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ON THE BETA EXPANSION FOR
SALEM NUMBERS OF DEGREE 6

DAVID W. BOYD

Abstract. For a given β > 1, the beta transformation T = Tβ is defined
for x ∈ [0, 1] by Tx := βx (mod 1). The number β is said to be a beta
number if the orbit {Tn(1)}n≥1 is finite, hence eventually periodic. It is
known that all Pisot numbers are beta numbers, and it is conjectured that

this is true for Salem numbers, but this is known only for Salem numbers of
degree 4. Here we consider some computational and heuristic evidence for the
conjecture in the case of Salem numbers of degree 6, by considering the set of
11836 such numbers of trace at most 15. Although the orbit is small for the
majority of these numbers, there are some examples for which the orbit size
is shown to exceed 109 and for which the possibility remains that the orbit is
infinite. There are also some very large orbits which have been shown to be
finite: an example is given for which the preperiod length is 39420662 and the
period length is 93218808. This is in contrast to Salem numbers of degree 4
where the orbit size is bounded by 2β + 3. An heuristic probabilistic model
is proposed which explains the difference between the degree-4 and degree-6
cases. The model predicts that all Salem numbers of degree 4 and 6 should
be beta numbers but that degree-6 Salem numbers can have orbits which are
arbitrarily large relative to the size of β. Furthermore, the model predicts that
a positive proportion of Salem numbers of any fixed degree ≥ 8 will not be
beta numbers. This latter prediction is not tested here.

1. Introduction

The purpose of this paper is to present some results and observations regarding
the beta transformations introduced by Rényi [8]. Given β > 1, the beta transfor-
mation T = Tβ is defined for x ∈ [0, 1] by Tx := βx mod 1. Parry [7] defined β
to be a beta number if the orbit {Tn(1)} is finite. If Tn(1) = 0 for some n, then
β is a simple beta number. If β is a beta number which is not simple, then there
is some smallest m ≥ 1 (the preperiod length) and p ≥ 1 (the period length) for
which Tm+p(1) = Tm(1). For a simple beta number we define m = 0 and p to
be the smallest integer with T p(1) = 0. Notice that m + p is the size of the orbit
{Tn(1)}n≥1.

It is easy to see by induction (see below) that there are integers ck with 0 ≤ ck <
β (the digits in the beta expansion of 1) for which Tn(1) = βn − c1βn−1 − · · · − cn,
so that Tn(1) = Pn(β), where

(1.1) Pn(x) = xn − c1xn−1 − · · · − cn.
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Thus, if β is a beta number, then β satisfies the polynomial equation R(β) = 0,
where

(1.2)) R(x) =

{
Pm+p(x)− Pm(x) if m > 0,

Pp(x) if m = 0.

In particular, a beta number is an algebraic integer whose minimal polynomial P (x)
divides R(x). The degree D = D(β) := m + p of R is the beta degree of β, which
is in general larger than deg(β), the degree of β, which is defined to be the degree
of its minimal polynomial P . As we observed above, D is the size of the orbit
{Tn(1)}n≥1.

The polynomial R is called the characteristic polynomial of β. Parry [7] showed
that the roots of R other than β lie in the disk |z| < min(2, β). This was improved

to |z| ≤ (
√

5 + 1)/2 by Solomyak [11] and Flatto, Lagarias and Poonen [4] inde-
pendently. In fact, Solomyak gives an exact description of the compact subset of
the plane which is the closure of the set of all conjugates (other than β) of beta
numbers.

Recall that a Pisot number (or Pisot-Vijayaraghavan number, or PV number)
is an algebraic integer β > 1 for which all conjugates γ of β with γ 6= β satisfy
|γ| < 1. A Salem number is an algebraic integer β > 1 for which all conjugates
γ 6= β satisfy |γ| ≤ 1 with at least one conjugate having |γ| = 1. This implies that
β is reciprocal, so β−1 is a conjugate of β and all other conjugates γ satisfy |γ| = 1.
Hence, deg(β) is even and ≥ 4 [9, p.26].

Schmidt [10] showed that every Pisot number is a beta number. This was also
proved independently by Bertrand [1]. The idea behind the proof, which is based
on the box principle, goes back to a paper of Gelfond [5]. Schmidt also showed
that if every rational x ∈ [0, 1] has a periodic expansion in base β (i.e., the orbit
{Tn(x)} is finite), then β must be a Pisot or Salem number. He conjectured that
the converse is true, so in particular that every Salem number would be a beta
number. A simple result from [3] is that a Salem number cannot be a simple beta
number: clearly the characteristic polynomial of a simple beta number has a unique
positive root, but a Salem number β has two positive conjugates, namely β and
1/β.

In [3], we showed that if β is a Salem number of degree 4, then β is a beta
number. (We did not consider Schmidt’s more general conjecture there; it remains
open for Salem numbers of all degrees.) The explicit beta expansion of each such
β was given. In all cases m = 1, i.e., β (mod 1) is a purely periodic point of T . If
β has the minimal polynomial P (x) = x4 − ax3 + bx2− ax+ 1, then for fixed a the
period p = p(b) is a unimodal function of b and takes on values which lie in the set
{3, 5, 9}∪{p even : 6 ≤ p ≤ 2a−4}. Thus, D = m+p ≤ 2a−3 < 2a = 2 trace(β) for
all Salem numbers of degree 4. No such bound seems to be true for Salem numbers
of higher degree.

If we write αn = Tn(1), then the canonical beta expansion of 1 to base β > 1 is
defined by the “greedy” algorithm: α0 = 1, cn = bβαn−1c and αn = βαn−1 − cn,
for n ≥ 1. Clearly, 0 ≤ cn < β for all n, and

(1.3) 1 =
∞∑
n=1

cnβ
−n.
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We will refer to the sequence {cn} as the beta expansion (of 1) for β. If this
expansion is periodic, with preperiod length m and period length p, we denote it
by c1 . . . cp, if m = 0, and by c1 . . . cm: cm+1 . . . cm+p if m > 0. A simple criterion
for {cn} to be the beta expansion for some β > 1 was given by Parry [7,p.407]: the
sequence c1, c2, . . . must dominate, in the sense of lexicographic order, the shifted
sequences ck, ck+1, . . . , for all k ≥ 1. The number β is then determined by (1.3).
For periodic expansions, β is also determined by (1.2).

