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ON THE BETTI NUMBERS OF THE REAL PART
OF A THREE-DIMENSIONAL TORUS EMBEDDING

BY

JAN RATAJSK I (WARSZAWA)

Let X be the three-dimensional, complete, nonsingular, complex torus
embedding corresponding to a fan S ⊆ R3 and let V be the real part of X
(for definitions see [1] or [3]). The aim of this note is to give a simple
combinatorial formula for calculating the Betti numbers of V .

1. Let us recall some basic definitions concerning torus embeddings (for
details see [1]–[3]). For a fixed lattice M of rank n and for the lattice N
dual to M let NR = N ⊗Z R, MR = N ⊗Z R. There are pairings

〈 , 〉 : N ×M → Z and 〈 , 〉 : NR ×MR → Z .

1.1. Definition. A convex rational polyhedral cone in MR (NR) is a set

σ =
{

x ∈ MR : x =
k∑

i=1

riαi

}
where ri ∈ R, ri ≥ 0 ,

and α1, . . . , αk are some primitive vectors in M (N). The dimension of σ
is by definition the dimension of the linear space spanned by α1, . . . , αk in
MR (NR).

In this article we consider only convex, rational, polyhedral cones in NR
which do not include any line. If σ ⊂ NR is a cone then the set σ̂ = {y ∈
MR : 〈x, y〉 ≥ 0} is also a cone. We call it the dual cone. The face of the
cone σ is the set

τ = {x ∈ σ : 〈x,m〉 ≥ 0 for some m ∈ σ̂} .

1.2. Definition. A fan S in NR is a set of cones in NR which satisfies
the following conditions:

(a) If σ ∈ S and τ is the face of σ then τ ∈ S.
(b) If σ1, σ2 ∈ S then σ1 ∩ σ2 ∈ S.

If the union of all cones σ ∈ S is the whole space NR the fan S is said to be
complete. If every cone σ ⊂ NR is spanned by a subset of a base of N the
fan S is said to be nonsingular (see 1.1).
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1.3. Let k be an algebraically closed field, S a fan in NR and σ ∈ S a
cone. Since M is a group and σ̂ ⊆ MR is a semigroup we have an embedding
k[σ̂ ∩ M ] → k[M ] of a semigroup algebra into a group algebra and this
embedding gives us a morphism of affine varieties

Spec k[M ] → Spec k[σ̂ ∩M ] .

It follows from 1.2 (see [2] or [3]) that one can glue the varieties
Spec k[σ̂ ∩ M ], σ ∈ S, to obtain a new algebraic variety XS containing
(k∗)n as a dense subset. Moreover, XS is nonsingular and complete if and
only if S is nonsingular and complete.

1.4. Definition. Let k = C, and let S be a nonsingular complete fan.

(a) The real part V of XS is the closure of (R∗)n ⊂ (C∗)n in the vari-
ety XS .

(b) The real nonnegative part V+ of XS is the closure of (R+)n ⊂ (C∗)n

in XS .

It is known that V is a real nonsingular compact manifold and V+ ⊂ V
is a real variety with corners (see [2], [3]).

1.5. Theorem ([1], 4.4.3). Let α1, . . . , αk be the primitive vectors span-
ning 1-cones of a fan S. The variety V is nonorientable iff there exists a
subset {αi1, . . . , αis} of {α1, . . . , αk} such that s is odd and αi1 + . . .+αis ≡
0 mod 2.

2. Consider the case of a nonsingular complete fan S of dimension 3.
For primitive vectors α1, . . . , αn spanning one-dimensional cones σ1, . . . , σn

which belong to S we put

I = {(i, j) : αi and αj span a 2-cone σij in S} ,

J = {(i, j, k) : αi, αj and αk span a 3-cone σijk in S} .

For a given v = (v1, v2, v3) ∈ Z3 we define

(−1)v = ((−1)v1 , (−1)v2 , (−1)v3) ∈ Z3 ⊆ (R∗)3 .

2.1. Let D be a sphere in MR with center at zero. The intersection
of D with the fan S defines some triangulation of D and some graph G
on D called the triangulation graph. The vertices vi of G correspond to the
1-cones σi spanned by αi in MR, the edges of G correspond to the 2-cones
σij spanned by αi and αj in MR. Two vertices vi and vj are connected by
an edge in G if and only if the cone σij spanned by αi and αj is in S. We
define a new graph H on the sphere in the following way:

(a) With every vertex vi of G we associate three vertices of H: vi1, vi2,
vi3. Each of them corresponds to a four-element subgroup of Z3

2 contain-
ing (−1)αi . Note that there are exactly three four-element subgroups of Z3

2
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containing a given nonzero element of this group; (−1)αi is clearly nonzero
since αi is primitive.

