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Abstract. The paper provides an exact formula for the bias of the 
parameter estimator of the first order autoregressive process and derives 
the asymptotic bias. 
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1. Introduction 

Let {Xt; t >_ 1 } be the first order autoregressive process 

(1.1) Xt = aSt-1 + el, t >_ 1, X0 = 0 ,  

where a is a real parameter and {et; t ___ 1 } is a Gaussian white noise with 
mean zero and variance o -2. The least squares estimator (LSE), which is 
also the maximum likelihood estimator, ar  of a, based on the observations 
X~,..., Xr  is given by 

) (1.2) aT= Y~ X2-t ,~2Xt-,Xt T>_2 
t=2 = ~ " 

Consistency and asymptotic distribution of aT have been thoroughly 
studied. For all a, aT is strongly consistent (Rubin (1950) and Anderson 
(1971)) and for a suitable normalizing sequence {Sa(T); T >  I} the random 
variable Sa(T) (ar -  a) has a limiting distribution ~ .  In the stable case, i.e., 
lal < 1, with S a ( T ) = [ T / ( 1 -  a2)] 1/2, ~ is standard normal (Anderson 
(1959, 1971)). In the unstable case, i.e., lal  -- 1, with Sa(T) = 2Ta, ~ i s  the 

distribution of (W 2 -  1)/(f01W2ds) where { W s ; 0 < s <  1} is a s t a n d a r d  

Brownian motion (Rao (1966, 1978)). Finally, in the explosive case, i.e., 
lal  > 1, with Sa(T) = l a l r ( a  2 - 1) -1, ~2~is Cauchy (White (1958, 1959) and 
R i o  (1961, 1966)). 
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The present paper considers the bias of at. Series expansions of this 
up to term T -3 have been provided in the stable case by several authors 
(Bartlett (1946), Hurwicz (1950), Kendall (1954), Mariott and Pope (1954) 
and White (1961)). As far as we know, similar results have not been 
obtained for the unstable or explosive process. Here these cases are 
investigated. Section 2 gives an exact formula for the bias analogous to 
that given by Liptser and Shiryayev ((1978), Theorem 17.3) for continuous 
time processes. Section 3 derives the asymptotic bias when T goes to 
infinity. 

2. The bias of the LSE 

Let Xr=(X1, . . . ,Xr ) '  be an observation from the process (1.1). We 
shall suppose that tr 2 = 1 since the distribution of at, as is seen from (1.2), 
does not depend on 0 "2. The distribution of X r  is thus specified by a only. 
For any measurable real function y on R r, the expectation of )'(Xr), when 
it exists, will be denoted by E~(y). Then from (1.1) and (1.2) the bias, when 
it is well defined, is given by 

(2.1) br(a) = E(ar) - a = E a ( y l - l ~ 2 )  , 

where 71 and ?2 are the functions defined for x = (xl,..., xr)' e R r by 

T T 

(2.2) yl (x) = E x~- i, 72(x) = Z x , -  ~ ( x ,  - a x , - 1 ) .  
t=2 t=2 

THEOREM 2.1. Let ~ur(a, O) be defined for T>_ 1, a ¢ R and 0 > 0 by 

(2.3) gtr(a, O) = [det (/r + 20F~ ' ) ]  -1/2 , 

where lr is the T × T identity matrix and F-Z is the covariance matrix o f  Xr. 
Then for T >_ 4 and all a, the bias is well defined and 

(2.4) br(a) = ~ ~Ur-,(a,O)dO. 

PROOF. The proof parallels that of Theorem 17.3 in Liptser and 
Shiryayev (1978). We first show that if the function y satisfies 

(2.5) Eo(lyl) < ~ ,  a ~ • ,  

(2.6) sup Eo(I~,I ly21 ~) < ~ ,  p = 1,2, -oo< ~i< a2<oo, 

then the function a -- E~(7) is differentiable and 
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8 
(2.7) cga E~(y) = E. (yy2) .  

