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Abstract GreyWolf Optimizer (GWO) is a population-
based evolutionary algorithm inspired by the hunting

behaviour of grey wolves. GWO, in its basic form, is
a real coded algorithm, therefore, it needs modifica-
tions to deal with binary optimization problems. In
this paper, we review previous works on binarization of
GWO, and classify them with respect to their encoding
scheme, updating strategy, and transfer function. Then,
we propose a novel binary GWO algorithm (named Set-

GWO), which is based on set encoding and uses set
operations in its updating strategy. Experimental re-
sults on different real-world combinatorial optimization
problems and different datasets, show that SetGWO
outperforms other existing binary GWO algorithms in
terms of quality of solutions, running time, and scala-
bility.

Keywords Grey Wolf Optimizer · Binary Com-
binatorial Optimization · Evolutionary algorithm ·
Metaheuristics

1 Introduction

Combinatorial optimization is a category of optimiza-
tion that consists of finding an optimal object from a
finite set of objects. It operates on the domain of those
optimization problems in which the set of feasible so-
lutions is discrete. In this paper, we focus on binary
optimization problems, where the goal is to find a sub-
set of size k (for a given integer k) of a given set of
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elements to maximize (or minimize) an objective func-
tion. Dominating set (Fomin et al., 2004), Minimum
Spanning Tree (Katagiri et al., 2012), and 0/1 Knap-
sack (Abdel-Basset et al., 2019) are a few to mention.

Metaheuristics are general algorithmic frameworks
designed to solve complex optimization problems. Grey
wolf optimizer (GWO) (Mirjalili et al., 2014) is one of
the evolutionary algorithms that has been widely tai-
lored for a wide variety of optimization problems due to
its impressive characteristics over other metaheuristics.
It has very few parameters, and no derivation informa-
tion is required in the initial search. Also, it is simple,
easy to use, flexible, scalable, and has a special capabil-
ity to strike the right balance between the exploration

and exploitation during the search which leads to fa-
vorable convergence.

GWO in its basic form is a real coded algorithm and

therefore, it needs modifications to deal with binary op-
timization problems. There have been many works in
the literature on binarization of GWO in recent years.
In this paper, we review binary variations of GWO
focusing on their encoding scheme, updating strategy,
and transfer function. Then, we propose a novel binary
GWO (named SetGWO), which is based on set encod-

ing and uses set operations in its updating strategy.
Experimental results on different real-world combina-
torial optimization problems (Influence Maximization,
Vertex Cover, and 0/1 Knapsack) and different datasets
(18 datasets), show that SetGWO outperforms other
existing binary GWO algorithms in terms of quality of
solutions, running time, and scalability.

In the remainder of the paper, the set of all input
elements from which we are trying to select a subset is
denoted by S, where |S| = n. The parameter k denotes
the maximum possible size of a selected subset. Also,
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k-set denotes a set of size k. Furthermore, rand(S,k)
denotes a random k-subset of S.

The remainder of the paper is organized as follows.

In Section 2, the basic GWO is introduced. In Section

3, related work on binarization of the basic GWO is

reviewd. The proposed binary version of GWO is de-

scribed in section 4. The experimental results are dis-
cussed in section 5. Finally, conclusions are stated in
section 6.

2 An Overview of the basic GWO

GWO is a metaheuristic that mimics the hierarchical

leadership and hunting strategy of grey wolves in na-

ture (Mirjalili et al., 2014). Four types of grey wolves

are employed for simulating the leadership hierarchy:

alpha(α), beta(β), delta(δ), and omega(ω). The best

three grey wolves are considered as alpha, beta, and

delta, and the remaining grey wolves are termed as

omega. GWO simulates the major steps of grey wolves

hunting, searching for prey, encircling, and attacking.

The hunting is guided by α, β, and δ. The ω wolves
follow these three wolves.

GWO works as follows: the initial population (a

pack of wolves) is generated. The position of each wolf,

which is represented as a vector, is a candidate solution.

