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Abstract

We study the Betti numbers of binomial edge ideal associated to some classes

of graphs with large Castelnuovo-Mumford regularity. As an application we give

several lower bounds of the Castelnuovo-Mumford regularity of arbitrary graphs

depending on induced subgraphs.
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1 Introduction

Let K denote a field. Let G denote a connected, simple and undirected graph over the ver-
tices labeled by [n] = {1, 2, . . . , n}. The binomial edge ideal JG ⊆ S = K[x1, . . . , xn, y1, . . .
, yn] is an ideal generated by all binomials xiyj − xjyi , i < j , such that {i, j} is an edge
of G. It was introduced in [4] and independently at the same time in [6]. It is a natural
generalization of the notion of monomial edge ideal which is introduced by Villarreal in
[12].
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The main purpose of this paper is to study the minimal free resolution of certain
classes of binomial edge ideals. The arithmetic properties of binomial edge ideals in terms
of combinatorial properties of graphs (and vice versa) were studied by many authors in
[4], [6], [3], [13], [11], [7], [8], [5], and [9]. The reduced Grőbner basis and minimal primary
decomposition of binomial edge ideal was given in the paper of Herzog et al. [4]. The
Cohen-Macaulay property of binomial edge ideal were studied in [3], [7] and [8]. As a
certain generalization of the Cohen-Macaulay property the second author has studied
approximately Cohen-Macaulay property in [13].

There is not so much work done so far in the direction of the Betti numbers and
Castelnuovo-Mumford regularity of binomial edge ideals. The minimal free resolution of
the binomial edge ideal of simplest classes (complete graph and line graph) is well known.
In [9], the authors determine the initial Betti number of the binomial edge ideal of an
arbitrary graph. In fact they shows that β2,3 = 2l where l is the total number of 3-cycles
in the graph G. They also discussed the vanishing and non-vanishing of certain Betti
numbers. In [11], there is a computation of the Castelnuovo-Mumford regularity and all
the Betti numbers in the case of complete bipartite graph. The relationship between the
Betti numbers of a graph and the Betti numbers of its induced subgraph (see Theorem
8) was recently shown in [5] by Matsuda and Murai. They also give the Castelnuovo-
Mumford regularity bounds for binomial edge ideals, namely ℓ− 1 6 reg(S/JG) 6 n− 1,
where ℓ denotes the number of vertices of the longest induced line graph of G.

In the present paper we compute the Castelnuovo-Mumford regularity and all the Betti
numbers in the case of cycle graphs and two more classes of graphs which we denote by T3

and G3 (see Definitions 22 and 25). In all of our classes Castelnuovo-Mumford regularity
is quite large. As an application of our investigation we improve the lower bounds for the
Castelnuovo-Mumford regularity of an arbitrary graph by applying as it was done in [5].

The paper is organized as follows: In Section 2, we introduce some notation and
give some results that we need in the rest of the paper. In particular we give a short
summary on minimal free resolutions. In Section 3, we compute the Castelnuovo-Mumford
regularity and the Betti numbers of the binomial edge ideal associated with a cycle graph
and obtain a lower bound for the Castelnuovo-Mumford regularity of an arbitrary graph.
In Section 4, we do the same for the classes of graphs T3 and G3 as we did for the cycle in
Section 3.

2 Preliminaries

In this section we will introduce the notation used in the article. Moreover we summarize
a few auxiliary results that we need.

We denote by G a connected undirected graph on n vertices labeled by [n] = {1, 2, . . . ,
n}. For an arbitrary field K let S = K[x1, . . . , xn, y1, . . . , yn] denote the polynomial ring
in the 2n variables. To the graph G one can associate an ideal JG ⊂ S generated by
all binomials xiyj − xjyi for i < j such that {i, j} forms an edge of G. This Ideal JG is
called binomial edge ideal associated to the graph G. This construction was invented
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by Herzog et al. in [4] and independently found in [6]. At first let us recall some of their
definitions.

Definition 1. For a subset W ⊂ [n], a graph GW on vertex set W is called induced
subgraph of G if for all i, j ∈ W , {i, j} is an edge of GW if and only if {i, j} is an edge of
G.

