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ON THE BEST CONSTANT FOR HARDY’S INEQUALITY IN Rn

MOSHE MARCUS, VICTOR J. MIZEL, AND YEHUDA PINCHOVER

Abstract. Let Ω be a domain in Rn and p ∈ (1,∞). We consider the (gen-
eralized) Hardy inequality

∫
Ω
|∇u|p ≥ K

∫
Ω
|u/δ|p, where δ(x) = dist (x, ∂Ω).

The inequality is valid for a large family of domains, including all bounded do-
mains with Lipschitz boundary. We here explore the connection between the
value of the Hardy constant µp(Ω) = inf ◦

W 1,p(Ω)

(∫
Ω
|∇u|p /

∫
Ω
|u/δ|p)

and

the existence of a minimizer for this Rayleigh quotient. It is shown that for
all smooth n-dimensional domains, µp(Ω) ≤ cp, where cp = (1 − 1

p
)p is the

one-dimensional Hardy constant. Moreover it is shown that µp(Ω) = cp for all
those domains not possessing a minimizer for the above Rayleigh quotient. Fi-
nally, for p = 2, it is proved that µ2(Ω) < c2 = 1/4 if and only if the Rayleigh
quotient possesses a minimizer. Examples show that strict inequality may
occur even for bounded smooth domains, but µp = cp for convex domains.

Introduction

Let Ω be a domain in Rn with non-empty boundary. Let Lp(Ω; %) denote the
weighted Lebesgue space with weight % and set L̃p(Ω) = Lp(Ω; δ−p), where

δ(x) = δΩ(x) := dist (x, ∂Ω), ∀x ∈ Rn.

The norm in L̃p(Ω) will be denoted by · Ω
p , but the superscript will be omitted

when there is no danger of confusion.
For 1 < p < ∞, Hardy’s inequality reads

u Ω
p ≤ γ‖∇u‖Lp(Ω), ∀u ∈ ◦

W 1,p (Ω),(0.1)

where γ is a constant which may depend on the domain. The inequality was
discovered by Hardy [10] in the one-dimensional case and later extended to higher
dimensions (see [16] for historical background). It is known that, for n ≥ 2, the
inequality holds if Ω is a bounded Lipschitz domain, [16]. The following variational
problem is naturally associated with (0.1):

inf
u∈ ◦

W 1,p(Ω)

∫
Ω |∇u|p∫
Ω
|u/δ|p .(0.2)

The infimum (which we denote by µp(Ω)) is positive if and only if (0.1) holds in
Ω. Note that the ratio is invariant with respect to dilation. In the one dimensional
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case it is known that the infimum is independent of Ω and that

µp(Ω) = cp := (1− 1
p
)p.(0.3)

This was established by Hardy [10, 11], who also showed that the constant is not
attained, i.e. the variational problem has no minimizer.

In the n-dimensional case µp(Ω) varies with the domain. However, if Ω is convex,
µp(Ω) = cp (see [15]). In [15] a proof is given for n = 2; in [7, p. 115] the result is
stated for p = n = 2. A simple proof of the result in the general case is provided in
appendix A below.

The main theme of this paper is the connection between the existence of mini-
mizers for (0.2) and the value of µp(Ω). Specifically we shall establish the following
results, in which Ω stands for a bounded domain in Rn with C2 boundary.

Theorem I. For every p ∈ (1,∞), µp(Ω) ≤ cp. If problem (0.2) has no minimizer
then µp(Ω) = cp.

Theorem II. µ2(Ω) = c2 if and only if problem (0.2) has no minimizer.

The main ingredient in the proof of Theorem I is the following concentration
result.

Theorem III. Suppose that (0.2) has no minimizer. If {uk} is a minimizing se-

quence, bounded in
◦

W 1,p (Ω), then each subsequence of {∇uk} which converges in
the sense of measures concentrates at the boundary. More precisely,

|∇uk| → 0 in Lloc
p (Ω).(0.4)

The organization of the paper is as follows. In section 1 we establish a concen-
tration result involving a constant µ∗p(Ω) related to the variational problem (0.2).
Theorem III is a consequence of this result. In section 2 we prove Theorem I using
the previous concentration result. In section 3 we present the proof of Theorem II,
which is based on the spectral theory of operators of the form ρ2∆ (on

◦
W 1,2 (Ω))

where ρ is a smooth function comparable to δΩ near the boundary, (see [1]–[3]).
Finally, in section 4, we discuss the relation between the constants cp and µp(Ω)
for various families of domains.

1. A concentration effect

Let

W̃1,p(Ω) = {u ∈ W loc
1,p (Ω) : u 1,p < ∞},(1.1)

where
u 1,p := u p + ‖∇u‖Lp(Ω).

If Ω is a domain for which (0.1) is valid, then obviously, W̃1,p(Ω) ⊇ ◦
W 1,p (Ω).

Furthermore,

Lemma 1. Let Ω be a bounded domain of class C2. Then,

W̃1,p(Ω) =
◦

W 1,p (Ω).
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The proof of the lemma is given in Appendix B. We observe that, in general, the
conclusion of the lemma fails if the domain is unbounded. For instance, suppose
that Ω is the complement of the unit sphere and p > n. In this case, if u ∈ C∞(Ω),
u vanishes in a neighborhood of ∂Ω and u ≡ 1 in a neighborhood of infinity, then
u ∈ W̃1,p(Ω)\ ◦

W 1,p (Ω).
For u ∈ W̃1,p(Ω) s.t. u p 6= 0, put

χΩ
p (u) :=

∫
Ω |∇u|p∫
Ω
|u/δ|p .(1.2)

As before, the superscript will be dropped if no ambiguity results. Further, denote

µ∗p(Ω) := inf{lim infk→∞ χp(uk) : {uk} ⊂
◦

W 1,p (Ω),

uk
weak→ 0 in

◦
W 1,p (Ω), lim inf uk p > 0}.

(1.3)

Obviously,

µ∗p(Ω) ≥ µp(Ω).(1.4)

Remark 1. Suppose that Ω is a domain with compact boundary. If {uk} is a se-
quence satisfying the conditions of (1.3) then,

(i) uk → 0 in Lloc
p (Ω),

(ii)
∫
Ω′ |uk/δ|p → 0 if Ω′ ⊂ Ω and dist (Ω′, ∂Ω) > 0.

