119. On the Bi-ideals in Associative Rings

By S. Lajos*) and Ferenc A. Szász**)
(Comm. by Kinjirô Kunugr, m. J. A., June 12, 1970)

By a ring we shall mean an arbitrary associative ring. For the terminology not defined here we refer to N. Jacobson [3] and N. H. McCoy [8]. We announce some properties of bi-ideals in rings which are analogous to some properties of bi-ideals in semigroups.

For the subsets X and Y of a ring A by the product $X Y$ we mean the subring of A which is generated by the set of all products $x y$, where $x \in X, y \in Y$. By a bi-ideal B of A we mean a subring B of A satisfying the condition
(1)

$$
B A B \subseteq B
$$

Obviously every one-sided ideal of A is a bi-ideal and the intersection of a left and a right ideal of A is also a bi-ideal. It may be remarked that the notion of the bi-ideal in semigroups is a special case of the (m, n)-ideal introduced by S. Lajos [4]. The notion of bi-ideal for associative rings was earlier mentioned by S. Lajos [5]. He noted that the set of all bi-ideals of a regular ring is a multiplicative semigroup. The concept of the bi-ideal was introduced by R. A. Good and D. R. Hughes [1]. An interesting particular case of the bi-ideal is the notion of quasi-ideal due to O. Steinfeld [9] which is defined as follows. A submodule Q of a ring A is called a quasi-ideal of A if the following condition holds:

$$
\begin{equation*}
A Q \cap Q A \subseteq Q \tag{2}
\end{equation*}
$$

It is known that the product of any two quasi-ideals is a bi-ideal (see S. Lajos [5]). It may be remarked that in case of regular rings the notions of bi-ideal and quasi-ideal coincide.

In the following we formulate some general properties of bi-ideals in rings and characterize two important classes of rings in terms of bi-ideals.

Proposition 1. The intersection of an arbitrary set of bi-ideals $B_{i}(i \in I)$ of a ring A is again a bi-ideal of A.

Proposition 2. The intersection of a bi-ideal B of a ring A and a subring S of A is a bi-ideal of the ring S.

Proposition 3. For an arbitrary subset T of a ring A and for a bi-ideal B of A the products $B T$ and $T B$ are bi-ideals of A.

[^0]In analogy with the case of semigroups (cf. S. Lajos [7]) we obtain the following result.

Proposition 4. Let B be an arbitrary bi-ideal of the ring A, and C be a bi-ideal of the ring B such that $C^{2}=C . \quad$ Then C is a bi-ideal of A.

Proposition 5. An arbitrary associative ring A contains no nontrivial bi-ideal if and only if A is either a zero ring of prime order or else a division ring.

Proposition 6. Let T be a non-empty subset of the ring A. Then the bi-ideal $T_{(1,1)}$ of A generated by T is of the form

$$
\begin{equation*}
T_{(1,1)}=I T+I T^{2}+T A T \tag{3}
\end{equation*}
$$

where I denotes the ring of rational integers.
Proposition 7. For any associative ring A denote \bar{A} the set of all subrings of A, and A_{1} the set of all bi-ideals of A. Then \bar{A} and A_{1} are semigroups under the multiplication of subsets (defined in the introduction) and A_{1} is a two-sided ideal of \bar{A}.

Remark. The multiplicative semigroup of all non-empty subsets of an arbitrary semigroup was formerly investigated by S. Lajos [7]. He proved, among others, that the set of all the bi-ideals of a semigroup S is a two-sided ideal of the multiplicative semigroup of all non-empty subsets of S.

The following result is in complete analogy with a semigrouptheoretical theorem of S. Lajos [4].

Theorem 1. For an arbitrary non-empty subset B of an associative ring A the following conditions are pairwise equivalent:
(i) B is a bi-ideal of A.
(ii) B is a left ideal of a right ideal of A.
(iii) B is a right ideal of a left ideal of A.

Theorem 2. For an associative ring A the following conditions are equivalent:
(I) A is regular.
(II) $L \cap R=R L$ for every left ideal L and every right ideal R of A.
(III) For any elements a, b of A.
$(a)_{r} \cap(b)_{l}=(a)_{r}(b)_{l}$.
(IV) For any element a of A

$$
(a)_{r} \cap(a)_{l}=(a)_{r}(a)_{l}
$$

(V) $\quad(a)_{(1,1)}=(a)_{r}(a)_{l}$ for any element a of A.
(VI) $\quad(a)_{(1,1)}=a A a$ for any element a of A.
(VII) $Q A Q=Q$ for every quasi-ideal Q of A.
(VIII) $B A B=B$ for each bi-ideal B of A.

The equivalence of the above conditions (I)-(VI) in case of semigroups was proved by S. Lajos [6] and K. Iséki [2].

Theorem 3. The following conditions for an associative ring A are equivalent:
(I) A is a regular two-sided ring. ${ }^{1)}$
(II) A is a subcommutative regular ring. ${ }^{2)}$
(III) A is strongly regular.
(IV) $B^{2}=B$ for any bi-ideal B of A.
(V) $Q^{2}=Q$ for any quasi-ideal Q of A.
(VI) $L \cap R=L R$ for every left ideal L and every right ideal R of A.
(VII) $L \cap L^{\prime}=L L^{\prime}$ for any two left ideals L, L^{\prime} of A.
(VIII) A is regular and it is a subdirect sum of division rings.
(IX) A is a regular ring with no non-zero nilpotent elements.
(X) The multiplicative semigroup of A is a semilattice of groups.

References

[1] R. A. Good and D. R. Hughes: Associated groups for a semigroup. Bull. Amer. Math. Soc., 58, 624-625 (1952).
[2] K. Iséki: A characterization of regular semigroup. Proc. Japan Acad., 32, 676-677 (1956).
[3] N. Jacobson: Structure of Rings. Providence, R. I. (1956).
[4] S. Lajos: Generalized ideals in semigroups. Acta Sci. Math., 22, 217-222 (1961).
[5] --: On quasiideals of regular ring. Proc. Japan Acad., 38, 210-211 (1962).
[6] -: On characterizations of regular semigroups. Proc. Japan Acad., 44, 325-326 (1968).
[7] -: On the bi-ideals in semigroups. Proc. Japan Acad., 45, 710-712 (1969).
[8] N. H. McCoy: The Theory of Rings. New York, London (1964).
[9] O. Steinfeld: On ideal-quotients and prime ideals. Acta Math. Acad. Sci. Hungar., 4, 289-298 (1953).
[10] F. Szász: Note on rings in which every proper left-ideal is cyclic. Fund. Math., 44, 330-332 (1957).
[11] G. Szász: Introduction to Lattice Theory. Budapest, New York (1963).

[^1]
[^0]: *) K. Marx University of Economics, Budapest, Hungary.
 **) Math. Institute of the Hungarian Academy of Sciences, Budapest, Hungary.

[^1]: 1) An associative ring A is said to be two-sided (or duo) if every one-sided (left or right) ideal of A is two-sided.
 2) An associative ring A is called subcommutative if $a A=A \alpha$ for any element a of A.
