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Variations in overall liquidity can be measured by simultaneous changes in both immediacy
costs and depth. Liquidity changes, however, are ambiguous whenever both liquidity
dimensions do not reinforce each other. In this paper, ambiguity is characterized using an
instantaneous time-varying elasticity concept. Several bi-dimensional liquidity measures
that cope with the ambiguity problem are constructed. First, it is shown that bi-dimensional
measures are superior since commonalities in overall liquidity cannot be fully explained
by the common factors in one-dimensional proxies of liquidity. Second, it is shown
that an infinitesimal variation in either market volatility or trading activity augments
the probability of observing an unambiguous liquidity adjustment. Ambiguity strongly
depends on its expected (deterministic) component of volatility.
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1. INTRODUCTION

A recurrent topic in microstructure research is the analysis of market liquidity.
As noted by Black (1971) and Kyle (1985), if we consider a stock market with a
continuous trading system and we take the level of market efficiency as given, liq-
uidity could be measured by simultaneously considering both immediacy costs
and depth. Despite this generally accepted bi-dimensionality, early theoretical
microstructure work focus on immediacy costs (Ho and Stoll, 1981; Copeland
and Galai, 1983; Glosten and Milgrom, 1985; Stoll, 1989). In these models, market
depth is avoided by assuming constant-sized trades. Kyle’s (1985) model and its
generalizations (Kyle, 1989; Subrahmanyam, 1991) do consider the market depth
dimension. Nonetheless, in these cases immediacy costs are ignored since mar-
ket makers set a single liquidation price. To the best of our knowledge, there
is no model dealing with the theoretical relationship between the two liquidity
dimensions.

A similar paradox is found in early microstructure empirical studies, which
devote a scant effort to the interaction between immediacy costs and depth. The
focus changes with the work of Lee et al. (1993). Using a sample of NYSE listed
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stocks, Lee et al. show that specialists actively manage information asymmetry
risk by adjusting both immediacy costs and market depth. They report that lower
(higher) spreads are generally accompanied by higher (lower) depth; hence, they
are dependent dimensions. This finding implies that definitive inferences about
market liquidity are impossible analysing only immediacy costs or depth. Recent
empirical studies point out the relevance of considering both dimensions simul-
taneously to measure the impact of policy decisions and information events on
liquidity (Goldstein and Kavajecz, 2000a,b; Jones and Lipson, 2001; Chordia et al.,
2001, and Corwin and Lipson, 2000). In all these papers, unambiguous inferences
about liquidity are only possible if the changes in immediacy costs and depth rein-
force each other. Liquidity unambiguously changes whenever immediacy costs
and depth move in opposite directions or one of them changes and the other one
remains constant.

This paper is a first approach to cope with this ambiguity. First, we encourage
the development of liquidity proxies that combine both liquidity dimensions into a
single scalar measure. We use a sort of instantaneous time-varying elasticity mea-
sure between immediacy costs and depth to define ambiguity in overall liquidity
changes. We consider alternative bi-dimensional liquidity measures that capture
simultaneous changes in both facets of liquidity. These measures are larger than
zero whenever overall liquidity increases and smaller than zero whenever overall
liquidity decreases. We argue that these bi-dimensional measures represent a fea-
sible solution to deal with ambiguity under a predetermined rate of substitution
between both facets of liquidity. Using an intra-daily panel data of NYSE-listed
stocks, and following the methodology proposed by Hasbrouck and Seppi (2001),
we find evidence of commonalities in liquidity using both the bi-dimensional mea-
sures of liquidity and the conventional measures of immediacy costs and depth.
We report, however, that the commonalities in overall liquidity cannot be fully
explained by the common factors in the one-dimensional proxies of liquidity. This
result implies that short-term overall liquidity dynamics cannot be fully explained
by the one-dimensional proxies.

Secondly, we study the determinants of an unambiguous change in overall
liquidity using discrete choice models. Focus is on the incidence of volatility
and trading activity changes on the probability of observing unambiguous
changes in overall liquidity. It is shown that an infinitesimal increase/decrease in
either market volatility or trading activity augments the probability of observing
an unambiguous liquidity adjustment. In our sample, the average trade size is
more useful in predicting unambiguous variations in overall liquidity than the
volume traded and the number of trades. However, changes in volatility are
far more important than variations in the trading intensity. Finally, it is shown
that the impact of volatility changes on the probability of an unambiguous
overall liquidity adjustment strongly depends on the expected component of
the volatility change. Hence, heterogeneous expectations about future volatility
changes among liquidity providers might be associated with ambiguity.

The paper proceeds as follows. Section 2 reviews the one-dimensional measures
of liquidity, characterizes the unambiguous changes in overall liquidity, and pro-
poses different bi-dimensional measures based on this characterization. Section 3
describes the dataset and reports some preliminary analyses. Section 4 analyses
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commonalities in overall liquidity and Section 5 studies the determinants of an
unambiguous change in overall liquidity. Conclusions are detailed in Section 6.

2. MEASURING LIQUIDITY

The quoted bid-ask spread is the most commonly used proxy to quantify
immediacy costs. The spread captures the costs of trading instantaneously at
the specialist’s quotes instead of introducing non-marketable limit orders. The
economic value of such costs can be assessed by the relative spread, the ratio
of the bid-ask spread to the quote midpoint. Empirical evidence has reported,
however, that trades may achieve price improvements (Lee and Ready, 1991).
Because the specialist exposes the orders to the crowd and does not automatically
execute them against the posted quotes, better prices than those quoted by the
specialist are attainable. The effective spread (Petersen and Fialkowski, 1993)
captures the notion that if a price improvement occurs, the bid-ask spread
would overestimate the immediacy costs. The effective spread is computed as
EFSt = 2 |Pt − qt |, where Pt is the transaction price and qt is the quote midpoint.

Market depth is usually computed as the total size at the best quotes. This
quoted size may represent the specialist’s own trading interest, the trading inter-
est of the crowd and limit orders stored in the Display Book. Nonetheless, this
measure does not necessarily reflect the effective market depth (Handa et al.,
1999; Bacidore et al., 2002). In the same manner that the effective spread can be
lower than the quoted spread, the effective depth can be larger than the quoted
depth. Recently, Engle and Lange (2001) introduced a new depth measure called
VNET. It could be understood as an ‘ex-post’ or ‘realized’ depth proxy. VNET is
computed as the one-sided volume (excess of buyer or seller initiated trading
volume) needed to move the midpoint of the quoted bid-ask spread by a mini-
mum amount. The VNET is conceptually similar to the liquidity ratio of Kluger
and Stephan (1997).1

Lee et al. (1993) points out the impossibility of making inferences about overall
liquidity based solely on immediacy costs or depth analyses. As a result, the most
recent empirical research tends to gather together one-dimensional measures
of both facets of liquidity. In this paper, it is argued that one-dimensional mea-
sures of immediacy costs, even when we have them all together, are insufficient
to guarantee unambiguous inferences about liquidity. Ambiguity appears when
the variations in immediacy costs and depth do not reinforce each other. Figure 1
illustrates the ambiguity problem. Figure 1(a) represents the (normally) unob-
servable pricing schedules of both sides of the market, supply (ask) and demand
(bid). In most empirical applications, only points X and Y , the best prices and
the quantities offered at these prices, can be observed. Assuming that either the
ask function or the bid function moves, new best quotes posted at some point

1 The liquidity ratio (LR) is just the ratio of accumulated trading volume to accumulated change in
prices during a given period. It ignores whether volume is buyer or seller initiated. This measure
is extremely sensitive: small changes in prices move the liquidity ratio to extremely high values. In
our opinion, the sensitivity of prices to order flow is better captured using VNET and it has better
properties.
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inside the shaded areas represent an unambiguous shift in liquidity. For example,
Fig. 1(b) corresponds to an upward shift in the ask function that worsens liquidity;
in X1 the immediacy costs are greater and the quoted depth is lower than in X . For
changes in the ask function that lead to points out of the shaded areas in Fig. 1(a),
the direction of the liquidity shift is not unequivocally determined.

