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‘limit point (with respect to the topology induced by Xt ) of {f; (o31) }le
Then

1 ifr>0,
(4.5) lwall, IF<2,  Fol@)

0 ifr<eo.

In particular, o, —a.,/ 2 1/2 for every oy 5 0y, and this concludes the
proof of the theorem.
CororLARY 1. For every sepambla non-reflemive Banach space X there
s an ordinal a (<< w®) so that X* is separable but X*** i non-separable.
Proof, Let g be the first even ordinal ko that X7 iy nonweparable.
Then f< w?+2 and § cannoet be a limit ordinal. Henee f = a -2 and
‘this o hag the desired property.
‘ GOROLLARY 2. Tor every non-reflemive Bmaoh space X the quotient
space X +HX" is non-separable.

Proof. Use Corollary 1, the fact that if ¥ = X then ¥*/Y iy ixo-
morphic to a subspace of X**/X and that every non-reflexive spnee has
-a separable non-reflexive subspace.

It was observed in [1] that if J is the clasgical example of James
for a quasireflexive space then J° is separable. This shows thut the
-ordinals appearing in Theorem 4 and its corollaries ave the bost possible
(i.e. cannot be replaced in general by smaller ordinals),

Added in proof: J. Farvahat decently extendod the rosnlt nf Section 3 by
proving that, for every integer  and every p<2, thore is n space with k-struoture
and typs p. Hence, for every &, there {5 a space with k-structure wlich does
not have k- l-structure.
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On the best constants im the Khinchin inequality*

by
8. J. BZAREK (Warszawa)

Abstract. Let (ry) denote the sequence of Ra.demaoher functions. It is shown that

0

flza,rr, {dt> — 2 ,lz)”z

or e very gguare summable sequence of scalars (g;). The constant 1/1_/—27 is the hest
the largoest) possible,

1. Introduction. Let r, denote the nth Rademacher funetion, i.e.

Tp(t) = signein2”nt  for 0<<IC1 (m=1,2,...).

The clagsieal Khinchin inequality states that, for every pe[l, o), there
exigt positive constants a, and b such that, for every finite seqguence
of scalars {(g) , N

() %(Z‘ |cj|2)”2 (H \_‘Gj, t)| dt)”p <bh, (Z m )1/2.

Let us denote by 4,, and B, respectively, the largest @, and the smallest b,
satisfying (0). B. Tomaszewski has obseived that the values of .4, and B,
are independent of the choice of the scalar field, i.e. they are the same for
real sequences as well as for complex sequences (c¢f. also Remark 3 in
Section 3).

Therefore in the sequel wo shall consider inequality (0) for real se-
guences only.

Obviously, 4, =1 for p =2 and B, =1 for 1<p
hay shown that :

< 2. Stetkin [6]

By, = ((2m—1)U)"™  for m =1,2,3,...

* This is 8 part of the anthor’s masters thesis written under the supervision of
Professor A. Pelezyiski at the Warsaw University.
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In the paper we show that 4, =1 V2, A part of our argument is
2 modification of the method used in [1] where it is shown that A7 < 1.5.
Precisely, our main result is

TEEOREM 1. We have

1 oo
o 1L S\
1 oftldtzw——_( o)
m \-f j; (0] 8 Z’

for every real ey, Gy, ... with ]203 < o0,

Moreover, the equality holds iff there emist indices 1 and o with 1< &
< k< oo such that |¢;| = |e,) and ¢, = 0 for ¢ s % k.

Let us recall that the condition ﬁ ¢} < oo implies that the seriey
g’ojw,(t) converges almost everywhere?cf. e.g. [2]).
i=1

Theorem 1 implies in particular that, for the real Banach spaces I*

and 7, we have @, (I ;) = VE, where 5, (I, ,) denoties the absolutely summing
norm of the natural injection I,,: I*~I% Indeed, wusing (1) the same

argument as in [5], 2.4.2, shows that =, (I, ,) < V2 while a direct computar-

tion shows that if x; =(1,1,0,0,...) and x, = (1, ~1,0,0,...) then
W%l Il = V2 max (e +% ], e —xslh);

hence m (1 ,) 2 2.

