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ON THE BERNSTEIN–VON MISES PHENOMENON FOR
NONPARAMETRIC BAYES PROCEDURES

BY ISMAËL CASTILLO1 AND RICHARD NICKL

CNRS and University of Cambridge

We continue the investigation of Bernstein–von Mises theorems for non-
parametric Bayes procedures from [Ann. Statist. 41 (2013) 1999–2028]. We
introduce multiscale spaces on which nonparametric priors and posteriors are
naturally defined, and prove Bernstein–von Mises theorems for a variety of
priors in the setting of Gaussian nonparametric regression and in the i.i.d.
sampling model. From these results we deduce several applications where
posterior-based inference coincides with efficient frequentist procedures, in-
cluding Donsker– and Kolmogorov–Smirnov theorems for the random poste-
rior cumulative distribution functions. We also show that multiscale posterior
credible bands for the regression or density function are optimal frequentist
confidence bands.

1. Introduction. The Bernstein–von Mises (BvM) theorem constitutes a
powerful and precise tool to study Bayes procedures from a frequentist point of
view. It gives universal conditions on the prior under which the posterior distri-
bution has the approximate shape of a normal distribution. The theorem is well
understood in finite-dimensional models (see [30] and [35]), but involves some
delicate conceptual and mathematical issues in the infinite-dimensional setting.
There exists a Donsker-type BvM theorem for the cumulative distribution function
based on Dirichlet process priors, see Lo [31], and this carries over to a variety
of closely related nonparametric situations, including quantile inference and cen-
soring models, where Bernstein–von Mises results are available: see [8, 9, 21, 26,
27] and [22]. The proofs of these results rely on a direct analysis of the posterior
distribution, which is explicitly given in these settings (and typically of Dirichlet
form).

When considering general priors that model potentially smoother nonparametric
objects such as densities or regression functions, the BvM phenomenon appears to
be much less well understood. Notably, Freedman [14] has shown that in a basic
Gaussian conjugate �2-sequence space setting, the BvM theorem does not hold true
in generality; see also the related recent contributions [24, 28]. In contrast, in the
recent paper [4], nonparametric BvM theorems have been proved in a topology that
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is weaker than the one of �2, and it was shown that such results can be useful for
several nonparametric problems, including the �2-setting, when applied with care.
An important consequence is that, in contrast to the finite-dimensional situation,
whether a nonparametric posterior credible set is a frequentist confidence set or
not depends in a possibly quite subtle way on the geometry of the set.

The results in [4] are confined to the most basic nonparametric model—
Gaussian white noise—and strongly rely on Hilbert space techniques. The main
novelties of the present paper are: (a) extensions of the results in [4] to the i.i.d.
sampling model and (b) the derivation of sharp Bernstein–von Mises results in
spaces whose geometry resembles an �∞-type space and whose norms are strong
enough to allow one to deduce some fundamental new applications to posterior
credible bands and Kolmogorov–Smirnov type results. Our results are based on
mathematical tools developed recently in Bayesian nonparametrics, particularly
the papers [3, 5] and also [32]. These give sub-Gaussian estimates on fixed (semi-
parametric) functionals of posterior distributions over well-chosen events in the
support of the posterior, which in turn can be used to control the supremum-
type norms relevant in our context via concentration properties of maxima of sub-
Gaussian variables.

Let us outline some applications of our results: consider a prior distribution �

on a family F of probability densities f , such as a random Dirichlet histogram or
a Gaussian series prior on the log-density. Let �(·|X1, . . . ,Xn) be the posterior
distribution obtained from observing X1, . . . ,Xn ∼i.i.d. f . It is of interest to study
the induced posterior distribution on the cumulative distribution function F of f .
Making the “frequentist” assumption Xi ∼i.i.d. P0, the stochastic fluctuations of F

around the empirical distribution function Fn(·) = (1/n)
∑n

i=1 1[0,·](Xi) under the
posterior distribution will be shown to be approximately those of a P0-Brownian
bridge GP0 : under the law PN

0 of (X1,X2, . . .) the distributional approximation
(n → ∞) √

n(F − Fn)|X1, . . . ,Xn ≈ GP0(1)

holds true, in a sense to be made fully precise below (Corollary 1). This parallels
Lo’s [31] results for the Dirichlet process and can be used to validate Bayesian
Kolmogorov–Smirnov tests and credible bands from a frequentist point of view.
Note, however, that unlike the results in [31], our techniques are not at all based
on any conjugate analysis and open the door to the derivation of Bernstein–von
Mises results in general settings of Bayesian nonparametrics. We also note that (1)
is comparable to central limit theorems

√
n(F b

n − Fn) → GP0 in PN
0 -probability

for bootstrapped empirical measures Fb
n ; see the classical paper [18]. This illus-

trates how BvM theorems are in some sense the Bayesian versions of bootstrap
consistency results.

Our results also have important applications for inference on the more difficult
functional parameter f itself. For instance, we will show that certain 1 − α poste-
rior credible sets for a density or regression function are also frequentist optimal,
asymptotically exact level 1 − α confidence bands.
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Before we explain these applications in detail it is convenient to shed some more
light on our general setting. The spaces in which we derive BvM-type results are in
principle abstract and dictated by the applications we have in mind. They are, how-
ever, connected to the frequentist literature on nonparametric multiscale inference,
as developed in the papers [10–13, 33], where also many further references can be
found. This connection gives a further motivation for our general setting as well as
heuristics for the inference procedures we suggest here. Let us thus explain some
main ideas behind the multiscale approach in the simple regression framework of
observing a signal in Gaussian white noise

dX(n)(t) = f (t) dt + 1√
n

dW(t), t ∈ [0,1], n ∈ N,(2)

which can also be written X
(n) = f + W/

√
n, with W a standard white noise;

see (13) below for details. The i.i.d. sampling model, which will be treated below,
gives rise to similar intuitions after replacing X

(n) − f by Pn − P where Pn =
(1/n)

∑n
i=1 δXi

is the empirical measure from a sample from law P with density f .
One introduces a double-indexed family of linear multiscale functionals

f �→ 2l/2
∫ 1

0
ψ
(
2lx − k

)
f (x) dx ≡ 〈f,ψlk〉,

where l is a scaling parameter which has O(2l) associated location indices k. The
prototypical example that we will focus on is to take a Haar wavelet ψ = 1(0,1/2] −
1(1/2,1], or a more general wavelet function ψ generating a frame or orthonormal
basis {ψlk} of L2. The projection of X(n) − f onto the first ≤ J scales gives rise to
random variables

√
n
〈
X

(n) − f,ψlk

〉 = 〈W,ψlk〉 ≡ glk ∼ N(0,1), k, l ≤ J,

and the maximum over all these statistics scaled by
√

l

ZJ ≡ √
n max

l≤J,k

|〈X(n) − f,ψlk〉|√
l

= max
l≤J,k

|glk|√
l

,(3)

has a canonical distribution under the null hypothesis H0 = {f }. The quantity ZJ

is often called a multiscale statistic, and the quantiles of its distribution are used to
test hypotheses on f . One can also construct confidence sets Cn by simply taking
Cn to consist of all those f that satisfy simultaneously all the linear constraints

|〈X(n) − f,ψlk〉|√
l

≤ cn ∀k, l,

where cn are suitable constants chosen in dependence of the distribution of ZJ .
Intersecting these linear restrictions with further qualitative information about f ,
such as smoothness or shape constraints, can be shown to give optimal frequentist
confidence sets (as, e.g., in Propositions 1 and 4 below).
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A key challenge in the multiscale approach is of course the analysis of the distri-
bution of the random variables ZJ . One approach is to re-center ZJ by a quantity
of order

√
J and to use extreme value theory to obtain a Gumbel approximation of

the distribution of these random variables. The slow convergence rates (as J → ∞)
of such limit theorems are often not satisfactory; see, for example, [19]. Instead we
shall introduce certain sequence spaces in which direct Gaussian asymptotics can
be obtained for multiscale statistics (without re-centring). This allows for faster
convergence rates (by using standard Berry–Esseen bounds for the central limit
theorem). It is also naturally compatible with a Bayesian approach to multiscale
inference: one distributes independent random variables across the scales l and
locations k, corresponding to a random series prior common in Bayesian nonpara-
metrics. The posterior distribution then allows one effectively to “bootstrap” the
law of ZJ , and our BvM-results in multiscale spaces will give a full frequentist
justification of this approach.