If the correlation between the two dimensions of liquidity were strongly neg-
ative, overall liquidity would always vary towards the shaded areas. Table 3 in
Lee et al. (1993, p. 360) shows that the two dimensions are negatively correlated,
but it also reports that ambiguous variations in liquidity are frequent. As an addi-
tional example, Goldstein and Kavajecz (2000a) conclude that the decimalization
process in US markets has had an uncertain impact on liquidity, since a decrease
in immediacy costs coincides with a decrease in market depth (see also Ahn
et al., 1996). To date, microstructure researchers have not paid attention to these
ambiguous situations.

A measure of overall liquidity would require capturing simultaneous changes
in the two facets of liquidity and showing some consideration for the trade-off
between immediacy costs and depth, holding liquidity constant, a sort of ‘liquid-
ity indifference curve’, as indicated by an anonymous referee. Hence, the overall
liquidity measure would need to shape the market ‘marginal rate of substitution’
between both dimensions of liquidity. Let us assume that depth and immediacy
costs are perfect substitutes, in the sense that a 1% decrease in immediacy costs
compensates the market from a 1% decrease in market depth. Then Fig. 1(c) rep-
resents changes in liquidity relative to an initial level L0. Shaded areas enclose
new levels L1 = (IC1, D1) implying unequivocal increases or decreases in overall
liquidity.

Consider the relative change in both facets of liquidity, as represented in
Equation 1:

ζ
D,IC
t = − (Dt − Dt−1)/Dt−1

(ICt − ICt−1)/ICt−1
(1)

This measure can be thought as an instantaneous time-varying elasticity between
depth and immediacy costs (see Fig. 1(d)). Notice that when ambiguity is absent
ζ

D,IC
t > 0 but when ambiguity occurs ζ

D,IC
t < 0. Moreover, when the variation in

immediacy costs is proportional to the variation in market depth, |ζD,IC
t | is close

to one. When the variations are completely disproportional, |ζD,IC
t | will be either

close to zero or larger than one. Therefore, ζ
D,IC
t provides some relevant infor-

mation to characterize the changes in overall liquidity. However, it is not a useful
inference tool because it does not distinguish between liquidity improvements
and declines, even when they are not ambiguous. Additionally, because of the
usual features of financial time series, ζ

D,IC
t may result in a very unstable mea-

sure. Large jumps should be expected due to sudden variations in immediacy
costs and (especially) in market depth. Finally, ζ

D,IC
t might not be defined for

some t because of zeros in the denominator. Zeros are possible during periods of
stable immediacy costs conditions.

Consider an alternative bi-dimensional liquidity measure with the following
properties: (1) if overall liquidity varies ambiguously, that is ζ

D,IC
t < 0, this
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Fig. 1. Ambiguity: (a) A movement of the ask price function to any point inside the shaded area B
or of the bid price function to the shaded area C, represents an unambiguous increase in liquidity.
The remaining areas cover unclear variations in overall liquidity. (b) A change in the ask function
leading to a decrease in liquidity. (c) Shaded areas represent unequivocal changes in liquidity
with respect to the initial liquidity level Lt under the assumption that immediacy costs and market
depth are perfect substitutes. (d) The time-varying immediacy costs-depth elasticity characterizes
ambiguity. Notation: � means ‘increase’ and ∇ means ‘decrease’.

measure reflects which facet of liquidity experiences a larger relative variation
given a predetermined rate of substitution. In the case of perfect substitution, it
approaches zero whenever both dimensions vary proportionally; it is positive
whenever an increase (decrease) in market depth is larger (smaller) than a
simultaneous increase (decrease) in immediacy costs, and it is negative otherwise.
(2) When ζ

D,IC
t > 0, this measure is positive (negative) whenever overall liquidity

improves (worsens). In the case of perfect substitution, the bi-dimensional
measure in Equation 2 satisfies all these properties. Whenever BLMt > 0 overall
liquidity improves, whenever BLMt < 0 it deteriorates, and whenever BLMt is close
to zero, it does not change. This interpretation is independent of the sign of ζ

D,IC
t .

BLMt = �Dt

Dt−1
− �ICt

ICt−1
(2)
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A simple ratio of market depth to immediacy costs has already been used
in some empirical studies (Bollen and Whaley, 1998; Kumar et al., 1998; Sarin
et al., 1999; Gray et al., 2002). These studies do not deal with the ambiguity prob-
lem. Additionally, they do not show why this bi-dimensional measure outperforms
one-dimensional measures. A measure, based on this ratio, comparable to BLMt , is

LRt = Dt

ICt
− Dt−1

ICt−1
(3)

Notice that both BLMt and LRt approximate the idea of a relative variation given a
predetermined rate of substitution. For example, a 1% increase or decrease in both
facets of liquidity implies BLMt = 0 and LRt = 0. However, LRt has properties that
are, a priori, less attractive. First, LRt is not a function of the instantaneous elastic-
ity (ζ

D,IC
t ). Second, LRt is less stable than BLMt and is dependent of measurement

units. Third, both measures are linearly increasing in market depth and both mea-
sures are decreasing in immediacy costs. Nonetheless, BLMt is a linear function
of immediacy costs and LRt is a non-linear (convex) one. Then, a 5% increase
in market depth increases LRt more than a 5% decrease in immediacy costs,
ceteris paribus, and the difference increases with the magnitude of the change.