That is, each wolf is represented as a point in a multi-

dimensional space. The best three wolves (leaders) are

selected as α, β, and δ, respectively. Other wolves (ω

wolves) update their positions according to the position

of the leaders. At the end of each iteration, the three

best wolves are selected as new leaders (new α, β, and

δ) and the next iteration starts. The algorithm goes on

until a condition of termination is reached.

The Eqs. (2.1) and (2.2) mathematically model en-

circling behavior of GWO:

~D = | ~C. ~Xp(t)− ~X(t)| (2.1)

~X(t+ 1) = ~Xp(t)− ~A. ~D (2.2)

where t indicates the current iteration, ~Xp is the posi-

tion vector of the prey, ~X indicates the position vector
of an omega wolf, and ~A and ~C are coefficient vectors,

which are calculated as follows:

~A = 2~a.~r1 − ~a (2.3)

~C = 2.~r2 (2.4)

Fig. 1 Encircling Strategy in GWO

where r1 and r2 are two independent random vectors in
[0, 1], and components of a, which is the encircling coef-

ficient that is used to balance the tradeoff between ex-
ploration and exploitation, are linearly decreased from
2 to 0 over the course of iterations. Component ~C pro-

vides random weights for prey in order to stochastically

emphasize ( ~C > 1) or deemphasize ( ~C < 1) the effect

of prey in defining the distance in Eq. (2.1).

Since we do not know the position of the prey (opti-

mal solution) in optimization problems, the three lead-
ers guide the omega wolves to move toward the optimal
solution. Thus, the position of an omega wolf is calcu-
lated as in Eq. (2.5):

~X(t+ 1) =
~X1(t) + ~X2(t) + ~X3(t)

3
, (2.5)

where X1, X2, and X3 are calculated using Eqs. (2.1)

and (2.2), considering that ~Xp is replaced with ~Xα, ~Xβ ,

and ~Xδ respectively. Fig. 1 depicts the GWO updating

strategy.

Because of its advantages, GWO has been success-

fully adapted for a wide range of optimization prob-

lems. Flow Shop Scheduling (Komaki et al., 2015), Ve-

hicle Path Planning (Zhang et al., 2016), Feature Se-

lection (Al-Tashi et al., 2020), Multidimensional Knap-

sack (Luo et al., 2019), Numeric Optimization (Long et

al. , 2020), Traveling Salesman Problem (Sopto et al.,

2018), Signal Processing (Rao et al. , 2019), and Text

Classification (Chantar et al., 2020) are just a few to
mention.
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On the Binarization of Grey Wolf Optimizer 3

3 Related Work on Binarization of GWO

The basic GWO is a real coded algorithm and was orig-

inally designed to tackle continuous optimization prob-

lems. Therefore, it needs some modifications to deal

with binary optimization problems. Binary optimiza-

tion problems use binary space, in which the solution is

limited to 0 and 1 values, which becomes a problem for

the typical GWO. Hence, there have been many efforts

in recent years to modify the basic GWO for binary

optimization problem.

Each binarization approach for GWO must consider

three important components. The first component is

encoding scheme, which must propose a scheme for
encoding solutions of a binary optimization problem in

form of GWO components. The second component is

updating strategy, which must provide a strategy to

update the positions of omega wolves. The third com-

ponent is transfer function, which shows how to con-

vert a real number to 0 or 1. In the following, we review

related work on binarization of GWO with respect to

these three components.

One of the most cited work in this area is (Emary

et al., 2016), in which, Emary et al. proposed two bi-

nary versions for realizing the optimal set of features

in the feature selection problem. They used the binary
encoding scheme in both versions. In the first approach,
individual steps toward the leaders are binarized, and
then stochastic crossover is performed among the three

basic moves to find the updated binary grey wolf po-

sition. In the second approach, a sigmoid function is

used to squash the continuous updated position, then

stochastically threshold these values to find the updated
binary gray wolf position. In the next years, their work
was adapted by many others such as (Liu et al., 2020)

and (Devanathan et al., 2019).

Manikandan et al. suggested new binary modifica-

tions of GWO for choosing optimal elements subsets

(Manikandan et al., 2016). In their approach, in which

they used the binary encoding for solutions, GWO is

modified by binarizing only the initial three optimal

solutions and updating the wolf position using stochas-
tic crossover. Modifications were also carried out using
sigmoid functions to compress the continuous updated
positions.

