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Abstract. The bidirectional vortex refers to the bipolar, coaxial swirling motion that can
be triggered, for example, in cyclone separators and some liquid rocket engines with tangential
aft-end injectors. In this study, we present an exact solution to describe the corresponding
bulk motion in spherical coordinates. To do so, we examine both linear and nonlinear solutions
of the momentum and vorticity transport equations in spherical coordinates. The assumption
will be that of steady, incompressible, inviscid, rotational, and axisymmetric flow. We further
relate the vorticity to some power of the stream function. At the outset, three possible types of
similarity solutions are shown to fulfill the momentum equation. While the first type is incapable
of satisfying the conditions for the bidirectional vortex, it can be used to accommodate other
physical settings such as Hill’s vortex. This case is illustrated in the context of inviscid flow over
a sphere. The second leads to a closed-form analytical expression that satisfies the boundary
conditions for the bidirectional vortex in a straight cylinder. The third type is more general
and provides multiple solutions. The spherical bidirectional vortex is derived using separation of
variables and the method of variation of parameters. The three-pronged analysis presented here
increases our repertoire of general mean flow solutions that rarely appear in spherical geometry.
It is hoped that these special forms will permit extending the current approach to other complex
fluid motions that are easier to capture using spherical coordinates.
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1. Introduction

In the last five decades, considerable attention has been given to naturally occur-
ring swirl patterns in thermal and physical transport applications [1–25]. In that
vein, different methods have been employed to simulate and trigger swirl in cylin-
drical or conical chambers using, for example, tangential fluid injection, inlet swirl
vanes, aerodynamically-shaped swirl blades, propellers, vortex trippers, twisted
tape inserts, coiled wires, vortex generators, and other swirl-prop devices.

Recently, an efficient cooling method has been proposed by Chiaverini and co-
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Figure 1. Schematic of the Cool Wall Bidirectional Vortex Combustion Chamber (CWBVCC).

workers [26–28] who have managed to reproduce cyclonic motion inside a liquid
rocket engine (see Fig. 1). Their technique is based on inducing a coaxial, co-
spinning, bidirectional flow comprising two distinct concentric fields: an outer an-
nular vortex and an inner, tubular vortex. The flow configuration in this chamber
is unique in that the oxidizer is injected tangentially into the combustion chamber
and just upstream of the nozzle; the process results in a swirling combustion field
that exhibits an outer, virtually nonreactive, flow region. This so-called outer
vortex fills the annular region separating the combustion core from the chamber’s
circumferential wall. The combustion core is formed from the oxidizer mixing and
reacting with the fuel. The latter is injected radially or axially at the chamber
head end. Before reaching the fuel injector’s faceplate, the outer vortex (composed
of cool oxidizer) coils around and up the chamber wall. The engendered thermal
blanket protects the chamber wall from fluctuating heating loads. The attendant
lowering of wall temperatures is sufficiently efficient to the extent that a laboratory
test using a fuel-rich Hydrogen-Oxygen combustion could be safely sustained in a
Plexiglas model of this engine [26–28]. The thermal protection feature not only
reduces cooling requirements but leads to appreciable cost reduction, prolonged
life, more flexibility in material selection, and reduced weight. The inner vortex,
on the other hand, plays an important role in improving combustion efficiency.
The inherent swirl increases fuel residence time, mixing, and turbulence, thus im-
proving overall efficiency and ballistic performance. The spinning vortices provide
an extended flow path that exceeds the geometric length of the chamber, thus
taking full advantage of the chamber’s volumetric capacity.

The utilization of bidirectional vortex motion is, in fact, a well established tech-
nology that dates back to the 1950s. The earliest investigations may be credited
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Figure 2. Schematic of a conical separator depicting its key components.

to the experimental work of ter Linden [1] on dust separators and the treatment
of hydraulic and gas cyclones by Kelsall [2] and Smith [3, 4]. Theoretical analyses
have also been carried out by Fontein and Dijksman [5], Smith [3, 4], and Bloor
and Ingham [6–8]. Semi-empirical models are, in turn, available from Reydon and
Gauvin [9], Vatistas, Lin and Kwok [10, 11], Vatistas [12], and others. In view of
continual progress in computational mechanics, numerical simulations have been
recently undertaken by Hsieh and Rajamani [13], Hoekstra, Derksen and Van den
Akker [14], Derksen and Van den Akker [15], and Fang, Majdalani and Chiaverini
[16].