Our main purpose here is to consider whether Salem numbers of degree 6 must
be beta numbers. We compute the beta expansions for all but 80 of the Salem
numbers of degree 6 and trace at most 15 (there are 11836 such numbers). For all
but 199 of these, we have max(m, p) < 1000. However, there is one example for
which (m, p) = (39420662, 93218808), and two examples for which we can show that
D > 109 but do not know whether D <∞. The existence of such examples shows
that the situation for Salem numbers of degree 6 is certainly more complicated than
the degree-4 case. However, the fact that there are examples with D very large but
finite perhaps supports Schmidt’s conjecture for Salem numbers of degree 6.

In §6, we give a heuristic probabilistic argument based on ideas of the geometry of
numbers which makes plausible the observed difference between the cases deg(β) =
4 and deg(β) = 6. The argument correctly predicts that D(β) will be small relative
to β for Salem numbers of degree 4. It predicts that almost all Salem numbers of
degree 6 will be beta numbers but that D(β) can be arbitrarily large even for small
β. Moreover, it predicts that for each fixed even degree d ≥ 8 there should be a
positive proportion of Salem numbers of degree d which are not beta numbers, as
well as a positive proportion that are beta numbers. We present no computational
evidence here for this latter prediction.

The heuristic argument suggests, for Salem numbers of fixed degree d, that the
size of D(β) is directly related to the size of βd−1/|disc(β)|1/2. Here disc(β) denotes
the discriminant of the polynomial P . We explore this connection through some of
the computed examples for d = 6.

The heuristic arguments apply equally well to Schmidt’s more general conjecture
concerning the periodicity of the beta expansions of rationals to a Salem number
base, and predict that Schmidt’s conjecture is true for numbers of degree 4 or 6
and false for numbers of higher degree. For d = 4, the model predicts that the
size of the orbit {Tn(p/q)} for fixed β should be roughly proportional to q4. These
predictions are not tested here.

2. Recognizing Salem numbers of degree 6

A Salem number β of degree 6 has a minimal polynomial of the following form:

(2.1) P (x) := x6 + ax5 + bx4 + cx3 + bx2 + ax+ 1,

where a, b and c are integers. The trace of β is trace(β) = −a =
∑
i βi, where

the sum is over the six conjugates of β, i.e., the six roots of (2.1). Two of these
conjugates are β and 1/β and the remaining conjugates satisfy |βi| = 1, so a bound
on |a| implies a bound on β and hence on |b| and |c|. So, for fixed a, there is a finite
set of β with trace(β) = −a. Observe that

trace(β) = −a > β + 1/β −
6∑
i=3

|βi| > 2− 4 = −2,
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so trace(β) ≥ −1 for all Salem numbers of degree 6. In fact, there are no such
numbers with trace −1, 4 with trace 0, 15 with trace 1, and 39 with trace 2.

It is not difficult to recognize Salem numbers of degree 6. Since P (x) is reciprocal,
we can write

(2.2) P (x) = x3U(x+ 1/x),

where

(2.3) U(x) = x3 + ax2 + (b− 3)x+ (c− 2a).

The zeros of U are the numbers βi + 1/βi and hence U must have two roots in
the open interval −2 < x < 2 and one root with x > 2. This is equivalent to
the following requirements: (i) U(±2) < 0, (ii) U ′(x) has real roots, the smaller of
which, ξ1 satisfies −2 < ξ1 < 2, and U(ξ1) > 0. We used this criterion in compiling
our list of Salem numbers.

We also require U to be irreducible. Since U is cubic, it suffices that U(n) 6= 0
for any integer n. Only a finite set of n need be checked since, by a well-known
estimate of Cauchy, U(x) 6= 0 for |x| ≥ 1 + max(|a|, |b − 3|, |c − 2a|) . It is easy
to see that P can only factor into factors of even degree since the roots β and 1/β
must belong to the same factor, or else there would be a factor the product of
whose roots is in absolute value less than 1, which is clearly impossible. Thus, P
is irreducible if and only if U is irreducible.

The following useful result is an elementary deduction from the above discussion.

Lemma 2.1. Let P be as in (2.1) and U as in (2.3). A necessary condition for P
to be the minimal polynomial of a Salem number is that

(2.4) U(±2) < 0 and U(n) 6= 0,

for −1 ≤ n ≤ 1 + max(|a|, |b − 3|, |c − 2a|). A sufficient condition for P to be
the minimal polynomial of a Salem number is, in addition to (2.4), any one of
U(−1) > 0, U(0) > 0 or U(1) > 0.

In general, if P is the minimal polynomial of a Salem number of degree d = 2s,
then there is a monic polynomial U with integer coefficients for which P (x) =
xsU(x+ 1/x). The numbers βi + 1/βi are the zeros of U repeated twice each. The
following computation gives a useful expression for disc(β):

(2.5)
disc(P ) = (−1)(

d
2)
∏
i

P ′(βi) = (−1)s
∏
i

βsiU
′(βi + 1/βi)(1− β−2

i )

= (−1)sP (1)P (−1)disc(U)2 = U(2)U(−2)disc(U)2.