Definition 2. Fix the previous notation. For a set T ⊂ [n], let G[n]\T is the induced
subgraph of G with vertex set [n] \ T . Let c = c(T ) denote the number of connected
components of G[n]\T . Let G1, . . . , Gc denote the connected components of G[n]\T . Then
define

PT (G) = (∪i∈T{xi, yi}, JG̃1
, . . . , JG̃C(T )

),

where G̃i, i = 1, . . . , c, denotes the complete graph on the vertex set of the connected
component Gi, i = 1, . . . , c.

The following result whose proof can be found in Section 3 of the paper [4] is important
for the understanding of the binomial edge ideal of G.

Lemma 3. With the previous notation the following holds:

(a) PT (G) ⊂ S is a prime ideal of height n− c + |T |, where |T | denotes the number of
elements of T .

(b) JG = ∩T⊆[n]PT (G).

(c) JG ⊂ PT (G) is a minimal prime if and only if either T = ∅ or T 6= ∅ and
c(T \ {i}) < c(T ) for each i ∈ T .

Therefore JG is the intersection of prime ideals. That is, S/JG is a reduced ring.
Moreover, we remark that JG is an ideal generated by quadrics and therefore homogeneous,
so that S/JG is a graded ring with natural grading induced by the N-grading of S.

Remark 4. If we define a grading on S by setting deg xi = deg yi = ei where ei is the i−th
unit vector of Nn then S/JG is Nn-graded too.

Let M a graded finitely generated S-module. By Hilbert’s Syzygy Theorem, M has a
finite minimal graded free resolution:

F• : 0 → Fp → · · · → F1 → F0 → M → 0

where Fi =
⊕

j S(−di,j)
βi,j for i > 0 and p is called the projective dimension ofM . The

numbers βij are uniquely determined by M i.e. βi,j(M) = dimK TorSi (K,M)j, i, j ∈ Z, as
graded Betti numbers of M . We can also define Castelnuovo-Mumford regularity

regM = max{j − i ∈ Z|βi,j(M) 6= 0}. The Betti table looks as in the following:

0 1 · · · p
0 β0,0 β1,1 · · · βp,p

1 β0,1 β1,2 · · · βp,p+1
...

...
...

...
r β0,r β1,1+r · · · βp,p+r
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Note that all the βi,j outside of the Betti table are zero. For more details and related
facts we refer the book of Burns and Herzog [1]. The following result in [1] is important
for us.

Lemma 5. Let M denote a finitely generated graded S-module then Hilbert series of M
can be computed from the graded Betti numbers as follows:

H(M, t) =

∑

−∞<j<∞

∑2n
i=0(−1)iβi,j(M)tj

(1− t)2n
.

Definition 6. Let M denote a finitely generated graded S-module and d = dimM . For
an integer i ∈ Z put

ωi(M) = Ext2n−i
S (M,S(−2n))

and call it the i-th module of deficiency. The module ω(M) := ωd(M) is called the
canonical module of M .

These modules have been introduced and studied in [10]. The following theorem whose
proof can be found in [1, Corollary 3.3.9] is important for us.

Theorem 7. Let M denote a finitely generated graded Cohen-Macaulay S-module of
projective dimension p = 2n− dimM . Let

F• : 0 → Fp → · · · → F1 → F0 → 0

be the minimal free resolution of M . Let G• = HomS(F•, S(−2n)) be the dual complex

G• : 0 → Gp → · · · → G1 → G0 → 0

where Gi = Hom(Fp−i, S(−2n)) for i=0,. . . ,p. Then G• is the minimal free resolution of
ω(M).

Recently K. Matsuda and S. Murai in [5, Corollary 2.2] proved the relationship between
the Betti numbers of the graph with the Betti numbers of its induced subgraph. The result
is as follows:

Theorem 8. Let GW be an induced subgraph of G. Then βi,j(S/JG) > βi,j(S/JGW
) for

all i, j.

3 Betti Numbers of the binomial edge ideal of a cycle

Definition 9. A cycle is a graph in which all the vertices are of degree 2.

In particular, for n = 3 it is triangle and n = 4 it is square. We denote the cycle on
vertex set [n] by C and its binomial edge ideal by JC . It is known from [13, Theorem 4.5]
that, S/JC is approximately Cohen-Macaulay ring of dim(S/JC) = n+ 1.
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Theorem 10. Let JL be the binomial edge ideal of a line L on the vertex set [n] , g =
x1yn − xny1 and JG̃ be binomial edge ideal of the complete graph on [n] then:

(a) JL : g/JL ∼= ω(S/JG̃)(2)

(b) The Hilbert series of S/JC is

H(S/JC , t) =
1

(1− t)n+1
((1 + t)n−1 − t2(1 + t)n−1 + (n− 1)tn + tn+1).