Generally, cyclone technology is implemented in coal gas purificators, spray
dryers, oil-water separators, gas scrubbers, gas dedustors, hydrocyclones, and
magneto-hydrodynamic gas core nuclear rockets. Some are widely used in the
petrochemical and powder processing industries where they are employed in cata-
lyst or product recovery, scrubbing, and dedusting. The typical cyclone separator
consists of an upper cylindrical can with a central outlet tube and a lower conical
section with bottom opening (see Fig. 2). An involute inlet section permits the
tangential injection of liquid or gaseous mixtures. The spinning centrifugal motion
causes denser and coarser particles to gather along the conical walls. Heavier par-
ticles precipitate toward the base of the cyclone (the spigot) where the underflow
is withdrawn.

The main difference between a purely cyclonic flow and that reproduced inside
the NASA sponsored Cool Wall Bidirectional Vortex Combustion Chamber (CW-
BVCC) is that the latter exhibits only one outlet section (Fig. 1 versus 2). This
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difference is minor because the presence of a secondary outlet does not alter the
bulk flow motion. The spigot serves as a collection cavity through which heavy
particles may be trickled and filtered out of the mixture. The spigot does not
affect the main characteristics of the swirling stream inside the cyclone, especially
under high speed conditions for which friction may be discounted.

The purpose of this study is twofold. First, it is to explore both linear and
nonlinear solutions of the vorticity transport equation in spherical coordinates un-
der steady, inviscid, incompressible, rotational, and axisymmetric flow conditions.
Second, it is to explore possible forms of the solution for the bidirectional vortex
that can be used to describe cyclonic motion. In the process, the inviscid vortic-
ity transport equation will be shown to exhibit multiple solutions of which three
types will be singled out. These will be considered one-by-one and solved whenever
possible.

2. Mathematical model

In seeking an incompressible solution for steady, inviscid, rotational flowfields, it
is customary to use the vorticity-stream function approach [29]. Accordingly, one
solves ∇× (u×ω) = 0 and ω = ∇×u. While solutions in Cartesian or cylindrical
coordinates are quite common, those in spherical geometry remain a rarity [29, 30].
In the present work, the bidirectional vortex will be formulated using the spatial
coordinates (R,φ, θ) shown in Fig. 3. Note that in relation to a Cartesian reference
frame, ours are defined by x = R sinφ cos θ, y = R sinφ sin θ and z = R cos φ.

2.1. Governing equations

In an axisymmetric field in which changes in the θ-directions are null, the equation
for continuity reduces to

∂

∂R
(uRR2 sinφ) +

∂

∂φ
(uφR sin φ) = 0 (2.1)

where uR and uφ are the two components of the velocity vector u. A Stokes stream
function ψ(R,φ) that satisfies Eq. (2.1) can be defined as

∂ψ

∂φ
= uRR2 sinφ,

∂ψ

∂R
= −uφR sin φ (2.2)

Next, Euler’s momentum equation can be reduced to the vorticity transport equa-
tion following the usual steps. One gets

∇× (u× ω) = 0 (2.3)

Equation (2.3) is the steady vorticity transport equation that fulfills the con-
servation of momentum principle.
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Figure 3. Spherical coordinate system anchored at the chamber’s head end.

2.2. Boundary conditions

The boundary conditions for the bidirectional vortex in Fig. 3 are granted by:
(1) Tangential inlet at the wall, namely:

Qi = uθ(Ri, φi)Ai = UAi (2.4)

where

φi = tan−1(a/L); Ri =
√

L2 + a2 (2.5)

(2) No flow penetration at the head end:

uφ

(
R, 1

2π
)

= 0 (2.6)

(3) No flow crossing of the axis:

φ = 0; uφ(R, 0) = 0 (2.7)

(4) No flow penetration at the sidewall:

R sinφ = a; un = uR sin φ + uφ cos φ = 0 (2.8)

(5) And, finally, global mass balance; the outflow will match the inflow when:

Qo = Qi = UAi, uz = uR cos φ− uφ sinφ (2.9)
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2.3. Swirl component

In order to capture the behavior of the spin velocity uθ, it is useful to consider the
θ-momentum equation. By virtue of the attendant assumptions, one is left with(

uR
∂

∂R
+

uφ

R

∂

∂φ

)
(uθR sin φ) = 0 (2.10)

Since (u ·∇)(uθR sin φ) = 0, uθR sinφ = h(ψ) must be constant along any stream-
line. In order to further satisfy Eq (2.4), a free vortex form must be exhibited by
the swirling velocity. By restricting our solutions to a constant h, we arrive at

uθ = URi sin φi/(R sin φ) (2.11)

The singularity on R sin φ = 0 is a characteristic of inviscid swirling flows [8]. The
physics of the problem suggest a boundary layer structure near the chamber axis
in the form of a forced core vortex; the latter is known to form due to viscous
stresses along the axis of rotation.