Let us illustrate the last point in a key example involving a histogram prior
�L,L ∈ N, equal to the law of the random probability density

f ∼
2L−1∑
k=0

hk1IL
k
, IL

0 = [
0,2−L], IL

k = (
k2−L, (k + 1)2−L], k ≥ 1,(4)

where the hk are drawn from a D(1, . . . ,1)-Dirichlet distribution on the unit sim-
plex of R2L

. Let �(·|X1, . . . ,Xn) denote the resulting posterior distribution based
on observing X1, . . . ,Xn i.i.d. from density f . For any sequence (wl) such that
wl/

√
l ↑ ∞ as l → ∞ and for standard Haar wavelets

ψ−10 = 1[0,1], ψlk = 2l/2(1(k/2l ,(k+1/2)/2l ] − 1((k+1/2)/2l ,(k+1)/2l]),

with indices l ∈ N∪ {−1,0}, k = 0, . . . ,2l − 1, define

Cn ≡
{
f : max

k,l≤L

|〈f − Pn,ψlk〉|
wl

≤ Rn√
n

}
,(5)

where 〈Pn,ψlk〉 = n−1 ∑n
i=1 ψlk(Xi) are the empirical wavelet coefficients and

where Rn = R(α,X1, . . . ,Xn) are random constants chosen such that

�(Cn|X1, . . . ,Xn) = 1 − α, 0 < α < 1.

Any set Cn satisfying the identity in the last display is a posterior credible set
of level 1 − α, or simply a (1 − α)-credible set. Note that in this example the
posterior distribution, and hence Rn, can be explicitly computed due to conjugacy
of the Dirichlet distribution under multinomial sampling (i.e., counting observation
points in dyadic bins IL

k ).

PROPOSITION 1. Consider the random histogram prior � from (4) where L =
Ln is such that 2Ln ∼ (n/ logn)1/2(γ+1). Let Cn be as in (5). Suppose X1, . . . ,Xn
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are i.i.d. from law P0 with density f0 satisfying the Hölder condition

sup
x,y∈[0,1],x �=y

|f0(x) − f0(y)|
|x − y|γ < ∞, 1/2 < γ ≤ 1.

Then we have as n → ∞,

PN
0 (f0 ∈ Cn) → 1 − α.(6)

Moreover, if un = wLn/
√

Ln, then (6) remains true with Cn replaced by

C̄n = Cn ∩ {
f :

∣∣〈f,ψlk〉
∣∣ ≤ un2−l(γ+1/2) ∀k, l

}
,

and the diameter |C̄n|∞ = sup{‖f − g‖∞ :f,g ∈ C̄n}, satisfies

|C̄n|∞ = OPN

0

((
logn

n

)γ /(2γ+1)

un

)
.(7)

We conclude that the (1 − α)-credible set Cn is an exact asymptotic frequentist
(1 −α)-confidence set. Following the multiscale approach, the same is true for C̄n

obtained from intersecting Cn with a γ -Hölder constraint (expressed through the
decay of the Haar wavelet coefficients). The L∞-diameter of C̄n shrinks at the
optimal rate if the true density f0 is also γ -Hölder (noting un → ∞ as slowly as
desired). For the proof see Section 4.2.

A summary of this article is as follows: in the next section we introduce the mul-
tiscale framework and the statistical sampling models and show how to construct
efficient frequentist estimators in them. In Section 3 we introduce the Bayesian ap-
proach, formulate a general notion of a nonparametric Bernstein–von Mises phe-
nomenon in multiscale spaces and prove that the phenomenon occurs for a variety
of relevant nonparametric prior distributions, including Gaussian series priors and
random histograms. In Section 4 we discuss statistical applications to Donsker–
Kolmogorov–Smirnov theorems and credible bands. Section 5 contains the proofs.

2. The general framework. We use the usual notation for Lp = Lp([0,1])-
spaces of integrable functions, and we denote by �p the usual sequence spaces. The
usual supremum norm is denoted by ‖ · ‖∞. Throughout we consider an S-regular,
S ≥ 0, wavelet basis{

ψlk : l ≥ J0 − 1, k = 0, . . . ,2l − 1
}
, J0 ∈ N∪ {0},(8)

of L2([0,1]) (by convention we denote the usual “scaling function” ϕ as the first
wavelet ψ(J0−1)0). We restrict to Haar wavelets (S = J0 = 0), periodised wavelet
bases (J0 = 0, S > 0) or boundary corrected wavelet bases (S > 0, J0 = J0(S)

large enough, see [7]). Functions f ∈ L2 generate double-indexed sequences
{〈f,ψlk〉 = ∫ 1

0 f ψlk}, and conversely any sequence (xlk) generates wavelet series
of (possibly generalised) functions

∑
k,l xlkψlk on [0,1].
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We define Hölder-type spaces Cs of continuous functions on [0,1]:
Cs([0,1]) =

{
f ∈ C

([0,1]) :‖f ‖s,∞ := sup
l,k

2l(s+1/2)
∣∣〈ψlk, f 〉∣∣ < ∞

}
.(9)

When the wavelets are regular enough, this norm characterises the scale of Hölder
(–Zygmund when s ∈ N) spaces. Otherwise we work with the spaces defined
through decay of the multiscale coefficients, which still contain the classical
s-Hölder spaces by standard results in wavelet theory.

Convergence in distribution of random variables Xn →d X in a metric space
(S, d) can be metrised by metrising weak convergence of the induced laws L(Xn)

to L(X) on S. For convenience we work with the bounded-Lipschitz metric βS : let
μ,ν be probability measures on (S, d), and define

βS(μ, ν) ≡ sup
F : ‖F‖BL≤1

∣∣∣∣
∫
S
F (x)

(
dμ(x) − dν(x)

)∣∣∣∣,
(10)

‖F‖BL = sup
x∈S

∣∣F(x)
∣∣ + sup

x �=y,x,y∈S

|F(x) − F(y)|
d(x, y)

.

2.1. Multiscale spaces. For monotone increasing weighting sequences w =
(wl : l ≥ J0 − 1),wl ≥ 1, we define multiscale sequence spaces

M ≡ M(w) ≡
{
x = {xlk} :‖x‖M(w) ≡ sup

l

maxk |xlk|
wl

< ∞
}
.(11)

The space M(w) is a nonseparable Banach space (it is isomorphic to �∞). The
(weighted) sequences in M(w) that vanish at infinity form a separable closed sub-
space for the same norm

M0 = M0(w) =
{
x ∈ M(w) : lim

l→∞ max
k

|xlk|
wl

= 0
}
.(12)

We notice that wl ≥ 1 implies ‖x‖M ≤ ‖x‖�2 so that M always contains �2.
For suitable divergent weighting sequences (wl), these spaces contain objects that
are much less regular than �2-sequences, such as a Gaussian white noise dW . The
action of dW on {ψlk} generates an i.i.d. sequence glk of standard N(0,1)’s, hence
whether dW defines a Gaussian Borel random variable W in M0 or not depends
entirely on the weighting function w.

DEFINITION 1. Call a sequence (wl) admissible if wl/
√

l ↑ ∞ as l → ∞.

PROPOSITION 2. Let W = (
∫

ψlk dW : l, k) = (glk), glk ∼ N(0,1), be a
Gaussian white noise. For ω = (ωl) = √

l we have E‖W‖M(ω) < ∞. If w = (wl)

is admissible, then W defines a tight Gaussian Borel probability measure in the
space M0(w).
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PROOF. Since there are 2l i.i.d. standard Gaussians glk = 〈ψlk, dW 〉 at the
lth level, we have from a standard bound E maxk |glk| ≤ C

√
l for some universal

constant C. The Borell–Sudakov–Tsirelson inequality (e.g., [29]) applied to the
maximum at the lth level gives, for any M large enough,

Pr
(
sup

l

l−1/2 max
k

|glk| > M
)

≤ ∑
l

Pr
(
max

k
|glk| − E max

k
|glk| >

√
lM − E max

k
|glk|

)

≤ 2
∑

l

exp
{−c(M − C)2l

}
.

Now using E[X] ≤ K + ∫ ∞
K Pr[X ≥ t]dt for any real-valued random variable X

and any K ≥ 0, one obtains that ‖W‖M(ω) has finite expectation.
It now also follows immediately from the definition of the space M0(w) that

for any sequence wl/
√

l ↑ ∞, we have W ∈ M0 almost surely. Since the latter is
a separable complete metric space, W is a tight Gaussian Borel random variable in
it (e.g., page 374 in [1]). �

REMARK 1 (Admissible sequences w). Assuming admissibility of w is nec-
essary if one wants to show that W is tight in M(w). Since weak convergence
of probability measures on a complete metric space implies tightness of the limit
distribution, it is in particular impossible, as will be relevant below, to converge
weakly towards W in M(w) without assuming admissibility of w. To prove that
admissibility is necessary, suppose on the contrary that W were tight in M(ω) for
some sequence ωl ∼ √

l, hence defining a Radon Gaussian measure in that space.
Then by Theorem 3.6.1 in [1] the topological support of W equals the completion
of the RKHS �2 in the norm of the ambient Banach space M(ω), which is M0(ω).
Since

lim
J→∞

maxk |gJk|√
J

=
√

2 log 2 �= 0

almost surely we have W /∈ M0(ω), a contradiction, so W cannot be tight.
The cylindrically-defined law of W is in fact a “degenerate” Gaussian measure
in M(ω) that does (assuming the continuum hypothesis) not admit an exten-
sion to a Borel measure on M(ω); see Definition 3.6.2 and Proposition 3.11.5
in [1]. It has further unusual properties: W has a “hole.” That is, for some c > 0,
‖W‖M(ω) ∈ [c,∞) almost surely (see [6]), and depending on finer properties of
the sequence ω, the distribution of ‖W‖M may not be absolutely continuous, and
its absolutely continuous part may have infinitely many modes; see [23].

