COLLOQUIUM MATHEMATICUM

VOL. LXIV

1993

FASC. 1

ON THE BETTI NUMBERS OF THE REAL PART OF A THREE-DIMENSIONAL TORUS EMBEDDING

by JAN RATAJSKI (WARSZAWA)

Let X be the three-dimensional, complete, nonsingular, complex torus embedding corresponding to a fan $S \subseteq \mathbb{R}^3$ and let V be the real part of X (for definitions see [1] or [3]). The aim of this note is to give a simple combinatorial formula for calculating the Betti numbers of V.

1. Let us recall some basic definitions concerning torus embeddings (for details see [1]–[3]). For a fixed lattice M of rank n and for the lattice N dual to M let $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$, $M_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$. There are pairings

 $\langle , \rangle : N \times M \to \mathbb{Z} \text{ and } \langle , \rangle : N_{\mathbb{R}} \times M_{\mathbb{R}} \to \mathbb{Z}.$

1.1. DEFINITION. A convex rational polyhedral cone in $M_{\mathbb{R}}$ $(N_{\mathbb{R}})$ is a set

$$\sigma = \left\{ x \in M_{\mathbb{R}} : x = \sum_{i=1}^{k} r_i \alpha_i \right\} \text{ where } r_i \in \mathbb{R}, \ r_i \ge 0 \,,$$

and $\alpha_1, \ldots, \alpha_k$ are some primitive vectors in M (N). The dimension of σ is by definition the dimension of the linear space spanned by $\alpha_1, \ldots, \alpha_k$ in $M_{\mathbb{R}}$ ($N_{\mathbb{R}}$).

In this article we consider only convex, rational, polyhedral cones in $N_{\mathbb{R}}$ which do not include any line. If $\sigma \subset N_{\mathbb{R}}$ is a cone then the set $\hat{\sigma} = \{y \in M_{\mathbb{R}} : \langle x, y \rangle \geq 0\}$ is also a cone. We call it the *dual cone*. The *face* of the cone σ is the set

$$\tau = \{ x \in \sigma : \langle x, m \rangle \ge 0 \text{ for some } m \in \widehat{\sigma} \}.$$

1.2. DEFINITION. A fan S in $N_{\mathbb{R}}$ is a set of cones in $N_{\mathbb{R}}$ which satisfies the following conditions:

(a) If $\sigma \in S$ and τ is the face of σ then $\tau \in S$.

(b) If $\sigma_1, \sigma_2 \in S$ then $\sigma_1 \cap \sigma_2 \in S$.

If the union of all cones $\sigma \in S$ is the whole space $N_{\mathbb{R}}$ the fan S is said to be *complete*. If every cone $\sigma \subset N_{\mathbb{R}}$ is spanned by a subset of a base of N the fan S is said to be *nonsingular* (see 1.1).

1.3. Let k be an algebraically closed field, S a fan in $N_{\mathbb{R}}$ and $\sigma \in S$ a cone. Since M is a group and $\hat{\sigma} \subseteq M_{\mathbb{R}}$ is a semigroup we have an embedding $k[\hat{\sigma} \cap M] \to k[M]$ of a semigroup algebra into a group algebra and this embedding gives us a morphism of affine varieties

$$\operatorname{Spec} k[M] \to \operatorname{Spec} k[\widehat{\sigma} \cap M]$$
.

It follows from 1.2 (see [2] or [3]) that one can glue the varieties $\operatorname{Spec} k[\widehat{\sigma} \cap M], \ \sigma \in S$, to obtain a new algebraic variety X_S containing $(k^*)^n$ as a dense subset. Moreover, X_S is nonsingular and complete if and only if S is nonsingular and complete.

1.4. DEFINITION. Let $k = \mathbb{C}$, and let S be a nonsingular complete fan.

(a) The real part V of X_S is the closure of $(\mathbb{R}^*)^n \subset (\mathbb{C}^*)^n$ in the variety X_S .

(b) The real nonnegative part V_+ of X_S is the closure of $(\mathbb{R}_+)^n \subset (\mathbb{C}^*)^n$ in X_S .