2.4 Vorticity-stream function approach

Because uθ does not appear in the continuity equation, one may invoke the vorticity-
stream function approach and replace the remaining components of velocity using

uR =
1

R2 sin φ

∂ψ

∂φ
, uφ = − 1

R sin φ

∂ψ

∂R
(2.12)

The corresponding vorticity becomes

ωθ =
1
R

[
∂

∂R
(Ruφ)− ∂uR

∂φ

]
; ωR = ωφ = 0 (2.13)

Having realized that the inviscid vorticity gives a single component in the swirl
direction, ω = ωθ, one may drop the subscript θ and write

ω =
1
R

∂

∂R
(Ruφ)− 1

R

∂uR

∂φ
(2.14)

Substitution into the vorticty transport equation requires evaluating

∂

∂R

(
ω

R sin φ

∂ψ

∂φ

)
− ∂

∂φ

(
ω

R sinφ

∂ψ

∂R

)
= 0 (2.15)

This will be true when
ω

R sin φ
= f(ψ) (2.16)

A solution of the form f(ψ) = Cψλ will be sought here although other solutions
may exist for which f is not a power of ψ. Three cases can be singled out depending
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Figure 4. The case of uniform flow past a sphere leading to an inviscid, irrotational solution.

on the exponent λ. Specifically, three types of solutions may be defined viz.

λ =




0; type I
1; type II
other; type III

(2.17)

3. Possible solutions

The suitability of Eq. (2.17) to describe the bidirectional vortex motion must be
tested. We begin by considering the simplest form, namely, the λ = 0 case.

3.1 Type I solution: potential flow past a sphere

For λ = 0, one obtains f(ψ) = C; the vorticity becomes proportional to R sinφ.
Equation (2.16) yields ω = CR sin φ, which can be readily substituted into Eq. (2.14).
The result can be simplified using Eq. (2.2) and put in the form

∂2ψ

∂R2
+

sinφ

R2

∂

∂φ

(
1

sin φ

∂ψ

∂φ

)
+ CR2 sin2 φ = 0 (3.1)

Assuming a separable solution of the form ψ = F (R) sin2 φ, it can be shown that

R2F ′′(R)− 2F (R) = −CR4 or F (R) = C1R
2 +

C2

R
− C

10
R4 (3.2)

A type I stream function corresponding to this case is hence unraveled, specifically,

ψ =
(

C1R
2 +

C2

R
− C

10
R4

)
sin2 φ (3.3)

Unfortunately, this form cannot accommodate the boundary conditions attributed
to the bidirectional vortex, given by Eqs. (2.6)–(2.9). Instead, Eq. (3.3) can be



8 J. Majdalani and S. W. Rienstra ZAMP

readily adapted to describe the flow conditions associated with a uniform flow
past a sphere (c.f. the outer part of Hill’s spherical vortex [31]). As illustrated in
Fig. 4, this problem exhibits rather simple boundary conditions. In the far field,
one has R → ∞, ψ → 1

2UR2 sin2 φ + const., so that C = 0 and C1 = 1
2U . The

immediate implication is that of an irrotational flow since ω = CR sinφ = 0. The
corresponding stream function reduces to

ψ =
(

1
2
UR2 +

C2

R

)
sin2 φ (3.4)

The remaining constant can be obtained from the hard wall boundary condition
along the sphere’s radius. Given that ψ(a, φ) = 0, one must have C2 = − 1

2Ua3.
This leaves us with the familiar solution

ψ =
1
2
UR2 sin2 φ

(
1− a3

R3

)
with

{
uR = 2U cos φ(1− a3R−3)
uφ = − 1

2U sinφ(2 + a3R−3)
(3.5)

This particular result replicates the outer potential flow profile past a sphere;
despite being unsuitable for the bidirectional vortex, it is reproduced here in the
interest of clarity.

3.2 Type II solution: bidirectional vortex

For λ = 1, one recovers the classic linear form, f(ψ) = C2ψ. The corresponding
vorticity-stream function relation becomes ω = C2ψR sin φ. Rearward substitu-
tion into Eq. (2.14) gives

∂2ψ

∂R2
+

1
R2

∂2ψ

∂φ2
− 1

R2

cos φ

sin φ

∂ψ

∂φ
+ C2ψR2 sin2 φ = 0. (3.6)

This is the key equation that needs to be solved for type II behavior.