2.2. Nonparametric statistical models.

2.2.1. Nonparametric regression. For f ∈ L2 consider observing a trajectory
in the white noise model (2) which is a natural surrogate for a fixed design non-
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parametric regression model with Gaussian errors. By Proposition 2 and since any
f ∈ L2 has wavelet coefficients {flk} ∈ �2 ⊂ M0(w), equation (2) makes rigorous
sense as the tight Gaussian shift experiment

X
(n) = f + 1√

n
W, n ∈N,(13)

in M0(w) for any admissible (wl). We denote the law L(X(n)) by P n
f . Then

√
n
(
X

(n) − f
) = W in M0,(14)

and one deduces that X(n) is an efficient estimator of f in M0.

2.2.2. The i.i.d. sampling setting. Consider next the situation where we ob-
serve X1, . . . ,Xn i.i.d. from law P with density f on [0,1]. Then a natural esti-
mate of 〈f,ψlk〉 is given by Pnψlk ≡ 〈Pn,ψlk〉 = 1

n

∑n
i=1 ψlk(Xi). By the central

limit theorem, for k, l fixed and as n → ∞, the random variable
√

n(Pn −P)(ψlk)

converges in distribution to

GP (ψlk) ∼ N
(
0,VarP

(
ψlk(X1)

))
.(15)

In analogy to the white noise process W, the process GP arising from (15) can be
rigorously defined as the Gaussian process indexed by the Hilbert space

L2(P ) ≡
{
f : [0,1] → R :

∫ 1

0
f 2 dP < ∞

}

with covariance function E[GP (g)GP (h)] = ∫ 1
0 (g − Pg)(h − Ph)dP . We call

GP the P -white bridge process. An analogue of Proposition 2, and of the remark
after it, holds true for GP whenever P has a bounded density.

PROPOSITION 3. Proposition 2 holds true for the P -white bridge GP replac-
ing W whenever P has a bounded density on [0,1].

PROOF. The proof is exactly the same, using the standard bounds

Var
(
GP (ψlk)

) ≤ ‖f ‖∞, E max
k

∣∣GP (ψlk)
∣∣ ≤ C‖f ‖1/2∞

√
l,

where f denotes the density of P . �

Any P with bounded density f has coefficients 〈f,ψlk〉 ∈ �2 ⊂ M0(w). We
would like to formulate a statement such as

√
n(Pn − P) →d

GP in M0,

as n → ∞, paralleling (14) in the Gaussian white noise setting. The fluctuations
of

√
n(Pn −P)(ψlk)/

√
l along k are stochastically bounded for l such that 2l ≤ n,
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but are unbounded for high frequencies. Thus the empirical process
√

n(Pn − P)

will not define an element of M0 for every admissible sequence w. In our non-
parametric setting we can restrict to frequencies at levels l,2l ≤ n and introduce
an appropriate “projection” Pn(j) of the empirical measure Pn onto Vj via

〈
Pn(j),ψlk

〉 = { 〈Pn,ψlk〉, if l ≤ j ,
0, if l > j ,

(16)

which defines a tight random variable in M0. The following theorem shows that
Pn(j) estimates P efficiently in M0 if j is chosen appropriately. Note that the
natural choice j = Ln such that

2Ln ∼ N1/(2γ+1),

where N = n (if γ > 0) or N = n/ logn (if γ ≥ 0), is possible.

THEOREM 1. Let w = (wl) be admissible. Suppose P has density f in
Cγ ([0,1]) for some γ ≥ 0. Let jn be such that

√
n2−jn(γ+1/2)w−1

jn
= o(1),

2jnjn

n
= O(1).

Then we have, as n → ∞,
√

n
(
Pn(jn) − P

) →d
GP in M0(w).

3. The nonparametric Bayes approach. In both regression or density es-
timation one constructs a prior probability distribution from which the function
f is drawn, and given the observations X = X(n), equal to either X

(n) ∼ P n
f or

X1, . . . ,Xn i.i.d. from density f , one computes the posterior distribution �(·|X)

of f . Under appropriate conditions the wavelet coefficient sequence associated
to a posterior draw f ∼ �(·|X) will give rise to a random variable in M0. If
Tn = Tn(X) is an efficient estimator of f in M0, such as X(n) or Pn(j) from the
previous subsections, then one can ask, following [4], for a Bernstein–von Mises
type result: assuming X ∼ Pf0 for some fixed f0, do we have

L
(√

n(f − Tn)|X) → L(G) weakly in M0(w) as n → ∞,(17)

with Pf0 -probability close to one? Here, depending on the sampling model con-
sidered, G equals either W or GP0, dP0(x) = f0(x) dx and Pf0 stands, in slight
abuse of notation, for the law P n

f0
of X(n) or the law PN

0 of (X1,X2, . . .).
To make such a statement rigorous we will metrise weak convergence of laws in

M0(w) via βM0(w) from (10), and view the prior � on the functional parameter
f ∈ L2 as a prior on sequence space �2 under the wavelet isometry L2 ∼= �2 [arising
from an arbitrary but fixed wavelet basis (8)].
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DEFINITION 2. Let w be admissible, let � be a prior and �(·|X) the cor-
responding posterior distribution on �2 ⊂ M0 = M0(w), obtained from observa-
tions X in the white noise or i.i.d. sampling model. Let �̃n be the image measure
of �(·|X) under the mapping

τ :f �→ √
n(f − Tn),

where Tn = Tn(X) is an estimator of f in M0. Then we say that � satisfies the
weak Bernstein–von Mises phenomenon in M0 with centring Tn if, for X ∼ Pf0

and fixed f0, as n → ∞,

βM0(�̃n,N ) →Pf0 0,

where N is the law in M0 of W or of GP0, f0 ∈ L∞, respectively.

REMARK 2. If convergence of moments (Bochner-integrals) E[�̃n|X] →Pf0

EN = 0 occurs in the above limit, then we deduce

‖f̄n − Tn‖M0 = oPf0
(1/

√
n),(18)

where f̄n = E(f |X) is the posterior mean. If Tn is an efficient estimator of
f ∈ M0, then (18) implies that f̄n is so too.

In [4], Bernstein–von Mises theorems are proved in certain negative Sobolev
spaces H(δ), δ > 1/2, and various applications of such results are presented.
A multiscale BvM result in M0 for a prior {flk} implies a weak BvM for the
prior

∑
k,l flkψlk in H(δ), as the following result shows. In particular all the ap-

plications from [4] carry over to the present setting.

PROPOSITION 4. Suppose the weak Bernstein–von Mises phenomenon holds
true in M0(w) with (wl) such that

∑
l w

2
l l

−2δ < ∞ for some δ > 0. Then the weak
Bernstein–von Mises phenomenon holds in H(δ).

PROOF. The norm of H(δ) is given by (see [4], Section 1.2),

‖f ‖2
H(δ) = ∑

l

2−l l−2δ
∑
k

∣∣〈f,ψlk〉
∣∣2

≤ sup
l

w−2
l max

k

∣∣〈f,ψlk〉
∣∣2 ∑

l

w2
l l

−2δ

≤ C‖f ‖2
M0(w),

so that the result follows from the continuous mapping theorem. �

While the above notions of the BvM phenomenon will be shown below to be
useful and feasible in nonparametric settings, there are other ways to formulate



NONPARAMETRIC BVM’S 1951

BvM-type statements. For instance, one may investigate how the classical BvM
theorem in finite-dimensions extends to parameter spaces of dimension that in-
creases with n; see, [2, 15, 25] for results in this direction.

Throughout the rest of this section M0 = M0(w) is the space defined in (12),
with w an admissible sequence as in Definition 1.

3.1. Bernstein–von Mises theorems in M0(w): Gaussian regression case. In
the white noise model (13) natural priors for f are obtained from distributing
random coefficients on the ψlk’s.

CONDITION 1. Consider product priors � arising from random functions

f (x) = ∑
l

σl

∑
k

φlkψlk(x), x ∈ [0,1],

where the φlk are i.i.d. from probability density ϕ :R→ [0,∞) satisfying

∃a,C > 0 ∀x ∈R, ϕ(x) ≤ Ce−ax2
,(E)

and where σl = 2−l(α+(1/2)), α > 0, ensuring in particular that f ∈ L2 almost
surely.

For X
(n) ∼ P n

f0
and f0 with wavelet coefficients {〈f0,ψlk〉} ∈ �2, we assume

moreover that there exists a finite constant M > 0 such that

sup
l,k

|〈f0,ψlk〉|
σl

≤ M,(P1)

and that there exists τ > M,cϕ > 0 such that

on (−τ, τ ) the density ϕ is continuous and satisfies ϕ ≥ cϕ.(P2)

If f0 ∈ Cβ,β > 0, then (P1) is satisfied as soon as α ≤ β (so any prior that
matches the regularity of f0, or that “undersmooths,” can be used).