Sahoo et al. proposed a binary GWO for the cervix

lesion classification problem (Sahoo et al., 2017). They

used binary encoding. As a transfer function, two steps

were proposed to have binary representation of each

grey wolf position. First, the tanh() function scales the
real coded position values to the range of [0, 1]. Then

each scaled value is compared with a randomly gener-

ated threshold T ∈ rand(0, 1). If it exceeds the thresh-

old value, then the bit is set to 1 else it is set to 0.

Al-Tashi et al. proposed a hybrid binary GWO for

the feature selection problem that benefits from the

strengths of both GWO and PSO (Al-Tashi et al., 2019).

They used the binary encoding scheme, a combination

of basic GWO and PSO as the updating strategy, and

a sigmoid function as the transfer function.

Chantar et al. proposed an approach to convert the
continuous GWO to binary version for enhancing fea-

ture selection in the text classification problem (Chan-
tar et al., 2020). They used the binary encoding scheme.
For the transfer function, they used a sigmoid function
to binarize the movement vector of a grey wolf. For the

updating strategy, they used an elite-based crossover

operator to combine the three leaders instead of apply-

ing the conventional average operator.

Luo et al., to tackle the multidimensional knapsack

problem, proposed a binary grey wolf optimizer which

integrates some important features including an initial

elite population generator, a pseudo-utility-based quick

repair operator, a new evolutionary mechanism with a

differentiated position updating strategy (Luo et al.,

2019). They used the binary representation for encod-
ing each solution. For converting continuous values to
binary values, they experimentally evaluated six dif-
ferent transfer functions and concluded that the abso-

lute function of hyperbolic tangent among six transform

functions performs better than others.

Hu et al. used the binary encoding scheme to encode

solutions (Hu et al., 2020). Also, they proposed five

transfer functions for mapping the continuous value to

binary value, one sigmoid function, and four different

V-shape functions.

Zareie et al. proposed a probabilistic encoding scheme,

in which, each solution (wolf) Xj is shown as a vector of

n elements, where the j-th element indicates the chance

of element j to be selected in the solution (Zareie et al.,

2020). Thus, the corresponding solution contains k el-

ements with the highest values in Xj . They used the

same updating strategy as in the basic GWO.

El-kenawy et al. proposed binary GWO based on

Stochastic Fractal Search (SFS) to balance the explo-

ration and exploitation (El-Kenawy et al., 2020). They

developed a modified GWO by applying an exponen-

tial form for the number of iterations of the original

GWO to increase the search space and the exploitation,
and the crossover/mutation operations to increase the
diversity of the population to enhance exploitation ca-

pability. Then, they applied the diffusion procedure of

SFS for the best solution of the modified GWO by using

the Gaussian distribution method for random walk in a

growth process. The continuous values of the proposed
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4 Mehdy Roayaei

algorithm are then converted into binary values using a

sigmoid function so that it can be used for the desired

binary problem.

In (Rebello et al., 2020), Rebello et al. proposed

the use of a sigmoid transfer function to convert the

optimization variables into binary values. They also in-

corporated a simple modification at the local search

component of the algorithm to best suit its application
to escape local minima.

There have been many modifications on the basic

GWO in the previous work. However, considering the
encoding scheme, updating strategy, and transfer func-
tion, the previous work can be summarized as in Table
1.

As can be seen, the previous encoding schemes can

be divided into two categories:

• Binary, where each element (dimension) is repre-

sented by 1 or 0, which indicates whether the ele-

ment is selected as a part of the corresponding so-

lution or not.
• Probabilistic, where each element is represented as

a real number ∈ [0 1], which indicates the probabil-
ity of selection of that element in the corresponding

solution.

Also, the previous updating strategies can be di-
vided into three categories:

• Basic GWO, where the same updating strategy as
in the basic GWO is used to update the position of

an omega wolf.

• Arithmetic, where the basic GWO updating strat-

egy has been modified, but the new position of an

omega wolf is still calculated using simple arithmetic

operations on the positions of the leaders.