One might see the proof of the above Theorem in [13, Lemma 4.8 and Theorem 4.10].
In order to compute the Betti numbers of a cycle we need to understand the modules

JL : g/JL and S/JL : g. To this end we need the following lemma about the canonical
module of S/JL : g.

Lemma 11. With the notation as before we have

(a) ω(S/JL : g) ∼= JG̃/JL(−2).

(b) The minimal number of generators of ω(S/JL : g) is
(

n−1
2

)

.

Proof. From Theorem 10 we have JL : g/JL ∼= ω(S/JG̃)(2). Now consider the exact
sequence

0 → ω(S/JG̃)(2) → S/JL → S/JL : g → 0.

All modules in above exact sequence are Cohen-Macaulay of dimension n+1. By applying
local cohomology and dualizing it we get the following exact sequence

0 → ω(S/JL : g) → S/JL(−2) → S/JG̃(−2) → 0.

Which implies the isomorphism in (a) and then (a) gives us (b).

All Tor modules of JL : g/JL are given in the following lemma.

Lemma 12. We have the following isomorphisms.

(a) TorSi (K, JL : g/JL) ∼= Kci(−n+2− i) for i = 0, . . . , n−2, where ci = (n−1− i)
(

n

i

)

.

(b) TorSn−1(K, JL : g/JL) ∼= K(−2n+ 2).

Proof. It is well known that S/JG̃ is Cohen-Macaulay with the minimal free resolution

0 → Sbn−1(−n) → · · · → Sbn−1−i(−n+ i) → · · · → Sb1(−2) → S

where bi = i
(

n

i+1

)

. By Lemma 10 (a) and Theorem 7, we have the above statement.

Now we will give the theorem in which we compute all Tor modules of S/JL : g.

Theorem 13. With the previous notation we have
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(a) TorSi (K,S/JL : g) ∼= K(n−1
i )(−2i)⊕Kci−1(−n+ 3− i) for i = 1, . . . , n− 3,

(b) TorSn−2(K,S/JL : g) ∼= Kcn−3(−2n+ 5),

(c) TorSn−1(K,S/JL : g) ∼= K(n−1
2 )(−2n+ 4),

(d) reg(S/JL : g) = n− 3.

Proof. Consider the exact sequence

0 → JL : g/JL → S/JL → S/JL : g → 0.

Let i < n− 2, then the above exact sequence induces a graded homomorphism of degree
zero

TorSi (K, JL : g/JL) ∼= Kci(−n+ 2− i) → TorSi (K,S/JL) ∼= K(n−1
i )(−2i).

Therefore it is the zero homomorphism so we have the following isomorphism

TorSi (K,S/JL : g) ∼= TorSi (K,S/JL)⊕ TorSi−1(K, JL : g/JL).

Let i = n− 1, then we get the injection 0 → K(−2n+ 2) → K(−2n+ 2) which is in fact
an isomorphism. So we have the following exact sequence of K-vector spaces.

0 → TorSn−1(K,S/JL : g) → TorSn−2(K, JL : g/JL) ∼= Kcn−2(−2n+ 4) → TorSn−2(K,S/JL)

∼= K(n−1
1 )(−2n+ 4) → TorSn−2(K,S/JL : g) → TorSn−3(K, JL : g/JL) → 0.

By Lemma 11 (b) and Theorem 7 we have TorSn−1(K,S/JL : g) ∼= K(n−1
2 )(−2n + 4)

since S/JL : g is Cohen-Macaulay. By investigating the K-vector space dimension of
these modules and cn−2 =

(

n

2

)

=
(

n−1
2

)

+
(

n−1
1

)

, it follows that TorSn−2(K,S/JL : g) ∼=
TorSn−3(K, JL : g/JL).

Lemma 14. The coefficient of the highest power tn−1 of the numerator of the Hilbert
series H(S/JC , t) is

(

n−1
2

)

− 1.

Proof. If we expand (1 + t)n−1 in the numerator of H(S/JC , t) of Theorem 10 (b). The
last two terms in the numerator cancels and we get 1+(n−1)t+ · · ·+(

(

n−1
2

)

−1)tn−1.