3.2.1 Separating the vorticity equation

To make progress, we look for similarity solutions of the form ψ(R,φ) = ψ(ζ) with
the similarity variable ζ = 1

2C(x2 + y2) = 1
2CR2 sin2 φ; this requires evaluating

∂ζ

∂R
= CR sin2 φ;

∂ζ

∂φ
= CR2 sin φ cos φ (3.7)

Inserting into Eq. (3.6) yields

C sin2 φψ′ + 2Cζ sin2 φψ′′ − C sin2 φψ′ + 2Cζ cos2 φψ′′ + 2Cζψ = 0 (3.8)

and so
2Cζ(sin2 φ + cos2 φ)ψ′′ + 2ζCψ = 0 (3.9)

leading to ψ′′ + ψ = 0. The standard solution is, of course,

ψ = C1 sin
(

1
2CR2 sin2 φ

)
+ C2 cos

(
1
2CR2 sin2 φ

)
(3.10)
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Equation (3.10) is deceptively simple and can be shown to be unsuitable for the
bidirectional vortex. The constants of integration must be permitted to vary in
order to capture more complex features of the flow. This will be carried out next.

3.2.2 A more general type II solution

A more general solution for Eq. (3.6) can be pursued in the spirit of Eq. (3.10);
for this purpose, one can let

ψ = C1(R,φ) sin
(

1
2R2 sin2 φ

)
+ C2(R,φ) cos

(
1
2CR2 sin2 φ

)
(3.11)

This Ansatz may be substituted back into Eq. (3.6); after some algebra, one de-
duces{

C cos ζ

[
sin(2φ)

∂

∂φ
+ 2R sin2 φ

∂

∂R

]
+ sin ζ

(
∂2

∂R2
+

1
R2

∂2

∂φ2
− cot φ

R2

∂

∂φ

)}
C1

−
{

C sin ζ

[
sin(2φ)

∂

∂φ
+ 2R sin2 φ

∂

∂R

]
− cos ζ

(
∂2

∂R2
+

1
R2

∂2

∂φ2
− cot φ

R2

∂

∂φ

)}
C2

= 0 (3.12)

In the interest of clarity, Eq. (3.12) can be written as

[C cos(ζ)L1 + sin(ζ)L2]C1 − [C sin(ζ)L1 − cos(ζ)L2]C2 = 0 (3.13)

where the operators L1 and L2 are defined by


L1 = sin(2φ)
∂

∂φ
+ 2R sin2 φ

∂

∂R

L2 =
∂2

∂R2
+

1
R2

∂2

∂φ2
− cot φ

R2

∂

∂φ

(3.14)

The complicating dependence of (3.13) on ζ = 1
2CR2 sin2 φ can be averted by

restricting our attention to solutions that satisfy

cos(ζ)(CL1C1 + L2C2)− sin(ζ)(L2C1 − CL1C2) = 0 or

{
CL1C1 + L2C2 = 0
L2C1 − CL1C2 = 0

(3.15)
This coupled set has solutions when

(C2L1L1 + L2L2)C1 = (C2L1L1 + L2L2)C2 = 0 (3.16)

Equation (3.16) would, in general, yield interesting solutions of the type assumed
in (3.11). However, the resulting fourth-order partial differential equation is rather
involved. To make headway, we look for the simpler forms that may be obtained
by setting L1C1 = L2C1 = 0 and L1C2 = L2C2 = 0. These translate into

cos φ sinφ
∂C1

∂φ
+ R sin2 φ

∂2C1

∂R
= 0;

∂2C1

∂R2
+

1
R2

∂2C1

∂φ2
− cot φ

R2

∂C1

∂φ
= 0 (3.17)
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and

cos φ sinφ
∂C2

∂φ
+ R sin2 φ

∂2C2

∂R
= 0;

∂2C2

∂R2
+

1
R2

∂2C2

∂φ2
− cot φ

R2

∂C2

∂φ
= 0 (3.18)

Equation (3.17) is linear and can be solved using the method of characteristics.
One finds that C1 = F (R cos φ). To determine F , one substitutes the relation
C1 = F (R cos φ) back into Eq. (3.17); this operation yields F ′′(R cos φ) = 0 or
C1 = K1R cos φ + K2. Using similar arguments in Eq. (3.18), one finds C2 =
K3R cos φ + K4. Hence both C1 and C2 are linear in z. One form of the type II
stream function satisfying Eq. (3.6) becomes