(b) For i 6= j, vik and vjl are connected by an edge in H if and only if
vi and vj are connected in G and the subgroups of Z3

2 corresponding to vik

and vjl are the same.

Let d = π0(H) denote the number of connected components of the
graph H and let bi = dim Hi(V, Q).

2.2. Theorem. Let V be the real part of a three-dimensional , complete,
nonsingular , complex torus embedding.

(a) If V is an orientable manifold then b0 = b3 = 1, b1 = b2 = d− 6.
(b) If V is a nonorientable manifold then b0 = 1, b1 = d− 6, b2 = d− 7,

b3 = 0.

2.3. P r o o f. We use the cellular decomposition of V described in [1].
Let V+ be the real nonnegative part of X. The cellular decomposition of V+

is dual to the decomposition of the fan S into open faces. Let D be the 3-cell
of V+ corresponding to the 0-cone in S and let S1, . . . , Sn be the 2-cells of V+

corresponding to the 1-cones σ1, . . . , σn spanned by α1, . . . , αn, respectively;
moreover, Kij , (i, j) ∈ I, denotes the 1-cell of V+ corresponding to the
2-cone σij spanned by αi, αj , and Wijk, (i, j, k) ∈ J , denotes the 0-cell
of V+ corresponding to the 3-cone σijk spanned by αi, αj , αk. We know
that Z3

2 ⊆ (R∗)3 acts on V . Then V+ is a fundamental domain for this action
and the orbits of k-cells of V+ give a cellular decomposition of V (see [1]).

Moreover, it follows from [1], 2.4, that the isotropy groups of Si, Kij ,
Wijk are 〈(−1)αi〉, 〈(−1)αi , (−1)αj 〉 and 〈(−1)αi , (−1)αj , (−1)αk〉, respec-
tively (〈g〉 denotes the subgroup generated by g). We define an orienta-
tion in cells of V as in [1], 4.4. It follows that ∂D = S1 + . . . + Sn and
∂Si =

∑
sgn(i− j)Kij where we sum over j such that (i, j) ∈ I. The action

of Z3
2 commutes with the boundary operator, that is, ∂(α(K)) = α(∂(K))

for every α ∈ Z3
2 and any cell K of V . For any α ∈ Z3

2 we set

Lα = D − α(D), Lα
i = Si − α(Si), Lα

ij = Kij − α(Kij) .

We have the following chain complex for V :

(1) 0 −→ 〈〈D〉〉 ⊕
⊕

〈〈Lα〉〉 ∂3−→
⊕

〈〈Si〉〉 ⊕
⊕

〈〈Lα
i 〉〉

∂2−→⊕
〈〈Kij〉〉 ⊕

⊕
〈〈Lα

ij〉〉
∂1−→

⊕
〈〈Wijk〉〉 −→ 0

where the sums are taken over α ∈ Z3
2, i = 1, . . . , n, with (i, j) ∈ I and

(i, j, k) ∈ J . The above complex is a direct sum of the chain complex for V+

and the complex

(2) 0 −→ 〈〈Lα〉〉 ∂3−→ 〈〈Lα
i 〉〉

∂2−→ 〈〈Lα
ij〉〉

∂1−→ 0 .
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Since V+ is contractible we can calculate Hi(V, Q) for i > 0 from the com-
plex (2). It follows from (1) that the Euler characteristic of V is zero.
Moreover, dim〈〈Lα〉〉 = 7, and dim ker ∂3 is 0 if V is orientable, and 1 if
V is nonorientable. Therefore to prove the theorem it suffices to show that
dim ker ∂2 = d = π0(H). It is easy to see that

Lα
i = Lβ

i if and only if

Lα
ij = Lβ

ij if and only if

Lα
ij = 0 if and only if

(−1)α−β ∈ 〈(−1)αi〉 ,
(−1)α−β ∈ 〈(−1)αi , (−1)αj 〉 ,
(−1)α ∈ 〈(−1)αi , (−1)αj 〉

and
∂Lα

i =
∑

sgn(i− j)Lα
ij

where we sum over j such that (i, j) ∈ I. It follows that for a given i we have
three different nonzero chains Lβi1

i , Lβi2
i , Lβi3

i while for a given (i, j) ∈ I we
have only one chain Lα

ij 6= 0 (in this case we will write Lij instead of Lα
ij).

Set

z =
n∑

i=1

(ai1L
βi1
i + ai2L

βi2
i + ai3L

βi3
i ) , ∂z =

∑
(i,j)∈I

bijLij .

We calculate that

bij = sgn(j − i)(aik + ail) + sgn(i− j)(ajp + ajr)

where
(−1)βik , (−1)βil 6∈ 〈(−1)αi , (−1)αj 〉

and
(−1)βjp , (−1)βjr 6∈ 〈(−1)αi , (−1)αj 〉 .