Now we are ready to say about all Tor modules of S/JC .

Theorem 15. With the previous notation we have

(a) TorSi (K,S/JC) ∼= K(ni)(−2i)⊕Kci−2(−n+ 2− i) for i = 1, . . . , n− 2,

(b) TorSn−1(K,S/JC) ∼= Kcn−3(−2n+ 3),

(c) TorSn(K,S/JC) ∼= K(n−1
2 )−1(−2n+ 2).
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Proof. Consider the exact sequence

0 → (S/JL : g)(−2) → S/JL → S/JC → 0.

Let i < n− 1, then the above exact sequence induces a graded homomorphism of degree
zero

TorSi (K,S/JL : g)(−2) ∼= K(n−1
i )(−2i− 2)⊕Kci−1(−n+ 1− i)

→ TorSi (K,S/JL) ∼= K(n−1
i )(−2i).

First of all we observe that regS/JC = n − 2 as Therefore it is the zero homomorphism
so we have the following isomorphism

TorSi (K,S/JC) ∼= TorSi (K,S/JL)⊕ TorSi−1(K,S/JL : g)(−2).

Let i = n, then we have the following exact sequence of K-vector spaces

0 → TorSn(K,S/JC) → TorSn−1(K,S/JL : g)(−2) ∼= K(n−1
2 )(−2n+ 2) → TorSn−1(K,S/JL)

∼= K(−2n+ 2) → TorSn−1(K,S/JC) → TorSn−2(K,S/JL : g)(−2) ∼= Kcn−3(−2n+ 3) → 0.

First of all we observe that reg S/JC = n−2 as follows by the above isomorphisms and the
previous exact sequence. Moreover, the exact sequence provides that TorSn(K,S/JC) ∼=
Kx(−2n+ 2) for a certain positive integer x ∈ N. By view of the expression of

n− 2 = reg S/JC = max{j − i ∈ Z|βi,j(S/JC) 6= 0}

it follows that βi,j(S/JC) = 0 for all j − i > n − 2 and all i > n. Therefore, computing
the Hilbert series H(S/JC , t) by the minimal free resolution (see Lemma 5) has the form

H(S/JC , t) = p(t)/(1− t)2n,

where p(t) is a polynomial of degree 2n− 2 with leading term (−1)n−1βn,2n−2(S/JC)t
2n−2.

Comparing it with the expansion of the Hilbert series as given in Lemma 14 it follows

that TorSn(K,S/JC) ∼= K(n−1
2 )−1(−2n+ 2) which further implies that TorSn−1(K,S/JC) ∼=

Kcn−3(−2n+ 3).

As a consequence of Theorem 15 we are now able to describe the explicit Betti numbers
of the binomial edge ideal of a cycle.

Corollary 16. Let S/JC be binomial edge ideal of cycle on vertex set [n]. Then the
reg(S/JC) = n− 2 and the Betti diagram of the S/JC looks like the following:

0 1 2 · · · n− 2 n− 1 n
0 1 0 0 · · · 0 0 0
1 0 β1,2 0 · · · 0 0 0
2 0 0 β2,4 · · · 0 0 0
...

...
...

...
. . .

...
...

...
n− 2 0 0 β2,n · · · βn−2,2n−4 βn−1,2n−3 βn,2n−2
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where the Betti numbers in the diagonal are

βi,2i =

(

n

i

)

, if i = 0, . . . , n− 3

and the last row of Betti diagram is

βi,n−2+i =















ci−2, if i = 2, . . . , n− 3 ;
(

n

2

)

+ cn−4, if i = n− 2 ;
cn−3, if i = n− 1 ;
(

n−1
2

)

− 1, if i = n.

Proof. It follows from Theorem 15.

Corollary 17. Let G be any arbitrary graph on vertex set [n]. Let C denote a cycle on
maximal k vertices as an induced subgraph. Then reg(S/JG) > k − 2 and βi,j(S/JG) >
βi,j(S/JC), where the values of βi,j(S/JC) are those of Corollary 16 for n = k.

Proof. It follows from Theorem 8 and Corollary 16.

Remark 18. In case G has a cycle C on maximal k vertices as an induced subgraph it has
also a line L on k − 1 vertices. That is, the lower bound k − 2 6 reg(S/JG) is not better
than that of [5]. The advantage of Corollary 17 is that it provides the non-vanishing of
certain Betti numbers different from those of βi,j(S/JL).