ψ = (K1R cos φ + K2) sin ζ + (K3R cos φ + K4) cos ζ (3.19)

3.2.3. Axisymmetric behavior

Based on Eqs. (2.12) and (3.19), one can re-evaluate the velocity components

uR =
[ (−K3 + CK2R cos φ + CK1R

2 cos2 φ
)
cos ζ

− (
K1 + CK4R cos φ + CK3R

2 cos2 φ
)
sin ζ

]
/R (3.20)

uφ = −
{

[K3 cot φ + CR(K2 + K1R cos φ) sin φ] cos ζ

− [K1 cot φ− C(K4 + K3R cos φ) sin φ] sin ζ
}

/R (3.21)

Axisymmetry demands that K3 and K4 be zero lest the component of the ve-
locity be unbounded along the axis. At the outset, the solution appropriate of
axisymmetric flows reduces to

ψ = (K1R cos φ + K2) sin ζ (3.22)

with the companion velocities being{
uR = [CR cos φ(K1R cos φ + K2) cos ζ −K1 sin ζ] /R

uφ = − [CR sinφ(K1R cos φ + K2) cos ζ + K1 cot φ sin ζ] /R
(3.23)

Equation (3.23) represents the type II class of solutions found here for an axisym-
metric flowfield.

3.2.4. Specific case: cylindrical bidirectional vortex

A cylindrical cyclone or a CWBVCC chamber may be modeled as a cylindrical
tube of length L and radius a; the head end may be considered impermeable
(due to the corresponding small volumetric flux associated with the underflow in
a cyclone or the fuel injected in the CWBVCC); the aft end may be assumed to
be partially open to a straight nozzle of radius b. A sketch of the chamber is given
in Fig. 3 where R, φ and θ are used to guide spherical variations. Note that the
origin of the spherical coordinate system is placed at the center of the chamber
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head end; alternatively, r and z are used to represent the cylindrical radial and
axial coordinates in a coincident reference frame. The fraction of the radius that
is open to flow may be defined by β = b/a and the chamber’s aspect ratio by
l = L/a.

Excluding axisymmetry (which is already satisfied) the remaining physical con-
ditions described in Eqs. (2.6)–(2.9) may now be applied to Eq. (3.23). Firstly,
the state of no flow across the head end requires that uφ

(
R, 1

2π
)

= 0; hence

uφ = −CC1K2 cos
(

1
2CR2

)
= 0 (3.24)

This is true when K2 = 0 or ψ = K1R cos φ sin ζ. One is left with{
uR = K1(CR2 cos2 φ cos ζ − sin ζ)/R

uφ = −K1(CR2 cos φ sin φ cos ζ + cot φ sin ζ)/R
(3.25)

Secondly, one can enforce the no flow across the sidewall where the radius
a remains invariant. Accordingly, the component of the velocity normal to the
surface must vanish along R sin φ = a. Based on geometric considerations, the
component of velocity un normal to the sidewall may be evaluated from

un = uR sin φ + uφ cos φ, R = a csc φ (3.26)

where
uR = K1 sin φ

[
Ca cot2 φ cos

(
1
2Ca2

)− sin
(

1
2Ca2

)
/a

]
(3.27)

and
uφ = −K1 sin φ

[
Ca cot φ cos

(
1
2Ca2

)
+ cot φ sin

(
1
2Ca2

)
/a

]
(3.28)

Equation (3.26) becomes

un = −(K1/a) sin
(

1
2Ca2

)
(3.29)

The no flow across the sidewall requires that un = 0 or sin
(

1
2Ca2

)
= 0. This

condition precipitates
C = 2nπ/a2, n = 1, 2 . . . (3.30)

Hence, ψ = K1R cos φ sin(nπa−2R2 sin2 φ). For a single pass bidirectional motion,
one must set n = 1 such that

ψ = K1R cos φ sin(πa−2R2 sin2 φ) (3.31){
uR = K1[2πa−2R2 cos2 φ cos(πa−2R2 sinφ)− sin(πa−2R2 sin2 φ)]/R

uφ = −K1[2πa−2R2 cos φ sin φ cos(πa−2R2 sin2 φ) + cotφ sin(πa−2R2 sin2 φ)]/R

(3.32)
The last constant K1 may be deduced from global mass balance. In Fig. 3, it

can be seen that, for flow across a cylindrical face, the axial velocity consists of
the combination

uz = uR cos φ− uφ sin φ (3.33)
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such that

uz =
K1

R

[
2πa−2R2 cos2 φ cos(πa−2R2 sin2 φ)− sin(πa−2R2 sin2 φ)