3. Are Salem numbers of degree 6 beta numbers?

In this section we describe the results of a computation of the beta expansions
for the 11836 Salem numbers of degree 6 and trace at most 15. The complete
expansion was obtained except in 80 cases. The distribution of the pairs (m, p)
for these numbers is quite remarkable. For the most part there is a great deal of
regularity, and the values of m and p are quite small: for all but 199 of the numbers
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Table 3 (a = −3 and b = −1)

c m p disc(β) disc(β) β C(β)†

5 1 12 485809 172 · 412 2.81016 .0689
4 1 9 3534400 26 · 52 · 472 2.95386 .0328
3 1 7 11471769 32 · 11292 3.07216 .0222
2 1 7 25563136 212 · 792 3.17425 .0175
1 1 7 45225625 54 · 2692 3.26491 .0151

-1 1 5 88642225 52 · 72 · 2692 3.42227 .0137
-2 1 5 102252544 214 · 792 3.49209 .0141
-3 1 5 103245921 34 · 11292 3.55736 .0154
-4 1 14 88360000 26 · 54 · 472 3.61877 .0181
-5 1 12 58782889 112 · 172 · 412 3.67857 .0240
-7 * * 405769 74 · 132 3.78470 .3342

∗ for c = −7, m+ p > 1199978517.
† C(β) = (π/6)2β5/disc(β)1/2.

surveyed, both m < 1000 and p < 1000. For 9609 of the numbers (81% of the total)
we have m = 1, but, in contrast to the degree-4 situation, larger values of m do
occur with a certain regularity. However, among the remaining 199 cases, there are
at least 79 for which D = m+ p > 106 and at least two for which D > 109.

The two known examples with D > 109 are (a, b, c) = (−3,−1,−7) and (a, b, c) =
(−5,−2,−11). This might suggest that these β are not beta numbers. How-
ever, there are some very large values of m and p among the cases where (m, p)
has been determined. The (current) record is attained for (−6,−5,−14), which
has (m, p) = (39420662, 93218808). Other notable values are (−5,−22,−33) with
(m, p) = (8604828, 9101), and (−9,−23,−28) with (m, p) = (1979174, 11754).

A sample of these numerical results is presented in two tables organized as fol-
lows. In Table 1 of the Supplement all quintuples (a, b, c,m, p) with 0 ≤ −a =
trace(β) ≤ 5 are listed, provided both m < 10000 and p < 10000. The complete
table for 0 ≤ trace(β) ≤ 15 is over 20 times longer than that presented here and
has much the same general appearance. Table 2 of the Supplement gives the 36
values (a, b, c) with −a ≤ 10 for which min(m, p) ≥ 10000. This includes 18 cases
where only a lower bound for D = m+ p is known.

Although there must be other factors involved, the argument of §6 suggests that
the size of D(β) is directly related to the size of C(β) = (π/6)2βd−1/disc(β)1/2.
In particular, numbers with smaller discriminants should have larger orbits. The
prediction of §6.6 is that the orbit will be finite provided C(β) < 1. We illustrate
this in Table 3, where we list the values of m, p, disc(β) and C(β) for the 7 Salem
numbers with a = −3, b = −1, so −7 ≤ c ≤ 5. The omitted values of c correspond
to reducible polynomials.

One might expect that the size of the period of β might depend on arithmetic
properties of β or perhaps on the existence of approximate multiplicative relation-
ships between the conjugates γ of β with |γ| = 1. If this were true, then one would
expect powers of β to behave in a manner similar to β. A counterexample to this
expectation is the β with (a, b, c) = (−3,−1,−7), where D > 109. Here, β2 has
(a, b, c) = (−11,−43,−63) with (m, p) = (1, 102).
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Table 4 (powers of β = 1.40126837 . . .)

k a b c m p disc(β) disc(β) βk C(βk)†

1 0 -1 -1 1 7 52441 2292 1.40127 .0065
2 -2 -1 3 1 9 52441 2292 1.96355 .0349
3 -3 2 -4 1 10 3356224 26 · 2292 2.75146 .0236
4 -6 11 -13 1 22 2569609 72 · 2292 3.85554 .1457
5 -5 -1 -6 1 14 3436773376 216 · 2292 5.40265 .0215
6 -5 -16 -24 8867 439 13424896 28 · 2292 7.57056 1.8607
7 -14 41 -57 * * 8862529 132 · 2292 10.60838 12.3727
8 -14 -13 3 131 267 12538872214729 72 · 474 · 2292 14.86519 .0562

∗ for k = 7, m+ p > 1771674.
† C(β) = (π/6)2β5/disc(β)1/2.

Exploring this theme further, we consider the powers of the smallest Salem num-
ber of degree 6, β = 1.40126 . . . , which has (a, b, c) = (0,−1,−1). For 1 ≤ k ≤ 8,
Table 4 gives (a, b, c) for the minimal polynomial of βk, the values of m and p,
disc(βk) and C(βk). The factored form of disc(β) is given for the sake of interest,
although the arithmetic properties of β appear to play no role here.

4. Patterns and regularities in the tables

Many regularities are apparent in Table 1. For example, it is easy to spot
numerous occurrences of (m, p) = (1, 5), (1, 6), (1, 7), (5, 33), etc., and even to
guess the general pattern of such occurrences. Such results can usually be proved
by the method of [3]. That is, one guesses the expansion c1 . . . cm: cm+1 . . . cm+p of
β, verifies that this purported expansion is a legitimate expansion of a beta number
β′ according to Parry’s criterion, computes the characteristic polynomial R(x) of
β′ by (1.2), and verifies that R(x) is divisible by P (x), the minimal polynomial of
β. For example, here are some simple cases:

Proposition 4.1. Let β be a Salem number of degree 6 with minimal polynomial
P (x) given by (2.1). Then (m, p) = (1, 5) if and only if a ≤ b ≤ 0 and a ≤ c ≤ 0
and a ≤ −1.

Proof. For convenience, write (a, b, c) = (−A,−B,−C). The minimal polynomial
P (x) of β must satisfy

(4.1) P (x) = P6(x)− P1(x).

This implies that

(4.2) c1: c2, . . . , c6 = A:B,C,B,A− 1, A− 1.