• Crossover, where crossover is performed between
solutions and three leaders to find the updated bi-

nary poisition of an omega wolf.

Also, different transfer fucntions such as v-shape,

sigmoid, threshold and tanh() are used in previous work

to convert real numbers to 0 or 1 value.
Considering the basic GWO and previous work on

binarization of it, we can summarize their disadvan-

tages as follows:

• In all previous algorithms, each wolf is represented
by a list of length n (size of the problem) instead of

k (size of the solution), which increases the running
time. Thus, it seems that the encoding scheme can
be improved.

• Algorithms that use transfer functions to convert
real values to integer values are much slower than
others. The transfer function must be called for all
dimensions of all wolves in all iterations. Thus, it

seems that the encoding scheme can be improved.

• The position of an omega wolf is updated according

to the average position of the three leaders. But, in
a discrete space, the average position does not nec-
essarily lead to a discrete value or even an infeasible
solution. Thus, it seems that the encircling strategy

must be modified.
• In exploitation (exploration), the distance of an omega

wolf from the average position of leaders is decreased

(increased). Because a real value can not determine

whether its corresponding element is in the solution

or not, the basic exploitation (exploration) strategy

does not seem applicable in discrete spaces, where

each dimension of a wolf position is 0 or 1. Thus, it

seems that the distance measure and the exploration

and exploitation strategy must be modified.

4 Proposed Algorithm

In this section, we propose SetGWO, a novel binary

optimizer based on the basic GWO . In this algorithm,
we use set encoding, where each wolf is represented as
a set (a k-subset of S). For updating strategy, we use

only simple set operators (union, intersection, and dif-
ference). Because of using such encoding and updating
strategy, there is no need to use a transfer function. We
use the same parameters (C, A, r1, r2) as in the ba-

sic GWO. The flowchart of the proposed algorithm is
shown in Fig. 2.

The main components of the proposed algorithm are

described in detail in the following.

4.1 Initialization and encoding

Each wolf is represented by a k-set, so the order of

elements does not matter. In the initialization phase,
each wolf is initialized by a random k-subset of S.

4.2 Encircling prey

In the basic GWO, in which wolves are modeled as

points in a continuous space, the position of an omega

wolf is updated according to the average position of the

three leaders. But, in a discrete space, the average po-
sition does not necessarily lead to a discrete value. Fur-
thermore, the average value of leaders positions does

not necessarily lead to a good or even an infeasible

solution in a discrete space. In SetGWO, omegas are

updated according to one leader (closest leader to the

omega) as in Fig. 3.
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On the Binarization of Grey Wolf Optimizer 5

Table 1 Summarization of previous work on binary GWO

Author Encoding Scheme Updating Strategy Transfer function Ref.
Emary et al. Binary Crossover - (Emary et al., 2016)
Emary et al. Binary Basic GWO Sigmoid (Emary et al., 2016)
Manikandan et al. Binary Crossover Sigmoid (Manikandan et al., 2016)
Sahoo et al. Binary Basic GWO Tanh() (Sahoo et al., 2017)
Al-Tashi et al. Binary Basic GWO Tanh() (Al-Tashi et al., 2019)
Chantar et al. Binary Basic GWO Sigmoid (Chantar et al., 2020)
Lu et al. Binary Arithmetic Tanh() (Luo et al., 2019)
Tu et al. Binary Arithmetic Threshold (Tu et al., 2019)
Hu et al. Binary Arithmetic Sigmoid,V-shape (Hu et al., 2020)
Zareie et al. Probabilistic Basic GWO - (Zareie et al., 2020)
El-kenawy et al. Binary Crossover Sigmoid (El-Kenawy et al., 2020)
Rebello et al. Binary Arithmetic Sigmoid (Rebello et al., 2020)

Fig. 2 Flowchart of SetGWO

4.3 Distance measure

Since each omega is represented as a set, the order of its

elements does not matter, and considering it as a point

in a k-dimensional space is meaningless. Thus, we re-
define the distance function for our algorithm. The dis-

tance of omega Xi to a leader is defined as the number
of elements in Xi which are not in the leader (that is

their set difference) as in Eq. (4.1):

D(Xi, leader) = Xi − leader (4.1)

4.4 Updating Strategy

Since omegas are represented as sets, we use simple set

operations (union, intersection, and difference) for up-

dating an omega. As in the basic GWO, if |A| < 1,

omega converges towards its closest leader, and if |A| >
1, omega diverges from its closest leader to hopefully

find a better prey.