2. Proof of the main result. We shall employ the following notation;
i* —the real space of real square sumnmable sequences ¢ = (g5,
with the inner product (-, +) and the norm ||+ ||, defined by

{e,d) = i‘cj-dj; llell, = (Z”' a}’)]/z for e, del®.
Fe=1 j=1

G = {cel’: ¢; =0 for 5> n},
Dr={eeli: g =1for j =1,2,...,a},
T(n) = {eell: ¢yto, =V2and 6,2 0. 320,200  (n==1,2,...),
I =closure () T{n), where the closure is taken in I,

n=1
D% (¢) = {eeD™: (g, ¢) > 0}
DR(e) = {eeD": (g, ¢) = 0}.
We shall be dealing with the positive function f defined on 7\ {0} by

for eel and for n =1,2,...

1 ™
fFley = tel™ [ | 3 oyry(t)] as

0 Jw=1

On the Dest. consiants in the Khinchin ineguality 199

BY fi we denote the restriction of f to I2\{0} for n =1, 2, ... Clearly,
J i8 homogeneous, moreover, for every permutation p(-) of the indices,
#f d ¢l is such that loj] = ldpyy| for all § then fle) = f(d); this follows for
ingtance from formula (3} helow.

Lova 1. Letn = 1,2, ..., let ¢ el2 with |lo], = 1. Then

1° Tor every hell with (h, ¢) =0 and i, = 1 and for every real ¢

(2) " fin(eth) .
>(1+tﬁ)—1/1(ﬁn(c)+z—n+1t PARTE BT ) I(s,h)l).

uJJ”jL(n) u.ug"(c)

Moreorler, there ewists 6 = 6(c) > 0 such that Jor [t] < & the inequality
becomes the equality.

2° Lf fin has at e o local minimum, then Dy (c) contains n—1 linearly "
independent vectors. 4

Proof. Let delZ>{0}. 'I‘hen‘
(3) Sinld} = i r2~" Z (le, d)] = Hd”z_l‘fa*”“( Z (e, d))-

ee D" s (8
Hence .
) fale+th) = (L+3)727 3 (e, ) +i(s, b)]
. ze DIt ) .
;(1+12)—1/22—ﬂ(2 D (e 02t PINCRN YRS
eeDi(l:) ecDﬁ"_(c)
i Y I, ).
eeD(e)

Sinee [lefl, = 1, it follows from (3) that
2 D! (g,0) =2f,(c).

uz)f;(u)

y

Moreover, i {#] < n " min (¢, ¢} then the inequality in (4) may bereplaced
:e.i‘.):”_(e)

by the cquality. Therefore (4) implies (2). This completes the proof of 1°.
To prove 2° aspume to the contrary that there exists a ¢ in 12 with

llelly == 1 such that f,, has at ¢ a local minimum and the dimension of the

linear inanifold spanned by D%(c) is less than n—1. Then there exists

an hei with |hfl, = 1 such that (h, ¢) = 0 and (h, &) = 0 for every ecDl{c).

Let g(#) == fi,(e+th). Then, by 1°,
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2 (e, ) and f = fi,(e)
ssﬁn(c)
a Jocal minimum at the point ¢ = 0, thus the function fm does not have
a local minimum at ¢, & contradiction.
CororrArY. [Let e = (1,1,0,0,...),
e =(2,1,1,1,1,0,0,...}, ¢ =(3,3,2,2 1,1,0,

where a = ) = (0. THerefore g does not have

e, = (1,1,1,1,0,0,...),
<)y e == (1,1,1,1,
-y

11,0, e = (31,1, 1,1,1,0,..), 6= (3,2,2,1,1,1,0,..
0y =(2,2,1,1,1,1,0,...).
Then
1 3 o
Fisled) = f|s(‘37)>“i— Jor  2<i<8.

Moreover, if fis has a Tocal ménimum at @ point ¢ eli, then there exists
an index ¢ with 1< i< 8 such that e, is proportional to the sequence whose
coordinates are some permutation of absolute values of the coordinates of c;
in particular, f(e) = fle;).

The corollary is proved by examining all the points in T({6) whieh
are orthogonal to some five linearly independent vectors in DS There

exist at most ( ) points with the above property.

Let us put e = [le,l7 e, = (1/V2,1)¥2, 0,0, 0, ...). Qur next leama
provides an information on the behaviour of the funetion f in & neigh-
bourhood of the point e.