REMARK 3. Condition 1 allows for a sub-Gaussian density ϕ. Strictly subex-
ponential tails could be allowed too if the weighting sequence w satisfies an ad-
ditional constraint: Theorem 2 below holds true for exponential-power densities
ϕ(x) � e−|x|p and 1 < p < 2, provided wl/l1/p ↑ ∞.

Any prior satisfying Condition 1 defines a Borel probability measure on L2

(using separability of the latter space), and the resulting posterior distribution also
defines an element of L2 ∼= �2 ⊂ M0.

THEOREM 2. Suppose � satisfies Condition 1, and let �(·|X(n)) be the poste-
rior distribution in M0 arising from observing (13) for some fixed f0 ∈ Cβ , β > 0.
Then � satisfies the weak Bernstein–von Mises theorem in the sense of Definition 2
in the space M0 = M0(w) for any admissible w, with N equal to the law of W,
and with centring Tn equal to X

(n) or equal to the posterior mean E(f |X(n)).
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3.2. Bernstein–von Mises theorems in M0(w): Sampling model case. Let us
now turn to the situation where one observes a sample Xi ∼i.i.d. P ,

(X1, . . . ,Xn) ≡ X(n),

from law P with bounded probability density f on [0,1]. We define multiscale pri-
ors � on some space F of probability density functions f giving rise to absolutely
continuous probability measures. Let

F := ⋃
0<ρ≤D<∞

F(ρ,D) := ⋃
0<ρ≤D<∞

{
f : [0,1] → [ρ,D],

∫ 1

0
f = 1

}
.

In the following we assume that the “true” density f0 belongs to F0 := F(ρ0,D0),
for some 0 < ρ0 ≤ D0 < ∞.

We consider various classes of priors on densities and two possible values for
a cut-off parameter Ln. For α > 0, let jn = jn(α) and ln = ln(α) be the largest
integers such that

2jn ≤ n1/(2α+1), 2ln ≤
(

n

logn

)1/(2α+1)

,(19)

and set, in slight abuse of notation, either

Ln = jn (∀n ≥ 1) or Ln = ln (∀n ≥ 1).(20)

(S) Priors on log-densities. Given a multiscale wavelet basis {ψlk} from (8),
consider the prior � induced by, for any x ∈ [0,1] and Ln as in (20),

T (x) = ∑
l≤Ln

2l−1∑
k=0

σlαlkψlk(x),(21)

f (x) = exp
{
T (x) − c(T )

}
, c(T ) = log

∫ 1

0
eT (x) dx,(22)

where αlk are i.i.d. random variables of continuous probability density ϕ :R →
[0,∞). We consider the choices

ϕ(x) = ϕH (x),(S1)

ϕ(x) = ϕG(x) = e−x2/2/
√

2π,(S2)

where ϕH is any density such that logϕH is Lipschitz on R. We call this the log-
Lipschitz case. For instance, the αlk’s can be Laplace-distributed or have heavier
tails. To simplify some proofs we restrict to a specific form of density: for a given
0 ≤ τ < 1 and x ∈ R, and cτ a normalising constant, suppose ϕH takes the form

ϕH,τ (x) = cτ exp
{−(

1 + |x|)1−τ }
.(23)
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Suppose the prior parameters σl satisfy, for α > 1/2 and 0 < r < α − 1/4,

σl = 2−l(α+1/2) (log-Lipschitz-case),
(24)

σl = 2−l(r+(1/2)) (Gaussian-case).

(H) Random histograms density priors. Associated to the regular dyadic parti-
tion of [0,1] at level L ∈ N ∪ {0}, given by IL

0 = [0,2−L] and IL
k = (k2−L, (k +

1)2−L] for k = 1, . . . ,2L − 1, is a natural notion of histogram

HL =
{
h ∈ L∞[0,1], h(x) =

2L−1∑
k=0

hk1IL
k
(x), hk ∈ R, k = 0, . . . ,2L − 1

}
.

Let SL = {ω ∈ [0,1]2L;∑2L−1
k=0 ωk = 1} be the unit simplex in R

2L
. Further denote

H1
L the subset of HL consisting of histograms which are densities on [0,1] with L

equally spaced dyadic knots. Let H1 be the set of all histograms which are densities
on [0,1].

A simple way to specify a prior � on H1
L is to set L = Ln deterministic and

to fix a distribution for ωL := (ω0, . . . ,ω2L−1). Set L = Ln as defined in (20).
Choose some fixed constants a, c1, c2 > 0, and let

L = Ln, ωL ∼ D(α0, . . . , α2L−1), c12−La ≤ αk ≤ c2,(25)

for any admissible index k, where D denotes the Dirichlet distribution on SL. Un-
like those suggested by the notation, the coefficients α of the Dirichlet distribution
are allowed to depend on Ln, so that αk = αk,Ln .

The priors (S), (H) above are “multiscale” priors where high frequencies are
ignored, corresponding to truncated series priors considered frequently in the non-
parametric Bayes literature. The resulting posterior distributions �(·|X(n)) at-
tain minimax optimal contraction rates up to logarithmic terms in Hellinger and
L2-distance [5, 32, 37] and L∞-distance [3]. Clearly other priors are of inter-
est as well, for instance, priors without or with random high-frequency cut-off or
Dirichlet mixtures of normals etc. While our current proofs do not cover such situ-
ations, one can note that our proof strategy via simultaneous control of many linear
functionals is applicable in such situations as well. Generalising the scope of our
techniques is an interesting direction of future research.

The projection Pn(j) as in (16), with the choice j = Ln from (20), defines a
tight random variable in M0. For z ∈ M0, the map τz :f �→ √

n(f − z) maps
M0 → M0, and we can define the shifted posterior �(·|X(n)) ◦ τ−1

Pn(Ln). The fol-
lowing theorem shows that the above priors satisfy a weak BvM theorem in M0
in the sense of Definition 2, with efficient centring Pn(Ln); cf. Theorem 1. Denote
the law L(GP0) of GP0 from Proposition 3 by N .

THEOREM 3. Let M0 = M0(w) for any admissible w = (wl). Let X(n) =
(X1, . . . ,Xn) i.i.d. from law P0 with density f0 ∈ F0. Let � be a prior on the set
of probability densities F , that is:
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(1) either of type (S), in which case one assumes logf0 ∈ Cα for some α > 1,
(2) or of type (H), and one assumes f0 ∈ Cα for some 1/2 < α ≤ 1.

Suppose the prior parameters satisfy (20), (24) and (25). Let �(·|X(n)) be the
induced posterior distribution on M0. Then, as n → ∞,

βM0

(
�
(·|X(n)) ◦ τ−1

Pn(Ln),N
) →PN

0 0.(26)

4. Some applications.

4.1. Donsker’s theorem for the posterior cumulative distribution function.
Whenever a prior on f satisfies the weak Bernstein–von Mises phenomenon in
the sense of Definition 2, we can deduce from the continuous mapping theo-
rem a BvM for integral functionals Lg(f ) = ∫ 1

0 g(x)f (x) dx simultaneously for
many g’s satisfying bounds on the decay of their wavelet coefficients. More
precisely a bound

∑
k |〈g,ψlk〉| ≤ cl for all l combined with a weak BvM for

(wl) such that
∑

clwl < ∞ is sufficient. Let us illustrate this in a key example
gt = 1[0,t], t ∈ [0,1], where we can derive results paralleling the classical Donsker
theorem for distribution functions and its BvM version for the Dirichlet process
proved in [31]. With the applications we have in mind, and to simplify some tech-
nicalities, we restrict to situations where the posterior f |X is supported in L2, and
where the centring Tn in Definition 2 is contained in L2 (resp., equals X(n)). In this
case the primitives

F(t) =
∫ t

0
f (x) dx, Tn(t) =

∫ t

0
Tn(x) dx

(
resp.,

∫ t

0
dX(n)(x)

)
, t ∈ [0,1],

define random variables in the separable space C([0,1]) of continuous functions
on [0,1], and we can formulate a BvM result in that space. Different centrings
(such as the empirical distribution function) are discussed below.