]
cos φ

+
K1

R

[
2πa−2R2 cos φ sin φ cos(πa−2R2 sin2 φ) + cot φ sin(πa−2R2 sin2 φ)

]
sinφ

(3.34)

This, in turn, simplifies into

uz = 2πa−2K1R cos φ cos(πa−2R2 sin2 φ) = 2πa−2K1z cos(πa−2r2) (3.35)

The global mass balance across the outlet requires that Qo = Qi = UAi; hence

Qo =
∫ b

0

uz(r, L)2πrdr =
∫ b

0

4π2a−2K1L cos(πa−2r2)rdr = 2πK1L sin(πa−2b2)

(3.36)
For this to hold, the last constant must be

K1 =
UAi

2πL sin(πa−2b2)
(3.37)

The bidirectional vortex specific to a cylindrical chamber is now at hand. One has

ψ =
UAiR cos φ sin(πa−2R2 sin2 φ)

2πL sin(πa−2b2)
(3.38)

with the spherical components

uR =
UAi

2πRL sin(πa−2b2)
[
2πa−2R2 cos2 φ cos(πa−2R2 sin2 φ)− sin(πa−2R2 sin2 φ)

]
(3.39)

and

uφ =
−UAi

2πRL sin(πa−2b2)
(3.40)

· [2πa−2R2 cos φ sin φ cos(πa−2R2 sin2 φ) + cotφ sin(πa−2R2 sin2 φ)
]

This completes the bidirectional vortex representation in spherical coordinates.

3.3. Type III solution: nonlinear behavior

For f(ψ) = C2ψλ, ∀λ 6= (0, 1), a nonlinear relation ensues between the vortic-
ity and stream function. This is perhaps the most interesting case as one must
reconsider

∂2ψ

∂R2
+

sin φ

R2

∂

∂φ

(
1

sin φ

∂ψ

∂φ

)
+ f(ψ)R2 sin2 φ = 0 (3.41)

with f exhibiting the nonlinear form

f(ψ) = Cψλ (3.42)
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for some C and λ. If we now assume ψ of the form

ψ(R,φ) = F (R)G(φ) (3.43)

we get

d2F (R)
dR2

G(φ) + CFλ(R)Gλ(φ)R2 sinφ +
F (R) sinφ

R2

d

dφ

[
1

sinφ

dG(φ)
dφ

]
= 0 (3.44)

or

R2

F (R)
d2F (R)

dR2
+ CFλ−1Gλ−1R4 sin2 φ +

sin φ

G(φ)
d

dφ

[
1

sinφ

dG(φ)
dφ

]
= 0. (3.45)

By applying the transformation F (R) = H(R)
√

R, we are left with

R2

F (R)
d2F (R)

dR2
= −1

4
+ R

H ′

H
+ R2 H ′′

H
. (3.46)

In seeking a separable solution, one must equate Eq. (3.46) to a constant; if this
constant is chosen to be µ2 − 1

4 , Euler’s differential equation is recovered, namely

RH ′ + R2H ′′ = µ2H (3.47)

As usual, the solution exhibits the form

H(R) = ARµ + BR−µ (3.48)

With this information, the rest of Eq. (3.45) becomes independent of R. As we
look for solutions that are regular at R = 0, we pick

H(R) = Rµ (3.49)

and so

µ2 − 1
4

+
sin φ

G(φ)
d

dφ

[
1

sin φ

dG(φ)
dφ

]
+ CR(µ+ 1

2 )(λ−1)+4Gλ−1(φ) sin2 φ = 0 (3.50)

Clearly, Eq. (3.50) can be made independent of R by choosing(
µ + 1

2

)
(λ− 1) + 4 = 0 (3.51)

or
µ = 4/(1− λ)− 1

2 (3.52)

This choice turns Eq. (3.50) into

sin
d

dφ

[
1

sinφ

dG(φ)
dφ

]
+ CGλ(φ) sin2 φ +

(
µ2 − 1

4

)
G(φ) = 0 (3.53)

The resulting ODE has to be solved subject to the periodicity condition needed
for a physically meaningful problem, specifically, G(0) = G(2π) and G′(0) =
G′(2π). This condition places restrictions on the possible choices of C and λ.



14 J. Majdalani and S. W. Rienstra ZAMP

Figure 5. Sample plot of the periodic results of the nonlinear type III solution for the specific
case of λ = −3 and C = 1. The two case illustrate the solution multiplicity with different initial
conditions.