(1.5)

If in addition Hardy’s inequality holds in Ω, then

uk
weak→ 0 in L̃p(Ω).(1.6)

In fact, (1.5) follows from the assumption that uk
weak→ 0 in

◦
W 1,p (Ω). This implies

statement (i) (by Rellich’s lemma) and the boundedness of {uk} in W1,p(Ω). These
two facts imply (ii). If Hardy’s inequality holds then the boundedness of {uk} in
W1,p(Ω) implies its boundedness in L̃p(Ω). This fact and (1.5)(ii) imply (1.6).

Theorem 2. Let Ω be a domain in Rn with compact boundary of class C2. If
Hardy’s inequality (0.1) is valid in Ω, then

µ∗p(Ω) = cp.(1.7)

In addition, if {uk} is a sequence as in (1.3) and

lim χp(uk) = µ∗p(Ω),(1.8)

then

∇uk → 0 in Lloc
p (Ω).(1.9)

For the proof of the theorem we need a computational lemma, the first part of
which is due to [6].

Lemma 3. (i) Given h, T, ζ > 0, let V = Vh,T,ζ be the function defined by

V (t) = h(t/T )ε+1− 1
p ∀t ≥ 0,

where ε = hp

pζT p−1 . Then, for p > 1,∫ T

0

(V (t)/t)p dt = ζ, and
∫ T

0

|V ′|p dt = ζ(ε + 1− 1
p
)p.(1.10)

(ii) Let V̂ denote the function in C[0, 2T ] determined by the following conditions:
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3240 MOSHE MARCUS, VICTOR J. MIZEL, AND YEHUDA PINCHOVER

V̂ = V in [0, T ], V̂ (2T ) = 0 and V̂ is linear in [T, 2T ].

Then V̂ ∈ ◦
W 1,p (0, 2T ) and ∫ 2T

0 |V̂ ′|p∫ 2T

0
(V̂ (t)/t)p

→ cp(1.11)

if either h → 0 (while T, ζ are fixed) or ζ →∞ (while T, h are fixed).

Proof. The verification of these statements is straightforward and will be omitted.
We note that, ∣∣∣∣∣

∫ 2T

0

(V̂ (t)/t)p dt− ζ

∣∣∣∣∣ ≤ hpT 1−p,

∫ 2T

0

|V̂ ′|p dt = ζ(ε + 1− 1
p
)p + hpT 1−p.

(1.12)

Proof of Theorem 2. First we show that

µ∗p(Ω) ≤ cp.(1.13)

(This inequality is valid even if Hardy’s inequality does not hold in Ω.) Denote
Ωβ = {x ∈ Ω : δ(x) < β}. If β is sufficiently small, the function δΩ is in C1(Ωβ)
and there exists a set of ‘flow coordinates’ (δ, σ) such that the transformation of
coordinates x ↔ (δ(x), σ(x)) is C1 in Ωβ and its Jacobian J equals 1 on ∂Ω (see
[17]). Let V̂ = V̂h,β/2,1 and set

vh(x) =
{

V̂ (δ(x)), if x ∈ Ωβ ,
0, if x ∈ Ω and δ(x) ≥ β.

(1.14)

Then, vh ∈
◦

W 1,p (Ω) and (as |∇δ(x)| = 1) |∇vh(x)| = |V̂ ′(δ(x))| in Ωβ . For fixed β,

vh → 0 and ∇vh
weak→ 0 in Lp(Ω) as h → 0. (The second statement follows from the

fact that {∇vh} is bounded in Lp(Ω) and tends to zero in Lloc
p (Ω).) Since J = 1

on the boundary, these facts and (1.11) imply that

inf vh p = 1 + o(1) and lim inf
h→0

χp(vh) = (1 + o(1))cp,

where o(1) denotes a quantity which tends to zero when β → 0. This implies (1.13).
Next we prove (1.9). If this statement is not valid, then there exist a sequence

{uk} which satisfies the conditions of (1.3) and (1.8), a compact set K ⊂ Ω and a
positive number α such that∫

K

|∇uk|p ≥ α, ∀k ∈ N.(1.15)

Since uk p > 0 and lim inf uk p > 0, it follows that inf uk p > 0. Let β be small
enough to satisfy the requirements of the first part of the proof and in addition
to guarantee that K ⊂ Ω′β := Ω \ Ωβ . Our assumptions imply that there exists a
positive number c (depending on β) s.t.∫

Ωβ

|uk/δ|p ≥ c and γk :=
∫

Ω′
β

|uk/δ|p → 0.(1.16)
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(For the second statement see (1.5).) Thus,

χp(uk) ≥
∫
Ωβ
|∇uk|p + α∫

Ωβ
|uk/δ|p + γk

.(1.17)

Let (δ, σ) be the flow coordinates mentioned in the first part of the proof and
let J be the Jacobian of the transformation x ↔ (δ(x), σ(x)). Note that for any
f ∈ C1(Ωβ) we have |∇f | ≥ |∂f

∂δ |. Therefore, using the one dimensional Hardy
inequality, we obtain∫

Ωβ

|∇uk|p =
∫

∂Ω

∫ β

0

|∇uk|pJ(δ, σ) dδdσ

≥ (1 + o(1))cp

∫
∂Ω

∫ β

0

|uk/δ|pJ(δ, σ) dδdσ

= (1 + o(1))cp

∫
Ωβ

|uk/δ|p,

(1.18)

where o(1) is a quantity which tends to zero when β → 0. By (1.16)-(1.18) it follows
that

lim inf
k→∞

χp(uk) ≥ (1 + o(1))cp + α/A,(1.19)

where A = sup uk
Ω
p . (Since, by assumption, Hardy’s inequality holds in Ω, the

boundedness of the sequence {∇uk} in Lp(Ω) implies the boundedness of {uk
Ω
p }.)

If β is sufficiently small, the right hand side of (1.19) is larger than cp. But in view
of (1.13) this contradicts (1.8). Therefore (1.9) holds.

Now using (1.9), the previous argument shows that

lim inf
k→∞

χp(uk) ≥ (1 + o(1))cp,(1.20)

for any sequence {uk} as in (1.3) which satisfies (1.8). This fact together with
(1.13) implies (1.7) and completes the proof.

The previous theorem dealt with sequences which converge weakly to zero. Next
we present a similar result concerning sequences which converge to a fixed non-zero
element of

◦
W 1,p (Ω). A related question (in the one dimensional case) was studied

in [6], where the authors were interested in an associated ‘gap phenomenon’ (see
also [14]).

Given u ∈ ◦
W 1,p (Ω), denote

νp(u) := inf{lim inf χp(uk) : {uk} ⊂
◦

W 1,p (Ω),

s.t. uk
weak→ u in

◦
W 1,p (Ω)}.