Indeed, the likelihood function gr(a, x) corresponding to Xr  is differen- 
tiable with respect to a, with derivative y=(x)gr(a,  x).  Hence, for - oo < al < 
a2 < oo, 

E~2(X) - E~, (y) = fRTy(x)[gr(a=, x)  -- g ( m ,  x)] dXl ... dXT 

=:. ,x. 

Therefore, using (2.6) with p = 1, and the Fubini Theorem, one gets 

and hence, the function a --- E~(7) is absolutely continuous. But using (2.6) 
with p - - 2 ,  one can apply what just has been proved, with y replaced by 
yy2, to obtain that the function a --- G(yy2) is continuous, giving the desired 
result. 

We now show that (2.5) and (2.6) hold for 7 = y~l. For this, observe 
that 

[:: 1 : : [ ( "  )1 E~(yi ~)=E~ e x p ( - 0 7 0 d 0  = E exp - 0 E X ~ - I  dO 
t = 2  

and the expectation in the last right-hand side is the moment generating 
T 

function of • X]-1. Thus 
t = 2  

(2.8) E,,(7~' ) = V r - , ( a , O ) d O  , 

where ~'r is defined in (2.3). A representation of the right-hand side of (2.8) 
as an integral of a simple function will be derived in (2.13) below, and from 
this, it can be seen that 

(2.9) sup Ea(yl  1) < oo for all a~ < a2. 
al <_ t:t_< a2 

Thus (2.5) holds for y = yl 1. On the other hand, from y2(x) = x tx2  + ... + 
x r - l X r -  ayl (x)  and Schwarz inequality 

(2.10) ly2(x)I  'Va(x)D'l(X) + '/2 + 
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Eol(~,;ly2)l _< E[1 + 7-~(Xr)X2] 1/2 + lal 

___ {1 + E[f~I(xr)x2]} m + lal. 

The expecta t ion in the last r ight -hand side equals 

E[f~ L (Xr)E( X21X~,..., Xr- ~)] = a2 E[y-~ l (xr)s2r- ~] + E~(y-~ 1) 

<_ a 2 + Eo(~,-~ ~). 

Thus by (2.9), (2.6) holds for y = ?~l w i t h p  = 1. Finally, f rom (2.10) 

1 2,'X~ - ~ 2 Y~ Y2t ) < 2[(1 + a2)yl(X) + x~] < 2(1 + a 2) x~ , 
t=l 

and E ,~  X, is a con t inuous  funct ion  of  a since X, = e, + ae,-1 + "" + 

at-lel. This implies tha t  (2.6) holds for y = 71 ~ with p = 2. The result of  
Theorem 2.1 now follows f rom (2.1), (2.7) and (2.8). 

COROLLARY 2.1. For T>_ 4 and all a, the bias br(a) is given by 

[ 0 l ° ] (2.11) br(a)  = a --;-- m,x(~,,)hr(a,X)2-(r+4)/2d2 

where 

(2.12) 

PROOF. 

hr (a ,2)  = (22 - a)3/2[(2 - a) + (2 - l)arA-2r+l] -vz 

Let  B be the T × T mat r ix  with 1 on the main  diagonal ,  - a 
on the diagonal  below it and 0 elsewhere. Then  f rom (1.1), the r a n d o m  
vector  BXr has a uni t  covariance matr ix.  Therefore,  F¢ = B - ~ ( B  - 2), and it 

follows that  

det (It + 20F~,) = det 

1 + 2 0  - a  0 ... 0 

- a  l + 2 0 + a  2 - a  ... 0 

0 - a 1 + 20 + a 2 " ' "  0 

0 0 0 ... l + 2 0 + a  2 

Deno te  the above lef t -hand side by Dr(a, O) with D0(a, 0) = 1 by conven- 



BIAS OF FIRST ORDER AUTOREGRESSIVE ESTIMATOR 559 

tion. It can be seen that  the fol lowing recurrence  holds: 

Dr+l (a ,O)  = (1 + 20 + a2)D~(a,O) - a 2 D r - l ( a , O ) ,  T >  1 . 