Next we must determine the conditions under which the expansion satisfies cn ≥ 0,
for all n, and that, for all n > 1,

(4.3) (c1, c2, . . . ) > (cn, cn+1, . . . ),

where, in (4.3), > denotes lexicographical order [7,p.407]. From (4.2), we see that
the condition c1 ≥ cn ≥ 0, for all n, implies A ≥ 1, A ≥ B ≥ 0, and A ≥ C ≥ 0.
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But it is easily seen that these conditions insure that (4.3) holds for all n and hence
that (c1, c2, . . . ) is the beta expansion for a number β′ given by (1.3).

The right member of (4.2) defines a sequence with m = 1 and p a divisor of 5,
so either p = 1 or 5. However, p = 1 occurs only if B = C = A − 1 and this is
the expansion of a beta with minimal polynomial x2 − (A + 1)x + 1, not a Salem
number. This can be easily seen from (1.3) or by observing that the polynomial
U(x) = x3 −Ax2 − (A+ 2)x+ (A+ 1) vanishes at x = A+ 1.

The periodicity of {cn} shows that R(x) = P6(x) − P1(x) is the characteristic
polynomial of β′. But (4.1) shows that R(x) = P (x), the minimal polynomial of β.
Hence, β = β′, so β has (m, p) = (1, 5). �
Proposition 4.2. Let β be a Salem number of degree 6 with minimal polynomial
P (x) given by (2.1). Then (m, p) = (1, 6) if and only if (a, b, c) = (−A,B,−C),
where A,B and C are positive integers satisfying A ≥ 2, A ≥ B, A+B − 1 ≥ C ≥
B ≥ 1 with the further condition that if A+B − 1 = C, then A = C and B = 1.

Proof. Suppose the beta expansion of β is c1: c2 . . . c7, so that the characteristic
polynomial is

(4.4) R(x) = P7(x)− P1(x) = x7 − c1x6 − · · · − c5x2 − (c6 + 1)x− (c7 − c1).

Let P (x) = x6 −Ax5 +Bx4 − Cx3 +Bx2 −Ax+ 1 be the minimal polynomial of
β. If this is to divide R(x), then the quotient must be of the form x + d for some
integer d 6= 0. By a result of Parry mentioned earlier, since −d is a root of R(x)
other than β, it must satisfy |d| < 2 and hence d = ±1. From (4.4), d = c1−c7, and
since c1 ≥ c7 by Parry’s criterion, we must have d = 1. Equating the coefficients of
P (x)(x + 1) with those of (4.4) thus shows that

(4.5) c1: c2, . . . , c7 = A− 1:A−B,C −B,C −B,A−B,A− 2, A− 2.

The conditions cn ≥ 0 for all n imply A ≥ 2, A ≥ B and C ≥ B. The conditions
c1 ≥ c2 and c1 ≥ c3 imply B ≥ 1 and A + B − 1 ≥ C. Finally, if c1 = c3, i.e.,
C = A + B − 1, then we must have c2 ≥ c4, that is A ≥ C; but B ≥ 1 implies
C = A+B − 1 ≥ A, so in this case A = C and hence B = 1.

To finish the proof, we must verify that Parry’s criterion follows from the in-
equalities in the statement of the proposition, the equation (4.5) defining cn for
n ≤ 7, and the assumed periodicity of cn. This involves checking only a finite num-
ber of cases: for example, to verify that (c1, c2, . . . ) ≥ (c4, c5, . . . ), we note that
c1 ≥ c4 follows from A+B− 1 ≥ C, and that if c1 = c4, then A = C and B = 1, so
c2 = c5 (always true here), and c3 = C −B = A− 1 > A− 2 = c6. The remaining
cases are similar and left to the reader.

Finally, we must verify that the exact period is 6 and not a divisor of 6. For
example, if p = 1, then (4.5) would imply that A = C and B = 2. Then we find
that U(x) = x3−Ax2−x+A, so that U(1) = 0 and hence P is reducible. Similarly,
p = 2 or p = 3 lead to U(1) = 0 and the reducibility of P . �
Proposition 4.3. Let β be a Salem number of degree 6 for which

(a, b, c) = (−A+ 1,−A,−2A),

for some A ≥ 4. Then (m, p) = (5, 33).
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Proof. Let PA(x) = x6 + x5 + x+ 1−A(x5 + x4 + 2x3 + x2 + x). Then PA is the
minimal polynomial of a Salem number βA, for A > 0, by Lemma 2.1. Let Fq(x)
denote the qth cyclotomic polynomial (the minimal polynomial of the primitive qth
roots of unity), and define Q(x) = F2(x)F6(x)F33(x)(x9 + x2 − 1), so that Q is a
nonreciprocal polynomial of degree 32. We claim that the beta expansion of βA has
(m, p) = (5, 33) and is given explicitly by
(4.6)
A, 1,(A− 2), A, 1: (A− 2), 0, A, 0, 0, (A− 2), 1, 1, (A− 2), 0, 0, A, 0, (A− 2), 2, 0,

(A− 4), 3, 1, (A− 4), 2, 0, (A− 2), 2, (A− 2), 0, 2, (A− 4), 1, 3, (A− 4), 0, 2 .

To prove this, we note that, for A ≥ 4, the sequence {cn} defined by (4.6) is the
beta expansion of some β′A, since it satisfies Parry’s criterion. This is obvious since
c1 = A ≥ cn for all n and if equality holds (i.e., n = 8 or 17), then c2 = 1 > cn+1 =
0. The condition A ≥ 4 guarantees cn ≥ 0 for all n.

Let RA(x) be the characteristic polynomial of β′A. We must next verify that

(4.7) PA(x)Q(x) = RA(x).

This is an elementary algebraic computation which is made easier by observing
that the coefficients of PA(x) and RA(x) are linear functions of A, and hence the
identity need only be established for two values of A, e.g. A = 0 and A = 1. We
leave this to the reader who may wish to use a computer algebra system.