It is known that V is a real nonsingular compact manifold and $V_+ \subset V$ is a real variety with corners (see [2], [3]).

1.5. THEOREM ([1], 4.4.3). Let $\alpha_1, \ldots, \alpha_k$ be the primitive vectors spanning 1-cones of a fan S. The variety V is nonorientable iff there exists a subset $\{\alpha_{i1}, \ldots, \alpha_{is}\}$ of $\{\alpha_1, \ldots, \alpha_k\}$ such that s is odd and $\alpha_{i1} + \ldots + \alpha_{is} \equiv 0 \mod 2$.

2. Consider the case of a nonsingular complete fan S of dimension 3. For primitive vectors $\alpha_1, \ldots, \alpha_n$ spanning one-dimensional cones $\sigma_1, \ldots, \sigma_n$ which belong to S we put

 $I = \{(i, j) : \alpha_i \text{ and } \alpha_j \text{ span a 2-cone } \sigma_{ij} \text{ in } S\},\$ $J = \{(i, j, k) : \alpha_i, \alpha_j \text{ and } \alpha_k \text{ span a 3-cone } \sigma_{ijk} \text{ in } S\}.$

For a given $v = (v_1, v_2, v_3) \in \mathbb{Z}^3$ we define

$$(-1)^{v} = ((-1)^{v_1}, (-1)^{v_2}, (-1)^{v_3}) \in \mathbb{Z}^3 \subseteq (\mathbb{R}^*)^3$$

2.1. Let D be a sphere in $M_{\mathbb{R}}$ with center at zero. The intersection of D with the fan S defines some triangulation of D and some graph Gon D called the *triangulation graph*. The vertices v_i of G correspond to the 1-cones σ_i spanned by α_i in $M_{\mathbb{R}}$, the edges of G correspond to the 2-cones σ_{ij} spanned by α_i and α_j in $M_{\mathbb{R}}$. Two vertices v_i and v_j are connected by an edge in G if and only if the cone σ_{ij} spanned by α_i and α_j is in S. We define a new graph H on the sphere in the following way:

(a) With every vertex v_i of G we associate three vertices of H: v_{i1} , v_{i2} , v_{i3} . Each of them corresponds to a four-element subgroup of \mathbb{Z}_2^3 containing $(-1)^{\alpha_i}$. Note that there are exactly three four-element subgroups of \mathbb{Z}_2^3

containing a given nonzero element of this group; $(-1)^{\alpha_i}$ is clearly nonzero since α_i is primitive.

(b) For $i \neq j$, v_{ik} and v_{jl} are connected by an edge in H if and only if v_i and v_j are connected in G and the subgroups of \mathbb{Z}_2^3 corresponding to v_{ik} and v_{jl} are the same.

Let $d = \pi_0(H)$ denote the number of connected components of the graph H and let $b_i = \dim H_i(V, \mathbb{Q})$.

2.2. THEOREM. Let V be the real part of a three-dimensional, complete, nonsingular, complex torus embedding.

(a) If V is an orientable manifold then $b_0 = b_3 = 1$, $b_1 = b_2 = d - 6$.

(b) If V is a nonorientable manifold then $b_0 = 1$, $b_1 = d - 6$, $b_2 = d - 7$, $b_3 = 0$.

2.3. Proof. We use the cellular decomposition of V described in [1]. Let V_+ be the real nonnegative part of X. The cellular decomposition of V_+ is dual to the decomposition of the fan S into open faces. Let D be the 3-cell of V_+ corresponding to the 0-cone in S and let S_1, \ldots, S_n be the 2-cells of V_+ corresponding to the 1-cones $\sigma_1, \ldots, \sigma_n$ spanned by $\alpha_1, \ldots, \alpha_n$, respectively; moreover, K_{ij} , $(i, j) \in I$, denotes the 1-cell of V_+ corresponding to the 2-cone σ_{ij} spanned by α_i, α_j , and $W_{ijk}, (i, j, k) \in J$, denotes the 0-cell of V_+ corresponding to the 3-cone σ_{ijk} spanned by $\alpha_i, \alpha_j, \alpha_k$. We know that $\mathbb{Z}_2^3 \subseteq (\mathbb{R}^*)^3$ acts on V. Then V_+ is a fundamental domain for this action and the orbits of k-cells of V_+ give a cellular decomposition of V (see [1]).