Exploitation

In exploitation, to decrease the distance of an omega
from a leader, we substitute some elements of Xi that

are not in the leader with the same number of elements

of leader that are not in Xi, as in Eq. (4.2).

N = leader −Xi

O = Xi − leader

D = |O|

step = ⌈|A| ×D⌉

Xi = Xi − rand(O, step)

Xi = Xi ∪ rand(N , step)

(4.2)

where N is the set of elements of the leader that are

not in Xi, O is the set of elements of Xi that are not

in the leader, D is the distance of the omega from its

leader, and step is the extent of which the distance D

is decreased after convergence.
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6 Mehdy Roayaei

Fig. 3 Encircling strategy in SetGWO

Exploration

In exploration, to increase the distance of an omega

from a leader, we substitute the elements of Xi that are
in the leader with the elements of S that are neither in

Xi nor in the leader. Also, to improve the exploration,

we maintain an exclusive exploration set for each omega

Xi, denoted by Si, which contains the elements of S
that are not tried by Xi yet. Si is initialized with S at
the beginning of the algorithm and refilled when its size

is below a given threshold.

N = Si − (Xi ∪ leader)

O = leader ∩Xi

D = |Xi − leader|

step = ⌈|A| ×D⌉

Xi = Xi − rand(O, step)

Sstep = rand(N , step)

Xi = Xi ∪ Sstep

Si = Si − Sstep

(4.3)

where N is the set of elements of Si which are neither in

Xi nor in the leader, O is the set of elements which are

in both Xi and leader, D is the distance of the omega

from the leader, step is the extent of which the distance

D is increased after divergence, and Sstep is the set of
elements that are added to Xi as new elements.

After all, the pseudo code of the proposed algorithm
is provided in Algorithm SetGWO.

5 Result and Discussion

In this section, SetGWO is benchmarked on three bi-
nary optimization problems and 18 datasets. To evalu-

ate the proposed algorithm, we implemented three dif-
ferent binary versions of GWO, which obtained better

results in the literature and use different schemes and

strategies, with the following settings:

• BCROSS (Emary et al., 2016): binary encod-
ing scheme, crossover updating strategy, no transfer

function.

• BGWO (Emary et al., 2016): binary encoding

scheme, basic GWO updating strategy, and a sig-

moid function as transfer function.

• BPROB (Zareie et al., 2020): probabilistic en-

coding scheme, basic GWO updating strategy, no

transfer function.

Although the main focus of this paper is on improv-

ing the binarization of GWO, we have implemented two

other non-GWO binary opimizer algorithms to compare

with:

• BGA (Kabir et al., 2011): binary genetic algo-

rithm.

• BPSO (Bello et al., 2007): binary particle swarm

optimization.

The experiments were carried out on an Asus Lap-
top with an Intel Core i3, 2.3 GHz processor, and 8GB

memory working on Windows 10 OS using python pro-
gramming language in VS code IDE. The source code
of our algorithm is publicly availabe in (Roayaei, 2020).

Three binary optimization problems (0/1 Knapsack,

Vertex Cover, and Influence Maximization) are used
as benchmark problems. For each problem, different
datasets with different sizes are used in the experi-
ments. The best value obtained from five independent

runs is considered as the output of an algorithm. For
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On the Binarization of Grey Wolf Optimizer 7

Algorithm SetGWO
Input: S: set of all elements , k: size of a solution, max it:
number of iterations, pop size: number of wolves, and t:
threshold.

