv = {03B8 E U()*: 03B8(uj(H)) = (v, H)e(u),

for all H ~ b, u E U()} which is a U()l module. With v = 03BB - JL,
f E L, we define 03B8f ~ Tv through 03B8f(u) = f(u(e03BB~eu)). Then the map
f H 03B8f is a U(t) module isomorphism of L onto the U()l finite part
L(T,) of T,. (For this see [7], 5.5.8 or [8], Sect. 1,2). Now take À ’ G $*
such that M(À’) C M(À) and a E U(n-)03BB’-03BB as in 6.2. Then for all

f E L, we have «10 j(a)) · Of)(u) = 03B8f(uj(a)) = f (uj(a)(eÀ ~ e03BC)) =

f (u (aex 0 e03BC)), since a E U ( n-) and tXe03BC = 0 for all X E n-.
Let 03C8 : L ~ L’ : = L(M(03BB’) ~ M(03BC)) be defined by restriction. Set

03BD’ = À’ - li, and define for any f’ E L’ the element 03B8f’ E Tv- as above.
Then for all f E L, we have 03B803C8(f)(03BC) = 03C8(f)(u(e03BB’~ e03BC)) = f (u (ex, 0 e03BC)).
Since aex = e,B" this gives

Similarly let 03C8’ : L(M(-03BB’) ~ M(-03BC))* ~ L(M(-03BB) ~ M(-03BC))*
be defined by restriction. Then for each g’~L(M(-03BB’)~M(-03BC))*,
we have 0g ~ T-03BD’, 03B803C8’(g’) ~ T-03BD, and by (*) and 6.2 we get

Using ([7], 2.7.7) we have T-,T, C To and so L(T-03BD)L(T03BD) c L(To).
Similarly L(T-03BD’)L(T03BD’) C L(To). By ([7], 2.7.7), the invariance of ’Po

under U(f)r gives (noting j() = j(a)) that

Just as in ([7], 9.6.9) using ([7], 2.7.15, 9.6.8) and the reductivity of f,
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one checks that the form (g, f ) H ~0(03B8g03B8f) on L(À, IL) x L( - A, - IL) has
the properties claimed in 6.1. Furthermore with respect to the above

maps we have the

LEMMA: The diagram

commutes. That is s(tf1’(g’), f ) = (g’, tf1(f».

Indeed

Remark. A similar result holds for the second variable.

6.4: Take À, p, w1, W2, a as in 3.2. Under the hypothesis of 3.2, it

follows that M(-W2À) is a submodule of M(-SaW2À). Applying the

analogue of 6.3 with respect to second variable to 3.6 we obtain

COROLLARY: The map L(w103BC, s03B1w203BB)~L(w103BC, w203BB) defined by
restriction is surjective.

Remark. When a E B, this was given in ([4], V, 1.11).

6.5: Both 3.6 and 6.4 admit analogous assertions for the first

variable. This gives the commutative diagram of restriction maps
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which implies an isomorphism of L(-w103BC, -w203BB) with

L(-saw1¡.L, -SaW2À). The intertwining operators of ([8], Sect. I, 2) also
give an isomorphism between those modules.

Index of notation

Symbols frequently used are given below in order of appearance.
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