(1.21)

If {uk} satisfies the conditions of (1.21) then the statements of Remark 1 apply to
uk − u. In particular, if Hardy’s inequality holds in Ω, then uk

weak→ u in W̃1,p(Ω)
and consequently lim inf uk p ≥ u p.

Theorem 4. Let Ω be a domain in Rn with compact boundary of class C2 and let
u be a non-zero element of

◦
W 1,p (Ω). If Hardy’s inequality is valid in Ω, then

νp(u) = min(cp, χp(u)).(1.22)
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If {uk} is an admissible sequence (in the sense of (1.21)) such that

lim χp(uk) = νp(u),(1.23)

then

∇(uk − u) → 0 in Lloc
p (Ω).(1.24)

If, in addition, χp(u) < cp, then uk → u in W̃1,p(Ω).

Proof. Let {wk} be a sequence which satisfies the conditions of (1.3) and

lim χp(wk) = µ∗p(Ω).(1.25)

We may assume that wk p = 1. Thus, by (1.25) and (1.7),

χp(wk) =
∫

Ω

|∇wk|p → cp.(1.26)

In view of (1.25), Theorem 2 implies that ∇wk → 0 in Lloc
p (Ω).

Let α be a positive number such that α 6= u p and set Uk := u + αwk. Then
{Uk} satisfies the conditions of (1.21). Let β be a positive number and let Ωβ and
Ω′β be defined as in the proof of Theorem 2. We claim that

lim
∫

Ω

(|∇Uk|p − |α∇wk|p) =
∫

Ω

|∇u|p.

To verify this fact, observe that

lim sup
k→∞

|
∫

Ωβ

(|∇Uk|p − |α∇wk|p)| = o(1) and lim
k→∞

∫
Ω′

β

|∇Uk|p =
∫

Ω′
β

|∇u|p,

where o(1) denotes a quantity (depending only on β) which tends to zero as β → 0.
Similarly,

lim
∫

Ω

(|Uk/δ|p − |αwk/δ|p) =
∫

Ω

|u/δ|p.
Hence, using (1.26), we obtain

νp(u) ≤ lim χp(Uk) =
αpcp + u p

pχp(u)
αp + u p

p
.(1.27)

Finally, letting α tend to zero or to infinity, we obtain

νp(u) ≤ min(cp, χp(u)).(1.28)

Next, let {uk} be an arbitrary sequence satisfying the conditions of (1.21), and
denote vk := uk−u. Thus, by (0.1), {uk} is bounded in W̃1,p(Ω) and uk → u weakly
in L̃p(Ω) (see Remark 1). We want to estimate lim inf χp(uk). Therefore, without
loss of generality, we may assume that {χp(uk)} and {uk p} converge. Denote

â := lim
∫

Ω

|uk/δ|p −
∫

Ω

|u/δ|p.

Then â ≥ 0, and equality holds iff uk → u in L̃p(Ω). Let β be a positive number as
before. Then

χp(uk) =

∫
Ωβ
|∇vk|p +

∫
Ω′

β
|∇uk|p + Rk,β∫

Ωβ
|vk/δ|p +

∫
Ω′

β
|uk/δ|p + R′k,β

,(1.29)
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where

|Rk,β | = |
∫

Ωβ

|∇uk|p −
∫

Ωβ

|∇vk|p| ≤ o(1),

|R′k,β | = |
∫

Ωβ

|uk/δ|p −
∫

Ωβ

|vk/δ|p| ≤ o(1),

and o(1) denotes a quantity (depending only on β) which tends to zero as β → 0.

Indeed, since {uk} is bounded in
◦

W 1,p (Ω) and uk − vk = u,

|
∫

Ωβ

|∇uk|p −
∫

Ωβ

|∇vk|p| ≤ c| ‖∇uk‖Lp(Ωβ) − ‖∇vk‖Lp(Ωβ)|

≤ c‖∇u‖Lp(Ωβ) = o(1),

where c is a constant depending on the bound of {uk} in
◦

W 1,p (Ω). Denote

āβ = lim sup
∫

Ωβ

|vk/δ|p, aβ = lim inf
∫

Ωβ

|vk/δ|p.

Then

lim
β→0

āβ = lim
β→0

aβ = â.(1.30)

Indeed, the limits exist because the quantities āβ , and aβ vary monotonically with
β and the equalities can be verified as follows:

lim
k→∞

∫
Ω

|uk/δ|p −
∫

Ω′
β

|u/δ|p = lim
k→∞

∫
Ωβ

|uk/δ|p

= lim
k→∞

(
∫

Ωβ

|vk/δ|p + R′k,β),
(1.31)

with R′k,β as before. Consequently, āβ − aβ = o(1), and (1.30) follows from (1.31)
by taking the limit as β → 0.

If β is sufficiently small, the argument employed in (1.18) yields∫
Ωβ

|∇vk|p ≥ (1 + o(1))cp

∫
Ωβ

|vk/δ|p.(1.32)

From this inequality together with (1.29) and(1.30) we obtain,

lim χp(uk) ≥ lim sup
(1 + o(1))cp

∫
Ωβ
|vk/δ|p +

∫
Ω′

β
|∇uk|p + Rk,β∫

Ωβ
|vk/δ|p +

∫
Ω′

β
|uk/δ|p + R′k,β

≥
(1 + o(1))cpaβ +

∫
Ω′

β
|∇u|p + o(1)

āβ +
∫
Ω′

β
|u/δ|p + o(1)

.

(1.33)

Hence, taking the limit as β → 0, we obtain

lim χp(uk) ≥ âcp +
∫
Ω
|∇u|p

â +
∫
Ω |u/δ|p ≥ min(cp, χp(u)).(1.34)

Inequalities (1.28) and (1.34) imply (1.22).
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Finally, suppose that {uk} satisfies (1.23). If (1.24) does not hold, there exist
a compact set K ⊂ Ω, a positive number α and a subsequence of {uk} (which we
also denote by {uk}) such that∫

K

|∇uk|p ≥ α +
∫

K

|∇u|p, ∀k ∈ N.(1.35)

Using this fact and repeating the previous argument, we obtain

νp(u) = limχp(uk) ≥ âcp +
∫
Ω
|∇u|p + α

â +
∫
Ω |u/δ|p > min(cp, χp(u)),(1.36)

which contradicts (1.22). If in addition, χp(u) < cp, this argument shows that
(assuming (1.23)) â = 0. As mentioned before, this implies that uk → u in L̃p(Ω).
Since χp(uk) → χp(u), this in turn implies that ‖∇uk‖Lp(Ω) → ‖∇u‖Lp(Ω). Since
∇uk → ∇u weakly in Lp(Ω), these facts imply that uk → u in W̃1,p(Ω).