The solut ion of  this recurrence  equa t ion  is D r ( a ,  O) = c+2 r + c -25  where it+, 
2- are the roots  of  the t r inomial  22 - (1 + 20 + a2)2 + a 2, and c+, c- are the 
solutions of  c÷ + c- = 1 and c+2+ + e-X- = 1 + 20. Thus  

fo ~,,(a, O)dO = fo (c+aY + c a 5  1/2d0. 

T a k i n g  2 = 2+, the  g rea tes t  roo t ,  then  2 > m a x  (a  2, 1), 2 - - - a 2 / i t ,  c+ = 

x(it - a2)/(it 2 - a b ,  c = a 2 ( x  - 1 ) / ( x  = - a 2) and 0 = (it - 1)(,l - cfl)/(2it). The 
change of  variable f rom 0 to it leads to 

(2.13) f£ ~, .(a,O)dO= T f ~ . x , e  ~ ._2 . ~ , . + , , / 2 .  I) f l T +  l ~ t l  ~ A ) A  t l A .  

The result then  follows f rom Theorem 2.I. 

3. The asymptotic bias of the LSE 

The fol lowing result  provides the first order  expans ion  of  br(a)  as T 
goes to infinity. It should be possible to obtain higher order  expansions  in 
a similar way. 

THEOREM 3.1. A s  T goes  to inf ini ty ,  

(i) lf lal < 1, Tbr (u )  converges  to - 2a, 
(ii) i f  fal = 1, Tbr (a )  converges  to - 2 m l a  where  

I = f o ( l  + e-4X)-3/2(1 + 3e -4x + 4xe-4X)e-Xdx , 

(iii) t f [ a l  > 1, T-1/21alrbKa ) converges  to - 2-V2nl/2a-l(a2 - 1) 3/2. 

PROOF. We shall prove only (ii) and (iii) since the p roof  of  (i) is 
similar (see also Pan tu la  and Fuller  (1985)). We first note that  h r ( a , 2 )  is 
differentiable with respect to a, with derivative 

(3.1) 

3 - ~- (22  - a)1/2[(2 - a) + (2 - l)ar2-2r+l] -1/2 

- ~ (2 2 - a)3/2[(2 - a) + (,2 - 1)ar~-2r*l] -3/2 
2 
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• [ -  1 + T ( 2 -  1)aT-iX -2r+1] . 

By an a rgument  similar to that  in the p roof  of Theorem 2.1, one may 
exchange the order  of differentiation and integration in (2.11), yielding, for 
a l - < l ,  

Consider  the case l al = t. Making the change of variable 2 = e 2xflr+2) 
in the last integral, one gets 

T + 2  t . o~ l ' t 9  ] 

For fixed x and T tend ing  to infinity, 2 -~ 1, 2 -2r+1 - "  e -4x and T(2 - 1) ~ 2x. 
Hence, f rom (3.1) 

O e2XAT+2) ) ] "~a hr(a ,  a:l -- - 2-1/2(1 + e-4X)-3/2(1 + 3e-4X ÷ 4xe-4X) 

Moreover,  since T ( 2 -  1)2-2r+1< 1 for T>-4,  2 >  1, the above left-hand 
side may be shown to be bounded  in absolute value by Ke  x/2, K being a 
constant.  Hence, applying the Lebesgue dominated  convergence theorem to 
the right-hand side of (3.2) yields the result (ii). 

Consider  now the case l al > 1. Making the change of variable 2 = a/t 
in (2.11) and, as before, exchanging the order of differentiation and 
integration, one gets 

by(a)  = a f ,  hr(a ,  ag)a  -(r+21/2 a= 21.t-tr+41/2d  . 