1: Initialize the population as random k-subsets of S
2: for 1 ≤ i ≤ pop size do

3: Si = S
4: end for

5: for 1 ≤ it ≤ max it do

6: calculate the fitness of all wolves
7: Xα = the best wolf
8: Xβ = the second best wolf
9: Xδ = the third best wolf
10: a = 2− it× ( 2

max it
)

11: for 1 ≤ i ≤ pop size do

12: if (|Si| < t× k) then

13: Si = S
14: end if

15: calculate r1, r2, C, A using Eqs. (2.3) and (2.4).
16: leader = closest leader(s) to Xi

17: leader = rand(leader,C)
18: if —A— ¡ 1 then

19: N = leader - Xi

20: O = Xi - leader
21: D = |O|
22: step = ⌈|A| ×D⌉
23: step = min(step, |O|, |N |)
24: Xi = Xi - rand(O,step)
25: Xi = Xi ∪ rand(N ,step)
26: else

27: N = Si - (Xi ∪ leader)
28: O = leader ∩ Xi

29: D = —Xi - leader—
30: step = ⌈|A| ×D⌉
31: step = min(step, |O|, |N |)
32: Xi = Xi - rand(O,step)
33: Sstep = rand(N ,step)
34: Xi = Xi ∪ Sstep

35: Si = Si - Sstep

36: end if

37: end for

38: end for

39: return Xα

each experiment, we have compared our results with
other versions of binary GWO, binary GA, binary PSO,

and optimal solutions or best-knowns solution if exist.

For Vertex Cover, the optimal value for minimum

vertex cover (MVC) of each problem instance is known

(Da Silva et al., 2013). Thus, we have compared six al-

gorithms with each other and with the optimal solution.

The problem here is to find a subset of size k=—MVC—

of vertices of input graph such that it covers the maxi-

mum number of edges. MVC covers all edges. The char-

acteristics of the datasets are shown in Table 2.

For 0/1 Knapsack, again, the optimal value (V ∗) is

known (Ortega, 2020). Thus, we have compared six al-

gorithms with each other and with the optimal solution.

The problem here is to find a subset of input elements

such that the sum of the weight of its elements does

Table 2 Benchmark datasets for Vertex Cover

DataSet # Nodes # Edges MVC Ref.

1 Airline 235 2101 96 (Moll, 2018)
2 US Air97 332 2126 149 (Moll, 2018)
3 Codeminer 724 1109 191 (Moll, 2018)
4 CPAN authors 839 2248 116 (Moll, 2018)
5 EuroSiS 1285 7586 597 (Moll, 2018)
6 YeastS 2361 7182 763 (Moll, 2018)

not exceed the knapsack weight W, and the sum of the

value of its elements is maximized. The characteristics

of the datasets are shown in Table 3.

Table 3 Benchmark datasets for 0/1 Knapsack

DataSet # Elements W V ∗ Ref.

1 knapPI 1 100 100 995 9147 (Ortega, 2020)
2 knapPI 1 200 200 1008 11238 (Ortega, 2020)
3 knapPI 1 500 500 2543 28857 (Ortega, 2020)
4 knapPI 1 1000 1000 5002 54503 (Ortega, 2020)
5 knapPI 1 2000 2000 10011 110635 (Ortega, 2020)
6 knapPI 1 5000 5000 25016 276457 (Ortega, 2020)

For Influence Maximization, the optimal value is not

known for any problem instance. Thus, we have com-
pared six algorithms with each other and with the best

results obtained in the literature. The problem here is to
find a k-subset of vertices of the input graph such that

it maximizes the spread of influence. The characteris-

tics of the datasets are shown in Table 4. The Indepen-

dent Cascade (IC) is used as the information diffusion

model, and the propagation probability, p, differs for
each problem.

Table 4 Benchmark datasets for Influence Maximization

DataSet p # Nodes # Edges Ref.

1 HAM 0.03 2426 16631 (Zareie et al., 2020)
2 Ego-Facebook 0.01 4039 88234 (Beni et al., 2020)
3 Wiki-votes 0.01 7115 103689 (Bucur et al. , 2016)
4 PGP 0.06 10680 24316 (Arora et al., 2017)
5 Hepph 0.1 12008 118521 (Arora et al., 2017)
6 NetHept 0.1 15233 31376 (Arora et al., 2017)

In the following, the proposed algorithm is com-
pared with the other algorithms in terms of quality of

solutions, running time, and scalability.