Remark 2. The proof of the theorem also demonstrates the following fact. If u is a
non-zero element of

◦
W 1,p (Ω) such that χp(u) ≤ cp, then there exists an admissible

sequence {uk} (in the sense of (1.21)) such that (1.23) holds. If χp(u) > cp, then
there is no sequence for which the value νp(u) = cp is attained.

2. Estimates of µp

Theorem 2 and (1.4) imply that

µp(Ω) ≤ cp,(2.1)

for domains of class C2. Actually this inequality remains valid under much weaker
assumptions on ∂Ω, as was shown by Davies [8] in the case p = 2. The following is
a similar result for p > 1. Our proof is different from Davies’ proof, although the
latter could also be extended to the more general case.

Theorem 5. Let Ω be a domain in Rn. Suppose that at some point P ∈ ∂Ω
there exists a tangent hyperplane Π. More precisely, assume that there exists a
neighborhood U of P such that

| dist (x, Π)− δΩ(x)| ≤ o(1)(dist (x, P )), ∀x ∈ U ∩ Ω,(2.2)

where o(1) is a quantity which tends to zero as x → P , and U ∩ Ω contains a
segment PQ perpendicular to Π. Then (2.1)) is valid.

Proof. Put x′ = (x1, · · · , xn−1) so that a generic point in Rn can be written in the
form x = (x′, xn). Without loss of generality, we assume that P = 0, Π = {xn = 0}
and that Ω contains a segment {(0, xn) : 0 < xn < b}. Then condition (2.2) implies
that for every A > 0 there exists α > 0 such that

KA,α = {x : 0 < xn < α, |x′| < Axn} ⊂ Ω.(2.3)

Let H := {xn > 0} and let ε ∈ (0, 1). Since µp(H) = cp, there exists φ ∈ C∞
0 (H)

such that |χH
p (φ)− cp| < ε. There exists A > 0 such that

supp φ ⊂ KA = {x : xn > 0, |x′| < Axn}.
The ratio χH

p and KA are invariant with respect to transformations of the form
x → ax with a > 0. Therefore, in view of (2.2) and (2.3) we may assume that

supp φ ⊂ U ∩ Ω and δΩ(x) < (1 + ε)xn, ∀x ∈ supp φ.
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These facts imply that

χΩ
p (φ) ≤ (1 + ε)χH

p (φ) ≤ (1 + ε)(cp + ε).

Since ε ∈ (0, 1) is arbitrary, (2.1) follows.

Remark. In connection with this result it is natural to ask whether the estimate
(2.1) remains valid for arbitrary domains, with no assumption of regularity. In the
case that Ω is the punctured space Rn \ {0}, it is known that µp(Ω) = |1 − n/p|p,
which may be larger than cp (see Example 1). However the question remains open
in the case of irregular bounded domains or exterior domains (i.e. complements of
bounded domains). Davies [8] conjectured that in this case (2.1) is valid, at least
for p = 2.

The next result describes a connection between the value of µp(Ω) and the exis-
tence of minimizers for problem (0.2).

Theorem 6. Let Ω be a domain in Rn with compact boundary of class C2. Suppose
that Hardy’s inequality (0.1) is valid in Ω. If problem (0.2) has no minimizer, then

µp(Ω) = cp.(2.4)

Proof. Let {uk} be a minimizing sequence for (0.2), normalized so that uk p = 1

for all k. Then the sequence is bounded in
◦

W 1,p (Ω), and consequently there is
a subsequence (which we continue to denote by {uk}) which converges weakly to
some element U in this space. If U = 0, then by Theorem 2,

µp = lim inf χp(uk) ≥ µ∗p(Ω) = cp,

and therefore, by (1.4), µp = cp. On the other hand, if U 6= 0 then, by Theorem 4,

µp(Ω) = limχp(uk) ≥ νp(U) = min(cp, χp(U)) ≥ µp(Ω).

Thus, either (2.4) holds or µp(Ω) = χp(U). Since, by assumption, there is no
minimizer, it follows that (2.4) is valid.

3. Proof of Theorem II

Throughout this section, Ω denotes a bounded domain of class C2 in Rn, n ≥
2, p > 2 and δ = δΩ. We start with a brief discussion of some spectral properties
of the operator P = −δ2(x)∆ in Ω. The proof of Theorem II will be based on these
properties and the asymptotic behavior of positive solutions of minimal growth at
∂Ω.

First, we turn Ω into a Riemannian manifold M equipped with the metric ds2 =
δ−2(x)

∑n
i=1 dx2

i . In accordance with previous notation we put L̃2(M) = L̃2(Ω)
and H̃1(M) = W̃1,2(Ω) with the norm · 1,2 (see (1.1)). The closure of C1

0 (Ω) under
this norm will be denoted by H̃1

0 (M).
Let P̃ be the Friedrichs extension of the operator P considered as a symmetric

operator in L̃2(M) with domain C1
0 (Ω) (see [2]). Since M is a complete Riemann-

ian manifold, the operator P̃ is the unique selfadjoint realization of P in L̃2(M).
Actually, P̃ coincides with the Dirichlet realization of P with domain of definition
given by

D(P̃ ) = {u | u ∈ L̃2(M) ∩H1
loc(M), Pu ∈ L̃2(M)}.
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We denote by σ(P̃ ), σess(P̃ ), σpoint(P̃ ), the spectrum, essential spectrum and point
spectrum of P̃ , respectively. Finally, the convex cone of all positive solutions of the
equation Pu = 0 in Ω will be denoted by CP (Ω).

It is well known that

λ0 := inf σ(P̃ ) = µ2(Ω) = inf
u∈H̃1

0 (M)

∫
Ω |∇u|2dx∫
Ω |u/δ|2dx

and

λ0 = sup{λ ∈ R : CP−λ(Ω) 6= ∅}
= sup{λ ∈ R : ∃u ∈ H1

loc(Ω), u > 0, (P − λ)u ≥ 0 in Ω},

(3.1)

and the supremum λ0 is achieved. Further,

λ∞ := inf σess(P̃ ) = sup
K⊂⊂Ω

λ0(M \K),(3.2)

where λ0(M \K) is defined in the same way as λ0 with M replaced by M \K (but
δ = δΩ), and

λ∞ = sup{λ ∈ R : ∃K ⊂⊂ Ω s.t. CP−λ(Ω \K) 6= ∅}
= sup{λ ∈ R : ∃K ⊂⊂ Ω and u ∈ H1

loc(Ω \K), s.t.

u > 0 and (P − λ)u ≥ 0 in Ω \K}
(3.3)

(see [1]). Clearly, λ∞ ≥ λ0.
If problem (0.2) is solvable then it possesses a positive minimizer. Since every

minimizer is a solution of the equation (P − λ0)u = 0 in Ω, it follows that problem
(0.2) possesses a minimizer if and only if λ0 = µ2(Ω) and CP−λ0(Ω) ∩ L̃2(Ω) 6= ∅.