Previous measures assume perfect substitution between both facets of liquidity.
It can be argued, however, that due to market frictions, like the tick size, changes
in immediacy costs are far more constrained than changes in market depth. A one-
tick change in the bid-ask spread is proportionally much greater than a 100 shares
increase in market depth. This relative coarseness of the bid-ask spread also sug-
gests that liquidity changes might be earlier detected in depths (Lee et al., 1993).
Hence, the two facets of liquidity should not be equally responsive to variations
in adverse selection costs, inventory holding costs or any other determinant of
liquidity. This argument would have an immediate consequence on the required
rate of substitution between immediacy costs and depth. For a 1% increase in
immediacy costs, traders would remain in the same liquidity indifference curve
only if market depth simultaneously increases by a percentage larger than 1%.
Consequently, any bi-dimensional liquidity measure should have an additional
requirement: to account for the relative capacity of both liquidity dimensions to
respond to any external stimulus. The measure in Equation 2 can be generalized as

BLM (w)t = �Dt

Dt−1
− w

�ICt

ICt−1
, (4)

where w reflects a predetermined rate of substitution between both facets of
liquidity. An immediate problem is how to determine w objectively. We propose
to use a measure of the relative variability of both facets of liquidity, say
w(σ IC

t , σD
t ). This measure would approximate the relative capacity of response

of each dimension of liquidity. Therefore,

BLM (σ )t = �Dt

Dt−1
−
(

σD
t

σ IC
t

)
�ICt

ICt−1
(5)

where σD
t and σ IC

t are proxies of the volatility of each facet of liquidity in the earlier
periods. Notice that Equation 5 allows for a time-varying rate of substitution.
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Finally, the measures proposed so far consider changes in liquidity relative
to a reference level Lt−1 = (Dt−1, ICt−1). It can be argued that these measures
only capture short-term or transitory changes in overall liquidity, in particular
when the time periodicity is short. A possible solution to this critique would
be to consider a longer period of reference, say ALt−1

t−n = (ADt−1
t−n, AICt−1

t−n ), where
ADt−1

t−n and AICt−1
t−n are moving average measures of the previous values of the

one-dimensional measures of liquidity,

BLM (µ, σ )t = (Dt − ADt−1
t−n)

ADt−1
t−n

−
(

σD
t

σ IC
t

)
(ICt − AICt−1

t−n )

AICt−1
t−n

(6)

In this case, ambiguity can be redefined as any change in overall liquidity such
that

ζ
D,IC
t (µ) = − (Dt − ADt−1

t−n)/ADt−1
t−n

(ICt − AICt−1
t−n )/AICt−1

t−n

< 0 (7)

Notice that BLMt measures variations in liquidity supply for a given stock but does
not inform one about the amount of liquidity provided. Therefore, this measure is
more appropriate for time-series than for cross-sectional analyses. Nonetheless,
given an initial liquidity level for each stock L0 = D0 − IC0, the sum of posterior
values of BLMt could proxy for the evolution of the amount of overall liquidity
supply for each stock. Additionally, BLMt considers only the best market quotes
and not the complete limit order book. Therefore, it is an instrument especially
useful for ‘small’ (non-aggressive) traders. The entire set of offers of both sides
of the market collectively provides the best visual representation of the liquidity
supply. Nonetheless, limit order book data is not at hand in many professional
and academic situations. For example, NYSE traders have a restricted access to
the specialist’s Display Book and the TAQ database, the official database of the
NYSE, does not include limit order book data. Moreover, even if we could observe
the entire limit order book, the ambiguity problem would still be present. Adding
more layers of quotes to the database would complicate the definition of ambiguity
and the computation of both market depth and immediacy costs, but the same
inherent problem would persist. Recently, Martı́nez et al. (2000) and Irvine et al.
(2000) proposed two equivalent (non-scalar) measures of liquidity based on limit
order book data. When only the best level of the book is available, however, these
liquidity measures derive in one-dimensional measures of immediacy costs.Q1

3. DATA

We use data on a random sample of NYSE-listed stocks. The data is taken from the
TAQ Database corresponding to the full year 1996. The initial sample consists of
150 stocks, sampled from the population of 2574 NYSE-listed common stocks in
January 1996 using systematic sampling based on market capitalization.2 Stocks

2 With systematic sampling (SS), all stocks have the same probability of being picked up, as with
simple random sampling (SRS). However, the final SS-sample is more representative than the SRS-
sample. SS consists of generating a random number k between 1 and the nearest integer to 2574/150.
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that experience stock-splits and those without quotes and trades registers for
more than two consecutive trading days have been eliminated. From the remaining
stocks, we take the 25 stocks with the largest mean trade frequency (see the
Appendix). Trades not codified as ‘regular trades’ have been discarded. Only the
trades and quotes from the primary market are considered. All quote registers
previous to the opening quote, those with bid-ask spreads lower than or equal to
zero or quoted depth equal to zero have also been eliminated. Price and quote
files are coupled using the so-called ‘five seconds rule’ (Lee and Ready, 1991).

We break up the trading session into seven time intervals: [9:30–10:00h.), [10:00–
11:00h.), [11:00–12:00h.), [12:00–13:00h.), [13:00–14:00h.), [14:00–15:00h.), and
[15:00–closing]. We use the relative spread weighted by time as the
one-dimensional measure of immediacy costs,

RSt =

 l∑

j=1

[sj/qt]Tj



/ l∑

j=1

Tj

where l is the number of quote registers in a given time interval, Tj is the time (in
seconds) between two consecutive quotes, sj is the bid-ask spread and qj is the
quote midpoint. To proxy for market depth, we compute a similar measure using
the sum of the number of shares offered at the best ask and bid quotes.3 We con-
sider the logarithm of these measures in order to reduce the influence of outliers.
From the one-dimensional measures, we obtain the bi-dimensional measures in
Equations 2 to 6. The moving average terms in Equation 6, ADt−1

t−n and AICt−1
t−n , are

computed considering different time spans (from one week to one month) and
weighting criteria. The results are unaffected by such alternative computations.
Similarly, the relative variability measure in Equations 5 and 6, w(σ IC

t , σD
t ), is com-

puted as a ratio of the historical variance of the one-dimensional measures. Once
more, the main conclusions are unaffected by the time spans considered.

Table 1 reports the proportion of ambiguous and unambiguous changes in
overall liquidity for each stock in the sample. In median terms, almost 58% of over-
all liquidity changes are unambiguous (ζ

D,IC
t > 0). This finding is consistent with

the negative correlation between immediacy costs and market depth reported
by Lee et al. (1993). Indeed, the correlation between the one-dimensional mea-
sures of liquidity is statistically negative for 76% of the sample, with an average
Spearman rank correlation of −0.19. We have also evaluated the average elasticity
between immediacy costs and market depth, approximated by β in Equation 8 and
estimated for each stock by robust regression (Rousseeuw and Leroy, 1987).

log(Dt ) = α + β log(ICt ) + ut (8)

Then, the population is sorted by market capitalization and the stocks selected are those in the rkth
positions, where r = {1, 2, . . . , 150} (see Som, 1996, pp. 81–90 for details).
3 We have also considered ex-post liquidity measures, the effective spread weighted by volume to
proxy for immediacy costs and the VNET weighted by volume to measure market depth. In addition,
the relative spread and the quoted depth have also been computed using the last quotes in each time
interval and the effective spread has been computed using an unweighted average. The empirical
results for these alternative measures are not reported because of space limitations, but they are
available upon request. In general, our main conclusions are independent of the one-dimensional
proxies considered.
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Table 1. The ambiguity problem

Unambiguous (ζ
D,IC
t > 0)

Ambiguous

Stock Increase Decrease No change Total (ζ
D,IC
t < 0)

