189. On the Bessel Kernel for a Domain

By Isao HIGUCHI Suzuka College of Technology (Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1971)

1. Aronszajn and Smith [2] developed the theory of Bessel potentials from the standpoints of their functional spaces and functional completions [1]. Let $P^{\alpha}(R^n)$ be the functional completion of $C_0^{\infty}(R^n)$ with the norm $||u||_{\alpha}^2 = \int (1+|\xi|^2)^{\alpha} |\hat{u}(\xi)|^2 d\xi$. They showed that $P^{\alpha}(R^n)$ has the reproducing kernel $G_{2\alpha}(x-y)$ determined by

$$G_{2\alpha}(x) = \frac{1}{2^{(n+2\alpha-2)/2} \pi^{n/2} \Gamma(\alpha)} K_{(n-2\alpha)/2}(|x|) |x|^{(2\alpha-n)/2}$$

where $K_{(n-2\alpha)/2}$ is the modified Bessel function of third kind. The purpose of this paper is to consider the kernel of functional completion $P^{\alpha}(\Omega)$ of $C_{0}^{\infty}(\Omega)$ with the norm $||u||_{\alpha}$. Making use of the methods of general balayage and the theory of α -harmonic functions introduced by M. Itô [6], we define the Green function $G_{2\alpha}^{\varrho}(x, y)$ and α -harmonic functions in the theory of Bessel potentials. Let $E_{2\alpha}(\Omega)$ be the class of all positive measures of finite energy with compact support contained in Ω , $U_{2\alpha}^{\mu}$ be the potential of $\mu \in E_{2\alpha}(\Omega)$ in the functional space $P^{\alpha}(\Omega)$ and $G_{2\alpha}^{\varrho}(x, y)$ (resp. $\check{G}_{2\alpha}^{\varrho}(x, y) = G_{2\alpha}^{\varrho}(y, x)$). We shall prove the following results.

(1) Let Ω be a domain in \mathbb{R}^n . Then for every $\mu \in E_{2\alpha}(\Omega)$, there exists an α -harmonic function $H_{2\alpha}^{\mu}(x)$ in Ω such that

$$U_{2\alpha}^{\mu}(x) = G_{2\alpha}^{\varrho} \mu(x) + H_{2\alpha}^{\mu}(x).$$

(2) The following conditions are equivalent:

(a) There exists a bounded domain $\Omega(\neq \emptyset)$ in \mathbb{R}^n such that the Green function $G_{2\alpha}^{\Omega}(x, y)$ is the kernel of the functional space $P^{\alpha}(\Omega)$ i.e., $U_{2\alpha}^{\mu} = G_{2\alpha}^{\Omega} \mu$ in $P^{\alpha}(\Omega)$ for every $\mu \in E_{2\alpha}(\Omega)$.

(b) There exist a bounded domain Ω in \mathbb{R}^n and a measure $\mu(\neq 0) \in E_{2\alpha}(\Omega)$ such that $G_{2\alpha}^{\Omega} \mu \in P^{\alpha}(\Omega)$ and $G_{2\alpha}^{\Omega} \mu = \check{G}_{2\alpha}^{\Omega} \mu$ in $P^{\alpha}(\Omega)$.

(c) $0 < \alpha \leq 1$.

2. According to Aronszajn and Smith [2], we define the Bessel potentials and summarize the results obtained in [2].

Definition 1. The Bessel potential of order 2α , $\alpha > 0$, of a positive measure μ is defined by $G_{2\alpha}\mu(x) = \int G_{2\alpha}(x-y)d\mu(y)$. We denote by $E_{2\alpha}(\mathbb{R}^n)$ the class of all positive measures for which the 2α -energy

Bessel Kernel for a Domain

Suppl.]

$$\|\mu\|_{2\alpha}^{2} = \iint G_{2\alpha}(x-y)d\mu(x)d\mu(y) = \int G_{2\alpha}\mu d\mu$$

is finite.