Since Q(x) has no positive roots, (4.7) implies that βA = β′A, and hence that
(4.6) is the beta expansion of βA. It is clear in this case that the period of the
expansion is 33 and not a proper divisor of 33 because of the positions of the two
cn = A. �

Remark 4.1. The condition in Proposition 4.3 is only a sufficient condition for
(m, p) = (5, 33). There are many other occurrences of (5, 33) besides the ones
described here.

5. The computation of the beta expansion

5.1. The basic algorithm. Recalling the definitions of §1, we write αn = Tn(1)
for n ≥ 0, and cn = bβαn−1c for n ≥ 1. Consider first how one would compute these
quantities using an approximation to the real number β. If an approximation β0 to
β is used which has |β−β0| = ε, then the error in the corresponding approximation
to αn is about βnε. Thus, for large n it will be impossible to compute cn correctly.
In addition, even for small n, it would be impossible to decide whether or not
αm = αn for some m 6= n.

On the other hand, if β is an algebraic integer, then all αn lie in Z[β]. Specifically,
if β has degree d and minimal polynomial P , and if Bn is the polynomial of degree
d − 1 defined by Bn(x) ≡ Pn(x) (mod P (x)), where Pn(x) is as in §1, then αn =
Bn(β). The Bn thus provide an exact representation of αn, so the question αn = αm
can be effectively answered. Since the Bn satisfy the recurrence

Bn(x) ≡ xBn−1(x)− cn (mod P (x)),
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the computation simply involves a shift of the coefficients of Bn−1 followed by the
replacement of xd by xd − P (x).

The only difficulty is the determination of cn = bβBn−1(β)c. This can be com-
puted using an approximation β0 to β of modest accuracy unless βαn−1 is unusually
close to an integer c. If β is a Salem number, standard arguments from transcen-
dence theory show that

|βαn−1 − c| > (L(Bn−1) + c1 + 1)−d+1,

where L(Bn−1) denotes the sum of the absolute values of the coefficients of Bn−1.
One simply observes that there is an obvious bound on the conjugates of Bn−1(β)
owing to the fact that the other conjugates of β all have absolute value ≤ 1, and
that the product of all the conjugates is a nonzero integer.

In practice, we can simply choose an approximation β0 to β of fixed accuracy ε.
(We usually chose ε to be 5 × 10−16 or 5 × 10−32.) The number ξ = β0Bn−1(β0)
is an approximation to βαn−1 whose accuracy is easily estimated. If xBn−1(x) =
b1x+ b2x

2 + · · ·+ bdx
d, and if η =

∑
|bi|i(β0 + ε)i−1ε, then |βαn−1− ξ| < η. Thus,

if the distance from ξ to the nearest integer is at least η, then bξc = bβαn−1c = cn.
Our algorithm begins with ε = 5 × 10−16 (double precision). If at some point

in the computation, the criterion of the previous paragraph fails, the computation
of ξ is repeated with a β0 having accuracy ε < 5 × 10−32 (quadruple precision).
If the criterion fails at this level of accuracy, then the computation is terminated.
This occurred for only five values of β in our entire project, one of which can be
recognized in Table 2: (m, p) is not given, but the corresponding lower bound on
D is < 106.

For each (a, b, c), the values of n for which a change from double precision to
quadruple precision was necessary were recorded in a file during the computation.
We indicate below how these values were used in some cases to determine some of
the larger values of (m, p).

As a sample of the accuracy needed, suppose we were to take ε = 10−13 for the β
with (a, b, c) = (−3,−1,−7). Then for n = 167305 one computes ξ = 1.0000004249,
suggesting that cn = 1, while in fact βαn−1 = .9999999851, so cn = 0. On the other
hand, for most values of n, a far less accurate value of β0 would suffice. The two-
tier arrangement described in the previous paragraph allows one to make use of the
fast double-precision multiplication on the machine used (an Amdahl 5860) while
retaining the benefits of a higher-precision calculation when required. One could
easily envision a multiple-tier approach.

The sequence {αn} is periodic if and only if {L(Bn)} is bounded. Thus, if β is
a beta number, its expansion can be computed using an approximation β0 of some
fixed accuracy (which depends on β, of course).

5.2. Variations on the basic algorithm. An alternative approach, which avoids
the computation of η at each step, is to compute cn by using integer arithmetic. Let
M be the companion matrix to P (x), so that the eigenvalues ofM are the conjugates
of β. If Bn(x), as above, is such that αn = Bn(β), then the eigenvalues of Bn(M)
are the conjugates of αn and the eigenvalues of MBn(M) are the conjugates of
βαn.

Now, βαn has exactly two real conjugates corresponding to the two conjugates
β and β−1 of β. Since 0 ≤ ck < β for all k, it is easy to see that the conjugate of
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βαn corresponding to β−1 is β−1Bn(β−1) = β−1Pn(β−1) < 0. Let us denote this
conjugate by γn. For c ≥ 0, βαn− c has two real conjugates γn− c < 0 and βαn− c
itself. By definition, cn = max{c : βαn − c > 0}. Since all other conjugates are
nonreal, the sign of the product of all conjugates is determined by that of βαn − c,
and thus

cn = max{c : det(MBn(M)− c) < 0},
which is a compuation involving only finding the determinant of a finite number of
matrices with integer entries.

Note that the matrix Bn(M) is as good a representation of αn as is Bn(x) and
can be computed from the recursion Bn+1(M) = MBn(M)− cn without explicitly
computing the coefficients of Bn(x). Of course, Bn(M) has d2 integer entries rather
than the d entries of the coefficient vector of Bn(x).

Since the determinant computed above is just the resultant of xBn(x) − c and
P (x), another alternative is to use the coefficient vector of Bn(x) to represent αn
and replace the determinant computation by the computation of a resultant at each
step. Or, combining the approaches of §5.1 and §5.2, one could compute cn using
floating point except in “delicate” cases.