GE 23.92 26.00 2.03 51.95 48.06
GTE 25.77 28.31 1.69 55.77 44.23
K 26.22 30.61 1.69 58.52 41.47
SLB 25.49 31.68 1.74 58.91 41.08
GRN 28.36 28.87 1.69 58.92 41.08
CMB 25.27 28.70 1.29 55.26 44.74
TXN 25.10 29.15 1.29 55.54 44.46
HPC 22.68 30.95 1.69 55.32 44.68
AGC 28.31 33.48 1.69 63.48 36.52
MAT 26.17 28.87 1.69 56.73 43.28
GP 26.84 28.19 1.80 56.83 43.16
NCC 28.64 29.60 1.97 60.21 39.79
ROH 25.89 29.54 1.80 57.23 42.77
IR 26.28 29.66 2.19 58.13 41.87
OEC 28.36 28.64 1.35 58.35 41.64
EC 30.16 31.34 1.97 63.47 36.52
DDS 28.64 30.61 1.86 61.11 38.89
CEN 29.26 31.34 1.74 62.34 37.65
RYC 25.15 27.97 2.98 56.1 43.89
HM 26.22 28.02 1.80 56.04 43.95
ELY 26.96 28.25 1.91 57.12 42.88
GLM 25.66 28.14 1.69 55.49 44.51
USS 26.17 30.16 1.69 58.02 41.98
RDC 28.14 27.74 1.91 57.79 42.21
ANN 30.16 30.28 1.69 62.13 37.87
Median 26.22 29.15 1.74 57.79 42.21

This table reports the proportion of ambiguous and unambiguous changes in overall liquidity for
each stock in the sample.

The estimated elasticity is statistically negative for the 72% of the sample, with a
median β̂ = −0.5011 (α̂ = 9.782). Nonetheless, Table 1 also shows that an impor-
tant part of the variations in overall liquidity are ambiguous (42.21%). Using
ζ

D,IC
t (µ) < 0 to define ambiguity, 45.39% of overall liquidity changes are ambigu-

ous. These figures highlight the importance of the ambiguity problem.
Table 2 reports the Spearman rank correlations between the bi-dimensional

measures proposed in Equations 2 to 6. The table also distinguishes periods with
ambiguous changes in overall liquidity (ζ

D,IC
t < 0) from periods with unambiguous

changes (ζ
D,IC
t > 0). The BLMt and LRt measures are highly correlated, even dur-

ing periods of ambiguity. However, the volatility causes a difference between the
bi-dimensional measures: the median of BLMt is −0.0084 with a standard deviation
of 0.1688, and the median of LRt is 0.0005 with a standard deviation of 1.058. The
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Table 2. Robust correlations

BLM LR BLM(µ) BLM (σ )

Total

LR 0.9839
(0.039)

BLM (µ) 0.5311 0.5064
(0.046) (0.040)

BLM (σ ) 0.8327 0.8141 0.4241
(0.113) (0.114) (0.064)

BLM (µ, σ ) 0.3987 0.3924 0.8046 0.4894
(0.073) (0.072) (0.128) (0.029)

Ambiguity
LR 0.9903

(0.065)

BLM (µ) 0.3872 0.3668
(0.108) (0.050)

BLM (σ ) 0.7740 0.7689 0.1778
(0.268) (0.297) (0.110)

BLM (µ, σ ) 0.0395 0.0555 0.3653 0.3336
(0.111) (0.116) (0.174) (0.057)

No ambiguity
LR 0.9802

(0.019)

BLM (µ) 0.5704 0.5611
(0.046) (0.050)

BLM (σ ) 0.8649 0.8435 0.5373
(0.043) (0.058) (0.050)

BLM (µ, σ ) 0.5434 0.5286 0.9337 0.5745
(0.051) (0.055) (0.097) (0.032)

This table reports the median Spearman rank correlations among the
bi-dimensional liquidity measures in equations (2) to (6). The one-dimensional
components are measured in logs. Standard deviations appear in parenthesis.

different versions of BLMt are closer when overall liquidity varies unambiguously
with a systematically lower standard deviation.

4. COMMONALITY IN OVERALL LIQUIDITY

Recent empirical research has paid attention to cross-firms co-movements in liq-
uidity. Chordia et al. (2000), Huberman and Halka (2001), and Hasbrouck and Seppi
(2001) use alternative methodological approaches to report evidence of (generally
weak) commonalities in liquidity, that is, common short-term variations in liquid-
ity across firms. These studies presume that liquidity is driven by strong common
factors. Liquidity dynamics unconnected with these common determinants may
be considered as idiosyncratic variations in liquidity. In this section, we apply the
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methodology proposed by Hasbrouck and Seppi (2001) to our sample of NYSE-
listed stocks. First, we use principal components analysis to discover the common
factors in the bi-dimensional and one-dimensional measures of liquidity formerly
discussed. Second, we use canonical correlation analysis to evaluate the corre-
lation between the common factors in the bid-dimensional and one-dimensional
measures of liquidity. Finally, we study how much co-variability remains in the
bi-dimensional measures of liquidity after accounting for the part associated with
the one-dimensional measures of liquidity. If the residual commonality were negli-
gible, that would indicate some informational gain in considering bi-dimensional
liquidity measures.

The aim of principal components analysis is to find the most important latent
common factors that explain the observed variability within a set of related vari-
ables. Thus, the first principal component is the linear projection of the observed
variables with the maximum variance or, equivalently, that maximizes the explana-
tory power of the observed variability up to certain normalization restrictions.
Computationally, the coefficients of this linear projection coincide with the eigen-
vector associated with the largest eigenvalue of the variance-covariance matrix
of the standardized variables. Indeed, the eigenvalue (λ1) is the total variation
attributable to the principal component. If the matrix of observed variables has
full rank, we can obtain as many principal components as variables. In our case,
the analysis will be restricted to the first three principal components.

For each liquidity measure, we compute the principal components of the panel
formed with the 25 standardized time series.4 Table 3-A reports the first three
eigenvalues and the variability explained by each principal component. If the
25 time series were uncorrelated, there would be only one eigenvalue (λi = 1, ∀i)
with a multiplicity of 25. Hence, a generally accepted rule of thumb is to neglect all
eigenvalues close to unity. The first common factor of all bi-dimensional measures
explains 21.59% (in median) of the total variability of overall liquidity. The second
and third principal components, however, are usually negligible. Therefore, most
of the common variation seen in overall liquidity is due to a single common factor.
For the one-dimensional measures, we report at least two non-negligible principal
components that account for 30.68% and 19.44% of the total volatility in immediacy
costs and market depth, respectively.