LEmma, 2. Buppose t7mt for some n = 2 3,4,... and for cvery b’
N0} we have f_ (R)>1/V2. Then for overy hell with [h], =1
and (e, h) =0

(1) if 0 < t< 43, then fle-+th) > 1/¥2,

i) if 17 <t <1, thon f(e—l—th) > 34,
Proof Sinee D7 (e) = {e = (g;) «D™: &, = &3}, we have
2 5 = 2%,
se 0} (6)

Thus ( 3 (&,h) =
s DY)
Snmla:rly, D} (e

0 whenever (e,h) =0

= {8 e%;

Z (2, h)| =

€ E.Dg‘(n)

&, = =g}, Therefore, by (3),

DIRRICA ST LYY YN

s’ e Hh—1

where W' = (2hy, by, by, ...) ell N0}, because if hell and (e, h) =0
then by = —h, and for <D (e) (g, h) = 2h e -+ Ryey 4Ty, ... = (&', b')
where & = (&, &, &, ...) e D" Now using (2) for ¢ == e and the assump-

Tor m == 1,2, ...
! H

On “the best conalamts in the K hinohin imequality 201

tlon that f(h') = 1/V2 for b’ el _; {0} we get

{tl)
+
Jle)+27" tlf(h) i V2 (

+th) > 1A
- Vite Vit

(5) fle

Comparing the right M(le oE (B) with 1/v2 V2 and 3 J4 we obtain (1) and (i),
respectively.

Romark. Let Z, be the set of all points in 12 whose absolute values
of eoordinates are some permutation of coordinates of e. Then Lemma 2
remaing true after replacing e by some e'eZ,.

Betore stating the next lemma we shall introduce some notation.
and for fixed ce 7(2m) we put

@ = 2 ”c“;202m02m—1 ] '1/ == 202171 sz—2 "0”2_27 .
Y =20y qun—anclI;35

e) = 3;(1/1+m+'u+l/1—}—m——'u+l/l«w-{-(z%‘—«y)-{-l/l——w—(z——y))}
& Qm = inf QZm(e)'

eelP(zm)

2 =2]ell7* eyy1 Comss

Lonvea 3. We have

The tedious numerical proof of Lemma 3 is given at the end of this
paper.
Proof of Theorem 1. Let us put K, =% for 1<n<
k3 .
=Ky, = $[]Q; for mz=4.
fe=t
Observe first that the sequence (K,) is non-increasing because the

funetion V¢ iz eoncave and therefore g, (e) <1 for every c¢el'(2m) and
for every m =4,5,... Henee, by Lemma 3,

6! K‘.’m—l

v’
Nexf observe that in order to prove inequality (1) it is enough to
ghow that for n =1, 2,
(1ii),, f 1/1/2 for cel”\{()}
For thw purpose we shall formulate for n = 1 2, ..
(iv), it ¢<T(n) and |le—el, > 1, then f(c) = K, and prove {iii), and
(iv),, by induction.

for every » =1,2,3, ...
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To achieve this we observe that for @ < 6 (ifi), Tollows immediately
from Corollary.

To prove (iv), for n < 6 let us fix such an »n and assume that, for
some eeT(n), f(e) < 3/4. Then, by Corollary, (iii),.; and Remark, there
oxists some- e’ Z, such that

tana(e’, e) < 1/7
where a(x, y) denotes the angle between the vectors x and y.
Now, taking into account the formula
-afe, ¢) < afe’, ¢) for every e'¢Z,
which is a direct consequence of the assumption e «T'{n), we obtain
fanale, ¢) < 1/7 iff [le—ell; < 1/7 ag that eeT(n).