Let ε > 0. Since Ω is a smooth bounded domain, there exists β = β(ε) > 0 such
that the function δ1/2 is a positive supersolution of the equation (P + ε−1/4)u = 0
in Ωβ = {x ∈ Ω : δ(x) < β}. Therefore, (3.3) implies that λ∞ ≥ 1/4. On the other
hand, the proof of Theorem 5 and (3.2) imply that λ∞ ≤ 1/4. Therefore,

λ∞ = c2 = 1/4.

Note that if Ω is unbounded or nonsmooth it may happen that 0 ≤ λ∞ < 1/4 (see
Section 4).

Now, a general theorem of Agmon [3] implies that if ∂Ω is real-analytic then
σess(P̃ ) = [1/4,∞), and every eigenvalue is an isolated point of the spectrum and
has finite multiplicity. Therefore, (0.2) possesses a minimizer if and only if µ2 =
λ0 < λ∞ = 1/4, and Theorem II follows. We present here a direct and elementary
proof of Theorem II which does not assume the analyticity of the boundary. We were
later informed (Agmon [4]) that the results quoted above can also be established
without the assumption that the boundary is analytic.

The proof of the theorem is based on several lemmas, of which the first is due
to Agmon while the second is a modification of Agmon’s proof of the analogous
theorem for Schrödinger operators in Rn (see [2, Theorem 2.7]).

Lemma 7 (Agmon). Let Ω ⊂ Rn be a bounded domain of class C2. Assume that
0 < λ ≤ 1/4 and let s = s(λ) be the positive number such that s(1 − s) = λ and
1/2 ≤ s < 1. Consider the functions

vs(x) = δs(x) − δ(x)/2, us(x) = δs(x) + δ(x)/2.
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Then for every ε > 0 there exists β > 0 such that:
(a) for each ε ≤ λ ≤ 1/4 the function vs is a positive supersolution and us is a

positive subsolution of the equation (P − λ)u = 0 in Ωβ;
(b) for 0 < λ < 1/4, vs, us ∈ L̃2(Ωβ).

Proof. Let the normal curvature of ∂Ω be bounded in absolute value by K and
let β1 = 1/K. Since Ω is of class C2, it follows that δ ∈ C2(Ωβ1) (see [9, Lemma
14.15]). Let α > 0; then in Ωβ1 we have

∆δα(x) = αδ(x)α−1∆δ(x) + α(α− 1)δ(x)α−2|∇δ(x)|2.
Moreover, |∆δ| is bounded in a neighborhood of the boundary and |∇δ(x)| → 1
as x → ∂Ω. These facts together with some elementary calculations imply the
lemma.

Lemma 8. Let Ω be a domain in Rn with compact Lipschitz boundary. Let λ ≤ 1/4
and let w be a positive continuous supersolution of the equation (P − λ)u = 0 in
Ωβ for some β > 0. Let v be a continuous subsolution of the same equation in Ωβ

such that

lim inf
k→∞

∫
Dk

|v(x)
δ
|2dx = 0,(3.4)

where Dk = {x ∈ Ω : 2−(k+1) < δ(x) < 2−k}. Then there exists a positive constant
C, which depends only on the values of w and v on {x : δ(x) = β/2}, such that

v(x) ≤ Cw(x)(3.5)

on Ωβ/2.

Proof. Let C be a positive constant such that

v(x) < Cw(x)(3.6)

on {x ∈ Ω | δ(x) = β/2}. Define a function u0 in Ωβ/2 by

u0(x) = (v(x) − Cw(x))+.(3.7)

We claim that u0 = 0 in Ωβ/2. Note that u0 is a subsolution of the equation
(P − λ)u = 0 in Ωβ/2. Moreover, it follows from (3.6) and (3.7) that there exists
ε > 0 such that u0 = 0 in Ωβ/2 \Ωβ/2−ε. Extend u0 by zero in Ω \Ωβ/2. It follows
that u0 is a non-negative subsolution in Ω, and we have∫

Ωβ/2

(
∇u0 · ∇(ζ2u0)− λ

(u0ζ)2

δ2

)
dx ≤ 0(3.8)

for any real function ζ ∈ C∞
0 (Ω). Using the identity

∇u0 · ∇(ζ2u0) = |∇(ζu0)|2 − u2
0|∇ζ|2,(3.9)

we infer from (3.8) that∫
Ωβ/2

(
|∇(ζu0)|2 − λ

(u0ζ)2

δ2

)
≤

∫
Ωβ/2

u2
0|∇ζ|2dx.(3.10)

On the other hand, since w is a positive supersolution,∫
Ωβ/2

∇w · ∇
(

ζ2u2
0

w

)
≥

∫
Ωβ/2

λ

δ2
ζ2u2

0.(3.11)
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Therefore, noting that by (3.9)

∇w · ∇(
ζ2u2

0

w
) = |∇(ζu0)|2 − w2|∇(

ζu0

w
)|2,

we obtain ∫
Ωβ/2

w2|∇(
ζu0

w
)|2dx ≤

∫
Ωβ/2

(
|∇(ζu0)|2 − λ

(u0ζ)2

δ2

)
dx.(3.12)

Combining (3.10) and (3.12), we find that∫
Ωβ/2

w2|∇(
ζu0

w
)|2 ≤

∫
Ωβ/2

u2
0|∇ζ|2dx.(3.13)

Note that, by (3.4),

lim inf
k→∞

22k

∫
Dk

|u0(x)|2dx = 0.(3.14)

Pick χk ∈ C∞
0 (Ω) such that 0 ≤ χk ≤ 1 and

χk(x) = 1 if δ(x) ≥ 2−k,
χk(x) = 0 if δ(x) ≤ 2−k−1,
|∇χk| ≤ γ 2k.

Applying (3.13) with ζ = χk, using (3.14) and Fatou’s lemma, we find that∫
Ωβ/2

w2|∇(
u0

w
)|2 ≤ lim inf

k→∞

∫
Ωβ/2

u2
0|∇χk|2dx

≤ lim inf
k→∞

γ 22k

∫
Dk

u2
0dx = 0.

(3.15)

Therefore, u0 = cw in Ωβ/2 for some constant c. Since w is positive and u0 vanishes
in an open set of Ωβ/2, it follows that c = 0 and u0 = 0 in Ωβ/2.