Canonical correlation analysis determines the most important latent common
factors that explain the covariance between two sets of observed variables. Given
two sets of standardized variables, for example BLMt and RSt , the first canonical
variates are given by the vectors (α∗, β∗) that maximize Corr(BLMtα, RStβ). A large

4 Since Hasbrouck and Seppi (2001) are interested in the stochastic sources of variability, they stan-
dardize the variables so that the deterministic time-of-day effects are removed. We choose not to
differentiate between stochastic and deterministic sources of common variation since we are also
interested in discerning whether the deterministic sources of variation of overall liquidity are the
same as those of the one-dimensional measures. Therefore, we standardize by simply subtracting the
mean and dividing by the standard deviation. Although principal components analysis is sensible to
the units in which the variables are measured, the standardization is not strictly necessary since it is
equivalent to extracting the eigenvectors and eigenvalues from the correlation matrix instead of the
variance-covariance matrix. Nonetheless, standardization facilitates certain comparative analyses.
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and statistically significant value of this correlation suggests that the common fac-
tors in BLMt and RSt are statistically correlated with each other. Table 3-B reports
the first three canonical correlations between each bi-dimensional measure and
each one-dimensional proxy. As Hasbrouck and Seppi (2001) remark, if BLMi

t were
perfectly correlated with its own one-dimensional measure, say RSi

t , but uncorre-
lated across firms, the correlation would be

√
1/25 = 0.2. Therefore, the canonical

correlations reported are, in general, statistically significant. This implies that the
commonalities between the bi-dimensional and the one-dimensional measures
are statistically interrelated. Nonetheless, notice that the canonical correlations
depend on the bi-dimensional proxy chosen. Canonical correlations are stronger
for BLM (µ)t and BLM (µ, σ )t , the bi-dimensional proxies that measure overall liq-
uidity changes with respect to the long-run average liquidity level. Table 3-B also
reports the proportion of the total variation in each bi-dimensional liquidity mea-
sure explained by the first three canonical variates of an asymmetric canonical
correlation analysis. This alternative canonical analysis computes the linear pro-
jections of a set of variables, say RStβ, with the highest correlation with each
variable BLMi

t in another set, BLMt , so that it maximizes
∑25

i=1 Corr(BLMi
t , RStβ).

Table 3-B reports a canonical redundancy analysis based on the best three linear
projections given by this alternative criteria. As in the previous analysis, we report
that the common factors in the one-dimensional measures better explain the vari-
ability of BLM (µ)t and BLM (µ, σ )t than the variability of the other bi-dimensional
measures.

Finally, how much co-variability does remain in the bi-dimensional measures
after we control for the common factors in the one-dimensional measures?
Table 3-C reports the residual commonalities in the bi-dimensional liquidity
measures, computed as the first three principal components on the residuals
(εi

t ) of the following regressions,

Bi
t = α +

3∑
k=1

βkCCIC
k,t +

3∑
k=1

δkCCD
k,t + εi

t , for i = 1, . . . , 25 (9)

where CCIC
k,t is the kth canonical variate, using either simple or asymmetric canoni-

cal correlations analysis, between the some standardized bi-dimensional measure
Bt and the immediacy costs proxy. Similarly, CCD

k,t is the kth canonical variate
between Bt and the market depth proxy. The first canonical variates are, by con-
struction, the common factors in the one-dimensional measures with the highest
power to explain the commonalities in the bi-dimensional measures. Therefore,
the strength of the remaining commonality in εi

t is a measure of the informational
value-added in the bi-dimensional proxies of liquidity. Table 3-C shows that the
residual co-movements in εi

t are not negligible. The residual common factors still
explain more than 20% of the total variation of the residuals. The latent factors in
the one-dimensional measures explain up to 10% of the total variation when over-
all liquidity is measured by BLM (µ)t or BLM (µ, σ )t . The residual commonality is
even stronger when some other bi-dimensional measure proxies for overall liquid-
ity. The results are not remarkably affected by the canonical analysis considered.
Hence, barely one-third of the commonality in overall liquidity can be attributed
to the common factors in immediacy costs and market depth.
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5. THE DETERMINANTS OF AN UNAMBIGUOUS CHANGE IN
OVERALL LIQUIDITY

Numerous theoretical studies have examined the impact of market-making costs
on market liquidity (O’Hara, 1995). If market-makers, and others suppliers of liq-
uidity, believe that the information asymmetry risk has augmented, they could
protect themselves by quoting less depth and/or increasing the bid-ask spread.
Similarly, if market-makers are facing an elevated inventory holding risk, they can
manage this risk by using both spreads and depths. Whether liquidity responds
with ambiguity or not to a variation in market-making costs should depend on the
magnitude and the persistence of such a variation. In this way, several empirical
studies have shown that spreads widen and depth falls in response to a perceived
significant increase in market-making costs surrounding some events, like earning
announcements (Lee et al., 1993), dividend announcements (Koski and Michaely,
2000), trading halts (Corwin and Lipson, 2000) and stock splits (Lipson, 1999).

In this section, we use discrete choice models to study the incidence of volatility
changes on the probability of observing unambiguous changes in overall liquid-
ity. Chordia et al. (2001) show that the recent volatility, together with the market
returns and the deterministic intra-daily patterns, is the main determinant of over-
all liquidity. An increase in volatility is expected to reduce liquidity because it
signals uncertainty about the true value of the stock (Copeland and Galai, 1983;
O’Hara and Oldfield, 1986) and it increases the holding risk (Tinic and West, 1972;
French and Roll, 1986). Therefore, we expect the probability of an unambiguous
liquidity adjustment to increase with the magnitude of the volatility changes.
We measure volatility as a weighted mean square distance between the quote
midpoint and its median,

Volatt =
( p∑

i=1

[qi − medt (q)]2Ti

)/ p∑
i=1

Ti (10)

where p is the number of midpoint changes, medt (q) represents the median of
the midpoint in period t , and Ti is the time (in seconds) between two consecutive
quotes.

Lee et al. (1993) show that overall liquidity gets worse in response to higher
volume. However, they do not control for the simultaneous effect of volatility.
Because there is no consensus about what really drives the relationship between
trading activity and liquidity (Jones et al., 1994; Chan and Fong, 2000), we will con-
sider alternative measures: Volt is the logarithm of the number of shares traded,
Trdt is the logarithm of number of trades completed and Tszt is the logarithm of
the average trade size.

To theoretically motivate this analysis, let Ut be a binary variable that equals
1 whenever there is an unambiguous change in overall liquidity and 0 otherwise.
Assume that there is an underlying (unobservable) response variable U ∗

t defined
by the regression relationship

U ∗
t = x′

tβ + ut

where xt represents a set of control variables, β is a vector of unknown param-
eters and ut represents an unobservable component. The response variable U ∗

t
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can be understood as the liquidity providers’ judgment about market making
costs. We assume that liquidity providers evaluate the information-asymmetry
and inventory-holding risks by observing the variations in volatility and trading
activity (x′

tβ). Whenever they perceive a relevant increase (or decrease) in market
making costs, say U ∗

t > α, overall liquidity is adjusted by simultaneously altering
both immediacy costs and depth in such a way that ζ

D,IC
t > 0. The size of U ∗

t can
also be understood as a measure of the quality of market signals. If the market
transmits noisy signals, the probability of observing an ambiguous change in liq-
uidity would increase (U ∗

t < α). While we do not observe U ∗
t directly, we observe

the outcome Ut such that

Ut = I (U ∗
t > α), (11)

where I (.) is an indicator function taking the value 1 if the condition within paren-
thesis is satisfied and 0 otherwise. When ut is assumed normally distributed we
obtain a Probit model

