COLLOQUIUM MATHEMATICUM

ON THE BETTI NUMBERS OF THE REAL PART
 OF A THREE-DIMENSIONAL TORUS EMBEDDING

BY
JAN R ATAJSKI (WARSZAWA)
Let X be the three-dimensional, complete, nonsingular, complex torus embedding corresponding to a fan $S \subseteq \mathbb{R}^{3}$ and let V be the real part of X (for definitions see [1] or [3]). The aim of this note is to give a simple combinatorial formula for calculating the Betti numbers of V.

1. Let us recall some basic definitions concerning torus embeddings (for details see [1]-[3]). For a fixed lattice M of rank n and for the lattice N dual to M let $N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}, M_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$. There are pairings

$$
\langle,\rangle: N \times M \rightarrow \mathbb{Z} \quad \text { and } \quad\langle,\rangle: N_{\mathbb{R}} \times M_{\mathbb{R}} \rightarrow \mathbb{Z}
$$

1.1. Definition. A convex rational polyhedral cone in $M_{\mathbb{R}}\left(N_{\mathbb{R}}\right)$ is a set

$$
\sigma=\left\{x \in M_{\mathbb{R}}: x=\sum_{i=1}^{k} r_{i} \alpha_{i}\right\} \quad \text { where } \quad r_{i} \in \mathbb{R}, r_{i} \geq 0
$$

and $\alpha_{1}, \ldots, \alpha_{k}$ are some primitive vectors in $M(N)$. The dimension of σ is by definition the dimension of the linear space spanned by $\alpha_{1}, \ldots, \alpha_{k}$ in $M_{\mathbb{R}}\left(N_{\mathbb{R}}\right)$.

In this article we consider only convex, rational, polyhedral cones in $N_{\mathbb{R}}$ which do not include any line. If $\sigma \subset N_{\mathbb{R}}$ is a cone then the set $\widehat{\sigma}=\{y \in$ $\left.M_{\mathbb{R}}:\langle x, y\rangle \geq 0\right\}$ is also a cone. We call it the dual cone. The face of the cone σ is the set

$$
\tau=\{x \in \sigma:\langle x, m\rangle \geq 0 \text { for some } m \in \widehat{\sigma}\}
$$

1.2. Definition. A fan S in $N_{\mathbb{R}}$ is a set of cones in $N_{\mathbb{R}}$ which satisfies the following conditions:
(a) If $\sigma \in S$ and τ is the face of σ then $\tau \in S$.
(b) If $\sigma_{1}, \sigma_{2} \in S$ then $\sigma_{1} \cap \sigma_{2} \in S$.

If the union of all cones $\sigma \in S$ is the whole space $N_{\mathbb{R}}$ the fan S is said to be complete. If every cone $\sigma \subset N_{\mathbb{R}}$ is spanned by a subset of a base of N the fan S is said to be nonsingular (see 1.1).
1.3. Let k be an algebraically closed field, S a fan in $N_{\mathbb{R}}$ and $\sigma \in S$ a cone. Since M is a group and $\widehat{\sigma} \subseteq M_{\mathbb{R}}$ is a semigroup we have an embedding $k[\widehat{\sigma} \cap M] \rightarrow k[M]$ of a semigroup algebra into a group algebra and this embedding gives us a morphism of affine varieties

$$
\operatorname{Spec} k[M] \rightarrow \operatorname{Spec} k[\widehat{\sigma} \cap M] .
$$

It follows from 1.2 (see [2] or [3]) that one can glue the varieties Spec $k[\widehat{\sigma} \cap M], \sigma \in S$, to obtain a new algebraic variety X_{S} containing $\left(k^{*}\right)^{n}$ as a dense subset. Moreover, X_{S} is nonsingular and complete if and only if S is nonsingular and complete.
1.4. Definition. Let $k=\mathbb{C}$, and let S be a nonsingular complete fan.
(a) The real part V of X_{S} is the closure of $\left(\mathbb{R}^{*}\right)^{n} \subset\left(\mathbb{C}^{*}\right)^{n}$ in the variety X_{S}.
(b) The real nonnegative part V_{+}of X_{S} is the closure of $\left(\mathbb{R}_{+}\right)^{n} \subset\left(\mathbb{C}^{*}\right)^{n}$ in X_{S}.