THEOREM 4. Let � be a prior supported in L2([0,1]), and suppose the weak
Bernstein–von Mises phenomenon in the sense of Definition 2 holds true in M0(w)

for some sequence (wl) such that
∑

l wl2−l/2 < ∞, and with centring Tn either
equal to X

(n) or such that Tn ∈ L2. For f ∼ �(·|X) (conditional on X) define the
posterior cumulative distribution function

F(t) =
∫ t

0
f (x) dx, t ∈ [0,1].(27)

Let G be a Brownian motion (G(t) : t ∈ [0,1]) in the white noise model or a P0-
Brownian bridge (G(t) ≡ GP0(t) : t ∈ [0,1]), dP0(x) = f0(x) dx,f0 ∈ L∞, in the
sampling model. If X ∼ Pf0 for some fixed f0, then as n → ∞,

βC([0,1])
(
L
(√

n(F −Tn)|X)
,L(G)

) →Pf0 0,(28)

βR

(
L
(√

n‖F −Tn‖∞|X)
,L

(‖G‖∞
)) →Pf0 0.(29)



NONPARAMETRIC BVM’S 1955

PROOF. The mapping

L : {hlk} �→ Lt

({hlk}) := ∑
l,k

hlk

∫ t

0
ψlk(x) dx, t ∈ [0,1],(30)

is linear and continuous from M0(w) to L∞([0,1]) since, for 0 < c < C < ∞,∣∣∣∣∑
l,k

hlk

∫ t

0
ψlk(x) dx

∣∣∣∣ ≤ ∑
l,k

|hlk|
∣∣〈1[0,t],ψlk〉

∣∣

≤ c sup
l,k

|hlk|
wl

∑
l

wl2
−l/2

≤ C‖h‖M0,

where we have used supt∈[0,1]
∑

k |〈1[0,t],ψlk〉| ≤ c2−l/2, shown, for example, as
in the proof of Lemma 3 in [16]. Also, L coincides with the primitive map on any
function h ∈ L2([0,1]) with wavelet coefficients {hlk} ∈ �2, since then

L
({hlk}) = ∑

l,k

hlk〈1[0,t],ψlk〉 = 〈h,1[0,t]〉 =
∫ t

0
h(x) dx, t ∈ [0,1],

in view of Parseval’s identity. Moreover, if G is a tight Gaussian random variable
in M0, then the linear transformation L(G) is a tight Gaussian random variable
in C([0,1]), equal in law to a Brownian motion or a P0-Brownian bridge for our
choice G = W or G = GP0 , respectively, after checking the identity of the corre-
sponding reproducing kernel Hilbert spaces (cf. [36], and using again that L equals
the primitive map on L2). The displays (28)–(29) now follow from Definition 2, the
continuous mapping theorem applied to L and L ◦ ‖ · ‖−1∞ , respectively, and noting
that L(f ),L(Tn) take values in the closed subspace C([0,1]) of L∞([0,1]) under
the maintained assumptions. (Although not used here, it can in fact be checked that
the general inclusion Im(L) ⊂ C([0,1]) holds true.) �

COROLLARY 1. Let � be a prior of type (S) or (H), and suppose the condi-
tions of Theorem 3 are satisfied. Let Fn(t) = (1/n)

∑n
i=1 1[0,t](Xi), t ∈ [0,1], be

the empirical distribution function based on a sample X1, . . . ,Xn from law P0,
and let F be a cumulative distribution function induced by �(·|X1, . . . ,Xn) as in
(27). Then, as n → ∞,

βL∞([0,1])
(
L
(√

n(F − Fn)|X)
,L(GP0)

) →PN

0 0,

βR

(
L
(√

n‖F − Fn‖∞|X)
,L

(‖GP0‖∞
)) →PN

0 0.

PROOF. By Theorems 3 and 4 the result is true with Fn replaced by the
primitive Tn of Pn(Ln). As in the proof leading to Remark 9 in [16] one shows
‖Tn − Fn‖∞ = oP (1/

√
n), and hence the result follows from the triangle inequal-

ity. (To avoid measurability issues we note that the result holds for convergence
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in distribution in L∞([0,1]) in the generalised sense of empirical processes (as in
[18]), or in the space of càdlàg functions on [0,1].) �

Returning to the general setting of Theorem 4, a natural credible band for F is
to take Cn,Rn such that, with L the map defined in (30),

Cn = {
F :‖F −Tn‖∞ ≤ Rn/

√
n
}
, � ◦ L−1(Cn|X) = 1 − α.(31)

The proof of the following result implies in particular that Cn asymptotically co-
incides with the usual Kolmogorov–Smirnov confidence band. The result is true
also with centring Tn = Fn (in which case the proof requires minor modifications
related to the remarks at the end of the proof of Corollary 1).

COROLLARY 2. Under the conditions of Theorem 4, let X ∼ Pf0,F0 =∫ ·
0 f0(t) dt and Cn as in (31). Then we have, as n → ∞,

Pf0(F0 ∈ Cn) → 1 − α and Rn →Pf0 const .

PROOF. The proof is similar to Theorem 1 in [4], replacing H(δ) there by
C([0,1]) (a separable Banach space): the function � in that proof is strictly in-
creasing: any shell {g ∈ C([0,1]) : s < ‖g‖∞ < t}, 0 ≤ s < t , contains an ele-
ment of the RKHS (see [36]) of Brownian motion [in the case of the white noise
model (2)] or of the P0-Brownian bridge (in the case of the i.i.d. sampling model).
Using also Theorem 1 in the sampling model case, all arguments from the proof of
Theorem 1 in [4] go through. �

REMARK 4. Equation (31) [resp., (32) below] reads conditionally on the ex-
istence of such a positive real Rn. More generally, one may take a generalised
quantile in (31) [resp., in (32)]. Then Cn has credibility 1 − α asymptotically, and
one can check that the previous corollary [resp., Theorem 5] continues to hold.

4.2. Confidence bands for f . Given a posterior distribution �(·|X) on the
parameter f of a regression or sampling model, we can incorporate the multiscale
approach to construct confidence sets for f in a Bayesian way. We take an efficient
centring Tn [e.g., X(n),Pn(L) from above or, when appropriate, the posterior mean
E(f |X)] and, given α > 0 and admissible w, choose Rn and the credible region
Cn in such a way that

Cn =
{
f : sup

l,k

|〈f − Tn,ψlk〉|
wl

≤ Rn√
n

}
, �(Cn|X) = 1 − α.(32)

THEOREM 5. Let w = (wl) be admissible. Suppose the weak Bernstein–von
Mises phenomenon holds true in M0(w) with prior � and centring Tn. Let Cn be
as in (32). Then, as n → ∞,

Pf0(f0 ∈ Cn) → 1 − α, Rn →Pf0 const .
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PROOF. The proof is the same as the one of Theorem 1 in [4], replacing H(δ)

there by M0(w), and using also Theorem 1 in the sampling model case. �

The previous theorem can be used to control low frequencies of the estimation
error, and following the multiscale approach one needs to employ further qualita-
tive information about f0 to control high frequencies. In the present case, if we
assume f0 ∈ Cγ for some γ > 0, we can define, for un = wjn/

√
jn and jn such

that 2jn ∼ (n/ logn)1/(2γ+1), the confidence set

C̄n = C̄n(γ ) = Cn ∩ {
f :‖f ‖Cγ ≤ un

}
.(33)

The following result combined with Theorems 3 and 5 implies in particular Propo-
sition 1 from the Introduction.

PROPOSITION 5. Under the conditions of Theorem 5 suppose X ∼ Pf0 where
f0 ∈ Cγ ([0,1]). Then, with C̄n as in (33), and as n → ∞,

Pf0(f0 ∈ C̄n) → 1 − α and |C̄n|∞ = OPf0

(
(n/ logn)−γ /(2γ+1)un

)
.

PROOF. For n large enough such that un ≥ ‖f0‖Cγ we have as n → ∞
Pf0(f0 ∈ C̄n) = Pf0(f0 ∈ Cn) → 1 − α

in view of Theorem 5. Moreover, for h = f − g,f, g ∈ Cn arbitrary,

‖h‖M(w) ≤ ‖f − Tn‖M(w) + ‖g − Tn‖M(w) = O

(
Rn√

n

)
= OPf0

(
1√
n

)
.

The estimate on |C̄n|∞ now follows from

‖h‖∞ ≤ ∑
l

2l/2 max
k

∣∣〈h,ψlk〉
∣∣

combined with the bound∑
l≤jn

2l/2 max
k

∣∣〈h,ψlk〉
∣∣ = ∑

l≤jn

2l/2
√

l
wl√

l
w−1

l max
k

∣∣〈h,ψlk〉
∣∣

�
√

2jnjn

n

wjn√
jn

Rn

= OPf0

((
logn

n

)γ /(2γ+1)

un

)
,

and with ∑
l>jn

2l/2 max
k

∣∣〈h,ψlk〉
∣∣ = ∑

l>jn

2−lγ 2l(γ+1/2) max
k

∣∣〈h,ψlk〉
∣∣

≤ ‖h‖Cγ 2−jnγ

= OPf0

((
logn

n

)γ /(2γ+1)

un

)
,
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completing the proof. �

REMARK 5 (Optimal diameter, undersmoothing, adaptation). The confidence
bands from Propositions 1 and 5 have diameter equal to the L∞-minimax rate
over Hölder balls multiplied with an under-smoothing penalty un, common in fre-
quentist constructions of confidence bands; see [20] and, more recently, [17]. If
the BvM phenomenon holds for all admissible sequences w (as in the examples
above), then this sequence can be taken to diverge at an arbitrarily slow rate.

If a quantitative a priori bound ‖f0‖Cγ < B is available, then in the setting of
Theorem 2 one could use a uniform wavelet prior [with ϕ = 1[−B,B]/(2B), for
some B > 0] concentrating on a Hölder ball of radius B (as in Corollary 1, [4]).
The set C̄n from (33) (even with un replaced by B) is then an exact level 1 − α

posterior credible set, consisting of the intersection of two hyper-rectangles in se-
quence space, and Proposition 5 applies to give the precise frequentist asymptotics
of C̄n.