Remark 3. Suppose that Ω is a domain whose boundary contains a compact con-
nected component Γ of class C2. Let β > 0 be sufficiently small and assume
that u is a positive continuous supersolution and v is a continuous subsolution in
Γβ = {x ∈ Ω | dist(x, Γ) < β}, and v satisfies (3.4) with DΓ

k := Dk ∩ Γβ replacing
Dk. The proof of Lemma 8 demonstrates that there exists C > 0 such that v ≤ Cu
in Γβ/2.

Let K ⊂ Ω be a compact set. The set Ω\K is called a neighborhood of infinity in
Ω. Let v be a positive solution of the equation (P −λ)u = 0 in some neighborhood
of infinity in Ω. Then v is said to be a positive solution of minimal growth in a
neighborhood of infinity in Ω if for each positive supersolution w of the equation
(P − λ)u = 0 in some neighborhood of infinity in Ω there exist a positive constant
C and a neighborhood of infinity Ω1 ⊂ Ω such that v(x) ≤ Cw(x) in Ω1.

Lemma 9. Let Ω be a bounded domain in Rn of class C2 and let ε, β > 0. Let
ε < λ ≤ 1/4. Suppose that v is a positive solution of the equation (P − λ)u = 0 in
Ωβ. which has minimal growth at infinity in Ω. Then there are positive constants
C and β1 such that

C−1δs(x) ≤ v(x) ≤ Cδs(x) in Ωβ1 ,(3.16)

with s as in Lemma 7. The constant C depends only on ε, β1 and the maximum of
v on ∂Ωβ1 .
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Proof. Let ε > 0 be fixed. By Lemma 7 there exists β0 > 0 such that for each
ε < λ ≤ 1/4 the functions vs(x) = δs(x) − 1

2δ(x) and us(x) = δs(x) + 1
2δ(x) are

positive supersolution and, respectively, subsolution of the equation (P − λ)u = 0
in Ωβ0 . By the definition of positive solution of minimal growth at infinity it follows
that there exist positive constants C and β1 such that

v(x) ≤ Cvs(x) ≤ Cδs(x) in Ωβ1 .(3.17)

If λ < 1/4 then s > 1/2, and consequently us ∈ L̃2(Ωβ0). Now, if ε < λ < 1/4,
Lemma 8 implies that there exist β1 and C > 0 such that

C−1δs(x) ≤ v(x) in Ωβ1 .(3.18)

Next suppose that λ = 1/4. A simple calculation shows that there exists β0 > 0
such that, for every 0 < η < 1/4, the function u1/2+η is a subsolution of the
equation (P − 1/4)u = 0 in Ωβ0 and u1/2+η ∈ L̃2(Ωβ0). Therefore, by Lemma 8
there exist positive constants c and β1 such that

1
2cδ1/2+η(x) ≤ cu1/2+η(x) ≤ v(x) in Ωβ1

for every 0 < η < 1/4. By letting η → 0 we obtain
1
2cδ1/2(x) ≤ v(x) in Ωβ1 .(3.19)

Remark. Note that the latter inequality holds true for any positive supersolution of
(P−1/4)u = 0 in some neighborhood of infinity in Ω. In particular if u ∈ CP−1/4(Ω)
then u /∈ L̃2(M).

Theorem 10. Let Ω be a bounded domain in Rn of class C2 and let λ0 be as in
(3.1).

(i) If 0 < λ0 < 1/4 then λ0 is a simple eigenvalue of P̃ . Consequently problem
(0.2) possesses a minimizer which is unique up to a multiplicative constant
and the minimizer satisfies estimate (3.16). Furthermore, CP−λ0(Ω) is a one
dimensional cone.

(ii) If λ0 = 1/4 then problem (0.2) has no minimizer, and if u ∈ CP−1/4(Ω) then
there exists a constant c > 0 such that u(x) ≥ cδ1/2(x). Moreover, λ0 is not
an eigenvalue of P̃ .

Proof. First we establish the following claim. Let λ ∈ (0, 1/4] and suppose that
CP−λ(Ω) is not empty. If u ∈ CP−λ(Ω) and w ∈ L̃2(M) is a solution of (P−λ)w = 0,
then w is a constant multiple of u. Indeed, if w is a non-trivial solution, then Lemma
8 implies that there exists ε > 0 such that εw(x) ≤ u(x) in Ω. Define

ε0 = sup{ε : u(x)− εw(x) ≥ 0 in Ω}.
If u− ε0w ∈ CP−1/4(Ω), then by Lemma 8 there exists ε1 > 0 such that u− ε0w >
ε1w, which contradicts the maximality of ε0. Therefore, u = ε0w.

Now in part (i) we assume that λ0 < λ∞ = 1/4. Since λ0 is achieved, CP−λ0(Ω) 6=
∅. In addition, if λ0 < λ∞, it is known that u ∈ CP−λ0(Ω) if and only if u is a
positive solution in Ω which has minimal growth at infinity (see, for example, [1,
Theorem 5.5]). Therefore, by Lemma 9, every u in CP−λ0(Ω) satisfies (3.16), so
that λ0 is an eigenvalue, and in view of the previous claim, it is a simple eigenvalue.
This implies statement (i).

Finally we observe that if u ∈ CP−1/4(Ω) then, by the remark following Lemma
9, there exists C > 0 such that δ1/2(x) ≤ Cu(x) in Ω, and therefore u /∈ L̃2(M).
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Thus, u is not a minimizer of (0.2). Furthermore, if λ0 is an eigenvalue then problem
(0.2) possesses a minimizer, and consequently there exists a positive eigenfunction
corresponding to λ0; but this contradicts the previous conclusion. This proves
statement (ii).

Remark 4. For the second statement of the theorem, the assumptions on the do-
main can be relaxed. In fact, if Ω is an arbitrary domain (not necessarily bounded)
such that ∂Ω contains a compact connected component Γ of class C2, then state-
ment (ii) remains valid. Indeed, if λ0 = 1/4 and u ∈ CP−1/4(Ω), then by Remark 3
there exist constants β, c > 0 such that u ≥ cδ1/2 in Γβ . Thus u 6∈ L̃2(M).

4. Some Examples

In this section we discuss the value of the best Hardy constant for various specific
domains. Recall that, by Theorem 5, if Ω is a bounded Lipschitz domain then
0 < µp ≤ cp. On the other hand, if Ω 6= Rn is convex then µp = cp (see Appendix
A).