It is known that V is a real nonsingular compact manifold and $V_{+} \subset V$ is a real variety with corners (see [2], [3]).
1.5. Theorem ([1], 4.4.3). Let $\alpha_{1}, \ldots, \alpha_{k}$ be the primitive vectors spanning 1-cones of a fan S. The variety V is nonorientable iff there exists a subset $\left\{\alpha_{i 1}, \ldots, \alpha_{i s}\right\}$ of $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ such that s is odd and $\alpha_{i 1}+\ldots+\alpha_{i s} \equiv$ $0 \bmod 2$.
2. Consider the case of a nonsingular complete fan S of dimension 3. For primitive vectors $\alpha_{1}, \ldots, \alpha_{n}$ spanning one-dimensional cones $\sigma_{1}, \ldots, \sigma_{n}$ which belong to S we put

$$
\begin{gathered}
I=\left\{(i, j): \alpha_{i} \text { and } \alpha_{j} \text { span a } 2 \text {-cone } \sigma_{i j} \text { in } S\right\}, \\
J=\left\{(i, j, k): \alpha_{i}, \alpha_{j} \text { and } \alpha_{k} \text { span a } 3 \text {-cone } \sigma_{i j k} \text { in } S\right\} .
\end{gathered}
$$

For a given $v=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{Z}^{3}$ we define

$$
(-1)^{v}=\left((-1)^{v_{1}},(-1)^{v_{2}},(-1)^{v_{3}}\right) \in \mathbb{Z}^{3} \subseteq\left(\mathbb{R}^{*}\right)^{3} .
$$

2.1. Let D be a sphere in $M_{\mathbb{R}}$ with center at zero. The intersection of D with the fan S defines some triangulation of D and some graph G on D called the triangulation graph. The vertices v_{i} of G correspond to the 1 -cones σ_{i} spanned by α_{i} in $M_{\mathbb{R}}$, the edges of G correspond to the 2-cones $\sigma_{i j}$ spanned by α_{i} and α_{j} in $M_{\mathbb{R}}$. Two vertices v_{i} and v_{j} are connected by an edge in G if and only if the cone $\sigma_{i j}$ spanned by α_{i} and α_{j} is in S. We define a new graph H on the sphere in the following way:
(a) With every vertex v_{i} of G we associate three vertices of $H: v_{i 1}, v_{i 2}$, $v_{i 3}$. Each of them corresponds to a four-element subgroup of \mathbb{Z}_{2}^{3} containing $(-1)^{\alpha_{i}}$. Note that there are exactly three four-element subgroups of \mathbb{Z}_{2}^{3}
containing a given nonzero element of this group; $(-1)^{\alpha_{i}}$ is clearly nonzero since α_{i} is primitive.
(b) For $i \neq j, v_{i k}$ and $v_{j l}$ are connected by an edge in H if and only if v_{i} and v_{j} are connected in G and the subgroups of \mathbb{Z}_{2}^{3} corresponding to $v_{i k}$ and $v_{j l}$ are the same.

Let $d=\pi_{0}(H)$ denote the number of connected components of the graph H and let $b_{i}=\operatorname{dim} H_{i}(V, \mathbb{Q})$.
2.2. Theorem. Let V be the real part of a three-dimensional, complete, nonsingular, complex torus embedding.
(a) If V is an orientable manifold then $b_{0}=b_{3}=1, b_{1}=b_{2}=d-6$.
(b) If V is a nonorientable manifold then $b_{0}=1, b_{1}=d-6, b_{2}=d-7$, $b_{3}=0$.
2.3. Proof. We use the cellular decomposition of V described in [1]. Let V_{+}be the real nonnegative part of X. The cellular decomposition of V_{+} is dual to the decomposition of the fan S into open faces. Let D be the 3 -cell of V_{+}corresponding to the 0 -cone in S and let S_{1}, \ldots, S_{n} be the 2-cells of V_{+} corresponding to the 1 -cones $\sigma_{1}, \ldots, \sigma_{n}$ spanned by $\alpha_{1}, \ldots, \alpha_{n}$, respectively; moreover, $K_{i j},(i, j) \in I$, denotes the 1-cell of V_{+}corresponding to the 2 -cone $\sigma_{i j}$ spanned by α_{i}, α_{j}, and $W_{i j k},(i, j, k) \in J$, denotes the 0 -cell of V_{+}corresponding to the 3 -cone $\sigma_{i j k}$ spanned by $\alpha_{i}, \alpha_{j}, \alpha_{k}$. We know that $\mathbb{Z}_{2}^{3} \subseteq\left(\mathbb{R}^{*}\right)^{3}$ acts on V. Then V_{+}is a fundamental domain for this action and the orbits of k-cells of V_{+}give a cellular decomposition of V (see [1]).