E(Ut |xt ) = Pr(Ut = 1|xt ) = 	(x′
tβ) (12)

where 	(z) is the standard normal cumulative distribution function.5

We are interested in the magnitude of the change in either volatility or trad-
ing activity and not on the sign of this change. Hence, we consider the absolute
variation in the different indicators as our set of control variables. The volatility
measure in the Probit model will be

xVolat
t = |�Volatt/Volatt−1|

Equivalent measures have been computed for the trading activity measures.
Table 4 reports the median empirical correlation matrix between the control
variables. All the variables are significantly correlated, suggesting a common
information component. The correlation is especially strong among the trading
activity measures. In order to control for multicollinearity problems, we first
estimate the following Probit model for each control variable y:

Pr(Ut = 1|xy
t ) = 	(βxy

t ) (13)

Table 5 reports the estimated β for each control variable and each stock in the
sample. The coefficient is statistically significant and positive in almost all the
cases. This finding strongly supports our initial hypothesis: the probability of an
unambiguous adjustment in overall liquidity increases with the contemporane-
ous magnitude of a change in either volatility or trading activity. Notice that this
change can be either an increase or a decrease. To evaluate exactly how big this
probability change is, we compute the slope of the probability function:

∂

∂xy
t
	(βxy

t ) = φ(βxy
t )β (14)

where φ(.) represents the standard normal density function. This slope depends
on the level of the explanatory variable. Table 5 reports the slope evaluated at the

5 If we assume a logistic distribution, we would get a Logit model. Because the cumulative normal
distribution and the logistic distribution are very close to each other, except at the tails, we do not
obtain very different results using Logit models.
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Table 4. Correlations between the volatility and trading activity proxies

x Vol
t x Trd

t x Tzd
t x Volat

t

x Vol
t 1

x Trd
t 0.5768 1

x Tzd
t 0.5609 0.6839 1

x Volat
t 0.2958 0.2350 0.2090 1

This table reports the median correlation matrix for the time series of the absolute
change in volatility and the absolute change in the alternative trading activity
proxies. All correlations are significantly different from zero.Vol is the logarithm of
the number of shares traded, Trd is the logarithm of number of trades completed,
Tzd is the logarithm of the average trade size, Volat is the volatility measure in
Equation 10 and x y

t = |�yt /yt−1|.

average value of each explanatory variable βx̄y . Therefore, the figures in Table 5
represent the estimated increase on the probability of an unambiguous liquidity
change for an infinitesimal deviation of the explanatory variable evaluated at the
mean and extrapolated out. An infinitesimal increase/decrease in market volatility
augments the probability of observing an unambiguous liquidity adjustment, in
median, by 0.1841. The impact of an infinitesimal increase in trading activity is
particularly larger for the average size (0.332) and the volume traded (0.314).

To evaluate to what extent the previous findings concerning trading activity are
explained by the contemporaneous volatility, we have also estimated the following
model:

Pr(Ut = 1|xVolat
t , x̃y

t ) = 	(β1xVolat
t + β2x̃y

t ) (15)

where x̃y
t is the component of a given trading activity measure that is uncorrelated

with x̃Volat
t . We estimate x̃y

t as the residuals of a robust regression of each trading
activity measure on xVolat

t . Likewise, we have estimated the model (Equation 16)
for each trading activity measure xy

t :

Pr(Ut = 1|xy
t , x̃Volat

t ) = 	(β1x̃Volat
t + β2xy

t ), (16)

where x̃Volat
t is the component of the volatility measure that is uncorrelated with

xy
t . Table 6 reports the slopes of the probability function evaluated at the mean

whenever the corresponding coefficient βi for i = {1, 2} is statistically significant
at least at the 10% level. On the one hand, Table 5 indicates that the variations in
volatility and trading activity share some information component. The conditional
probability of an unambiguous liquidity adjustment after a variation in either the
volatility or the trading activity decreases when we control for commonalities. On
the other hand, increases in the activity-adjusted volatility measure (x̃Volat

t ) are
positively correlated with the probability of an unambiguous liquidity adjustment
(Table 6-B). Increases in the volatility-adjusted trading measures also influence the
probability of unambiguous liquidity movements (Table 6-A). However, x̃Vol

t is sta-
tistically significant at the 5% level for four stocks only, x̃Trd

t for seven stocks and
x̃Tsz

t for thirteen stocks. Therefore, we conclude that, in our sample, the average
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Table 5. The determinants of an unambiguous change in overall liquidity

Panel A: Coefficient (β) Panel B: Slopes of the probability function

Volat. Vol. Trd. Tsz. Volat. Vol. Trd. Tsz.

GE 0.1376∗ 0.1565 −0.0151 0.1319 0.0549 – – –
(0.060) (0.129) (0.058) (0.102)

GTE 0.2291∗ 0.6746∗ 0.4985∗ 0.7574∗ 0.0913 0.2684 0.1976 0.3006
(0.076) (0.211) (0.122) (0.184)

K 0.1948∗ 0.7679∗ 0.4269∗ 0.9523∗ 0.0775 0.3052 0.1695 0.3776
(0.047) (0.207) (0.119) (0.209)

SLB 0.2553∗ 0.7672∗ 0.3428∗ 0.8207∗ 0.1013 0.3048 0.1362 0.3256
(0.048) (0.198) (0.090) (0.178)

GRN 0.6356∗ 1.0083∗ 0.4052∗ 0.7199∗ 0.2521 0.3989 0.1603 0.2853
(0.123) (0.158) (0.079) (0.147)

CMB 0.1774∗ 0.4302∗ 0.116∗∗ 0.3449∗ 0.0707 0.1713 0.0465 0.1374
(0.078) (0.158) (0.069) (0.132)

TXN 0.2423∗ 0.9368∗ 0.3994∗ 0.6793∗ 0.0965 0.3717 0.1588 0.2700
(0.083) (0.215) (0.111) (0.180)

HPC 0.0961∗ 0.301∗∗ 0.1811∗ 0.3903∗ 0.0383 0.1198 0.0721 0.1554
(0.039) (0.162) (0.081) (0.142)

AGC 0.5717∗ 1.1177∗ 0.4127∗ 0.9217∗ 0.2262 0.4408 0.1629 0.3624
(0.085) (0.175) (0.068) (0.130)

MAT 0.2174∗ 0.5302∗ 0.4435∗ 0.7001∗ 0.0866 0.2112 0.1764 0.2783
(0.066) (0.207) (0.121) (0.191)

GP 0.6489∗ 0.7345∗ 0.6165∗ 0.8521∗ 0.2573 0.2922 0.2446 0.3384
(0.118) (0.235) (0.137) (0.205)

NCC 0.7113∗ 1.5963∗ 0.8305∗ 1.2144∗ 0.2790 0.6285 0.3282 0.4797
(0.080) (0.259) (0.141) (0.219)

ROH 0.4664∗ 0.6976∗ 0.4214∗ 0.7958∗ 0.1855 0.2774 0.1677 0.3161
(0.116) (0.210) (0.128) (0.200)

IR 0.7096∗ 0.9269∗ 0.8182∗ 1.1652∗ 0.2819 0.3683 0.3250 0.4611
(0.154) (0.289) (0.211) (0.266)