Example 1. The punctured space: Let Rn∗ = Rn \ {0}. It is easy to see that

µp(Rn
∗ ) = inf{χRn

∗
p (u) : u ∈ ◦

W 1,p (Rn
∗ ) and u radially symmetric}.

In fact this is valid in every radially symmetric domain Ω. Therefore, by [11, 13]
(see also [16]), µp(Rn∗ ) = c∗p,n := |n−p

p |p.
Example 2. Exterior domain: Let Ω be an exterior domain such that Ω has
at least one boundary point which admits a tangent hyperplane. It follows from
Theorem 5 that µp(Ω) ≤ cp. Without loss of generality, we may assume that
0 /∈ Ω̄. Consider the sequence of domains Ωk = 1

kΩ, k ≥ 1. Then, µp(Ωk) = µp(Ω).
On the other hand, by Lemma 12, lim supk→∞ µp(Ωk) ≤ µp(Rn

∗ ) = c∗p,n. Thus,
µp(Ω) ≤ c∗p,n, and consequently

µp(Ω) ≤ min(cp, c
∗
p,n).(4.1)

In particular, if p = n, then µp(Ω) = 0. Note that c∗p,n ≤ cp if and only if
p ≥ (n + 1)/2.

Example 3. Punctured domain: Let Ω be a Lipschitz domain such that 0 ∈ Ω
and consider the punctured domain Ω∗ = Ω \ {0}.

Note that, in view of scale invariance, µp(Rn
∗ ) can be approximated by test func-

tions with supports in arbitrarily small neighborhoods of the origin. Consequently,

µp(Ω∗) ≤ µp(Rn
∗ ) = c∗p,n.(4.2)

Thus, for p = n, µp(Ω∗) = 0. If p < n then
◦

W 1,p (Ω) =
◦

W 1,p (Ω∗). Since δΩ(x) ≥
δΩ∗(x) it follows that

µp(Ω∗) ≤ µp(Ω).(4.3)

Moreover, if we assume also that µp(Ω) < cp, then there exists a strictly positive
minimizer u of the variational problem for the domain Ω. Clearly, χΩ∗

p (u) < χΩ
p (u).

Hence, µp(Ω∗) < µp(Ω).
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Example 4. Annular domain: Let Ω1, Ω2 be two bounded Lipschitz domains in
Rn, such that Ω1 ⊂⊂ Ω2, and set Ω0 = Rn \Ω1. Consider the domain Ω = Ω0∩Ω2.

Set µp,i = µp(Ωi) and α = µp,2
µp,0+µp,2

. If u ∈ ◦
W 1,p (Ω), then

(α + (1− α))‖∇u‖p
Lp(Ω) ≥ αµp,0(u Ω0

p )p + (1− α)µp,2(u Ω2
p )p

= αµp,0

{
(u Ω0

p )p + (u Ω2
p )p

} ≥ αµp,0(u Ω
p )p.

Hence,
µp,0µp,2

µp,0 + µp,2
≤ µp(Ω).(4.4)

Assume that 0 ∈ Ω1 and put Ωk = Ω0 ∩ (kΩ2). Then {Ωk}∞k=1 is a normal
approximating sequence for Ω0 (see Definition 1) and consequently, by Lemma 12
and (4.1),

lim sup
k→∞

µp(Ωk) ≤ µp(Ω0) ≤ min(cp, c
∗
p,n).(4.5)

In particular, if p = n, lim µp(Ωk) = 0. In this connection we recall that, in the case
p = n = 2, Ancona [5, p.278] proved that if Ω is a simply connected domain then
µ2(Ω) ≥ 1/16. Our result shows that for annular domains µ2 may be arbitrarily
small.

On the other hand, if Ω̂k := ( 1
kΩ0)∩Ω2, then {Ω̂k}∞k=1 is a normal approximating

sequence for the punctured domain Ω∗2. Hence, if p ≤ n,

lim sup
k→∞

µp(Ω̂k) ≤ µp(Ω∗2) ≤ min(µp(Ω), c∗p,n).(4.6)

In particular, if p = n, limµp(Ω̂k) = 0. Furthermore, by (4.3) and the previous
convexity argument,

c∗p,nµp(Ω2)
c∗p,n + µp(Ω2)

≤ µp(Ω∗2) ≤ µp(Ω2).(4.7)

Example 5. Radially symmetric domains: In the case of radially symmetric
domains, more precise information concerning µ2 can be obtained through the
construction of explicit solutions.

We start with the exterior of a ball Ω = Rn \ B(0, R). We know that if n = 2,
µ2(Ω) = 0. Suppose now that n ≥ 3. Consider the radial equation

y′′ +
(n− 1)y′

r
+

y

4(r −R)2
+

(n− 1)(n− 3)y
4r2

= 0,

where r > R. It has a positive solution of the form y(r) =
√

(r −R)r1−n. There-
fore, y(r) is a positive supersolution of the equation (P− 1

4 )u = 0 in Ω, and therefore,
µ2 ≥ 1/4. Hence, by Example 2, µ2(Ω) = 1/4 for n ≥ 3.

Note that if n = 3 then y(r) is a positive solution of the equation (P −1/4)u = 0
in Ω which has minimal growth in a neighborhood of infinity in Ω. Therefore, in
this case y(r) is the unique positive solution of (P − 1/4)u = 0 in Ω and can be
thought of as a virtual minimizer of (0.2).

Next we consider an annulus, Ω = A(r, R) = B(0, R) \ B(0, r), 0 < r < R. If
n = 2 then limR→∞ µ2(A(r, R)) = 0. Now assume that n ≥ 3. Then it is easily
checked that

v(x) = |x|(n−1)/2 min{(|x| − r)1/2, (R− |x|)1/2}
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is a positive supersolution of the equation (P− 1
4 )u = 0 in Ω. Therefore, µ2(A(r, R))

≥ 1/4 and hence (in view of Theorem 5) µ2(A(r, R)) = 1/4.
Finally we consider the punctured ball B(0, R)∗. By Example 3, if n = 2 then

µ2(B(0, R))∗ = 0 and consequently limr→0 µ2(A(r, R)) = 0. Suppose now that
n ≥ 3, in which case, µ2(A(r, R)) = 1/4 for every annulus. By Lemma 12 and
(4.3), 1/4 = limr→0 µ2(A(r, R)) ≤ µ2(B(0, R)∗) ≤ 1/4. Thus µ2(B(0, R)∗) = 1/4 .