(I) The following conditions on μ are equivalent:

(a) $\mu \in E_{2\alpha}(\mathbb{R}^n)$. (b) $G_{\alpha}\mu \in L^2(\mathbb{R}^n)$. (c) $G_{2\alpha}\mu \in P^{\alpha}(\mathbb{R}^n)$.

Further every function u in $P^{\alpha}(\mathbb{R}^n)$ is μ -integrable and $\int u d\mu = (u, G_{2\alpha}\mu)_{\alpha}$.

(II) If $0 < \beta \leq \alpha$, then $||u||_{\beta} \leq ||u||_{\alpha}$. Therefore $P^{\alpha}(R^n) \subset P^{\beta}(R^n)$, $E_{2\beta}(R^n) \subset E_{2\alpha}(R^n)$ and $||\mu||_{2\alpha} \leq ||\mu||_{2\beta}$.

Definition 2. The inner and the outer capacities of order 2α with respect to the Bessel kernel $G_{2\alpha}(x-y)$ are defined as usual. Every analytic set is capacitable. We denote by $\mathfrak{A}_{2\alpha}$ the class of all sets of 2α -capacity 0. Then $\mathfrak{A}_{2\alpha} \subset \mathfrak{A}_{2\beta}$ if $0 < \beta \leq \alpha$. A property is said to hold except $\mathfrak{A}_{2\alpha}$ (to be written exc. $\mathfrak{A}_{2\alpha}$) if the set where it fails to hold belongs to $\mathfrak{A}_{2\alpha}$.

Finally we summarize the properties of the kernel $G_{2\alpha}$.

- (III) $G_{2\alpha}(x) \in L^1(\mathbb{R}^n)$. $\hat{G}_{2\alpha}(\xi) = (2\pi)^{-n/2}(1+|\xi|^2)^{-\alpha}$.
- (IV) $G_{\alpha+\beta}(x) = G_{\alpha} * G_{\beta}(x).$

(V) If $0 < \alpha \leq 1$, then $G_{2\alpha}(x-y)$ satisfies the balayage principle. For any positive measure μ and any closed set F, there exists a positive measure μ' supported by F such that $G_{2\alpha}\mu'(x) = G_{2\alpha}\mu(x)$ on F except $\mathfrak{A}_{2\alpha}$ and $G_{2\alpha}\mu'(x) \leq G_{2\alpha}\mu(x)$ everywhere in \mathbb{R}^n (see, for example, M. Kishi [8]).

3. First, we define the potentials in the functional space $P^{\alpha}(\Omega)$.

Definition 3. We denote by $(u, v)_{\alpha}$ the inner product in the Hilbert space $P^{\alpha}(\Omega)$ corresponding to the norm $||u||_{\alpha}$. Let $\mu \in E_{2\alpha}(\Omega)$, then there exists a function $U_{2\alpha}^{\mu}$ in $P^{\alpha}(\Omega)$ such that $(\varphi, U_{2\alpha}^{\mu})_{\alpha} = \int \varphi d\mu$ for every $\varphi \in C_{0}^{\infty}(\Omega)$. We call $U_{2\alpha}^{\mu}$ the Bessel potential of μ in $P^{\alpha}(\Omega)$. In the following sections, we consider the kernel of $U_{2\alpha}^{\mu}$.

4. If $0 < \alpha \leq 1$, $G_{2\alpha}(x-y)$ satisfies the balayage principle by (V). But we also want to treat with the case that $\alpha > 1$. Therefore we use here the methods of balayage introduced by M. Itô [6].