Experiments showed that the approach of §5.2 was generally considerably slower
than that of §5.1.

5.3. Detecting periodicity. A standard method for detecting periodicity in
single-step recurrences is Floyd’s algorithm, described in [6, p.7, exs. 6 & 7]. Hav-
ing computed B1, . . . , B2n, one tests whether Bn = B2n. If {Bn} is periodic with
Bm = Bm+p for minimal m and p, and if n = sp satisfies m ≤ sp < m + p, then
Bn = B2n. Once n = sp is found, one determines p by finding the minimal divisor
of n for which Bn = Bn+d. Finally, one finds m by testing whether Bj = Bj+p for
j ≤ n.

For small N , one can do this in a straightforward way for n ≤ N by storing a
table of B1, . . . , B2N . For larger N , once memory becomes insufficient, one instead
computes Bn, B2n−1 and B2n at each step. This requires 3N of the basic steps to
reach n = N , rather than 2N .

If we have not proved that the sequence is periodic by the time we have reached
B2N , then we know that D = m+ p > N . This observation accounts for only one
of the lower bounds in Table 2, namely (−7,−29,−43), for which the lower bound
is exactly 106.

A more useful method for obtaining lower bounds on m + p is based on the
following observation. Let H(Bn) denote the maximum of the absolute values of
the coefficients of Bn. During the computation, maintain a list of the record values
of H(Bn), i.e., those n for which H(Bn) > H(Bk) for all k < n. Clearly, if H(Bn) is
a record, then B1, . . . , Bn are all distinct, so we know that D > n. In those cases for
which a preliminary computation up to N = 105, say, had indicated that {Bn} did
not have a small period, our program continued to compute Bn up to N = 2× 106

without employing Floyd’s algorithm. If the last record occurred for n > 106, then
this was larger than could have been obtained from Floyd’s algorithm and the cost
was less than 2/3 the cost of using that algorithm. On the other hand, in those rare
cases where the last record occurred for n < 106, the computation was repeated
using Floyd’s algorithm and a relatively small (m, p) was usually detected.

For example, with (a, b, c) = (−9,−23,−28), a computation up to N = 109 indi-
cated that the last record occurred at n = 1782995, suggesting a periodic sequence.
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A recomputation of Bn in the range 1780000 ≤ n < 3800000 found the values
(m, p) = (1979174, 11754).

As mentioned above, a list was maintained of values of n,Bn for which the com-
putation of cn required quadruple precision. Let us call these n markers. Suppose
one has computed B1, . . . , BN , where N > m+ 2p, and that one of these markers,
n1, occurs within the periodic part of the sequence, that is, for m ≤ n < m + p.
Then, by periodicity, n2 = n1 + p must be a marker and thus must occur within
the list of markers. Thus, by scanning this list of Bn for repeats, one can obtain p
directly, as well as an upper bound on m. A recomputation of Bn in a short range
enables one to compute m exactly.

For example, with (a, b, c) = (−6,−5,−14), we computed Bn up to N = 2× 108

and determined that the last record occurred for n = 45622056, suggesting that
the sequence was possibly periodic. A check of the list of markers revealed that
Bn = Bn+q for n = 39667761 and n+q = 132886569, and that no marker k between
these values had Bk = Bn. Thus, the period was revealed to be p = q = 93218808.
Since n1 = 39260289 is a marker, but n1 + q is not, the list also showed that
n1 < m < n, and a binary search in this range revealed that m = 39420662.

On the other hand, for (a, b, c) = (−3,−1,−7), we computed Bn up to N = 1.2×
109. The last record of H(Bn) (which was 81363), occurred for n = 1199978517,
giving the lower bound for D = m + p listed in Table 2. The computation of 109

values of Bn required 8.25 hours of CPU time on the Amdahl 5860. Even if p <∞,
it does not seem practical to compute p in this case by a direct approach unless p
should happen to be quite small relative to m+ p.

In addition to the markers, a table of Bn for multiples of 106 was also maintained,
so that the computation could be restarted from any such value without having
to recompute the entire sequence. Although the markers here arose in a natural
way from the algorithm employed, one could clearly also use some more artificial
criterion for inventing markers. For example, one could store all those pairs (n,Bn)
with the first component of Bn divisible by 1000. Then, in a computation up to
N = 109 one would expect about 106 values of Bn to be stored, and that one of
these values would occur within the period unless p was unusually small.

6. A probabilistic model

6.1. Some ideas from the geometry of numbers. If β is a Salem number of
degree d = 2s, then it has two real conjugates, β1 = β and βs+1 = 1/β, and s− 1
pairs of complex conjugates βj = βs+j for 2 ≤ j ≤ s. All the numbers αn = Tn(1)
lie in the set Z(β). As is familiar from the geometry of numbers [2, p.96], we can
think of Z(β) as a lattice Λ in Rd defined by mapping γ ∈ Z(β) onto the point
ψ(γ) = (γ1,<(γ2),=(γ2), . . . ,<(γs),=(γs), γs+1), where γj denotes the conjugate
of γ corresponding to the conjugation β → βj .

The determinant of Λ [2, p.99] is det(Λ) = 2−(d−2)/2√|disc(β)|, since there are
d − 2 nonreal conjugates, where disc(β) denotes not the discriminant of the field
Q(β), but rather the discriminant of the order Z(β) i.e., the discriminant of the
minimal polynomial P of β. Thus, the number of points of Λ in a large cube of
volume V is asymptotically V/ det(Λ).

Now, consider the iterates αn = Tn(1) as points in the lattice Λ. By definition,
0 < αn < 1. The conjugate δn of αn corresponding to 1/β is δn = Pn(1/β),
which satisfies −β2/(β − 1) < δn < 0. For a typical conjugate γ with |γ| = 1,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



872 DAVID W. BOYD

the corresponding conjugate of αn is γn = |Pn(γ)| < 1 + bβcn. However, it is
reasonable to expect that γn may be O(nδ) for some δ < 1. In fact, it is plausible
that δ = 1/2, as we argue in §6.4 below. The following result contains the only
completely rigorous argument of this section.