4 Betti Numbers of the binomial edge ideal of T3 and
G3

The clique complex of a graph was used by many authors (see e.g. [3],[7] and [8]) to study
binomial edge ideals. Here in the following we introduce this nice concept.

Definitions 19. Let G be a simple graph on vertex set [n].

1. A clique of G is a subset W of [n] such that each vertex in W is connected to any
other vertex in W by an edge of G. In other words it is a complete subgraph of G.

2. A maximal clique is a clique that is not a subset of a larger clique.

3. The clique complex ∆(G) of G is a simplicial complex whose facets are the max-
imal cliques of G.

4. A vertex j ∈ [n] is called free vertex if it belongs to only one facet of ∆(G).

For example, in a complete graph all vertices are free vertices, and in any graph the
vertices of degree 1 are free vertices, while cycle of length > 3 has no free vertices.

The following proposition whose proof can be found in [7, Proposition 2.1] is important
for us.
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Proposition 20. Let G be a simple graph on vertex set [n]. Let ∆(G) is clique complex
of G and j ∈ [n] be a vertex of G. Then the following conditions are equivalent:

1. j is a free vertex of ∆(G).

2. j /∈ T for all T ⊆ [n] such that c(T \ {i}) < c(T ) for each i ∈ T .

The following lemma tells us the importance of the free vertex.

Lemma 21. Let G be the graph on vertex set [n] with at least one free vertex and JG be
its binomial edge ideal. Chose one of its free vertex and label it by n. Let JG′ denotes
the binomial edge ideal of the graph G′ by attaching the edge {n, n + 1} to the graph G.
Then f = xnyn+1 − xn+1yn is regular on S ′/JG where S ′ = S[xn+1, yn+1], and we have the
following exact sequence of S ′-modules

0 → S ′/JG(−2)
f
→S ′/JG → S ′/JG′ → 0.

where JG′ = (JG, f)

Proof. Since n is free vertex therefore by Proposition 20 and Lemma 3 (c) xn, yn /∈ PT (G)
for all PT (G) ∈ Ass(S/JG), and hence f /∈ PT (G) for all PT (G) ∈ Ass(S ′/JG). Therefore
f is not a zero divisor in S ′/JG and is regular, and one obtains the above exact sequence.

Definition 22. Let T3 be the collection of graphs such that for all G ∈ T3 we have

V (G) = {u1, . . . , ur, v1, . . . , vs, w1, . . . , wt}

with r > 2, s > 1, t > 1 and edge set

E(G) = {{ui, ui+1} : i = 1, . . . , r − 1} ∪ {{vi, vi+1} : i = 1, . . . , s− 1}

∪{{wi, wi+1} : i = 1, . . . , t− 1} ∪ {{u1, v1}, {u1, w1}}.

Note that any G ∈ T3 is a tree which have at most one vertex of degree 3.

Example 23. Consider the simplest example of the graph in T3 as shown in Figure 1.

u2 u1

v1

w1

Figure 1
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It is easy to see that u2, v1 and w1 are free vertices of G. Its binomial edge ideal has
the following Betti diagram

0 1 2 3
0 1 0 0 0
1 0 3 0 0
2 0 0 4 2

and it has the following Hilbert series

H(S/JG, t) =
1

(1− t)6
(1 + 2t− 2t3).

It is known from [13, Corollary 3.5] that any G ∈ T3 on the vertex set [n], the ring
S/JG is approximately Cohen-Macaulay ring of dim(S/JG) = n+ 2.

Remark 24. We use computer algebra system CoCoA [2] for the computations of some
arithmetic invariants of S/JG in Example 23 and 26.

Definition 25. (see [8]) G3 be the collection of graphs such that for all G ∈ G3 we have

V (G) = {u1, . . . , ur, v1, . . . , vs, w1, . . . , wt}

with r > 1, s > 1, t > 1 and edge set

E(G) = {{ui, ui+1} : i = 1, . . . , r − 1} ∪ {{vi, vi+1} : i = 1, . . . , s− 1}

∪{{wi, wi+1} : i = 1, . . . , t− 1} ∪ {{u1, v1}, {u1, w1}, {v1, w1}}.