Theorem 1. Let $\alpha > 0$ and p be the integer such that $0 < \alpha - p \leq 1$. Then for any closed set F and for any positive measure μ with compact support, there exists a unique system $\{\mu_i'\}_{i=0}^p$ of positive measures supported by F satisfying

$$egin{aligned} G_{2lpha}\mu(x) &= \sum\limits_{i=0}^p G_{2(lpha-i)}\mu_i'(x) & on \ F \ exc. \ \mathfrak{A}_{2(lpha-p)} \ G_{2lpha}\mu(x) &\geq \sum\limits_{i=0}^p G_{2(lpha-i)}\mu_i'(x) & everywhere \ in \ R^n, \end{aligned}$$

I. HIGUCHI

$$egin{aligned} G_{2q}\mu(x) &= \sum\limits_{i=0}^{q-1} G_{2(q-i)}\mu_i'(x) & on \ F \ exc. \ \mathfrak{A}_2, \ G_{2q}\mu(x) &\geq \sum\limits_{i=0}^{q-1} G_{2(q-i)}\mu_i'(x) & everywhere \ in \ R^n, \end{aligned}$$

where q is any integer such that $0 < q \leq p$.

Theorem 1'. Under the same assumptions in Theorem 1, there exists a unique system $\{\mu_i''\}_{i=0}^p$ of positive measures supported by F satisfying

$$\begin{split} &G_{2(\alpha-p)}\mu(x) = G_{2(\alpha-p)}\mu_{0}^{\prime\prime}(x) \quad on \ F \ exc. \ \mathfrak{A}_{2(\alpha-p)}, \\ &G_{2(\alpha-p)}\mu(x) \geqq G_{2(\alpha-p)}\mu_{0}^{\prime\prime}(x) \quad everywhere \ in \ R^{n}, \\ &G_{2(\alpha-p+q)}\mu(x) = G_{2(\alpha-p+q)}\mu_{0}^{\prime\prime}(x) + \sum_{i=1}^{q} G_{2(q-i+1)}\mu_{i}^{\prime\prime}(x) \quad on \ F \ exc. \ \mathfrak{A}_{2}, \\ &G_{2(\alpha-p+q)}\mu(x) \geqq G_{2(\alpha-p+q)}\mu_{0}^{\prime\prime}(x) + \sum_{i=1}^{q} G_{2(q-i+1)}\mu_{i}^{\prime\prime}(x) \quad everywhere \ in \ R^{n}, \end{split}$$

where q is any integer such that $1 < q \leq p$.

The proofs of the above theorems are the same as in [6]. The essential parts are based on the decomposition $G_{2\alpha} = G_{2(\alpha-p)} * G_2 * G_2 * \cdots * G_2$ of $G_{2\alpha}$.

Definition 4. According to M. Itô [6], we call $\{\mu'_i\}_{i=0}^p$ (resp. $\{\mu''_i\}_{i=0}^p$) the system of balayaged measures of μ on F with respect to the system $(G_2, \dots, G_{2p}, G_{2\alpha})$ (resp. $(G_{2(\alpha-p)}, G_{2(\alpha-p+1)}, \dots, G_{2\alpha})$). We denote by $\{(\epsilon'_{y,Ca})_i\}_{i=0}^p$ and $\{(\epsilon''_{y,Ca})_i\}_{i=0}^p$ the systems of balayaged measures on $C\Omega$ of the unit measure ε_y on y. The Green function of order 2α in Ω is defined by $G_{2\alpha}^\rho(x, y) = G_{2\alpha}(x-y) - \sum_{i=0}^p G_{2(\alpha-i)}(\epsilon'_{y,Ca})_i(x)$. If $0 < \alpha \leq 1$, then $G_{2\alpha}^\rho(x, y) = G_{2\alpha}^\rho(y, x)$ and hence $G_{2\alpha}^\rho(x, y)$ is measurable as a function of y.