Thus (iv), is proved. .
Next observe that the implication

(1iL),, and (iv)y, = (1),
follows immediately from (), Lemma 2 and the formula

inf f(e) = int fle).
)

ce(n ul;\{ﬂ}

Thus to complete the inductive proof of (ili), and (iv), it i enough
to establish the implications :
L. (iV)snop 000 (i) pnmg = (195

IL. (iv)yey and (Hi)y, = ([{¥)g,_; (1 = 4,5,...).

Proof of I. Leb us suppose to the contrary that, for some m > 4,
(1¥}y,_, and (iil)y, ; holds but there exists a ¢ = (¢, ¢,, very oy 0,0,..00)
€I'(2m) with le—elj, = 1 such that f(e) < X, . Let us define el {0}
forj =1,2,3,4 by

Our 02y v vy Comets Copny  Camgs Qamery - Camy 0, 0, ..0),

€y = ( )
€3 = (€1 Cay+vvy Oyppenns Cara—s = Com—3s Com—y | Opy 0, 0, ...},
€3 = (C1) Cas v+ vy Copgs Cammts Coppg = Gapy Oy 0, 0,...}
€3 = {013 0ay ++vp Opu sy Oamgs Copms ™ Camy = Cagy 0, 0, ..)

Then, in view of (3),

4
1) =1 D (e eyl el
Je=l
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Now, remembering that g,,(e)> Q,, and using the identity
X .

1 Il = ga(e)ell,
=1

which can be verifying by a direct checking, we get
& min Jle) < fle) < Ky, = LI .S
1gjed

Thus
min f(e;) < K,, _,.
Lesi<s .

Liet, for instance, f(e,) < K,,, ,. Denote by ¢* the vector in 7 (2m —2)
which is obtained from e, by rearrangement of the coordinates of e, in
the deereasing order and multiplying by an appropriate constant A (note
that the coordinates of e, are non-negative). Clearly, f(e*) = f(e,) < Ky, ...
Now, by (iii}y,_,, we may apply Lemma 2(ii) whieh combined with (iv)
gives [jc* —ef, < 1/7. Hence

1 1
r;(}:}'ﬁ——?,

20—2
2

1 * ¥ &
——7—> Oy 22 0y 2% .00 2= gy _ss

Observe that neither ¢ nor ¢f is equal to A G+ 0y). Otherwise
we would have contradictory inequality

1 1 2
“{/? - ",'7_ < z'(Gz‘m—-l + Cam) < 2404 <T

because one of the numbers ¢, ¢}, ..., ¢, Would be equal to ¢,. Hence
o = ¢ and ¢} = ¢, and therefore

1
llez —eliy = [le* —elly < T

Combining this inequality with the assumption e —ef, > 1 wo gab

e < [](3 - (5”1“1 o ”‘32 - EH% == 20277;—302131—-2 ""“ zcﬂmwl Com
. o 2
Y 2”;’111m-3”'.m w2 S J‘jﬁ_z:m.-«:i < Z’é‘

heenuse e, == ¢ for some 4 > 3, a contradiction.

Similatly we show that each of the assumptions Sfley) < Koy y
(§ = 1,3, 4) leads to a coniradietion; this completes the proof of implica-
tion I ‘ :
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The proof of implication II is exactly the same as the proof of T
because T'{2m—1) = T(2m); the only difference is that the application
of Leémma 2 is based upon [iii)y,_, instead of (iii)yy, ;. This completes
the proof of (1).

To prove the second part of Theorem & note that from the validity
of (iv), for all » one obtaing by a standard Bmit procedure

(iv) if ¢eT and fe—ell, > 1, then f(e) > K.

Using again a limit procedure and applying inequality (1) we con-
clude that (5) is valid for every hel? with (h, ¢) = ¢ and [h|, = L. Thus fox
every h with the above properties the assertions (i) and (ii) of Lemma 2
hold. Combining (iv) with (i) we infer that if ceZ and f(c) =1 f¥2 then
¢ = e. This clearly implies that if f(e) =1 /1/2" for some ¢el*\{0} then ¢
is of the form described in the second part of Theorem 1.

3. Remarks.

Remark 1. Theorem 1 admits the following generalization:

THEOREM 1a. There ewists o P, > 1 such thai

4, = gzl fop KPS Doy

i.e. for every real sequence (o))

X

Proof. We shall show that the assertion of Theorem la holds for p
satisfying the eonditions

(i) 2 L K,

G p<77

Similarly as in the proof of Theorem 1 it is enough to congider ee'(n)
forn =1,2,... Lef.us set for 1< p < oo

12 o™

fple) = Y .

=i [ N7 )i
bre

z‘ldt)lfzz P

(e N0},

Observe firyt that for every p k= 1 satisfying (j) we have

(jjiy it eeT(n) for some n and [le—el, = 117, then f,(e) = 2¥-ip,

This follows from (iv), the implications (i) and (ii) of Lemuna 2 and from
¢) iy a non-docreasing function

the fact that, for every fixed ecl’>{0}, f,(
of p.