Moreover, it follows from [1], 2.4, that the isotropy groups of $S_{i}, K_{i j}$, $W_{i j k}$ are $\left\langle(-1)^{\alpha_{i}}\right\rangle,\left\langle(-1)^{\alpha_{i}},(-1)^{\alpha_{j}}\right\rangle$ and $\left\langle(-1)^{\alpha_{i}},(-1)^{\alpha_{j}},(-1)^{\alpha_{k}}\right\rangle$, respectively $(\langle g\rangle$ denotes the subgroup generated by $g)$. We define an orientation in cells of V as in [1], 4.4. It follows that $\partial D=S_{1}+\ldots+S_{n}$ and $\partial S_{i}=\sum \operatorname{sgn}(i-j) K_{i j}$ where we sum over j such that $(i, j) \in I$. The action of \mathbb{Z}_{2}^{3} commutes with the boundary operator, that is, $\partial(\alpha(K))=\alpha(\partial(K))$ for every $\alpha \in \mathbb{Z}_{2}^{3}$ and any cell K of V. For any $\alpha \in \mathbb{Z}_{2}^{3}$ we set

$$
L^{\alpha}=D-\alpha(D), \quad L_{i}^{\alpha}=S_{i}-\alpha\left(S_{i}\right), \quad L_{i j}^{\alpha}=K_{i j}-\alpha\left(K_{i j}\right) .
$$

We have the following chain complex for V :

$$
\begin{align*}
0 \longrightarrow\langle\langle D\rangle\rangle \oplus \bigoplus\left\langle\left\langle L^{\alpha}\right\rangle\right\rangle \stackrel{\partial_{3}}{\longrightarrow} \bigoplus\left\langle\left\langle S_{i}\right\rangle\right\rangle \oplus \bigoplus\left\langle\left\langle L_{i}^{\alpha}\right\rangle\right\rangle \stackrel{\partial_{2}}{\longrightarrow} \tag{1}\\
\bigoplus\left\langle\left\langle K_{i j}\right\rangle\right\rangle \oplus \bigoplus\left\langle\left\langle L_{i j}^{\alpha}\right\rangle\right\rangle \xrightarrow{\partial_{1}} \bigoplus\left\langle\left\langle W_{i j k}\right\rangle\right\rangle \longrightarrow 0
\end{align*}
$$

where the sums are taken over $\alpha \in \mathbb{Z}_{2}^{3}, i=1, \ldots, n$, with $(i, j) \in I$ and $(i, j, k) \in J$. The above complex is a direct sum of the chain complex for V_{+} and the complex

$$
\begin{equation*}
0 \longrightarrow\left\langle\left\langle L^{\alpha}\right\rangle\right\rangle \xrightarrow{\partial_{3}}\left\langle\left\langle L_{i}^{\alpha}\right\rangle\right\rangle \xrightarrow{\partial_{2}}\left\langle\left\langle L_{i j}^{\alpha}\right\rangle\right\rangle \xrightarrow{\partial_{1}} 0 . \tag{2}
\end{equation*}
$$

Since V_{+}is contractible we can calculate $H_{i}(V, \mathbb{Q})$ for $i>0$ from the complex (2). It follows from (1) that the Euler characteristic of V is zero. Moreover, $\operatorname{dim}\left\langle\left\langle L^{\alpha}\right\rangle\right\rangle=7$, and $\operatorname{dim} \operatorname{ker} \partial_{3}$ is 0 if V is orientable, and 1 if V is nonorientable. Therefore to prove the theorem it suffices to show that $\operatorname{dim} \operatorname{ker} \partial_{2}=d=\pi_{0}(H)$. It is easy to see that

$$
\begin{array}{rll}
L_{i}^{\alpha}=L_{i}^{\beta} & \text { if and only if } & (-1)^{\alpha-\beta} \in\left\langle(-1)^{\alpha_{i}}\right\rangle \\
L_{i j}^{\alpha}=L_{i j}^{\beta} & \text { if and only if } & (-1)^{\alpha-\beta} \in\left\langle(-1)^{\alpha_{i}},(-1)^{\alpha_{j}}\right\rangle, \\
L_{i j}^{\alpha}=0 & \text { if and only if } & (-1)^{\alpha} \in\left\langle(-1)^{\alpha_{i}},(-1)^{\alpha_{j}}\right\rangle
\end{array}
$$