Remark. In general $G_{2\alpha}^{\Omega}(x, y)$ is not symmetric, but we can prove by the same way as in [6], that

$$G_{2\alpha}^{\varrho}(x,y) = \int \cdots \int G_{2(\alpha-p)}^{\varrho}(x,z_1) G_2^{\varrho}(z_1,z_2) \cdots G_2^{\varrho}(z_p,y) dz_1 \cdots dz_p$$

where $G_{2(\alpha-p)}^{\varrho}$ (resp. G_{2}^{ϱ}) is the Green function of order $2(\alpha-p)$ (resp. 2) for Ω and hence $G_{2\alpha}^{\varrho}(x, y)$ is measurable as a function of y. For any positive measure μ , put

$$G_{2\alpha}^{\varrho}\mu(x) = \int G_{2\alpha}^{\varrho}(x, y)d\mu(y) \text{ and } \check{G}_{2\alpha}^{\varrho}\mu(x) = \int G_{2\alpha}^{\varrho}(y, x)d\mu(y).$$

Then we have

$$G_{2\alpha}^{g}\mu(x) = G_{2\alpha}\mu(x) - \sum_{i=0}^{p} G_{2(\alpha-i)}\mu'_{i}(x)$$

$$\check{G}_{2\alpha}^{g}\mu(x) = G_{2\alpha}\mu(x) - G_{2\alpha}\mu''_{0}(x) - \sum_{i=1}^{p} G_{2(\alpha-i+1)}\mu''_{i}(x).$$

5. First, we treat with the case that $0 < \alpha \leq 1$.

Theorem 2. Let $0 < \alpha \leq 1$ and Ω be a domain in \mathbb{R}^n . Then the Green function $G_{2\alpha}^{\rho}(x, y)$ is the kernel of the functional space $P^{\alpha}(\Omega)$, that is, $U_{2\alpha}^{\mu} = G_{2\alpha}^{\rho} \mu$ in $P^{\alpha}(\Omega)$ for every measure $\mu \in E_{2\alpha}(\Omega)$.

846

Suppl.]

Proof. Let ω be a relatively compact domain such that $\overline{\omega} \subset \Omega$ and e(x) be a positive function in $C_0^{\infty}(\mathbb{R}^n)$ satisfying e(x)=0 for $|x|\geq 1$ and $\int e(x)dx=1$. Put $e_o(x)=\rho^{-n}e(x/\rho)$ for $0<\rho\leq 1$. Then

$$\begin{aligned} \int e(x) dx &= 1. \quad \text{Put } e_{\rho}(x) = \rho^{-n} e(x/\rho) \text{ for } 0 < \rho \leq 1. \quad \text{Then} \\ & G_{2\alpha}^{\omega} \mu * e_{\rho}(x) \in C_0^{\omega}(R^n) \cap P^{\alpha}(R^n), \\ & G_{2\alpha}^{\omega} \mu * e_{\rho}(x) \to G_{2\alpha}^{\omega} \mu(x) \text{ in } P^{\alpha}(R^n) \text{ as } \rho \to 0, \end{aligned}$$
because $G_{2\alpha}^{\omega} \mu \in P^{\alpha}(R^n)$ (see [2], p. 423). On the other hand

$$G_{2\alpha}^{\omega}\mu(x) = G_{2\alpha}\mu(x) - G_{2\alpha}\mu_{C\omega}^{\prime}(x) = 0$$
 on $C\omega$ exc. $\mathfrak{A}_{2\alpha}$.

Therefore, for any sufficiently small ρ , $G_{2\alpha}^{\omega} * e_{\rho}(x) \in P^{\alpha}(\Omega)$ and hence $G_{2\alpha}^{\omega} \mu \in P^{\alpha}(\Omega)$. We shall show that $G_{2\alpha}^{0} \mu \in P^{\alpha}(\Omega)$. Let $\{\omega_n\}$ be an exhaustion of Ω . Then $G_{2\alpha}^{\omega_n} \mu \in P^{\alpha}(\Omega)$. The sequence $\{\mu'_{C\omega_n}\}$ of balayaged measures of μ on $C\omega_n$ converges strongly to $\mu'_{C\Omega}$ in $E_{2\alpha}(\mathbb{R}^n)$ (cf. [3]). Therefore $\{G_{2\alpha}^{\omega_n} \mu\}$ converges strongly to $G_{2\alpha}^{\rho} \mu$ in $P^{\alpha}(\mathbb{R}^n)$ and hence $G_{2\alpha}^{\rho} \mu \in P^{\alpha}(\Omega)$. For any function φ in $C_{0}^{\infty}(\Omega)$, we have

$$(\varphi, U_{2\alpha}^{\mu})_{\alpha} = \int \varphi d\mu = \int \varphi d\mu - \int \varphi d\mu'_{CD} = (\varphi, G_{2\alpha}^{D}\mu)_{\alpha}.$$