Making further change of variable/~ = e 2x/(r+2), the above right-hand side 
equals blr(a) + b2r(a) where 

(3.3) b i t (a )  = - a lal-tr+4lfohr(ot2, aee2x/tr+2))e-Xdx, 

2 
(3.4) b2r(a) - T + ~  

(2 -(T+2) oo 0 ae2X/(r+2) ) °,, /o [Ta 
Put  kr(a,/~) = a(/~ - 1) + (ap - l)a-r+l/~ -2r+~, then 

hr(a,  a/~) = (a:tt 2 - a)3/2krl/2 (a ,p )  , 
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3 2 0 hr(a, a/l) = T (2a# - 1)(a2/t 2 - a)l/2krl/2(a,I 2) 
Oa 

1 
- T (a2/  - - 1 + [/aa -r+' + (a/l - 1)(1 - ---T)a -r] 

• fl-2T+ 1} k¢/2 (a ,  f l ) .  

For fixed x and Ttending to infinity, Tkr(a, e 2~/Ir+2)) -" 2ax, and hence 

(3.5) T-l/2hr(a, ae 2x/(r+2)) ~ a(a - 1)(2x)-1/2, 

(3.6) T_3/2 O Oa hr(a' ae2~/(r+ 2)) -'* O . 

M o r e o v e r ,  using the fact  tha t  Tkr(a,  e2~/(r+2))>2x and  k r ( a , k 0 _  > 
max [ / z -  1 , ( a -  1)ar-lp-2r+l], the left-hand sides of (3.5) and (3.6) can be 
seen to be bounded in absolute values for all T_> 5, x > 0 by ge6X/7x-l/2, M 
being a constant. Therefore, applying the Lebesgue dominated convergence 
to (3.3), (3.4) yields the result (iii). 

Notes. 
(1) In every case the asymptotic bias has the opposite sign as a. 
(2) For l al < 1, the normalizing factor is of the order T~/2S~(T); this 

is reasonable since the limiting distribution of S~(T) (ar -  a) has zero mean. 
Our result is consistent with Kendall  (1954), White (1961), Yamamoto and 
Kunitomo (1984) and Pantula and Fuller (1985). 

(3) For lal > l ,  the normalizing factor is of the order T-1/2S~(T) 
which is coherent with the fact that the limiting distribution of S~(T)(ar-  a) 
has undefined mean since it is Cauchy. 

(4) For [al = 1, the normalizing factor is of the order S~(T) which is 
also coherent with the fact that the limiting distribution of S ~ ( T ) ( a r -  a) 
has non zero mean. In fact, the constant - 2-1/Zl appearing in (ii) is just the 

mean of the random variable Z = ( W  2 -  1)/( 2fo I W~ds)where {Ws;s_> 0} is 

a standard Brownian motion. This can be seen as follows. First, it may be 
shown that 

[ ' [  (3.7) - 2-1/21= - 2x(cosh 2x)-l/2dx + 1 = - -~- u(cosh u)-l/2du + 1 . 

On the other hand, from Liptser and Shiryayev ((1978), Chapter 17.3.1) 

(3.8) ] -'~- exp ( - O/2)p(O,a) 0=0 
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where 

p(O, a) : [2y(O, a)]l/2{[y(O, a) + O]e-Y<°'") + [7(0, a) + O]e-Y~°'al} - ,/2, 

wi th  7(a, 0) = (02 + 2a) m. M a k i n g  the change  of  variable u = (2a) v2 in the 
in tegra l  in the r i gh t -hand  side of  (3.8), it can  be seen tha t  it equals  the last 
r igh t -hand  side of  (3.7), giving the result. 

(5) The  cons tan t  2V2Ican be c o m p u t e d  f rom (3.7) by the series 

o~ 

23/2 n=~0( - 1)"(2n)!/[2"n!/(4n + 1) 5] - 1 - 1.78143. 
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