Moreover, it follows from [1], 2.4, that the isotropy groups of S_i , K_{ij} , W_{ijk} are $\langle (-1)^{\alpha_i} \rangle$, $\langle (-1)^{\alpha_i}, (-1)^{\alpha_j} \rangle$ and $\langle (-1)^{\alpha_i}, (-1)^{\alpha_j}, (-1)^{\alpha_k} \rangle$, respectively ($\langle g \rangle$ denotes the subgroup generated by g). We define an orientation in cells of V as in [1], 4.4. It follows that $\partial D = S_1 + \ldots + S_n$ and $\partial S_i = \sum \operatorname{sgn}(i-j)K_{ij}$ where we sum over j such that $(i,j) \in I$. The action of \mathbb{Z}_2^3 commutes with the boundary operator, that is, $\partial(\alpha(K)) = \alpha(\partial(K))$ for every $\alpha \in \mathbb{Z}_2^3$ and any cell K of V. For any $\alpha \in \mathbb{Z}_2^3$ we set

$$L^{\alpha} = D - \alpha(D), \quad L^{\alpha}_{i} = S_{i} - \alpha(S_{i}), \quad L^{\alpha}_{ij} = K_{ij} - \alpha(K_{ij}).$$

We have the following chain complex for V:

$$(1) \quad 0 \longrightarrow \langle \langle D \rangle \rangle \oplus \bigoplus \langle \langle L^{\alpha} \rangle \rangle \xrightarrow{\partial_{3}} \bigoplus \langle \langle S_{i} \rangle \rangle \oplus \bigoplus \langle \langle L^{\alpha}_{i} \rangle \rangle \xrightarrow{\partial_{2}} \\ \bigoplus \langle \langle K_{ij} \rangle \rangle \oplus \bigoplus \langle \langle L^{\alpha}_{ij} \rangle \rangle \xrightarrow{\partial_{1}} \bigoplus \langle \langle W_{ijk} \rangle \rangle \longrightarrow 0$$

where the sums are taken over $\alpha \in \mathbb{Z}_2^3$, i = 1, ..., n, with $(i, j) \in I$ and $(i, j, k) \in J$. The above complex is a direct sum of the chain complex for V_+ and the complex

(2)
$$0 \longrightarrow \langle \langle L^{\alpha} \rangle \rangle \xrightarrow{\partial_3} \langle \langle L_i^{\alpha} \rangle \rangle \xrightarrow{\partial_2} \langle \langle L_{ij}^{\alpha} \rangle \rangle \xrightarrow{\partial_1} 0.$$

Since V_+ is contractible we can calculate $H_i(V, \mathbb{Q})$ for i > 0 from the complex (2). It follows from (1) that the Euler characteristic of V is zero. Moreover, $\dim \langle \langle L^{\alpha} \rangle \rangle = 7$, and $\dim \ker \partial_3$ is 0 if V is orientable, and 1 if V is nonorientable. Therefore to prove the theorem it suffices to show that $\dim \ker \partial_2 = d = \pi_0(H)$. It is easy to see that

$$\begin{split} L_i^{\alpha} &= L_i^{\beta} \quad \text{if and only if} \quad (-1)^{\alpha-\beta} \in \langle (-1)^{\alpha_i} \rangle \,, \\ L_{ij}^{\alpha} &= L_{ij}^{\beta} \quad \text{if and only if} \quad (-1)^{\alpha-\beta} \in \langle (-1)^{\alpha_i}, (-1)^{\alpha_j} \rangle \,, \\ L_{ij}^{\alpha} &= 0 \quad \text{if and only if} \quad (-1)^{\alpha} \in \langle (-1)^{\alpha_i}, (-1)^{\alpha_j} \rangle \end{split}$$

