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ON THE BIFURCATION THEORY OF SEMILINEAR
ELLIPTIC EIGENVALUE PROBLEMS

CHARLES V. COFFMAN1

Abstract. A standard "bootstrap" method is used to show that

the bifurcation problem for the semilinear eigenvalue problem

Aw + Xf(x, u) = 0 in Cl, u\dn - 0, where /(x, 0) a 0, and
(dldu)f(x,0) > 0, and when formulated in terms of weak solu-

tions, is a local problem, i.e. independent of the behavior of / for

large u. A principle of linearization for this problem is proved under

mild differentiability conditions on/.

1. This note is concerned with the bifurcation problem for the semi-

linear elliptic eigenvalue problem

(1) -Au = A(P(x)u + g(x, u)),     x e £2,  u|9fl = 0.

Here £2 is a bounded region in PA (N ^ 2) for which the Dirichlet problem

is solvable, and g, defined for small u, is odd and monotone in u. For

recent contributions to bifurcation theory for nonlinear elliptic eigen-

value problems and for additional references see [5].

The object here is twofold, namely to show that in the variational

treatment of the bifurcation problem for (1) a polynomial growth con-

dition on g, as usually required, is unnecessary and using this fact and

results of [3] and/or [6], to derive bifurcation theorems for (1).

For simplicity we have restricted the linear operator on the left in (1)

to be the Laplacian. Without difficulty the results obtained below can be

extended to the larger class of real linear formally selfadjoint operators

considered in [2]. The machinery for doing this is set up in [2].

2. The approach here to the eigenvalue problem (1) is through the

study of the integral equation

(2) u(x) = A f G(x, t)/0, u(t)) dt,
Jn
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where f(x, u) = P(x)u + g(x, u) and G is the Green's function for

(3) —Aw — p   in £2,      w\ssl = 0.

To obtain certain required variational inequalities one must consider (2)

in Lv(ü), for an appropriate p > 2, and for this it is necessary to assume

that /is defined on £2 x R and satisfies a polynomial growth condition in

u. It can be shown however, by a standard "bootstrap argument", that for

appropriate p and suitably restricted /, an ZZ-eigenfunction of (2) agrees

almost everywhere with a classical solution of (1), i.e. a function

u e C2(Q) n C(£2) and satisfying (1). This can be done, for example, as

indicated in the proof of Theorem 4 in [1]. By similar arguments one can

prove the following result which implies the superfluity of the polynomial

growth condition in the bifurcation theory of (1).

Theorem 1. Let £2 be a bounded region in RN (N ^ 2) and assume

that the problem (3) has a Green's function G(x, t). Let f (x, u) be continuous

on £2 x R and satisfy f(x, 0) = 0, and

(4) = K(l + \un     (x, u)e£lxR,

for some 7C> 0, y _ 0.

If p > min (1, \N(y — 1)) and (An, un) is a sequence of Lv-solutions of

(2) such that

(5) ||hX = ( f \unY dxV-» 0   as n -> co,

and U" ;

(6) K = A < co,      n = 1, 2, ■ • • ,

(•/fen

(7) lluJI^ = ess sup K(x)| ^0   as n co.
a

The proof of Theorem 1 will require the following result.

Lemma 1.   The integral operator

G(-, 0X0 dt

is completely continuous from Ln(Q) to L*(Q),for 1 _ rl5 5 _ co, provided

s-1 > rr1 - 2A"1.

Proof. From the definition of the Green's function for (3) and the

maximum principle for harmonic functions there follows, for x, t e Cl,

|G(x, 01 ̂  const (1 + |log \x - t\ I),      N = 2,

= const \x - t\~N+2, N > 2,
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and this implies, since £2 is bounded,

sup (* |G(x, t)\adt < oo,

for 1 _ a < 7V/(jV — 2). This, together with the symmetry of G implies

the assertion of the lemma; see Theorem 9.5.6 [4, p. 658].

Proof of Theorem 1. In view of the conditions on /, Theorem 19.1 of

[8] implies that h ->■/(• , »(•)) is continuous from Z/(q) to Lri(Q) for finite

rx with 1 _ rx _ r\y. Combined with Lemma 1, this implies that the

operator

« —f K(-,f)f(t, h(0) dt
Jn

is continuous from Z/(Q) to LS(Q) for 1 _ r, s _ oo and s-1 > yr-1 — 2A-1.