Equation (3.53) is nonlinear because, as it can be seen from Eq. (3.51), any
choice of λ may be possible except for λ = 1. Using primes to denote differentiation
with respect to φ, Eq. (3.53) can be written as

G′′ − cot φG′ + CGλ sin2 φ + 4(λ + 3)(λ− 1)−2G = 0 (3.54)

Multiple solutions may thus be obtained but those that are meaningful must satisfy
the periodicity condition. For example, using λ = −3 (µ = 1

2 ), and C = −1,
Eq. (3.54) becomes

G′′(φ)− cot φG′(φ) + G−3(φ) sin2 φ = 0 (3.55)

This can be solved numerically to obtain multiple periodic solutions. The resulting
behavior is illustrated in Fig. 5 where it is solved using two sets of initial guesses.
These are {

G1(π/4) = 1.558501, G′
1(π/4) = 0.7000145

G2(π/4) = 4.016863, G′
2(π/4) = 0.05790198

(3.56)

Note that, for each set, a candidate solution is obtained.
Interestingly, for the special case of λ = −3 (µ = 1/2), an exact analytical solu-

tion can be obtained for arbitrary C. This can be seen by re-examining Eq. (3.53)
which now becomes

1
sinφ

d

dφ

(
1

sin φ

dG

dφ

)
+ CG−3 = 0 (3.57)

By letting χ = cos φ and G(φ) = C1/4g(χ), Eq. (3.57) simplifies into the equation
for planetary motion in a central force field, namely, g′′ + g−3 = 0 (primes are
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associated with χ). This simple result can be multiplied by g′ and integrated to
produce

1
2 (g′)2 − 1

2g−2 = constant = 1
2K1 (3.58)

or g′ = ±
√

K1 + g−2. A second integration attempt furnishes

±
∫ g K1ξ√

1 + K1ξ2
dξ = ±

√
1 + K1g2 = K1χ + K2. (3.59)

Hence, 1 + K1g
2 = (K1χ + K2)2, or g(χ) = ±√

[(K1χ + K2)2 − 1]/K1. Finally, a
type III solution emerges from

G(φ) = ±C1/4

[
(K1 cos φ + K2)2 − 1

K1

]1/2

(3.60)

and so, in combination with Eqs. (3.49) and (3.43), one collects

ψ(R,φ) = ±C1/4R

[
(K1 cos φ + K2)2 − 1

K1

]1/2

(3.61)

with 


uR = ∓ C
1
4 K

1/2
1 (K1 cos φ + K2)

R [(K1 cos φ + K2)2 − 1]
1
2

uφ = ∓C
1
4

[
(K1 cos φ + K2)2 − 1

] 1
2

K
1/2
1 R sin φ

(3.62)

This particular profile cannot be made to satisfy the boundary conditions implied
in the bidirectional vortex. However, it may find useful application elsewhere.

4. Comparison to earlier work

To verify that the bidirectional vortex is valid inside a cylinder, it may be compared
to the solution obtained in earlier work [32]. In order to do so, one can employ
the coordinate transformations R cos φ = z and R sin φ = r. The corresponding
velocities are related vis-à-vis{

ur = uR sin φ + uφ cos φ

uz = uR cos φ− uφ sinφ
(4.1)

Transformation of the spherical solution yields

ur =
−K1

R sin φ
sin(πa−2R2 sin2 φ) (4.2)

which, from Eq. (3.37), simplifies into

ur =
−UAi sin(πa−2R2 sin2 φ)
2πLR sin φ sin(πa−2b2)

=
−UAi sin(πa−2r2)

2πLr sin(πβ2)
(4.3)
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where β = b/a. Similarly, one finds

uz = 2πa−2K1z cos(πa−2r2) =
UAiz cos(πa−2r2)
La2 sin(πa−2b2)

(4.4)

and, from Eq. (2.11),

uθ =
URi sin φi

R sin φ
=

URi sinφi

r
=

Ua

r
(4.5)

To render Eqs. (4.3)–(4.5) dimensionless, one may use the overbar to denote di-
mensionless quantities:

r̄ =
r

a
, z̄ =

z

a
, ūr =

ur

U
, ūθ =

uθ

U
, ūz =

uz

U
,

Ai

a2
= σ−1 (4.6)

The resulting normalized velocities become


ūr =
− sin(πr̄2)

2πσlr̄ sin(πβ2)
= −κ

r̄

sin(πr̄2)
sin(πβ2)

; ūθ =
1
r̄

ūz =
z̄ cos(πr̄2)
σl sin(πβ2)