We can also obtain adaptive confidence bands by using a bandwidth choice ĵn

as in [17] to estimate γ by γ̂ under a self-similarity constraint on f , corresponding
to an empirical Bayes-type selection of γ . More Bayesian approaches to adaptive
confidence sets are subject of current research; see, for example, the recent contri-
bution [34].

5. Proofs.

5.1. Proof of Theorem 1. For J to be chosen below, let VJ be the subspace
of M(w) consisting of the scales l ≤ J , and let πVJ

(P ) be the projection of f

onto VJ . We have by definition of the Hölder space Cγ and assumption

∥∥P − πVjn
(P )

∥∥
M0

= sup
l>jn

maxk |〈f,ψlk〉|
wl

� w−1
jn

2−jn(γ+1/2)(34)

= o

(
1√
n

)

so that this term is negligible in the limit distribution. Writing β for βM0 and√
n(Pn(jn) − πVjn

(P )) = νn, it suffices to show that

β
(
L(νn),L(GP )

) ≤ β
(
L(νn),L(νn) ◦ π−1

VJ

)
+ β

(
L(νn) ◦ π−1

VJ
,L(GP ) ◦ π−1

VJ

)
(35)

+ β
(
L(GP ),L(GP ) ◦ π−1

VJ

)
converges to zero under PN. Let ε > 0 be given. The second term is less than
ε/3 for every J fixed and n large enough by the multivariate central limit theorem
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applied to

1√
n

n∑
i=1

(
ψlk(Xi) − EP ψlk(X)

)
, k, l ≤ J,

noting that eventually jn > J . For the first term, by definition of β ,

β
(
L(νn),L(νn) ◦ π−1

VJ

)
≤ E

∥∥√n(πVjn
− πVJ

)(Pn − P)
∥∥
M0

(36)

≤
[

max
J<l≤jn

√
l

wl

]
E max

J<l≤jn

l−1/2 max
k

∣∣〈√n(Pn − P),ψlk

〉∣∣.
Thus for J large enough this term can be made smaller than ε/3 if we can show
that the expectation is bounded by a fixed constant. For M a large enough constant,
this expectation is bounded above by M plus∫ ∞

M
P
(

max
J≤l≤jn

l−1/2 max
k

∣∣〈√n(Pn − P),ψlk

〉∣∣ > u
)
du

≤ ∑
J≤l≤jn,k

∫ ∞
M

P
(∣∣〈√n(Pn − P),ψlk

〉∣∣ > √
lu

)
du

≤ ∑
J≤l≤jn

2l
∫ ∞
M

e−Clu du� e−C′JM,

where the second inequality follows from an application of Bernstein’s inequality
(e.g., [29]) together with the bounds Pψ2

lk ≤ ‖f ‖∞ and
√

l‖ψlk‖∞ ≤ √
l2l/2 =

O(
√

n) for l ≤ jn, using the assumption on jn.
For the third Gaussian term we argue similarly, replacing νn by GP in (36) and

using that E supl maxk |GP (ψlk)|/
√

l < ∞ by Proposition 2.

5.2. A tightness criterion in M0. The following proposition considers general
random posterior measures �(·|X) in the setting of Definition 2.

PROPOSITION 6. Let πVJ
, J ∈ N, be the projection operator onto the finite-

dimensional space spanned by the ψlk’s with scales up to l ≤ J . Let f ∼ �(·|X),
Tn = Tn(X), let �̃n denote the laws of

√
n(f − Tn) conditionally on X and let N

equal the Gaussian probability measure on M0(w) given by either W or GP from
P with bounded density.

Assume that the finite-dimensional distributions converge, that is,

βVJ

(
�̃n ◦ π−1

VJ
,N ◦ π−1

VJ

) →Pf0 0 as n → ∞,(37)
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and that for some sequence w̄ = (w̄l) ↑ ∞, w̄l/
√

l ≥ 1,

E
[‖f − Tn‖M0(w̄)|X] = E

[
sup

l

w̄−1
l max

k

∣∣〈f − Tn,ψlk〉
∣∣|X]

(38)

= OPf0

(
1√
n

)
.

Then, for any w such that wl/w̄l ↑ ∞ we have, as n → ∞,

βM0(w)(�̃n,N ) →Pf0 0.

REMARK 6. Inspection of the proof shows that the result still holds true if
f ∼ �(·|X) is replaced by f ∼ �̄(·|X) for random measures �̄(·|X) s.t.

βM0

(
�̄(·|X),�(·|X)

) →Pf0 0

as n → ∞. Likewise, the posterior can be replaced by the conditional posterior
�Dn(·|X) for any sequence of sets Dn such that �(Dn|X) →Pf0 1.

PROOF. Let us write β = βM0(w) and decompose

β(�̃n,N ) ≤ β
(
�̃n, �̃n ◦ π−1

VJ

) + β
(
�̃n ◦ π−1

VJ
,N ◦ π−1

VJ

) + β
(
N ,N ◦ π−1

VJ

)
.

The second term converges to zero by (37). The third term too, arguing as at the
end of the proof of Theorem 1 (and using Proposition 2 or 3). For the first term let
f ∼ �(·|X) conditional on X. Then using (38) we can bound the β-distance by
the expectation of the norm and thus by

E
[∥∥√n(id − πVJ

)(f − Tn)
∥∥
M(w)|X

]
≤

[
sup
l>J

w̄l

wl

]
E
[
sup
l>J

w̄−1
l max

k

∣∣√n〈f − Tn,ψlk〉
∣∣|X]

≤ sup
l>J

w̄l

wl

× OPf0
(1),

which can be made as small as desired for J large enough but fixed. �

5.3. Proof of Theorem 2. We choose integers j = jn → ∞ such that

σ−1
j = 2j (α+1/2) ∼ √

n and note σl �
1√
n

∀l > j.(39)

Conditional on X
(n), let f ∼ �(·|X(n)) and, for πVj

the projection operator
onto Vj , consider the decomposition in M0(w), under Pf0 ,√

n
(
f −X

(n)) = √
n
(
πVj

(f ) − πVj

(
X

(n))) + √
n
(
f − πVj

(f )
)

+ √
n
(
πVj

(f0) − f0
) + (

πVj
(W) −W

)
= I + II + III + IV.

We verify the conditions of Proposition 6 above for the laws L(
√

n(f −X
(n))|X) =

�̃n and for the choice w̄l = √
l. From Theorem 7 in [4], with Condition 2 verified
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in the proof of Theorem 9 of that paper, we derive condition (37). Next we verify
that (38) is satisfied for each of the terms I, II, III, IV, separately. That is, we
check that each term has bounded M(w̄)-norm in expectation (and apply Markov’s
inequality).

(IV) We have as in the proof of Proposition 2 that

E sup
k,l

l−1/2∣∣W(ψlk)
∣∣ ≤ C < ∞.

(III) This term is nonrandom and we have by Condition 1 and definition of σl ,
and some constant 0 < M < ∞,√

n sup
l>j,k

l−1/2∣∣〈f0,ψlk〉
∣∣� M

√
n sup

l>j

l−1/2σl �M/
√

j .

(II) For E the iterated expectation under Pf0 and �(·|X), we can bound

E sup
l>j,k

l−1/2∣∣〈f,ψlk〉
∣∣ ≤ ∑

l>j

l−1/2E max
k

∣∣〈f,ψlk〉
∣∣.

Denote flk := 〈f,ψlk〉, f0,lk := 〈f0,ψlk〉 and εlk := 〈W,ψlk〉. An application of
Jensen’s inequality yields, for any t > 0,

E max
k

|flk| ≤ 1

t
log

∑
k

E
(
etflk + e−tflk

)
.

It is now enough to bound the Laplace transform E[esflk ] for s = t,−t . Both cases
are similar, so we focus on s = t ,

E
[
etflk

] = E

∫
et(f0,lk+(v/

√
n))e−(v2/2)+εlkv(1/(

√
nσl))ϕ((f0,lk + (v/

√
n))/σl) dv∫

e−(v2/2)+εlkv(1/(
√

nσl))ϕ((f0,lk + (v/
√

n))/σl) dv

=: ENlk(t)

Dlk

.

To bound the denominator Dlk from below, one applies the same technique as
in [4], proof of Theorem 5. One first restricts the integral to (−√

nσl,
√

nσl). Next
one notices, using (P1), that over this interval the argument of ϕ lies in a compact
set, and hence the function ϕ can be bounded below by a constant, using (P2). Next
one applies Jensen’s inequality to obtain

Dlk � e
−(1/2)

∫ √
nσl

−√
nσl

(v2/2) dv/(
√

nσl) � e−C.