and

$$\partial L_i^{\alpha} = \sum \operatorname{sgn}(i-j)L_{ij}^{\alpha}$$

where we sum over j such that $(i, j) \in I$. It follows that for a given i we have three different nonzero chains $L_i^{\beta_{i1}}, L_i^{\beta_{i2}}, L_i^{\beta_{i3}}$ while for a given $(i, j) \in I$ we have only one chain $L_{ij}^{\alpha} \neq 0$ (in this case we will write L_{ij} instead of L_{ij}^{α}). Set

$$z = \sum_{i=1}^{n} (a_{i1}L_i^{\beta_{i1}} + a_{i2}L_i^{\beta_{i2}} + a_{i3}L_i^{\beta_{i3}}), \quad \partial z = \sum_{(i,j)\in I} b_{ij}L_{ij}.$$

We calculate that

$$b_{ij} = \operatorname{sgn}(j-i)(a_{ik} + a_{il}) + \operatorname{sgn}(i-j)(a_{jp} + a_{jr})$$

where

$$(-1)^{\beta_{ik}}, (-1)^{\beta_{il}} \not\in \langle (-1)^{\alpha_i}, (-1)^{\alpha_j} \rangle$$

and

$$(-1)^{\beta_{jp}}, (-1)^{\beta_{jr}} \notin \langle (-1)^{\alpha_i}, (-1)^{\alpha_j} \rangle.$$

Clearly $\partial z = 0$ if and only if $b_{ij} = 0$ for all $(i, j) \in I$. Set

έ

 $p_{im} = a_{ik} + a_{il}, \quad p_{js} = a_{jp} + a_{jr} \quad \text{for } \{k, l, m\} = \{p, r, s\} = \{1, 2, 3\}.$ We obtain a system of linear equations

$$\forall (i,j) \in I \quad p_{im} = p_{js} \quad \text{iff} \quad \langle (-1)^{\alpha_i}, (-1)^{\beta_{im}} \rangle = \langle (-1)^{\alpha_j}, (-1)^{\beta_{js}} \rangle.$$

There is a one-to-one correspondence between the set $\{p_{im} : i = 1, \ldots, n, m = 1, 2, 3\}$ and the set of vertices of the graph H. Namely, p_{im} corresponds to v_{is} (s = s(m)) if and only if the group $\langle (-1)^{\alpha_i}, (-1)^{\beta_{im}} \rangle$ is associated with the vertex v_{is} . This correspondence has the following property: the equation $p_{ik} = p_{jl}$ appears in the system (3) if and only if the vertices $v_{is(k)}$ and $v_{js(l)}$ corresponding to p_{ik} and p_{jl} are connected by an edge in H. Thus we have a bijection between some basis of solutions of (3) and the set of connected components of H. Therefore dim ker $\partial_2 = \pi_0(H)$, which concludes the proof.

2.4. Remark. In the case dim S = 2 our method is in fact the same as that used in [1], Theorem 4.5.1.

3. The fundamental group of V. In this section we use additive notation for the group \mathbb{Z}_2^3 and identify the vectors α_i with their images $(-1)^{\alpha_i}$ in \mathbb{Z}_2^3 .

3.1. Let *P* be a graph with eight vertices $v_e, v_{g1}, v_{g2}, \ldots, v_{g7}$ labeled by eight elements of \mathbb{Z}_2^3 . For a pair $(i, \overline{\alpha}), i \in \{1, \ldots, n\}, \alpha \in \mathbb{Z}_2^3, \overline{\alpha} \in \mathbb{Z}_2^3/\langle \alpha_i \rangle$, the edge $e_i^{\overline{\alpha}}$ links v_{α} with $v_{\alpha_i+\alpha}$. The group \mathbb{Z}_2^3 acts on the set of vertices and on the set of edges of *P*:

$$\alpha(v_{\beta}) = v_{\alpha+\beta}, \quad \alpha(e_i^{\overline{\beta}}) = e_i^{\overline{\alpha+\beta}}.$$

For $(i, j) \in I$ let R_{ij} be the graph which is the orbit of a pair of edges $e_i^{\alpha_i}$ and $e_i^{\alpha_j}$, and let $\Phi_{ij} : R_{ij} \to P$ be the inclusion.