Proposition 6.1. Suppose that deg(β) = d, and that |γn| = O(nδ) for all conju-
gates |γ| = 1, for some δ < 1/d. Then β is a beta number (and hence |γn| = O(1)).

Proof. The points α1, . . . , αn of the orbit correspond to the points ψ(α1), . . . , ψ(αn)
in the lattice Λ. By the estimates on the conjugates just given, these n points lie in
a cube Cn of volume Vn = O(nδd) = o(n), and since the points of the lattice have
a constant density in Rd, there are o(n) points of the lattice in Cn. By the box
principle, for sufficiently large n we must have αi = αj for some i 6= j and hence
the orbit is finite. Once we know the orbit is finite, the conjugates γn lie in a finite
set, and so certainly |γn| = O(1). �
Remark 6.1. It is not clear how one would prove that |γn| = O(nδ) with δ <
1 for some given β. The main virtue of Proposition 6.1 is that it shows that
there is a threshold for the rate of growth of |γn| which must be exceeded before
nonperiodicity is possible.

6.2. Replacing a cube by a slab. The condition on δ in Proposition 6.1 can
plausibly be replaced by δ < 1/(d−2). The points ψ(α1), . . . , ψ(αn) actually lie not
just in a cube Cn but in a slab Sn with 2 sides of bounded length, corresponding
to the conjugates β and 1/β, and d− 2 sides of length O(nδ) corresponding to the
conjugates |γ| = 1. The volume of Sn is O(nδ(d−2)), which is o(n) if δ < 1/(d− 2).
If we assume that Sn lies in “general position” with respect to Λ, then we would
expect it to contain Nn = O(nδ(d−2)) = o(n) points of Λ. It is possible that the
slab Sn is tilted in such a way as to contain more than its fair share of points of
Λ, but we regard this as unlikely. This cannot happen with the cube Cn used in
the proof of Proposition 6.1 and is the reason it was used there. If the estimate
Nn = O(nδ(d−2)) could be established rigorously then, for d = 4, the argument
here could be applied if δ < 1/2, which is almost what we get from the nonrigorous
argument of §6.4.

6.3. Assuming the orbit is randomly distributed. If we go beyond the box
principle used in §6.1 and §6.2 and imagine that the points of the orbit α1, . . . , αn are
distributed “randomly” in the slab Sn, we can allow a larger value of δ. Suppose that
|γn| = O(nδ) with δ < 2/(d− 2), so the volume Vn of Sn satisfies Vn = O(nδ(d−2))
and hence, as in §6.2, Sn contains Nn = O(nδ(d−2)) = o(n2) points of the lattice
Λ. Now suppose that the points ψ(α1), . . . , ψ(αn) are randomly chosen from these
Nn points. Then, by the “birthday paradox” we will have αi = αj for some i 6= j
with probability tending to 1 as n→∞. That is, the probability that n randomly
selected points among Nn are distinct is

n−1∏
k=1

(1− k/Nn) ∼
n−1∏
k=1

exp(−k/Nn) ∼ exp(−1

2
n2/Nn)→ 0,

as n→∞ since Nn = o(n2).
For d = 4, this argument requires δ < 1, which is just short of what can be

proved, while for d = 6, the requirement is δ < 1/2, which is just short of the
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δ = 1/2 we obtain in §6.4 by a “random walk” argument. For d ≥ 8, however, even
the most favorable assumptions would not seem to justify the expectation that the
orbit {αk} should be finite.

6.4. A random walk argument to justify δ = 1/2. Let us try to justify
the assumption that |γn| = O(n1/2). Assume that the digits cn are randomly
distributed according to the following distribution: Pr{cn = j} = 1/β, for 0 ≤ j ≤
bβc − 1 and Pr{cn = bβc} = (1 − bβc/β). In addition, assume that the cn are
independent. Then E(cn) ≈ β/2, E(c2n) ≈ β2/3 and E(cmcn) ≈ β2/12 if m 6= n.
Now

(6.1) |γn| = |1− c1γ−1 − · · · − cnγ−n|,

and

(6.2) E|
n∑
j=1

cjγ
j|2 ≈ β2n/12 + (β2/4)|(γ − γn+1)/(1− γ)|2 ≈ β2n/12,

so

(6.3) |γn| ≈ β(n/12)1/2.

6.5. Consequences of the assumption δ = 1/2. Let us explore the consequences
of the plausible assumption δ = 1/2. By (6.3), we expect that |γn| = O(βn1/2),
where the O constant is uniform in β. Thus the region Sn, being the product of two
intervals of lengths 1 and β2/(β − 1) and (d − 2)/2 disks of radius O(βn1/2), has
volume Vn = O(βd−1n(d−2)/2). Since the points of Λ are distributed with density
1/ det(Λ) = 2(d−2)/2/|disc(β)|1/2, and assuming Sn is in general position, there are
Nn = O(βd−1n(d−2)/2/disc(β)1/2) points of Λ in Sn. If disc(β) is sufficiently large,
it is thus possible to push through the argument of §6.2 for d = 4 and the birthday
paradox argument of §6.3 for d = 6 to conclude that the orbit of β should be finite.

More precisely, V (Sn) ≈ βd−1(πn/12)(d−2)/2, so Nn ≈ C(β)n(d−2)/2, where

(6.4) C(β) = βd−1(π/6)(d−2)/2/|disc(β)|1/2.

If β is large, then the largest terms in disc(β) are the d − 1 terms involving the
conjugate β; their product is about β2(d−1). If the conjugates on the unit circle are
nicely distributed, then we would expect the product of terms involving them not
to be too small and so “typically” disc(β) ∼ β2(d−1) and C(β) = O(1) from (6.4).
Values of disc(β) which are untypically small will lead to large values of C(β).