Next observe that for 1< p < 2 the following mn.»ﬂ%uu of Lenmiw 2
holds

icm®
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It f(h) = guI-Up for pll h' el

2N {0}, then for every hel? with (h, e)
=0 and |h|, =1 we have

opia-1 | gnie-1 E 1p

Soled-th) = TTEIEE for every real t.

The prool of thiy fact i similar to the proof of (5) in Lemma 2,
Hence

= DMA-Ln b < plf(p—-ﬂ).

Tole-th) = for

Thus, by (iji), it p satisfies (jj) then the assumption f,(h') = 2Y2' for
every h'sl2 _ \{0} implies that f,(e) 2 24~ Y7 for every e<T(n) and there-
fore also for every cell\{0}. Now the desired inequality follows by indue-
tion. Obviously, 4, < 2¥ 7 =5, (e).

Remark 2. I‘or p < 2 but sufficiently close to 2, 4, <21’2“W This
follows from & result of Stedkin [6] who has shown that

)
¥ VTU

for every 1< p< 2.

< _].{;L which holds in some

P}

Hence 4, < 9Ut-p whenever I' ( P _{E_ )

interval 2—d<p <2

Remark 3. Let ¢i, s, -.., ¢, be arbitrary real valued functions

in I* = L}([0, 1]). We shall repeat an argument of Orlicz [4]: Using the
Tubini theorem, (1), and the Schwartz inequality we get
1 [ . 11 '@1
T 7
f HZ W‘J(t)gj“y ¢t = f ”Z Tj(t)g,-(s)’dtdb
§ Gl b0 =1
1 k1] 1 1 f’
75 (y ‘) (lé, ———;f a;1g;(s)|ds
2 bj = V2 i =
L3 "
1 1 Q o 12
----- (; ( f )| "75(% o)

where the reals ay, @y, ..., @, are chosen so that

e 7
% i sl
Naglggly = (3 Il with
Jual d==1

/ Thus we get

ki
2
Zaj =1.
i=1
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TeEoREM 1h, If B is o real Banach space which is isometrically iso-
morphic to o subspaes of L', then

(1b) fl “j x,H > (\1 le,!lp)
& "imt =1

for arbitrary x;,Xy, ..., X, B (n=1,2,3,...).

Observe that every Buclidean space and, by a result of Lindengtranss
[8), Corollary 2, every two-dimensional Banach space is ivometric to a gub-
space of L*. Therefore for thiy spaces we have inequality (I1b). In par-
ticular, we have (1) for complex sequences (g;), because the complex plane
can be regarded as the two-dimensional Euelidean vector space. An inspec-
tion of Orliez’s argument yields that the second part of Theorem 1 it also
true for complex valued sequences.

4. Proof of Lemma 3. Obgerve first that for m > 4 we have

(6) 0<ogy e,

(7) max (je+1|, [@—2|, |[— a2y, |—0—2+yl) <1
(8) ot H{e—y) L ot o < 2m,

(9) 20" -F{e— )+ 0t < o 2P 0t < Bt

Tnequalites (6)-(9) either follow immediately from the definition of
%, 4,%,v or are obtained by the standard argument involving Lagrange
nmultipliers. Next we show that for every ceZ'(2m)

3 &
10 >l e 4,
(10) tn(e) > 16 " 168 "

To this end we expand. g,, into the powoer series with respect to o, ¥,
#,v. For [¢{| <1 we have

—— 1 a 1 !
11 Vit =14 --»~t~———---—~——-————“ 1), 4
(1) 2 B B R TR T T ;ﬂc\ora o
for some a, with 0 < g, < 5128 (k= 5). Replacing in (11) £ by &0,
=0 ~E-R—Y, —p—2Yy, reqmctwely (it is admissible by (7)) and
adding all four expansions together and dividing by 4 we obbain

Gule) = > B

om0
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where :
B =1, BM™ =0,
K
[
1 \ {20} o, _
B -5 %n% (2_7. )m” (oD e tg— g o0 for mo=1,2,...,
n .
s 1 Y (n PV .
B = 5 O Z (3) @I oM (g —g)%)  for  mo=1,2, ...
Jerd . .