This implies that $G_{2\alpha}^{\Omega}\mu = U_{2\alpha}^{\mu}$ in $P^{\alpha}(\Omega)$, because $C_{0}^{\infty}(\Omega)$ is dense in $P^{\alpha}(\Omega)$.

6. Since $\hat{G}_{2\alpha}(\xi) = (2\pi)^{-(n/2)}(1+|\xi|^2)^{-\alpha}$, there exists a distribution T_{α} such that $T_{\alpha} * G_{2\alpha} = \varepsilon_0$ (i.e., $\hat{T}_{\alpha} = (2\pi)^{n/2}(1+|\xi|^2)^{\alpha}$). Similarly as in [6], we define α -harmonic functions as follows.

Definition 5. A function u(x) is said to be α -harmonic in Ω in the theory of Bessel potentials if it satisfies the following conditions:

- (a) u(x) is defined in \mathbb{R}^n exc. $\mathfrak{A}_{2\alpha}$ and locally integrable in \mathbb{R}^n .
- (b) $T_{\alpha} * u$ is defined and $T_{\alpha} * u = 0$ in Ω in the sense of distributions.

Lemma 1. Let μ be a positive measure with finite total mass. Then the potential $G_{2(\alpha-i)}\mu(x)$ is α -harmonic in Cs_{μ} for any integer i such that $0 \leq i \leq p$.

Proof. The equality $(\varepsilon_0 - \Delta)^i G_{2\alpha} = G_{2(\alpha-i)}$ holds for every positive integer *i* and $(\varepsilon_0 - \Delta)^i * \mu = (\varepsilon_0 - \Delta)^i * T_\alpha * G_{2\alpha}\mu = T_\alpha * G_{2(\alpha-i)}\mu$. Hence the convolution $T_\alpha * G_{2(\alpha-i)}\mu$ is defined. Since $(\varepsilon_0 - \Delta)^i * \mu = 0$ in Cs_μ , $T_\alpha * G_{2(\alpha-i)}\mu = 0$ in Cs_μ . Therefore $G_{2(\alpha-i)}\mu(x)$ is α -harmonic in Cs_μ .

Remark. By this lemma, the Green function $G_{2\alpha}^{\varrho}(x, y)$ is α -harmonic in $\Omega - \{x\}$.

Theorem 3. Let Ω be a domain in \mathbb{R}^n and $\mu \in E_{2\alpha}(\Omega)$. Then there exists an α -harmonic function $H^{\mu}_{2\alpha}(x)$ in Ω such that

$$U^{\mu}_{2\alpha}(x) = G^{\Omega}_{2\alpha} \mu(x) + H^{\mu}_{2\alpha}(x).$$

Proof. Put $H_{2\alpha}^{\mu} = U_{2\alpha}^{\mu} - G_{2\alpha}^{\alpha} \mu$. Then we have

$$H_{2\alpha}^{\mu} = (U_{2\alpha}^{\mu} - G_{2\alpha}\mu) + \sum_{i=0}^{p} G_{2(\alpha-i)}\mu_{i}'.$$