In particular this operator is continuous from Lr(Q) to L°°(Q) for r > \yN,

and from Lr(£2) to Lr+ä(ü) for r = p > %N{y - 1), where

d = p(2p -(y- l)N)l(yN - 2p) > 0

if /> < r < lyN. Thus if

»B(x) =   G(x, «»(0)
Jn

then from (5) it follows that

lim(f |t>B|'dxY/r= 0,
n->co \Jn /

for r = p 4- ö, and hence since un = Xnv„, from (6), it follows that

(7') Um((\uJdxY=0.
re->oo \Jn /

Repeating this argument with p replaced by r = p 4- <5 we conclude that

«„ tends to zero in the LI+M(0)-norm, and proceeding by induction, we

conclude that (7') holds for every finite r~^.p. Finally, using the continuity

of the nonlinear integral operator from Lr(D) to L^iD.) for r > lyN,

and arguing once again as above, we conclude that (7) holds. This com-

pletes the proof of Theorem 1.

3. Theorem 1, combined with the results of [3], yields the following.

Theorem 2. Suppose that P(x) is bounded, positive, and locally

Holder continuous in Q and that g(x, u) is bounded and locally Holder
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continuous in (x, u) on {{x, u):x e D, \u\ < c}, where £2 is as in Theorem 1.

Suppose in addition that g(x, u) is odd

g(x, u) = —g(x, —u),      xeQ.,   \u\ < c,

and monotone

g(x, «,) = g(x, u2),     xeQ, c>u1>u2>—c,

and finally that
g(x, u) = o(\u\), asu^-0,

uniformly with respect to x e Q.

77ie« every eigenvalue pk of the linear eigenvalue problem

(8) —Aw = p,P(x)u,     xeQ.,  u\sn = 0,

is a bifurcation point of (1).

A more precise formulation of the conclusion of Theorem 2 is contained

in the assertion (*) below.

Using [6, Theorem 2.2, p. 332] or [8, Theorem 26.8, p. 251] we can

obtain a variant of Theorem 2 in which the assumptions of oddness and

monotonicity on g are replaced by the assumption that g has a bounded

continuous partial derivative with respect to its second argument.

Theorem 3. Let P(x) and Q be as in Theorem 2 and let g(x, u) be

locally Holder continuous in (x, u) on {(x, u):x e £2, \u\ < c}. Suppose in

addition that on its domain of definition g(x, u) has a bounded continuous

partial derivative, gu(x, u), with respect to u, and that

g(x,0)=gu(x,0) = 0, xeQ.

Then the conclusion of Theorem 2 is valid.

Remark. In [6], in fact, more is actually proved than is stated in

Theorem 2.2, p. 332. The full result which is obtained there shows that

an approximation argument can be used to weaken the differentiability

condition on g in Theorem 3 to: g(x, u) = o(\u\) as \u\ -* 0, uniformly

with respect to x. Thus in particular Theorem 2 follows from the results

of [6]. On the other hand, the results of [3] yield, under the hypothesis of

Theorem 2, certain results not contained in [6] concerning multiplicity of

small eigenfunctions of (1) corresponding to a multiple eigenvalue of (8).

In order to deduce Theorem 2 from the results of [3] we require the

following.

Lemma 2. Let gt(x, u) be bounded and continuous in (x, u) on £2 x R,

and satisfy
gt{x, u) — o(|w|),   as u —► 0,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



174 C. V. COFFMAN [January

uniformly with respect to x e £i. Then for 1 _ r < 5 < 00, w —»-gxCx;, «)

if a continuous operator from Ls(0) to Lr(Q), and is Frechet dijferentiable

at zero; its Frechet derivative at zero is zero.

Proof. Since gx(x, u) is bounded and continuous the continuity

follows at once from Theorem 19.1, [8]. If we set

h(x, u) = 0, u = 0,

= u^g^x, u),      u ^ 0,

then h(x, u) is also bounded and continuous onß x Ä, thus, by the result

just quoted, u -> h(x, u) is continuous from LS(D) to Z/(Q), where

1/r' + I Is — \\r. Since multiplication (v, w)—*>v • w, is continuous from

LS(Q) x Lr'(Q.) to Z/(D), the result follows.