Example 26. The simplest example of the graph in G3 is the complete graph on the
vertex set u1, v1 and w1 and all of them are free vertices of G. Its binomial edge ideal has
the following Betti diagram

0 1 2
0 1 0 0
1 0 3 2

and it has the following Hilbert series

H(S/JG, t) =
1

(1− t)4
(1 + 2t).

It is known from [8, Proposition 2.5] that any G ∈ G3 on vertex set [n] is Cohen-
Macaulay ring of dim(S/JG) = n + 1. Note that the proj dim(S/JG) = n − 1 for any
G ∈ T3 ∪ G3 on vertex set [n] as it will be shown in the following result.

Theorem 27. Let G be the graph on vertex set [n] and G ∈ T3 ∪ G3. Let JG denotes its
binomial edge ideal then the reg(S/JG) = n − 2 and the Betti diagram of the S/JG looks
like the following:
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0 1 2 3 4 · · · n− 2 n− 1
0 1 0 0 0 0 · · · 0 0
1 0 β1,2 β2,3 0 0 · · · 0 0
2 0 0 β2,4 β3,5 0 · · · 0 0
3 0 0 0 β3,6 β4,7 · · · 0 0
...

...
...

...
...

. . . . . .
...

...

n− 3 0 0 0 0 0
. . . . . . 0

n− 2 0 0 0 0 0 · · · βn−2,2n−4 βn−1,2n−3

Proof. We want to prove the claim on the Betti table by induction on n. For n = 3 or
n = 4 it is true (see Example 23 and 26). Now let us assume that the statement is true
for n. We use the notations of Lemma 21 because in these classes we inductively go from
graph G on n vertices to graph G′ on n + 1 vertices by adding an edge {n, n + 1} with
the assumption that n is free vertex. Let F• be the minimal free resolution for S/JG then
F•⊗SS

′ is minimal free resolution for S ′/JG and hence they have the same Betti numbers.
To this end we note that

TorSi (K,S/JG) ∼= TorS
′

i (K,S ′/JG)

Hence we have the following isomorphism restricted to degree i+ j.

TorS
′

i (K,S ′/JG)i+j
∼= TorSi (K,S/JG)i+j

∼= Kβi,i+j(−(i+ j))

Now consider the exact sequence of Lemma 21

0 → S ′/JG(−2)
f
→S ′/JG → S ′/JG′ → 0.

The first two modules of the above exact sequence are the same modules with the shift
of degree 2. Next we want to show that the map

φi : Tor
S′

i (K,S ′/JG(−2)) → TorS
′

i (K,S ′/JG).

is the zero map. To this end it will be enough to show that

[φi]j : Tor
S′

i (K,S ′/JG)i+j−2 → TorS
′

i (K,S ′/JG)i+j.

is zero for all j. Now suppose that

0 6= TorS
′

i (K,S ′/JG)i+j−2
∼= TorSi (K,S/JG)i+j−2.

By induction hypothesis for n it turns out that (i, j− 2) is either (i, i) or (i, i− 1). In the
first case, that is j − 2 = i, the target of [φi]j is

TorS
′

i (K,S ′/JG)2i+2
∼= TorSi (K,S/JG)2i+2 = 0.
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In the second case, that is j − 2 = i− 1, the target of [φi]j is

TorS
′

i (K,S ′/JG)2i+1
∼= TorSi (K,S/JG)2i+1 = 0.

Now suppose that the target of [φi]j namely TorS
′

i (K,S ′/JG)i+j is non-zero. Again by
induction hypothesis for n it follows that (i, j) is either (i, i) or (i, i− 1). In the first case,
that is j = i, the source of [φi]j is

TorS
′

i (K,S ′/JG)2i−2
∼= TorSi (K,S/JG)2i−2 = 0.

In the second case, that is j = i− 1, the source of [φi]j is

TorS
′

i (K,S ′/JG)2i−3
∼= TorSi (K,S/JG)2i−3 = 0.

This completes the proof for φi is the zero map. Therefore the short exact sequence
induces an isomorphism

TorS
′

i (K,S ′/JG′) ∼= TorS
′

i (K,S ′/JG)⊕ TorS
′

i−1(K,S ′/JG(−2)).

In order to complete the inductive step we have to show that TorS
′

i (K,S ′/JG′)i+j is zero
for all (i, j) different of (i, i) and (i, i− 1). This follows because of

TorS
′

i (K,S ′/JG′)i+j
∼= TorS

′

i (K,S ′/JG)i+j ⊕ TorS
′

i−1(K,S ′/JG)i+j−2.