To bound the numerator Nlk(t) one splits the integral into a part N1 on A :=
{v : |f0,lk + v/

√
n| ≤ σl} and a part N2 on its complement Ac. First

EN1 ≤ etσlE

∫
A

e−v2/2+εlkvϕ

(
f0,lk + (v/

√
n)

σl

)
dv

≤ etσl

∫
A

ϕ

(
f0,lk + (v/

√
n)

σl

)
dv ≤ etσl ,



1962 I. CASTILLO AND R. NICKL

using the definition of A and Fubini’s theorem. On the other hand, the term N2,
setting w = f0,lk + v/

√
n and using condition (E), is bounded by

EN2 ≤
∫
(−1,1)c

etσlwE
(
e−(n/2)(wσl−f0,lk)

2+εlk

√
n(wσl−f0,lk)

)
ϕ(w)dw

≤
∫
(−1,1)c

etσlwϕ(w)dw � ed(σl t)
2
,

for some d > 0. Conclude, setting t = σ−1
l l1/2, that

E max
k

|flk| ≤ 1

t
log

(
2l[Cetσl + Ced(σl t)

2])

� l

t
+ σl + 1

t
(σlt)

2 � σll
1/2.

This gives the overall bound,∑
l>j

2−l(1/2+α) � 2−j (1/2+α) = O(1/
√

n).

(I) For the frequencies l ≤ jn one proves, as in Lemma 1 in [3], for some con-
stant C > 0, the sub-Gaussian bound

Ef0E
(
et

√
n(flk−Xlk)|X) ≤ Cet2/2.(40)

[All that is needed here is ϕ bounded away from zero and infinity on a compact
set, and that (f0,lk +v/

√
n)/σl is bounded by a fixed constant, true for the l’s rele-

vant here.] Then, by a standard application of Markov’s inequality to sub-Gaussian
random variables, writing Pr for the law with expectation Ef0E(·|X), we have for
all v > 0 and universal constants C,C′ that

Pr
(√

n|flk − Xlk| > v
) ≤ C′e−Cv2

.

We then bound, for M a fixed constant

Ef0E
(
sup
l≤j

l−1/2 max
k

√
n|flk − Xlk||X

)

≤ M +
∫ ∞
M

Pr
(

sup
l≤j,k

l−1/2 max
k

√
n|flk − Xlk| > u

)
du.

The tail integral can be further bounded as follows:

∑
l≤j,k

∫ ∞
M

Pr
(√

n|flk − Xlk| >
√

lu
)
du

�
∑
l≤j

2l
∫ ∞
M

e−Clu2
du �

∑
l≤j

2le−CM2l ≤ const
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for M large enough. This completes the proof of the BvM with centring Tn = X
(n).

From weak convergence toward N of the posterior measures and uniform inte-
grability (as one can uniformly bound 1 + ε-moments by the same arguments as
above), we deduce as in Theorem 10 in [4] that

√
n(E(f |X) −X

(n)) → EN = 0
in M0 in probability, so that the posterior mean can replace X

(n) as the centring,
completing the proof.

5.4. Proof of Theorem 3. For h a positive function in L2, denote

c(h) = log
∫ 1

0
h(u)du,

so that he−c(h) becomes a density on [0,1]. Also, for any element g of L2(P0),
denote ‖g‖2

L := P0(g − P0g)2 = ∫ 1
0 (g − ∫ 1

0 g)2 dP0, where ‖ · ‖L is a norm on the
subspace of L2(P0) consisting of P0-centered functions. For simplicity of notation
within the proof, we denote X = X(n).

Let ρn the rate in Lemma 4, where we take Mn = (logn) ∧ (wLn/
√

Ln)
1/2 →

∞. For εn,C, respectively, the rate and constant in Lemma 3, we set

Dn =
{
f = eT −c(T ),‖f − f0‖∞ ≤ ρn, max

l≤K,k

∣∣〈T ,ψlk〉
∣∣ ≤ C

√
nεn

}
,

where the part involving the maximum in the definition of Dn is only needed for
the prior (S2), and where K is a large enough integer. Combining Lemmas 3 and 4,
we have Ef0�[Dn|X] → 1. We also note that for any l > K and any k, the func-
tions ψlk are orthogonal to constants in L2.

We apply Proposition 6 and the remark after it, with the posterior conditioned
on Dn, using the decomposition, for L = Ln and writing πVL

(Pn) for πVL
(Pn(L)),

Ỹn = √
n
(
f − Pn(L)

)
= √

n
(
πVL

(f ) − πVL
(Pn)

) + √
n
(
f − πVL

(f )
) =: Yn + rn.

Thus to prove (26) it suffices to show (i) that Ỹn − Yn is asymptotically negligible
and to check the conditions of Proposition 6, that is, (ii) that (38) holds for Yn, and
(iii) that finite-dimensional convergence (37) occurs.

(i) The term rn is zero in the case of the histogram prior (H), by definition of
the prior and orthogonality of the Haar basis. To check that rn is negligible for the
log-density priors (S), let us write f = f0 + (f − f0) and study separately πV c

L
f0

and πV c
L
(f − f0). For both choices of L, we have L ≥ ln, so

√
n‖πV c

L
f0‖M0 ≤ √

n sup
l>ln

w−1
l max

k

∣∣〈f0,ψlk〉
∣∣

�
√

n
(
l1/2
n /wln

)
sup
l>ln

l−1/22−l((1/2)+α) = o(1),
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using that f0 ∈ Cα , admissibility of w and the definition of ln. Also,

√
n

∫ ∥∥πV c
L
(f − f0)

∥∥
M0

d�Dn(f |X)

= √
n

∫
sup
l>L

w−1
l max

k

∣∣〈f − f0,ψlk〉
∣∣d�Dn(f |X)

≤ √
n sup

l>L

wl
−1‖ψlk‖1

∫
‖f − f0‖∞ d�Dn(f |X)

�
√

n
(
L1/2/wL

)
L−1/22−L/2Mn

(
2LL/n

)1/2 = o(1),

using ‖ψlk‖1 � 2−l/2 and Lemma 4 with Mn → ∞ as defined above.
(ii) To control Yn, a key ingredient is a bound on the following exponential

moment restricted to Dn. Below we prove that for universal constants c1, c2 and
|s| ≤ √

l, for any l ≤ L and k,∫
es

√
n〈f −Pn,ψlk〉 d�Dn(f |X) ≤ c1e

c2s
2
�(Dn|X)−1.(41)

Suppose for now that (41) is established. Then aiming at checking (38) with
w̄l = √

l, we can use it in the study of
√

n
∥∥πVL

(f − Pn)
∥∥
M0(

√
l) = √

nmax
l≤L

l−1/2 max
k

∣∣〈f − Pn,ψlk〉
∣∣

in expectation under �Dn(·|X). Denoting E and Pr, respectively, for expectation
and probability under �Dn(·|X), for any M > 0, with M0 = M0(

√
l),

√
nE

∥∥πVL
(f − Pn)

∥∥
M0

≤ M +
∫ ∞
M

Pr
[√

n
∥∥πVL

(f − Pn)
∥∥
M0

> u
]
du

≤ M + ∑
l<L,k

∫ ∞
M

Pr
[√

n
∣∣〈f − Pn,ψlk〉

∣∣ > √
lu

]
du.

An application of Markov’s inequality for u > 0 leads to

Pr
[√

n
∣∣〈f − Pn,ψlk〉

∣∣ > √
lu

] ≤ e−luE
[
e
√

ln|〈f −Pn,ψlk〉|].
Combining the last two bounds with (41) leads to

√
nE

∥∥πVL
(f − Pn)

∥∥
M0

� M + ∑
l<L

2lec2l�(Dn|X)−1
∫ ∞
M

e−lu du

� M + �(Dn|X)−1
∑
l<L

l−1e[l log 2+lc2−lM].

For M large enough, the last display is bounded by M + C�(Dn|X)−1. Since
�(Dn|X)−1 → 1 in probability, one obtains

√
nE

∥∥πVL
(f − Pn)

∥∥
M0(

√
l) = OPf0

(1).(42)
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Combining (42) with Markov’s inequality and Proposition 6, we see that the BvM
result will follow from (41), and from convergence of finite-dimensional distribu-
tions that we check in point (iii) below.

Now we check (41), in two steps. First, Lemma 1 below enables us to incorpo-
rate the term 〈f −Pn,ψlk〉 into the likelihood coming from Bayes’ formula applied
to d�Dn(f |X) and reduces the problem to a change of measure with respect to the
prior. Next, this change of measure is handled below.

Let us now apply Lemma 1 below to �n = �Dn for �, one of the considered
priors. Set γn = ψlk . First note that ‖γ̃n‖2

L = ∫
ψ2

lkf0 � ‖f0‖∞, which is bounded
by assumption for f0 ∈ F0. Next note that, for l ≤ L,

‖γ̃n‖∞ � ‖ψlk‖∞ � 2l/2 � 2L/2.