Proof of Theorem 2. Clearly g(x, u) has an extension g^x, u) to

Ü. x R which is odd and monotone and satisfies the hypothesis of Lemma

2. Since P is bounded and continuous, for any r, s with 1 _ r < s < 00,

the operator u^P(x)u + g^x, u) from LS(Q) to Z/(Q) is continuous,

and Frechet differentiable at zero, with its Frechet derivative at 0 being

the operator u -* P(x)u.

We consider the integral equation

(9) u(x) = X I G(x, 0(P(0«(0 + giÜ, "(0)) dt,

in LP(Q.) where

(10) 2 < p < 2/V/(7V - 2)

and regard the operator on the right in (9) as the composition of the

Nemytsky operator u^P(t)u 4- gi(t,u) from L^Q) to LQ(Q.), and the

integral operator y — Jn G(- , r)j(0 * from L9(D) to Lp(£2), where

Ijp + llq = 1. By virtue of Lemma 1 the inequality (10) insures the

continuity of the integral operator and, since q < 2 < p, Lemma 2

implies continuity and Frechet differentiability at zero of the Nemytsky

operator. It follows that the principle of linearization (|) of [3] is applic-

able to the integral equation (9) in LP(Q). We conclude from the result

just quoted that every eigenvalue of

(11) y(x) = JG(x,t)P(i)y(i)dt,
Ja

or equivalently, every eigenvalue of (8), is a bifurcation point of (9),

considered in Lp(£i). More specifically, if p is an eigenvalue of (8) then

for every e > 0 there exist nontrivial L"-solutions (X, u) of (9) with

\X — p\ < e, Hull,, < €. Because of Theorem 1 this assertion remains
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valid when the Z^-norm is replaced by the L^-norm (notice that in this

case the constant y in Theorem 1 can be taken to be 0). If (X, u) is a

solution of (9) with \u\n < c> then, because of the Holder continuity of P

and g, it readily follows that u is (up to difference on a set of measure

zero) a solution of (1). Thus we have the following.

(*) If ii is an eigenvalue of (8), then for every e > 0 there exist non-

trivial solutions (X, u) of (1) with \X — p\ < e, \\u\\w < e.

Proof of Theorem 3. Take gx(x, u) to be an extension of g(x, u)

to £2 x R which is continuous and bounded and which has a bounded

continuous partial derivative glu(x, u) with respect to u. (Actually g(x, u)

may not have such an extension but its restriction to {(x, u):xeCl, \u\ < c'}

for 0 < c' < c will; clearly there is no loss of generality in first taking

such a restriction of g.) It follows from [8, Theorem 19.1, p. 154] that

u -*■ g,(- , «(•)) and u -*■ glu(- , w(-)) are continuous from Z/(Q) to Z7(Q)

for 1 < r, s < oo. It then follows from [6, Theorem 2.2, p. 332] that every

eigenvalue of (11) is a bifurcation point of (9) in Lp(£2), where p satisfies

(10). (The application of the result just quoted to (9) is given in [8,

Theorem 26.8, p. 251], to which the reader is referred for details; the

relevant theorem from [6] is quoted as [8, Theorem 17.7, p. 146].) The

conclusion (*) now follows just as previously in the proof of Theorem 2.

Remark. It is interesting to note that while Theorem 2 insures the

existence of eigenfunctions of (1) when P is positive, regardless of the

behavior of g for large u, (1) can fail to have any eigenfunctions when

P = 0. Such an example is due to Pohozaev [7]; consider the problem

Aw 4- X\u\msgnu = 0,      \x\ < 1,

u{x) = 0,      |x| = 1.

An eigenfunction w of this problem, corresponding to the eigenvalue X,

must satisfy [7]

X(NI(m 4- 1) - (N - 2)/2) |      \u\m+1 dx = \ u2vds,

where ds is the differential of surface area and wv is the outward normal

derivative of w. One readily sees from this that the problem has eigenfunc-

tions only if m < (N + 2)1 (N — 2), (by the maximum principle an eigen-

value of this problem must be positive).
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