and

$$
\partial L_{i}^{\alpha}=\sum \operatorname{sgn}(i-j) L_{i j}^{\alpha}
$$

where we sum over j such that $(i, j) \in I$. It follows that for a given i we have three different nonzero chains $L_{i}^{\beta_{i 1}}, L_{i}^{\beta_{i 2}}, L_{i}^{\beta_{i 3}}$ while for a given $(i, j) \in I$ we have only one chain $L_{i j}^{\alpha} \neq 0$ (in this case we will write $L_{i j}$ instead of $L_{i j}^{\alpha}$). Set

$$
z=\sum_{i=1}^{n}\left(a_{i 1} L_{i}^{\beta_{i 1}}+a_{i 2} L_{i}^{\beta_{i 2}}+a_{i 3} L_{i}^{\beta_{i 3}}\right), \quad \partial z=\sum_{(i, j) \in I} b_{i j} L_{i j} .
$$

We calculate that

$$
b_{i j}=\operatorname{sgn}(j-i)\left(a_{i k}+a_{i l}\right)+\operatorname{sgn}(i-j)\left(a_{j p}+a_{j r}\right)
$$

where

$$
(-1)^{\beta_{i k}},(-1)^{\beta_{i l}} \notin\left\langle(-1)^{\alpha_{i}},(-1)^{\alpha_{j}}\right\rangle
$$

and

$$
(-1)^{\beta_{j p}},(-1)^{\beta_{j r}} \notin\left\langle(-1)^{\alpha_{i}},(-1)^{\alpha_{j}}\right\rangle .
$$

Clearly $\partial z=0$ if and only if $b_{i j}=0$ for all $(i, j) \in I$. Set

$$
p_{i m}=a_{i k}+a_{i l}, \quad p_{j s}=a_{j p}+a_{j r} \quad \text { for }\{k, l, m\}=\{p, r, s\}=\{1,2,3\} .
$$

We obtain a system of linear equations

$$
\forall(i, j) \in I \quad p_{i m}=p_{j s} \quad \text { iff } \quad\left\langle(-1)^{\alpha_{i}},(-1)^{\beta_{i m}}\right\rangle=\left\langle(-1)^{\alpha_{j}},(-1)^{\beta_{j s}}\right\rangle
$$

There is a one-to-one correspondence between the set $\left\{p_{i m}: i=1, \ldots, n\right.$, $m=1,2,3\}$ and the set of vertices of the graph H. Namely, $p_{i m}$ corresponds to $v_{i s}(s=s(m))$ if and only if the group $\left\langle(-1)^{\alpha_{i}},(-1)^{\beta_{i m}}\right\rangle$ is associated with the vertex $v_{i s}$. This correspondence has the following property: the equation $p_{i k}=p_{j l}$ appears in the system (3) if and only if the vertices $v_{i s(k)}$ and $v_{j s(l)}$ corresponding to $p_{i k}$ and $p_{j l}$ are connected by an edge in H. Thus we have a bijection between some basis of solutions of (3) and the set of connected components of H. Therefore $\operatorname{dim} \operatorname{ker} \partial_{2}=\pi_{0}(H)$, which concludes the proof.
2.4. Remark. In the case $\operatorname{dim} S=2$ our method is in fact the same as that used in [1], Theorem 4.5.1.
3. The fundamental group of V. In this section we use additive notation for the group \mathbb{Z}_{2}^{3} and identify the vectors α_{i} with their images $(-1)^{\alpha_{i}}$ in \mathbb{Z}_{2}^{3}.
3.1. Let P be a graph with eight vertices $v_{e}, v_{g 1}, v_{g 2}, \ldots, v_{g 7}$ labeled by eight elements of \mathbb{Z}_{2}^{3}. For a pair $(i, \bar{\alpha}), i \in\{1, \ldots, n\}, \alpha \in \mathbb{Z}_{2}^{3}, \bar{\alpha} \in \mathbb{Z}_{2}^{3} /\left\langle\alpha_{i}\right\rangle$, the edge $e_{i}^{\bar{\alpha}}$ links v_{α} with $v_{\alpha_{i}+\alpha}$. The group \mathbb{Z}_{2}^{3} acts on the set of vertices and on the set of edges of P :

$$
\alpha\left(v_{\beta}\right)=v_{\alpha+\beta}, \quad \alpha\left(e_{i}^{\bar{\beta}}\right)=e_{i}^{\overline{\alpha+\beta}}
$$