3.2. PROPOSITION. (a) The fundamental group of V is isomorphic to the fundamental group of the graph P modulo the relations given by the images $\Phi(R_{ij})$.

(b) $\pi_1(V)$ is generated by 4n elements g_1, g_2, \ldots, g_{4n} and there are two types of relations between g_j in $\pi_1(V)$:

•
$$r_i = g_i$$
 for $i = 1, \dots, 7$,
• $s_i = g_j^{\varepsilon j} g_k^{\varepsilon k} g_l^{\varepsilon l} g_m^{\varepsilon m}$ for $i = 1, \dots, 2 \cdot \# I$

where j, k, l, m depend on i and εj , εk , εl , εm are ± 1 .

3.3. Proof. Let T be a tubular neighbourhood of the 1-skeleton of V. The decomposition $\overline{T} \cup \overline{V-T}$ is the Heegard splitting of V. Using this fact we can calculate $\pi_1(V)$ (see [4]). First we observe that the graph P is homotopy equivalent to $\overline{V-T}$ (vertices of P correspond to 3-cells of V and edges of P correspond to 2-cells of V, see [1], proof of 4.3.1). It is not difficult to see that the graphs R_{ij} are "meridians" in $\overline{V-T}$ which can be contracted in \overline{T} . This proves (a).

The graph P has 4n edges. A maximal tree in P has seven edges. Contraction of these elements gives relations in $\pi_1(P)$ and consequently in $\pi_1(V)$. So we have seven relations of type r_i .

For $(i, j) \in I$ the graph R_{ij} is the orbit of the pair of edges $e_i^{\alpha_i}$ and $e_i^{\alpha_j}$ and consists of eight edges. These edges form two loops and each loop is glued from four edges. In this way we obtain relations of type s_i . By properly labeling the edges of P we obtain a presentation of $\pi_1(V)$ in the form described in (b).

3.4. Remark. Let dim $X_S = 2$. The fundamental group of V is generated by the one-dimensional orbits of $(\mathbb{R}^*)^3$, call them E_1, \ldots, E_n , modulo the relations

$$\prod_{i \in I_1} E_i \,, \quad \prod_{i \in I_2} E_i \,, \quad \prod_{i \in I_3} E_i$$

where $I_1 = \{i : \alpha_i \neq (1,0)\}$, $I_2 = \{i : \alpha_i \neq (0,1)\}$, $I_3 = \{i : \alpha_i \neq (1,1)\}$ and in each product the index set is a monotonic sequence.

3.5. R e m ar k. In the case dim V = 3 let V_1, \ldots, V_n be the two-dimensional orbits of the action of $(\mathbb{R}^*)^3$. Each V_i is the real part of a 2-dimensional torus embedding and the fan S_i corresponding to V_i can be easily obtained from S. Using 3.4 we can describe $\pi_1(V_i)$ as the group generated by the 1-dimensional orbits E_{ij} of the action of $(\mathbb{R}^*)^3$ on V. (For $(i, j) \in I$, E_{ij} is a one-dimensional orbit of the action of some $(\mathbb{R}^*)^2$ on V_i). It is not difficult to see that the fundamental group of V is the free product of $\pi_1(V_1), \ldots, \pi_1(V_n)$ modulo the relations $E_{ij} = E_{ji}^{-1}$.

REFERENCES

- J. Jurkiewicz, Torus embeddings, polyhedra, k*-actions and homology, Dissertationes Math. 236 (1985).
- [2] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Math. 339, Springer, 1973.
- [3] T. Oda, Convex Bodies and Algebraic Geometry, Springer, 1980.
- [4] J. Stillwell, Classical Topology and Combinatorial Group Theory, Springer, 1980.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WARSAW BANACHA 2 02-097 WARSZAWA, POLAND

> Reçu par la Rédaction le 1.3.1991; en version modifiée le 11.7.1991