Since S_{μ} is compact, $\int d\mu'_i < +\infty$ for every *i* such that $0 \leq i \leq p$. Therefore, by Lemma 1, $\sum_{i=0}^{p} G_{2(\alpha-i)}\mu'_i$ is α -harmonic in Ω . On the other hand, the convolution $T_{\alpha} * (U_{2\alpha}^{\mu} - G_{2\alpha}\mu)$ is defined. By the definition of $U_{2\alpha}^{\mu}$, there exists a sequence $\{\mu_n\}$ of signed measures supported by $C\Omega$ such that $G_{2\alpha}\mu_n \rightarrow (U_{2\alpha}^{\mu} - G_{2\alpha}\mu)$ strongly in $P^{\alpha}(\mathbb{R}^n)$ and hence in the sense of distributions. Since $G_{2\alpha}\mu_n$ is α -harmonic in Ω , $T_{\alpha} * G_{2\alpha}\mu_n = 0$ in Ω and hence $T_{\alpha} * (U_{2\alpha}^{\mu} - G_{2\alpha}\mu) = 0$ in Ω in the sense of distributions. Therefore $(U_{2\alpha}^{\mu} - G_{2\alpha}\mu)$ is α -harmonic in Ω . This means that $H_{2\alpha}^{\mu}$ is α -harmonic in Ω .

Lemma 2. Suppose $U_{2\alpha}^{\mu} = G_{2\alpha}^{\rho} \mu$ for every $\mu \in E_{2\alpha}(\Omega)$. Then $\check{G}_{2\alpha}^{\rho} \mu = G_{2\alpha}^{\rho} \mu$ exc. $\mathfrak{A}_{2\alpha}$ for every $\mu \in E_{2\alpha}(\Omega)$.

Proof. Let μ and ν be any measures in $E_{2\alpha}(\Omega)$. By the assumption

$$\iint_{2a} G_{2a}^{\varrho}(x, y) d\nu(x) d\mu(y) = (U_{2a}^{\mu}, U_{2a}^{\nu})_{\alpha} = (U_{2a}^{\nu}, U_{2a}^{\mu})_{\alpha} = \iint_{2a} G_{2a}^{\varrho}(y, x) d\mu(y) d\nu(x)$$

and hence

$$\int (G_{2\alpha}^{\mathcal{Q}}\mu(x) - \check{G}_{2\alpha}^{\mathcal{Q}}\mu(x))d\nu(x) = 0.$$

This means that $G_{2\alpha}^{g}\mu(x) = \check{G}_{2\alpha}^{g}\mu(x)$ exc. $\mathfrak{A}_{2\alpha}$, because ν is arbitrary.

Theorem 4. The following conditions are equivalent:

(a) There exists a bounded domain $\Omega \ (\neq \emptyset)$ in \mathbb{R}^n such that the Green function $G^{\varrho}_{2\alpha}(x, y)$ is the kernel of $P^{\alpha}(\Omega)$ i.e., $U^{\mu}_{2\alpha} = G^{\varrho}_{2\alpha} \mu$ in $P^{\alpha}(\Omega)$ for every $\mu \in E_{2\alpha}(\Omega)$.

(b) There exist a bounded domain Ω in \mathbb{R}^n and a measure $\mu \neq 0$ in $E_{2\alpha}(\Omega)$ such that $G_{2\alpha}^{\Omega} \mu \in P^{\alpha}(\Omega)$ and $G_{2\alpha}^{\Omega} \mu = \check{G}_{2\alpha}^{\Omega} \mu$ in $P^{\alpha}(\Omega)$.

(c) $0 < \alpha \leq 1$.

Remark. If there exists a domain which satisfies the condition in (a) or in (b), then by Theorem 2, every domain satisfies the same condition.

Proof. We have already showed the relations $(c) \Rightarrow (a)(in$ Theorem 2) and $(a) \Rightarrow (b)(in$ Lemma 2) and therefore we shall prove here the relation $(b) \Rightarrow (c)$.