OEC 0.7719∗ 0.8849∗ 1.041∗ 1.0671∗ 0.3062 0.3521 0.4130 0.4236
(0.149) (0.325) (0.223) (0.268)

EC 0.5851∗ 1.81∗ 0.9532∗ 1.3859∗ 0.2318 0.7082 0.3756 0.5445
(0.094) (0.258) (0.138) (0.201)

DDS 0.8272∗ 1.043∗ 0.505∗ 1.0541∗ 0.3275 0.4134 0.2003 0.4171
(0.143) (0.231) (0.112) (0.197)

CEN 0.8044∗ 1.977∗ 1.4773∗ 1.0651∗ 0.3158 0.7793 0.5831 0.4227
(0.089) (0.336) (0.255) (0.259)

RYC 0.2990∗ 0.7001∗ 0.35∗ 0.4427∗ 0.1187 0.2781 0.1389 0.1762
(0.059) (0.177) (0.082) (0.146)

HM 0.3127∗ 0.6658∗ 0.6396∗ 0.7905∗ 0.1245 0.2650 0.2543 0.3141
(0.084) (0.236) (0.184) (0.230)

ELY 0.2621∗ 0.7589∗ 0.3616∗ 0.6505∗ 0.1042 0.3020 0.1968 0.3044
(0.065) (0.240) (0.137) (0.196)

(continued )
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Table 5. Continued

Panel A: Coefficient (β) Panel B:Slopes of the probability function

Volat. Vol. Trd. Tsz. Volat. Vol. Trd. Tsz.

GLM 0.3050∗ 0.7036∗ 0.3616∗ 0.6505∗ 0.1214 0.2798 0.1439 0.2586
(0.090) (0.207) (0.109) (0.178)

USS 0.4654∗ 0.8126∗ 0.4999∗ 0.9913∗ 0.1841 0.3232 0.1983 0.3929
(0.071) (0.231) (0.109) (0.191)

RDC 0.7662∗ 0.9535∗ 0.8510∗ 0.8974∗ 0.3035 0.3788 0.3372 0.3558
(0.137) (0.278) (0.182) (0.226)

ANN 1.3358∗ 1.2236∗ 1.3321∗ 0.9427∗ 0.5261 0.4857 0.5258 0.3740
(0.183) (0.346) (0.287) (0.253)

Median 0.1841 0.3142 0.1972 0.3320

∗Statistically significant at the 5% level.
∗∗ Statistically significant at the 10% level.
Panel A: Maximum Likelihood estimates of the coefficient β in the Probit model (13). Standar deviations are
reported in parenthesis. Panel B: Slopes of the probability function of the Probit model (13) evaluated at the
mean.Vol is the logarithm of the number of shares traded, Trd is the logarithm of number of trades completed,
Tzd is the logarithm of the average trade size and Volat is the volatility measure in Equation 10.

trade size is more useful in predicting unambiguous variations in overall liquidity
than the volume traded and the number of trades. Moreover, changes in volatil-
ity are far more important than variations in the trading intensity in explaining
the unambiguous liquidity adjustments. These findings are consistent with the
empirical evidence in Chordia et al. (2001) since volatility determines how does
liquidity adjusts more than the trading activity. Additionally, these findings com-
plement the evidence in Lee et al. (1993) since we show that the larger the variation
in volatility, the higher the probability of observing immediacy costs and depth
movements that complement each other.

Prior analyses do not distinguish between expected and unexpected volatility
changes. Nonetheless, unambiguous liquidity adjustments might be more likely
when all liquidity providers have a common perception about future volatility lev-
els. That volatility is not uniformly distributed throughout the trading session is a
generally known reality. Hence, volatility changes have a component that can be
anticipated. If liquidity providers consider this predictable component and their
forecasts are similar, unambiguous changes in liquidity are to be expected. In order
to provide some intuition about this issue, we decompose xVolat

t into its expected
(x̃Volat

t ) and unexpected (x̂Volat
t ) components using AR(1) models. Subsequently,

we estimate the Probit model

Pr(Ut = 1|x̃Volat
t , x̂Volat

t ) = 	(β1x̃Volat
t + β2x̂Volat

t )

and compute the slopes of the probability function.6 We obtain that the median
impact of an infinitesimal increase in x̂Volat

t , extrapolated out and evaluated at
the mean, on the probability of an unambiguous change in overall liquidity is

6 Detailed results are not reported because of the limited space, but they are available upon request
from the authors.
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Table 6. Alternative specifications of the Probit model

Panel A: Volatility-adjusted measures Panel B: Volume-adjusted volatility

Vol Trd Tsz Vol Trd Tsz

GE β1 0.0549 0.0551 0.0549 0.0634 0.0983 (0.056)
β2 – −0.0667 – – – –

GTE β1 0.0911 0.0925 0.0905 – – –
β2 (0.184) 0.1739 0.2538 0.2660 0.1932 0.2981

K β1 0.0775 0.0770 0.0757 0.0556 0.0571 0.0470
β2 – (0.094) 0.2701 0.2997 0.1548 0.3695

SLB β1 0.0968 0.0976 0.0929 0.0866 0.0867 0.0755
β2 – – 0.1804 0.3010 0.1346 0.3223

GRN β1 0.2522 0.2498 0.2468 0.1430 0.1616 0.1683
β2 0.2677 0.1040 0.1620 0.3953 0.1574 0.2818

CMB β1 0.0705 0.0707 0.0708 – – –
β2 (0.133) – – 0.1712 (0.046) 0.1367

TXN β1 0.0971 0.0959 0.0954 – – –
β2 0.3495 0.1270 0.2230 0.3708 0.1575 0.2696

HPC β1 0.0383 0.0383 0.0379 (0.032) – –
β2 – – (0.115) (0.119) 0.0719 0.1551

AGC β1 0.2238 0.2241 0.2154 0.1505 0.1620 0.1345
β2 0.2668 0.0951 0.2412 0.4336 0.1615 0.3527

MAT β1 0.0863 0.0865 0.0866 0.0708 (0.051) (0.051)
β2 – 0.1286 0.2050 0.2110 0.1769 0.2780

GP β1 0.2572 0.2499 0.2505 0.2821 0.2105 0.2256
β2 – – – 0.2910 0.2414 0.3394

NCC β1 0.2747 0.2706 0.2706 0.2475 0.2513 0.2538
β2 – – – 0.5915 0.3196 0.4610

ROH β1 0.1841 0.1833 0.1837 0.1460 0.1476 0.1171
β2 – – 0.1941 0.2743 0.1689 0.3138

IR β1 0.2793 0.2781 0.2816 0.2715 0.2343 0.1763
β2 – – (0.261) 0.3533 0.3220 0.4497

OEC β1 0.3033 0.3032 0.3026 0.3514 0.2216 0.2663
β2 – – – 0.3422 0.4103 0.4268

EC β1 0.2319 0.2278 0.2268 0.1288 0.1387 0.1391
β2 0.5362 0.2731 0.3983 0.6842 0.3738 0.5338