For $(i, j) \in I$ let $R_{i j}$ be the graph which is the orbit of a pair of edges $e_{i}^{\alpha_{i}}$ and $e_{i}^{\alpha_{j}}$, and let $\Phi_{i j}: R_{i j} \rightarrow P$ be the inclusion.
3.2. Proposition. (a) The fundamental group of V is isomorphic to the fundamental group of the graph P modulo the relations given by the images $\Phi\left(R_{i j}\right)$.
(b) $\pi_{1}(V)$ is generated by $4 n$ elements $g_{1}, g_{2}, \ldots, g_{4 n}$ and there are two types of relations between g_{j} in $\pi_{1}(V)$:

- $r_{i}=g_{i}$ for $i=1, \ldots, 7$,
- $s_{i}=g_{j}^{\varepsilon j} g_{k}^{\varepsilon k} g_{l}^{\varepsilon l} g_{m}^{\varepsilon m} \quad$ for $i=1, \ldots, 2 \cdot \# I$,
where j, k, l, m depend on i and $\varepsilon j, \varepsilon k, \varepsilon l, \varepsilon m$ are ± 1.
3.3. Proof. Let T be a tubular neighbourhood of the 1 -skeleton of V. The decomposition $\bar{T} \cup \overline{V-T}$ is the Heegard splitting of V. Using this fact we can calculate $\pi_{1}(V)$ (see [4]). First we observe that the graph P is homotopy equivalent to $\overline{V-T}$ (vertices of P correspond to 3 -cells of V and edges of P correspond to 2-cells of V, see [1], proof of 4.3.1). It is not difficult to see that the graphs $R_{i j}$ are "meridians" in $\overline{V-T}$ which can be contracted in \bar{T}. This proves (a).

The graph P has $4 n$ edges. A maximal tree in P has seven edges. Contraction of these elements gives relations in $\pi_{1}(P)$ and consequently in $\pi_{1}(V)$. So we have seven relations of type r_{i}.

For $(i, j) \in I$ the graph $R_{i j}$ is the orbit of the pair of edges $e_{i}^{\alpha_{i}}$ and $e_{i}^{\alpha_{j}}$ and consists of eight edges. These edges form two loops and each loop is glued from four edges. In this way we obtain relations of type s_{i}. By properly labeling the edges of P we obtain a presentation of $\pi_{1}(V)$ in the form described in (b).
3.4. Remark. Let $\operatorname{dim} X_{S}=2$. The fundamental group of V is generated by the one-dimensional orbits of $\left(\mathbb{R}^{*}\right)^{3}$, call them E_{1}, \ldots, E_{n}, modulo the relations

$$
\prod_{i \in I_{1}} E_{i}, \quad \prod_{i \in I_{2}} E_{i}, \quad \prod_{i \in I_{3}} E_{i}
$$

where $I_{1}=\left\{i: \alpha_{i} \neq(1,0)\right\}, I_{2}=\left\{i: \alpha_{i} \neq(0,1)\right\}, I_{3}=\left\{i: \alpha_{i} \neq(1,1)\right\}$ and in each product the index set is a monotonic sequence.
3.5. Remark. In the case $\operatorname{dim} V=3$ let V_{1}, \ldots, V_{n} be the two-dimensional orbits of the action of $\left(\mathbb{R}^{*}\right)^{3}$. Each V_{i} is the real part of a 2-dimensional torus embedding and the fan S_{i} corresponding to V_{i} can be easily obtained from S. Using 3.4 we can describe $\pi_{1}\left(V_{i}\right)$ as the group generated by the 1-dimensional orbits $E_{i j}$ of the action of $\left(\mathbb{R}^{*}\right)^{3}$ on V. (For $(i, j) \in I, E_{i j}$ is a one-dimensional orbit of the action of some $\left(\mathbb{R}^{*}\right)^{2}$ on $\left.V_{i}\right)$. It is not difficult to see that the fundamental group of V is the free product of $\pi_{1}\left(V_{1}\right), \ldots, \pi_{1}\left(V_{n}\right)$ modulo the relations $E_{i j}=E_{j i}^{-1}$.

REFERENCES

[1] J. Jurkiewicz, Torus embeddings, polyhedra, k^{*}-actions and homology, Dissertationes Math. 236 (1985).
[2] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Math. 339, Springer, 1973.
[3] T. Oda, Convex Bodies and Algebraic Geometry, Springer, 1980.
[4] J. Stillwell, Classical Topology and Combinatorial Group Theory, Springer, 1980.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WARSAW
BANACHA 2
02-097 WARSZAWA, POLAND