Clearly ∂z = 0 if and only if bij = 0 for all (i, j) ∈ I. Set

pim = aik + ail, pjs = ajp + ajr for {k, l,m} = {p, r, s} = {1, 2, 3} .

We obtain a system of linear equations

∀(i, j) ∈ I pim = pjs iff 〈(−1)αi , (−1)βim〉 = 〈(−1)αj , (−1)βjs〉 .
There is a one-to-one correspondence between the set {pim : i = 1, . . . , n,
m = 1, 2, 3} and the set of vertices of the graph H. Namely, pim corresponds
to vis (s=s(m)) if and only if the group 〈(−1)αi ,(−1)βim〉 is associated with
the vertex vis. This correspondence has the following property: the equation
pik = pjl appears in the system (3) if and only if the vertices vis(k) and vjs(l)

corresponding to pik and pjl are connected by an edge in H. Thus we have
a bijection between some basis of solutions of (3) and the set of connected
components of H. Therefore dim ker ∂2 = π0(H), which concludes the proof.

2.4. R e m a r k. In the case dim S = 2 our method is in fact the same as
that used in [1], Theorem 4.5.1.
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3. The fundamental group of V . In this section we use additive
notation for the group Z3

2 and identify the vectors αi with their images
(−1)αi in Z3

2.

3.1. Let P be a graph with eight vertices ve, vg1, vg2, . . . , vg7 labeled by
eight elements of Z3

2. For a pair (i, α), i ∈ {1, . . . , n}, α ∈ Z3
2, α ∈ Z3

2/〈αi〉,
the edge eα

i links vα with vαi+α. The group Z3
2 acts on the set of vertices

and on the set of edges of P :

α(vβ) = vα+β , α(eβ
i ) = eα+β

i .

For (i, j) ∈ I let Rij be the graph which is the orbit of a pair of edges eαi
i

and e
αj

i , and let Φij : Rij → P be the inclusion.

3.2. Proposition. (a) The fundamental group of V is isomorphic to the
fundamental group of the graph P modulo the relations given by the images
Φ(Rij).

(b) π1(V ) is generated by 4n elements g1, g2, . . . , g4n and there are two
types of relations between gj in π1(V ):

• ri = gi for i = 1, . . . , 7,
• si = gεj

j gεk
k gεl

l gεm
m for i = 1, . . . , 2 ·#I,

where j, k, l, m depend on i and εj, εk, εl, εm are ±1.

3.3. P r o o f. Let T be a tubular neighbourhood of the 1-skeleton of V .
The decomposition T ∪ V − T is the Heegard splitting of V . Using this
fact we can calculate π1(V ) (see [4]). First we observe that the graph P
is homotopy equivalent to V − T (vertices of P correspond to 3-cells of V
and edges of P correspond to 2-cells of V , see [1], proof of 4.3.1). It is not
difficult to see that the graphs Rij are “meridians” in V − T which can be
contracted in T . This proves (a).

The graph P has 4n edges. A maximal tree in P has seven edges.
Contraction of these elements gives relations in π1(P ) and consequently
in π1(V ). So we have seven relations of type ri.

For (i, j) ∈ I the graph Rij is the orbit of the pair of edges eαi
i and

e
αj

i and consists of eight edges. These edges form two loops and each loop
is glued from four edges. In this way we obtain relations of type si. By
properly labeling the edges of P we obtain a presentation of π1(V ) in the
form described in (b).

3.4. R e m a r k. Let dim XS = 2. The fundamental group of V is gener-
ated by the one-dimensional orbits of (R∗)3, call them E1, . . . , En, modulo
the relations ∏

i∈I1

Ei ,
∏
i∈I2

Ei ,
∏
i∈I3

Ei
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where I1 = {i : αi 6= (1, 0)}, I2 = {i : αi 6= (0, 1)}, I3 = {i : αi 6= (1, 1)} and
in each product the index set is a monotonic sequence.

3.5. R e m a r k. In the case dim V = 3 let V1, . . . , Vn be the two-dimen-
sional orbits of the action of (R∗)3. Each Vi is the real part of a 2-dimensional
torus embedding and the fan Si corresponding to Vi can be easily obtained
from S. Using 3.4 we can describe π1(Vi) as the group generated by the
1-dimensional orbits Eij of the action of (R∗)3 on V . (For (i, j) ∈ I, Eij is a
one-dimensional orbit of the action of some (R∗)2 on Vi). It is not difficult to
see that the fundamental group of V is the free product of π1(V1), . . . , π1(Vn)
modulo the relations Eij = E−1

ji .
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