DDS β1 0.3239 0.3158 0.3177 0.2673 0.2625 0.2263
β2 – (0.085) 0.2220 0.4056 0.1965 0.4134

(continued )
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Table 6. Continued

Panel A: Volatility-adjusted measures Panel B: Volume-adjusted volatility

Vol Trd Tsz Vol Trd Tsz

CEN β1 0.3094 0.3081 0.3114 0.2886 0.2862 0.3183
β2 – – – 0.7631 0.5734 0.4310

RYC β1 0.1178 0.1172 0.1171 0.0985 0.0901 0.1126
β2 – (0.067) – 0.2763 0.1376 0.1754

HM β1 0.1242 0.1244 0.1247 0.1047 0.0854 0.0873
β2 – (0.148) (0.190) 0.2613 0.2521 0.3098

ELY β1 0.0946 0.0913 0.0891 0.0858 0.0788 0.0746
β2 – (0.110) 0.1936 0.3009 0.1986 0.3064

GLM β1 0.1211 0.1207 0.1214 (0.076) (0.078) (0.070)
β2 (0.178) (0.088) 0.1819 0.2766 0.1424 0.2575

USS β1 0.1836 0.1765 0.1743 0.1869 0.1584 0.1484
β2 – – 0.1795 0.3229 0.1929 0.3912

RDC β1 0.2999 0.2988 0.2980 0.3042 0.2373 0.2608
β2 – – – 0.3662 0.3284 0.3348

ANN β1 0.5234 0.5073 0.5103 0.5884 0.4986 0.5297
β2 – – – 0.4704 0.4612 0.3772

Median β1 0.1836 0.1765 0.1743 0.1445 0.1584 0.1391
β2 0.2668 0.1040 0.1995 0.3119 0.1930 0.3286

Slopes of the probability function of the Probit model (15) evaluated at the mean, whenever the corresponding
coefficient is statistically significant. Panel A: Trading activity measures uncorrelated with the volatility proxy.
Panel B: Volatility pair wise uncorrelated with each trading activity proxy. The parenthesis means statistically
significant at the 10% level only. Vol is the logarithm of the number of shares traded, Trd is the logarithm of
number of trades completed, Tzd is the logarithm of the average trade size and Volat is the volatility measure
in Equation (10).

0.1584. The impact of a similar increase in x̃Volat
t is 0.3205. This finding indicates

that the probability of an unambiguous liquidity adjustment strongly depends on
the expected volatility change. Hence, heterogeneous expectations about future
volatility changes among the liquidity providers might explain ambiguity.

6. CONCLUSIONS

This paper has dealt with an under-developed topic in microstructure research:
the ambiguous changes in overall liquidity. We have characterized ambiguity
and discussed several measures that cope with this problem. Our empirical
findings show that bi-dimensional liquidity measures are more informative
than one-dimensional proxies, even when considered all together: common
factors in overall liquidity cannot be fully explained by the common factors
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in immediacy costs and market depth. Moreover, we have evidenced that the
volatility changes are positively correlated with the probability of observing a
contemporaneous ambiguous change in overall liquidity. We also find that an
important part of the incidence of the volatility changes is associated with its
expected (deterministic) component. Changes in trading activity also influence
the probability of unambiguous liquidity adjustments, especially changes in the
average trade size, but to a lesser extent.

The results in this paper suggest further theoretical and empirical research.
No theoretical paper exists dealing with how liquidity providers manage mar-
ket risk using both immediacy costs and market depth. Our results suggest that
noisy signals, or equivalently heterogeneous expectations, may be associated
with ambiguous liquidity changes. However, a clear signal that generates homoge-
nous interpretations by liquidity providers would induce unambiguous liquidity
changes. Moreover, unambiguous liquidity adjustments depend, largely, on the
expected volatility changes. Therefore, heterogeneous expectation about future
volatility changes should be connected to overall liquidity adjusting unambigu-
ously.

This paper has coped with ambiguity and its determinants. However, these
topics deserve further empirical effort. For example, are the determinants of
unambiguous liquidity adjustments the same for order-driven markets as for price-
driven markets? Are the determinants of unambiguous liquidity adjustments the
same for market makers and specialists as for the limit order book? Is there any
intra-daily deterministic pattern in the probability of an unambiguous liquidity
adjustment? How does the probability of an unambiguous liquidity adjustment
affect the order flow composition? Additionally, we have used volatility and trad-
ing activity as proxies of market-making costs. However, it would be interesting
to consider direct measures of adverse selection costs, such as the average price
impact of trades, and inventory holding costs, such as the inventory levels of the
specialists.

Finally, we have considered alternative bi-dimensional measures of liquidity. All
these measures, however, depend on a predetermined marginal rate of substitu-
tion between immediacy costs and market depth. Moreover, they consider only
the information contained in the best ask and bid quotes and do not account
for depth improvements. Additional effort should be devoted to finding better
bi-dimensional proxies for overall liquidity since our results show that they are
superior to directly comparing one-dimensional proxies.
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APPENDIX

Sample

This sample consists of the 25 firms with the highest trading frequency among
150 firms in a larger sample selected by Systematic Sampling. Firms are sorted by
mean time between trades.

Time
Time between

Order by between changes
capitalization Symbol Name trades in quotes1

1 GE GENERAL ELECTRIC CO 00:00:26 00:00:33
7 TXN TEXAS INSTRUMENTS 00:00:39 00:00:56
6 CMB CHASE MANHATTAN CO 00:00:43 00:00:35
2 GTE GTE CORP 00:00:53 00:00:58
4 SLB SCHLUMBERGER LTD 00:01:19 00:01:08

21 ELY CALLAWAY GOLF CO 00:01:29 00:01:28
11 GP GEORGIA-PACIFIC CORP 00:01:56 00:01:20
23 USS U. S. SURGICAL CORP 00:02:01 00:01:30
5 GRN GENERAL RE CORP 00:02:02 00:01:35

20 HM HOMESTAKE MINING CO 00:02:14 00:01:56
8 HPC HERCULES INC 00:02:20 00:02:43
3 K KELLOG CO 00:02:22 00:01:17

22 GLM GLOBAL MARINE INC 00:02:24 00:02:20
10 MAT MATTEL INC 00:02:33 00:02:58
16 EC ENGELHARD CO 00:02:32 00:01:56
12 NCC NATIONAL CITY CORP 00:02:48 00:02:07
17 DDS DILLARD DEPT STORES CL A 00:02:48 00:01:39
14 IR INGERSOLL-RAND CO 00:02:51 00:01:49
24 RDC ROWAN COMPANIES INC 00:03:13 00:02:40
9 AGC AMER GEN CORP 00:03:34 00:02:19

25 ANN ANNTAYLOR STORES CORP 00:03:45 00:02:33
19 RYC RAYCHEM CORP 00:03:52 00:02:31
18 CEN CERIDIAN CORP 00:03:58 00:02:46
15 OEC OHIO EDISON CORP 00:04:09 00:02:58
13 ROH ROHM AND HASS COMPANY 00:04:11 00:02:57

1Change in quoted ask, bid or depth.
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