For h the Hellinger distance we have h(f,f0)
2 � ‖f − f0‖2

2 ≤ ‖f − f0‖2∞ valid
for f0 ∈ F0. Hence on Dn we have that h(f,f0) � ρn. Since α > 1/2, we have
2L/2 logn ≤ ρ−1

n , so one can apply Lemma 1 with an = ρn and deduce∫
es

√
n〈f −Pn,ψlk〉 d�Dn(f |X)� eCs2

�(Dn|X)

∫
Dn

e�n(fs)−�n(f0) d�(f )∫
e�n(f )−�n(f0) d�(f )

.(43)

Now we are ready to change variables in the last ratio. For each of the examples
of priors considered, we show that this ratio is bounded from above by a constant
as n → ∞.

We start with case (S). By definition, the quantity fs is a function of logf −
sγ̃n/

√
n. Next, notice that any constant in this expression vanishes due to the

subtraction of the renormalising constant c(·). In particular, the expression is a
function of T − sγn/

√
n, where T is defined in (21). The law of T is induced by

a finite product of probability measures, via the distributions of the coordinates
of T over {ψlk} with l < L. Since γn = ψlk , only one coordinate of the product
measure defining T is affected by the subtraction of sγn/

√
n. The next step is to

change variables in the numerator of the ratio above by shifting the corresponding
coordinate by s/

√
n.

For (S1), the change in density on this coordinate can be measured by

ϕH (·/σl)

ϕH ((· − s/
√

n)/σl)
,(44)

whose logarithm is bounded above in absolute value by 1/(
√

nσl) � 1, since by
assumption, logϕH is Lipschitz and using (24) combined with l ≤ L.

In case (S2), the prior on each coordinate is Gaussian, and if θlk denotes the
integrating variable with respect to the coordinate l, k (corresponding to integrating
out the law of 〈T ,ψlk〉) in the considered ratio of integrals, we have

log
ϕG(θlk/σl)

ϕG((θlk − s/
√

n)/σl)
= 1

nσ 2
l

− s√
nσ 2

l

θlk.(45)

Recall that we work on the set Dn, on which we have the following inequali-
ties: ‖ log(f/f0)‖2 ≤ ‖ log(f/f0)‖∞ � ρn, using that f0 is bounded from below.
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Moreover, note that by definition of T , and if g := logf , g0 := logf0, it holds
〈g −g0,ψlk〉 = 〈T −c(T )−g0,ψlk〉. Since c(T ) is a constant, and ψlk are orthog-
onal to constants for l ≥ K , K large enough, we deduce, if g0,lk := 〈g0,ψlk〉, that
on Dn we have (θlk − g0,lk)

2 � ρ2
n , as soon as l ≥ K . So, for K ≤ l ≤ L, we have

∣∣(45)
∣∣� 1

nσ 2
l

+ ρn|s|√
nσ 2

l

+ |g0,lk||s|√
nσ 2

l

� 1 + ρn√
nσ 2

l

√
l + |g0,lk|

σl

√
l.

Since logf0 belongs to Cα by assumption and with (24), the last term in the last
display is at most a constant. We also have

√
lρn �

√
nσ 2

l using (24) in the Gaus-
sian case, thus the previous display is at most a constant on Dn. Now we are left
with the indexes such that l ≤ K . For those, by definition of the set Dn, (45) is
in absolute value less than (n−1 + εn)

√
lσ−2

l . Since l ≤ K with K fixed, the last
expression is bounded, which yields (41).

Finally, the case of the histogram prior (H) is treated by studying the effect of
the change of variables on the Dirichlet distribution. The argument is similar to [3],
Section 4.4 and is omitted.

(iii) Convergence of finite-dimensional distributions (37). This can be seen to
consist of establishing BvM results for the projected law of the posterior distribu-
tion on any fixed finite-dimensional subspace V = Vect{ψlk, (l, k) ∈ T }, with T
a finite admissible set of indexes. By Cramér–Wold, this is the same as showing
a BvM for estimating the linear functional 〈f,ψT 〉2, with ψT := ∑

(l,k)∈T tl,kψlk

and tl,k ∈ R. Denote by πT the mapping, for any finite set of indices T ,

πT :f → 〈f,ψT 〉2.

Then it is enough to show that, for any finite T ,

βV

(
�(·|X) ◦ τ−1

Pn
◦ π−1

T ,N
(
0,‖ψT ‖2

L

)) → 0,

as n → ∞. Since T is finite, the supremum-norm ‖ψT ‖∞ is bounded. Thus the
techniques of [5] can be used for the considered priors.

In the case of histogram priors (H), the previous display follows from the sec-
tion on random histograms in [5], applied to dyadic histograms. The functional
πT above is linear, so the no-bias condition in [5] amounts to check, with g[Kn]
the L2 projection of a given function g in L2 onto the space of regular dyadic
histograms of level Kn, that

√
n
∫
(ψT − ψT ,[Kn])(f0 − f0,[Kn]) = o(1). But ψT

is a dyadic histogram of fixed meshwidth, thus ψT ,[Kn] = ψT for large enough n,
since Kn = Ln → ∞, so this trivially holds. Finally, since Kn = Ln → ∞, the
variances

∫
(ψT ,[Kn] − ∫

ψT ,[Kn]f0)
2f0 converge to

∫
(ψT − ∫

ψT f0)
2f0.

In the case of log-density priors (S), one applies the general result on density
estimation in [5] (Theorem 4.1). The set An in that statement should be replaced
by the set Dn defined above. Since Dn is contained in An = {f : ‖f − f0‖1 ≤ ρn}
and �(Dn|X) tends to 1 in probability, the proof of that Theorem goes through
without further changes. It thus suffices to verify that the ratio of integrals in the
former theorem from [5] holds when the functional f → 〈f,ψT 〉2 is considered.



NONPARAMETRIC BVM’S 1967

Note that this is the same as proving that the ratio on the right-hand side of (43)
goes to 1, with ψlk replaced by ψT and now fs = f e−tψT −c(f e−tψT ). Since only a
finite number of ψlks are involved in the sum defining ψT , the ratio involved in the
change of variables tends to 1 in probability: in the case of log-Lipschitz densities,
one uses a finite number of times the bound 1/(

√
nσl) for the logarithm of (44),

which is of the order 1/
√

n because l is now bounded. For the Gaussian density
case, one argues similarly.

We conclude with the following auxiliary results: for Ln = ln these are Lem-
mas 3, 6, 9 and Theorems 2, 3 in [3], and the case Ln = jn is proved in the same
way. Let h(f, g) denote the Hellinger distance between two given densities f,g,
and write �n(f ) = (1/n)

∑n
i=1 logf (Xi) for f > 0.

LEMMA 1. Let f0 belong to F0. Let {an} be a sequence of reals such that
na2

n ≥ 1 for any n ≥ 1. Let {�n} be a collection of priors on densities restricted
to the set {f,h(f,f0) ≤ an}. Let {γn} be an arbitrary sequence in L∞[0,1]. Set
γ̃n := γn − P0γn. Suppose, for some m > 0 and all n ≥ 1,

‖γ̃n‖L ≤ m, ‖γ̃n‖∞ ≤ (
4an log(n + 1)

)−1
.

Then there exist C > 0 depending on m,‖f0‖∞ only such that for any n ≥ 1 and
|t | ≤ logn, with Wn(γn) = √

n(Pn − P0)γn,

E�n
[
et

√
n〈f −f0,γn〉2 |X(n)] ≤ eCt2+tWn(γn)

∫
e�n(ft )−�n(f0) d�n(f )∫
e�n(f )−�n(f0) d�n(f )

,

where ft is defined by logft = logf − t γ̃n/
√

n − c(f e−t γ̃n/
√

n).

LEMMA 2. Let f,f0 be two densities such that f0 is bounded away from in-
finity. Let g be an element of L∞ such that h(f,f0)‖g‖∞ ≤ C1 and ‖g‖2 ≤ C2,
for some constants C1,C2 > 0. Then∣∣(P − P0)g

2∣∣ ≤ C2
1 + C1

√
4C2‖f0‖∞ + C2

1 .

LEMMA 3. Let f0 ∈ F0, and suppose logf0 ∈ Cα , α > 1. Let ϕ = ϕG and σl

satisfy (24), Ln be as defined in (20) and the prior � be defined by (22). Then there
exists ν > 0 such that if εn = (logn)νn−α/(2α+1), for C > 0 large enough and any
fixed given integer K ,

Ef0�
[

max
λ≤K,μ

∣∣〈T ,ψλμ〉∣∣ ≤ C
√

nεn|X(n)
]
→ 1.

Finally, for any α > 0 and n ≥ 2, let us set ε∗
n,α := (n/ logn)−α/(2α+1).

LEMMA 4. Let � be of the type (S) or (H) with Ln as in (20) and suppose
(24) and (25) are, respectively, satisfied for the corresponding prior. Suppose f0
belongs to Cα , 1/2 < α ≤ 1 in the case of prior (H) and logf0 ∈ Cα , α > 1 for
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priors (S). Then, as n → ∞,

Ef0�
[
f :‖f − f0‖∞ > ρn|X(n)] → 0,(46)

where, for an arbitrary sequence Mn → ∞, ρ2
n = M2

nLn2Ln/n. That is, ρn =
Mnε

∗
n,α if Ln = ln and ρn = Mnε

∗
n,α

√
logn if Ln = jn.
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