6.6. The expected size of the orbits. Now, let pn ∼ 1 − n/(C(β)n(d−2)/2)
be the probability that αn 6= α1, . . . , αn−1. Then the probability that the points
α1, α2, . . . are distinct is

(6.5)
∏
n

(
1− 1

C(β)n(d−4)/2

){ = 0 if d = 4 or 6,

> 0 if d ≥ 8.

This suggests that almost all orbits are finite if n = 4, 6 while a positive propor-
tion are infinite if n ≥ 8.
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We can distinguish the cases n = 4 and n = 6 by considering the expected size
(D = m+ p) of the orbit. Using the familiar fact that E(D) =

∑
n Pr{D > n}, we

compute

(6.6) qn = Pr{D > n} =
n∏
k=1

(
1− 1

C(β)k(d−4)/2

)
.

For d = 4, we thus have qn = qn1 , so

(6.7) E(D) = q1/(1− q1) = C(β) − 1.

On the other hand, if d = 6, then

− log qn = logn/C(β) +O(1),

i.e., qn ∼ An−1/C(β), so that

(6.8) E(D)

{
<∞ if C(β) < 1,

=∞ if C(β) ≥ 1.

Remark 6.2. For d = 4, we have shown rigorously in [3] that D(β) ≤ 2 trace(β)−3 ≤
2β+ 3. The largest value of D(β) for β with a fixed value of trace(β) is attained by
the β with minimal polynomial P (x) = x4 − ax3 + (2a− 3)x2 − ax+ 1. By (2.4),
P has discriminant (4a − 1)(a2 − 8a + 20)2 ∼ β5 for large β, so that from (6.4),
C(β) ∼ β1/2. Thus (6.7) predicts a smaller value for D(β) than actually attained
but it does predict that large values of D(β) occur for small values of disc(β) and
vice versa.

Remark 6.3. For d = 6, the data tends to confirm a direct relationship between
the sizes of C(β) and D(β), although not quite as dramatic as (6.8) would suggest.
There are some exceptions as well: for example if (a, b, c) = (−9,−37,−55), then
disc(β) = 140682625 is quite small, so C(β) = 6.6956 is large, but D(β) = 531230
is not exceptionally large. On the other hand, the example (−3,−1,−7) with
D(β) > 1.2×109 only has C(β) = .3342, which is not very large (although it is the
largest value of C(β) by far in Table 3, i.e., for (a, b) = (−3,−1)). This is perhaps
to be expected, given the number of unsupported assumptions we have had to make
to arrive at (6.8).

Perhaps the most questionable argument is the deduction of the exponent δ =
1/2 in §6.4. Let µ(n) denote the maximum modulus of the conjugates of αn, i.e.,
the largest modulus of the eigenvalues of the matrix Bn(M) discussed in §5.2.
A fit of a power curve to data from the first 20000 values of µ(n) for the case
(a, b, c) = (−3,−1,−7) suggests an exponent .3 < δ < .4 for this example. A plot
of µ(n) versus n in this range suggests some sort of random process but perhaps
not one well described by the model of §6.4. Note that, for d = 6, we only need
δ < 1/2 to apply the birthday paradox argument of §6.3, so if the growth observed
for n ≤ 20000 were to persist, then §6.3 would predict a periodic beta expansion
for this β.

To test this, let us consider the behavior of the record values of H(Bn) for large
n still for this β. So, let M(n) denote the largest value of H(Bm) for m ≤ n. For
n = 10k, k = 1, . . . , 9, we find that

(6.9) [M(10k) : k = 1, . . . , 9] = [6, 54, 172, 414, 1326, 9701, 21497, 58133, 139410].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BETA EXPANSION FOR SALEM NUMBERS 875

Fitting a power curve to these 9 values (by a linear least squares fit to their loga-
rithms) gives a curve 3.26n.54, suggesting δ > 1/2. On the other hand, using only
k = 4, . . . , 9 gives δ ≈ .51, while the data for the 5 values k = 5, . . . , 9 is very well
fitted by a curve with δ ≈ .39. Apparently, this data does not exclude or confirm a
growth rate of n1/2.

Another instructive example is (−1,−7,−11), where (m, p) = (2438, 863). Here,
µ(n) is quite well fitted for n ≤ 2000 by a curve Anδ with δ = .4. Of course, this
cannot hold for n→∞ since µ(n) is ultimately periodic.

Remark 6.4. Our computations have concentrated on the question of whether Salem
numbers are beta numbers and not on Schmidt’s more general conjecture that, for
every Salem number β and every rational x ∈ [0, 1], the orbit {Tn(x)} should be
finite. Our heuristic arguments apply equally well to this conjecture. If x = p/q,
then the iterates Tn(x) lie in (1/q)Z[β], and hence we need only replace the lattice
Λ by (1/q)Λ in the arguments of §6.1 to §6.6. The only change is that the density
of the points of (1/q)Λ in Rd is qd times as large as the density of the points of
Λ. Thus, the qualitative predictions of §6.1 to §6.4 are unchanged, i.e., we predict
that Schmidt’s conjecture is true for Salem numbers of degree 4 and 6 but not for
higher degrees. The main change in the more quantitative analysis of §6.5 and §6.6
is that C(β) must be replaced by qdC(β). Thus, §6.6 would suggest that, for fixed
β, the size of the orbit {Tn(p/q)} should increase with q as predicted by (6.7) and
(6.8). That is, for d = 4 the size of the orbit should be roughly proportional to q4,
and for d = 6 we should expect unusually large orbits as soon as q6C(β) > 1. It
would be interesting to test these predictions by further computation.
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Sér. I Math. 285 (1977), 419–421. MR 56:5449

2. Z.I. Borevich and I.R. Shafarevich, Number Theory, Academic Press, New York and London,
1966. MR 33:4001

3. D.W. Boyd, Salem numbers of degree four have periodic expansions, Théorie des Nombres –
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