Example 6. Almost conical domains: Consider for simplicity a conical do-
main in R3 (the same argument applies also for n > 3). So, let γ > 0 and let
x ∈ R3 be given in polar coordinates by (r, θ, φ). Consider the domain

Dγ := {x ∈ R3 | 0 < r < 1, γ < θ ≤ π, 0 ≤ φ ≤ 2π}.
Davies [8] has proved that limγ→0 µ2(Ωγ) = 0. Hence, taking a smooth normal
approximating sequence of domains for Dγ , we see that for every ε > 0 there exists
a smooth bounded domain Aε such that 0 < µ2(Aε) ≤ ε.

Further, using a smooth approximation of a sector in R2 and employing an
estimate of Davies [8] concerning such sectors, we find that for every 1/4.86 ≤ β ≤
1/4 there exists a smooth bounded domain Eβ ⊂ R2 such that µ2(Eβ) ≤ β.

Appendix A.

In this appendix we prove the following result.

Theorem 11. Let Ω 6= Rn be a convex domain. Then

µp(Ω) = cp.(A.1)

The proof will be based on three lemmas. We start with a definition.

Definition 1. Let Ω be a domain in Rn. A sequence of domains {Ωk} is a normal
approximating sequence for Ω if it satisfies the following conditions:

δΩk
(x) → δΩ(x), ∀x ∈ Ω,(A.2)

and for every compact subset K of Ω there exists an integer j such that

K ⊂
∞⋂

k=j

Ωk.

Note that every increasing sequence of subdomains whose limit is Ω is a normal
approximating sequence in the sense of this definition.

Lemma 12. Let Ω be a domain in Rn and let {Ωk} be a normal approximating
sequence of domains. Then

lim sup µp(Ωk) ≤ µp(Ω).(A.3)

If in addition to the above, there exists a point P ∈ ∂Ω such that ∂Ω has a tangent
hyperplane at P , then

lim sup µp(Ωk) = cp =⇒ µp(Ω) = cp.(A.4)

Proof. If u ∈ C∞
0 (Ω) then for sufficiently large k, u ∈ C∞

0 (Ωk). Condition (A.2)
implies that χΩk

p (u) → χΩ
p (u). This fact and the definition of µp(Ω) imply (A.3).

In view of Theorem 5, (A.4) follows from (A.3).
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Let x′ = (x1, · · · , xn−1) denote a generic point in Rn−1, so that x = (x′, xn) is
a point in Rn. Let D be a domain in Rn−1 and let Ω be a domain in Rn of the
form {(x′, xn) : x′ ∈ D, 0 < xn < A(x′)}. When this is the case we shall say that
Ω covers D.

Lemma 13. Let Ω be a bounded domain of the form described above. If u ∈ C1(Ω)
and u vanishes on xn = 0, then∫

Ω

|∇u|p ≥ cp

∫
Ω

|u/xn|p.(A.5)

Proof. Let (0, A) be a bounded interval. If f ∈ W1,p(0, A) and f(0) = 0, then∫ A

0

|f ′| ≥ cp

∫ A

0

|f(t)/t|p dt.(A.6)

Using this fact we obtain,∫
Ω

|∇u|p ≥
∫

D

∫ A(x′)

0

|∂u/∂xn|p dxndx′

≥ cp

∫
D

∫ A(x′)

0

|u/xn|p dxndx′

= cp

∫
Ω

|u/xn|p.

Let S be a bounded polytope and let Γ1, . . . , Γq denote the (open) faces of S.
Further, denote

Γ′j := ∂S \ Γj ,

Sj := {x ∈ S : dist (x, Γj) < dist (x, Γ′j)},
S∗ :=

⋃q
j=1 Sj .

(A.7)

Lemma 14. If S is a bounded convex polytope, then (A.1) holds.

Proof. Let u ∈ C∞
0 (S). By Lemma 13,∫

Sj

|∇u|p ≥ cp

∫
Sj

|u(x)/δS(x)|p dx.(A.8)

Since S is convex, S \ S∗ is a set of measure zero. Therefore, in view of Theorem
5, (A.8) implies (A.1).

Proof of Theorem 11. We may assume that n ≥ 2. Since Ω is convex, it follows
that for almost all points x ∈ ∂Ω there exists a tangent hyperplane at x (see, for
example, [12, Theorem 2.1.22]). Thus, by Theorem 5, µp(Ω) ≤ cp.

On the other hand, the convexity of Ω implies that there exists a normal approx-
imating sequence of domains {Ωk} such that, for each k, Ωk is a bounded convex
polytope. Therefore Lemma 12 and Lemma 14 imply that µp(Ω) ≥ cp. Hence we
obtain (A.1).
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Appendix B.

In this appendix we give a proof of Lemma 1 and mention some related questions.

Proof of Lemma 1. Let f ∈ W1,p(0, 1) and suppose that
∫ 1

0
|f(t)/t|p < ∞. Clearly

this implies that f(0) = 0. Therefore the statement of the lemma is valid in the one-
dimensional case. Next, using the notation introduced in the previous appendix,
let D be a domain in Rn−1 and let Ω be a bounded domain in Rn which covers D.
Thus

Ω = {(x′, xn) : x′ ∈ D, 0 < xn < A(x′)},
where A(·) is a bounded function in D. Suppose that u ∈ W1,p(Ω) and that∫

Ω

|u(x)/xn|p dx < ∞.

Then one can take for u an appropriate element of its equivalence class, so that,
for almost every x′ ∈ D,

u(x′, ·) ∈ W1,p(0, A(x′)) and
∫ A(x′)

0

|u(x′, xn)/xn|p dxn < ∞.

By the previous remarks, limxn→0 u(x′, xn) = 0 for almost every xn ∈ D. This
implies that the trace of u on D is zero.

Now let Ω be a bounded domain of class C2 and let u ∈ W̃1,p(Ω). Using the
fact established above, together with a standard partitioning technique plus local
‘flattening’ of the boundary, we conclude that the trace of u on the boundary of Ω
is zero. Hence u ∈ ◦

W 1,p (Ω).

Remarks. The inclusion W̃1,p(Ω) ⊃ ◦
W 1,p (Ω) is valid in any domain (not necessarily

bounded) in which Hardy’s inequality holds. However, in general, equality does not
hold in unbounded domains. For instance, if n ≥ 3, p = 2 and Ω is the exterior of
the unit ball, then Hardy’s inequality is valid. However, in this case, it is easy to
construct functions which behave like a negative power of |x| at infinity and belong

to W̃1,p(Ω) but not to
◦

W 1,p (Ω).

Conversely, if Ω is bounded and W̃1,p(Ω) ⊃ ◦
W 1,p (Ω), then Hardy’s inequality

holds in Ω. This is a consequence of the closed graph theorem and the Poincaré
inequality.
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