Olearly, BY? = 0 and, by (6), B{¥, 3= 0forn = 1,2, ... Hence to prove (10)
it is enough to show

3
(12) — B T m,

(18) - 24 B < g™

Olearly, (12) follows from (9). To prove (13) obrerve first that, for # = 2,

~Bp <527 ) (:;%) 2 (P09 e (5 — gy 0
J=0

<52t ) (’;) @Y [ + ((e— )]

Ju)
= 527" 2" (a® + 0" + (22 + (s —9)*)"].
Henee, by (8) and (9), :
— B <5270 [(4m™)" -+ (2m ).
Thus, for,‘ m =4,

e (ﬁ’ (M)<r 2—3( 16 - ¢ ) _,gim —4,
% B, i d) T i =5 < Tes ™
This completes thoe proof of (10).
Finally, we shall show
o0
(8, 8B %) 2v2
14 A S L e e
(14) WZ (1() me g ™) <t
which obviously implies
o —
T 3 _, 8 _4) 4 1 22
1~ — — e TR e e B e
(18) TL‘[ (1 ™ " ies " 3vs 3,


GUEST


icm°®

208 8. J. Bzarek
‘We have
3o L, 3 1 1)
- o 2T ) < 0.0532
L™ Tie (6 i 032,
8 v ., & (= 1 1 '
e o e ] e e e ) e L0038
168 2 168 (90 16 RL ’
=4 .
2va
22 < 0.9429.
3

(learly, the last three estimations imply (14).
The assertion of Lemma 3 is an obvious eonsequence of (10) and {15).
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Krzysztof Maurin
METHODS OF HILBERT SPACES

MONOQGRAFIZ MATEMATYCZNE, Vol. 45
552 pp., cloth bound, reprint 1972

Although Hilbert spaces are the oldest known infinite-dimensional topological vecior spaces
unexpected important new applications and methods arise steadily. The present monograph is
the first comprehensive description and treatment of the theory of Hilbert spaces, a theory which
gives a new ontlook upon modern mathematics. The book requires hardly any previous study on
the part of the reader (even the elementary facts of topology and the theory of the integral have
been listed in the Appendix) and leads to the most beautiful and most profound results of modern
analysis and geometry,

"The monograph is sure to be of interest not only to mathematicians but also to physicists {the
chapter on the decomposition into direct integrals, strict justification of P. A. Dirac’s anticipation,
representations of Lis groups, the method of Fourier, the ergodic theory) and engineers (the chapters
on the theory of vibrations, on expansions in eigenfunctions, on boundary problems, on variational
and approximation methods).

Czeslaw Bessaga and Aleksander Pelczynski

SELECTED TOPICS IN
INFINITE-DIMENSIONAL TOPOLOGY

MONOGRAFIE MATEMATYCZNE, Vol, 33
353 pp., cloth bound

Appearing for the first time in book form are the main results concerning homeomorphic
aspects of infinite-dimensional topology, the theory related to general topalogy, the topology of
manifolds, functional analysis, and global analysis. Emphasis is placed on the problem of topolog-
jcal classification of linear metric spaces and the techniques of constructing homeemorphism of
concrete metric spaces onto a Hilbert space. The main results concerning topological manifolds
modelled on infinite-dimensional Iinear metric spaces are presented.

The book is primarily addressed to topologists and to functional apalysts and may serve as
a starting point for research by the graduate stadent. The book presupposes a knowledge of ele-
mentary facts of general topology and functional analysis.

Contents: 1. Preliminaries. II. Topological spaces with convex structures. TII. Convex sets
and deleting homeomorphisms in linear topological spaces. 1V. Skeletons and skeletoids in metric
spaces; V. Z-sets in the Hilbert cube and in the countable infinite product of lines; VI, Spaces
homeomorphic to the countable infinite product of lines. VII. Topological classification of non-
separable Fréchet spaces; VIIL Topological clagsification of non-complete separable linear metric
spaces. IX, Infinite-dimensional topological manifolds, Bibliography. Indexes.

All volumes of MONOGRAFIE MATEMATYCZNE may be ordered at your bookseller
or st ARS POLONA, Krakowskie Przedmiescie 7, 00-068 Warszawa, Poland
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