= 2πκz̄
cos(πr̄2)
sin(πβ2)

(4.7)

where κ = (2πσl)−1 is the tangential inlet parameter. It should be noted that,
in order for the outflow radius to match that of the nozzle inlet, the outflow
radius should be b = a/

√
2 or β = 1/

√
2. Under these idealized conditions, the

bidirectional vortex collapses into

ūr = −κ

r̄
sin(πr̄2), ūθ =

1
r̄
, ūz = 2πκz̄ cos(πr̄2) (4.8)

Equation (4.8) is identical to the non-dimensional solution obtained in [32]. This
confirms the validity of our spherical solution. For a numerical verification, it may
be instructive to present a sample of the results obtained by an independent group
of investigators who employed a computational fluid dynamics code [26, 33]. This
code specializes in solving the coupled, three-dimensional Navier–Stokes equations
for a chemically reactive, multi-phase and compressible flow.

In this simulation, the nominal mesh consisted of 184×35 axial and radial grid
cells. This included 12 grid cells in the axial direction to resolve the injection area.
The grid cell spacing in both the radial and axial directions was non-uniform to
permit better grid concentration near the walls and near regions of higher flow
gradients.

Using an aspect ratio of l = 3.43, Ai = 10−3 m2, U = 260 m s−1, UAi =
0.26 m3 s−1, ρ = 2.24 kg m−3, µ = 9.6 × 10−5 kg m−1 s−1, a = 0.0673 m and,
therefore, a Reynolds number of Re = ρUa/µ = 4×105, the vector field computed
numerically is shown in Fig. 6a. Using a similar geometry and flow intensity, the
vector plot produced from (3.70) is displayed in Fig. 6b for a nozzle outlet ratio
corresponding to β = 1/

√
2.

Despite the disparity in the governing equations and assumptions used in the
present work vis-à-vis those employed in the numerical simulations, it is interesting
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Figure 6. Vector plots comparing some numerical simulations of the bidirectional vortex with
those obtained analytically.

to note the favorable agreement between theory and computation. In both cases,
the flow enters at the base, travels upwardly, and then turns sharply near the head
end; after reversing direction at the chamber head end, the flow returns to the
base area where it exits through the open nozzle section. Based on the numerical
solution, the thin boundary layer near the chamber wall appears too small to be
discerned graphically. The small size of this layer supports the idea of an inviscid
fluid; this idealization seems to hold well near the wall.

Along the corners of the head end and base sections, the gradual flow curvature
that is captured by the Navier–Stokes solver is due to viscous effects that elude
the present analytical model. Nonetheless, both analytical and numerical solutions
confirm the existence of cross flow between the outer and inner vortex regions along
the length of the chamber. They also confirm the presence of the so-called mantle
separating the outer and inner vortex tubes.

In addition to this independent investigation, it may be worth mentioning
that three-dimensional numerical simulations were carried out by Fang, Majdalani
and Chiaverini under both cold [16] and reactive flow conditions [34]. Therein,
favorable comparisons with (4.8) were made, with better agreement being reported
in the cold flow investigation.

5. Concluding remarks

In this paper we have examined several solutions in the context of steady, ax-
isymmetric, incompressible, and inviscid vortex motion in spherical coordinates.
In addition to the quest for generalizations of the nonlinear vorticity transport
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equation, particular attention has been given to the specific solution that will sat-
isfy the physical conditions associated with a single pass, bidirectional vortex. By
identifying different classes of solutions, the work furnishes procedural steps that
may be applied to other geometric shapes, with the conical cyclone being one such
example.

To verify the analysis, the type I solution is shown to reproduce the outer
potential flow past a sphere, one of the few spherical solutions available in the
literature. However, it is the type II solution that is able to accommodate the
bidirectional vortex in a straight cylinder. As the latter is obtained in inviscid
form, it unravels the free vortex motion that is known to affect the bulk flow away
from the core [8]. Near the chamber axis, viscous stresses appreciate as transition
to a forced vortex progresses [35]. The treatment of attendant structures is hoped
to be accomplished in later work. So will be the discussion of other solutions with
single or multiple flow passes. In the interim, incorporation of viscous terms will
be needed in the forced vortex analysis to capture the core motion and to resolve
the boundary layers adjacent to the endwall and sidewall. Finally, the new type
III class of solutions, engendered from the nonlinear vorticity transport equation,
is found to exhibit both numerical and exact outcomes. It is hoped that their
analysis will promote additional research in those physical settings that are more
manageable in spherical geometry.
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