First we suppose that $1 < \alpha < 2$ (i.e., p=1). (b) implies

$$G_{2\alpha}\mu - G_{2\alpha}\mu'_{0} - G_{2(\alpha-1)}\mu'_{1} = G_{2\alpha}\mu - G_{2\alpha}\mu''_{0} - G_{2}\mu''_{1}.$$

By Lemma 1, this means that $G_2\mu_1''$ is α -harmonic in Ω and hence

$$T_{\alpha-1}*\mu_1''=T_{\alpha-1}*T_1*G_2\mu_1''=T_{\alpha}*G_2\mu_1''=0$$
 in Ω .

By the definition of $T_{\alpha-1}$, we have $\hat{T}_{\alpha-1} = (2\pi)^{n/2}(1+|\xi|^2)^{\alpha-1}$. If $1 < \alpha < 2$, then by Levy-Khintchine's theorem on negative definite functions, there exists a symmetric positive measure σ in $\mathbb{R}^n - \{0\}$ such that

(1)
$$(1+|\xi|^2)^{\alpha-1} = 1 + \int_{|y|>0} (1-e^{i\xi \cdot y}) d\sigma(y)$$

(2)
$$\int_{|x|>r} d\sigma(y) < +\infty$$
 and $\int_{0<|y| for any $r>0$$

(see, for example, M. Itô [5]). We can see that $\int_{|y|<\delta} |y|^2 d\sigma(y) > 0$ for

Suppl.]

any $\delta > 0$. Because, if $\int_{|y| < \delta_0} |y|^2 d\sigma(y) = 0$, then by (2) $\int_{|y| > 0} d\sigma(y) < +\infty$. Therefore $(1+|\xi|^2)^{\alpha-1}$ should be bounded by (1) and hence a contradiction. Let $\varphi \in C_0^{\infty}(\Omega)$. Then we have

$$0 = T_{\alpha-1} * \mu_1''(\varphi) = \int \varphi d \mu_1'' + \int (\mu_1''(\varphi) - \mu_1'' * \varphi(y)) d\sigma(y)$$

and hence $\int \mu_1'' * \varphi(y) d\sigma(y) = 0$. On the other hand, the fact $\int_{|y|<\delta} |y|^2 d\sigma(y) > 0$ implies that $\int \mu_1'' * \varphi(y) \neq 0$ for a suitable choice of φ . This leads us to a contradiction.

Next we suppose that $\alpha \ge 2$. (b) means that $G_{2\alpha}\mu - G_{2\alpha}\mu''_0$ $-\sum_{i=1}^p G_{2(p-i+1)}\mu''_i$ belongs to $P^{\alpha}(\Omega) \subset P^2(\Omega)$ and hence $G_2 * \left(\sum_{i=1}^{p-1} G_{2(p-i)}\mu''_i + \mu''_p\right)$ belongs to $P^2(\mathbb{R}^n)$. Therefore by (I) $\sum_{i=1}^{p-1} G_{2(p-i)}\mu''_i + \mu''_p$ is a function in $L^2(\mathbb{R}^n)$. This is a contradiction, because μ''_p is a measure on the boundary $\partial \Omega$ of Ω .

Therefore (b) implies (c). This completes the proof.

References

- N. Aronszajn and K. T. Smith: Functional spaces and functional completion. Ann. Inst. Fourier, 6, 125-185 (1956).
- [2] —: Theory of Bessel potentials, Part I. Ann. Inst. Fourier, 11, 385-475 (1961).
- [3] B. Fuglede: On the theory of potentials in locally compact spaces. Acta Math., 103, 139-215 (1960).
- [4] M. Itô: On α-harmonic functions. Nagoya Math. J., 26, 205-221 (1966).
- [5] —: Characterization of supports of balayaged measures. Nagoya Math.
 J., 28, 203-230 (1966).
- [6] ——: Etude des potentiels d'ordre α et des fonctions α-harmoniques. Inventiones Math., 8, 55-68 (1969).
- [7] ——: Sur le balayage relatif aux noyaux composés (to appear).
- [8] M. Kishi: Positive kernels and potentials. Lecture note, Nagoya Univ. (1970-1971).