Note that if (i, j) 6= (i, i − 1) and (i, j) 6= (i, i), then (i − 1, j − 1) 6= (i − 1, i − 2) and
(i− 1, j − 1) 6= (i− 1, i− 1). Moreover we get

βi,2i(S
′/JG′) = βi,2i(S/JG) + βi−1,2i−2(S/JG).

and
βi,2i−1(S

′/JG′) = βi,2i−1(S/JG) + βi−1,2i−3(S/JG).

Hence any Betti number of S ′/JG′ is the sum of consecutive Betti numbers of S/JG of its
same diagonal. This completes the inductive step.

The recursion formulas for the Betti numbers at the end of the proof might be used for
an explicit computation of them. We will follow here a different approach using Hilbert
series.

Lemma 28. With the notations of Lemma 21, we have

H(S ′/JG′ , t) = (1− t2)H(S ′/JG, t).

Proof. The desired identity of Hilbert series follows from the exact sequence

0 → S ′/JG(−2)
f
→S ′/JG → S ′/JG′ → 0

by using the additivity of Hilbert series on short exact sequences.
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Lemma 29. Let G be a graph on vertex set [n] and JG be its binomial edge ideal.

(a) Let G ∈ T3 then the Hilbert series is

H(S/JG, t) =
1

(1− t)n+2
(1 + 2t− 2t3)(1 + t)n−4 for n > 3.

(b) Let G ∈ G3 then the Hilbert series is

H(S/JG, t) =
1

(1− t)n+1
(1 + 2t)(1 + t)n−3 for n > 2.

Proof. We will prove (a) by induction on n. For n = 4 it is true, see Example 23. Suppose
the claim is true for n. That is,

H(S ′/JG, t) =
1

(1− t)n+4
(1 + 2t− 2t3)(1 + t)n−4.

Now by previous lemma we have

H(S ′/JG′ , t) =
1

(1− t)n+3
(1 + 2t− 2t3)(1 + t)n−3

as required.
Similar arguments might be used in order to calculate the Hilbert series in (b).

Theorem 30. Let G be a graph on vertex set [n] and JG be its binomial edge ideal.

(a) Let G ∈ T3 then the Betti numbers for S/JG are:

βi,j =







(

n−4
i

)

+ 3
(

n−4
i−1

)

+ 4
(

n−4
i−2

)

, if j = 2i and i = 0, . . . , n− 2 ;

2
(

n−4
i−3

)

, if j = 2i− 1 and i = 3, . . . , n− 1 ;

0, otherwise .

(b) Let G ∈ G3 then the Betti numbers for S/JG are:

βi,j =







3
(

n−3
i−1

)

+
(

n−3
i

)

, if j = 2i and i = 0, . . . , n− 2 ;

2
(

n−3
i−2

)

, if j = 2i− 1 and i = 2, . . . , n− 1 ;

0, otherwise .

Proof. By Lemma 5 and the structure of the Betti table (see in the above Theorem 27)
provides the following formula

H(S/JG, t) =
1

(1− t)2n

(

n−2
∑

i=0

(−1)iβi,2it
2i +

n−1
∑

i=2

(−1)iβi,2i−1t
2i−1

)

.

and after comparing the Hilbert series of Lemma 29 (a) and by making a few simple
computations we have the formulas for the Betti numbers in (a). Similar computation
using the Hilbert series of Lemma 29 (b) gives the Betti numbers in (b).
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Corollary 31. Let G be any arbitrary graph on vertex set [n]. Suppose that G has an
induced subgraph H ∈ T3 ∪ G3 on k vertices. Then reg(S/JG) > k − 2.

Proof. It is an easy consequence of Theorem 8 and 27.

Remark 32. Let G denote a graph with the largest k such that G has an induced subgraph
H ∈ T3∪G3. Then it has also a line L as an induced subgraph with ℓ = max{s+ t+1, r+
t, r + s} resp. ℓ = max{r + s, r + t, s + t} vertices. In general k > ℓ, so that the lower
bound for the Castelnuovo-Mumford regularity in Corollary 31 improves those of [5].

Acknowledgements: The authors are grateful to the reviewer for suggestions to im-
prove the presentation of the manuscript.
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