5.1 Quality of solutions

In this subsection, algorithms are compared with re-

spect to quality of solutions. For Vertex Cover and

Knapsack, the population size is 100 and the number of
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iterations is 1000. For Influence Maximization, the pop-

ulation size and the number of iterations is 100. Since

the running time of the fitness function for this prob-

lem is high, we decreased the number of iterations from

1000 to 100. The value of k is 30 for Ego-Facebook, and

is 50 for other datasets. The results are shown in Table
5 to Table 7.

As can be seen, all algorithms find optimal or near-

optimal solutions in small datasets. Expecting, as the

complexity of a dataset increases, the quality of solu-

tions of all algorithms decreases. The experimental re-

sults show that SetGWO obtained better or equal re-

sults than others five algorithms in 16 out of 18 bench-

mark datasets. It obtained optimal or near-optimal so-

lutions for most of the datasets of Vertex Cover and

Knapsack, and better results than the best-known solu-

tions for 5 out of 6 datasets of Influence Maximization.
The better quality of solutions of SetGWO is because of
using a more reasonable distance measure, the inclusive
exploration set Si which improves the exploration, and

updating an omega with respect to one leader. Among
other five algorithms, BCROSS, which uses crossover
as its updating mechanism, obtained best results.

5.2 Running Time

In this subsection, we compare the running times of

gorithms. For each experiment, all parameters (the num-

ber of population, number of iteration, etc.) are the

same. Results are shown in Fig. 4 to Fig. 6.

The experimental results show that SetGWO achieves

much better running time than all other algorithms on

all datasets. The reason is that SetGWO uses no trans-

fer function and boundary checking. Also, because the

size of each wolf is k (the size of the solution) instead of
n (the number of elements), the updating process takes

less time than the other algorithms. As can be seen, the

algorithms that use integer values instead of real values

and do not need boundary checking and transfer func-

tion (that is BCROSS and BGA) achieve much better

running time than the others.

Note that the difference in running times of six algo-
rithms for Influence Maximization is less than the other

two problems. The reason is that the fitness function of
this problem takes much more time than that of the
other two problems, and the majority of the execution

time is spent on calculating fitness values for wolves.

5.3 Scalability

While quality of solutions and running time form im-

portant aspects of optimization techniques, scalability

is an equally important aspect that determines the util-

ity in practical scenarios. For an algorithm to be called
scalable, it must scale well with both running time and
quality of solutions. In this subsection, we compare the

scalability of SetGWO with the other algorithms on

Knapsack datasets. The reason that Knapsack is se-

lected for scalability comparison is that optimal value

for its all instance is known, and also, the complexity of

an instance is dependent only on one factor (the number

of elements); thus, we can trace the increasing of error

rate and running time with respect to the increasing of

the complexity.

We first analyze the scalability of SetGWO with re-
spect to quality of solutions. The error rate of an algo-

rithm is calculated using Eq. (5.1):

Error =
Optimal − Solution

Optimal
× 100 (5.1)

Result is shown in Fig. 7. Datasets are sorted ac-

cording to their sizes. As can be seen, in less complex
datasets the error rate is low for all algorithms. As the

size and complexity of datasets increase, the error rates

also increase. Experimental results show that SetGWO

is more scalable than other algorithms.

Scalability comparison result in terms of running

time is shown in Fig. 8. Datasets are sorted according

to their sizes. Again, experimental results show that

SetGWO is more scalable than other algorithms.

The reason for better scalability of SetGWO is that

becuase of using set operations, updating each wolf is

done using a constant number of operations, regardless

of the size of each solution. Also, the length of each wolf

increases by the solution size not the problem size. Fur-

thermore, using an exclusive exploration set for each

omega wolf, which is updated during the algorithm,

makes it more scalable than the others. Again, among

other versions of GWO, BCROSS, which uses crossover

as it updating strategy, obtained best scalability; and,

BGWO and BPROB, which use real values obtained

worst scalability.

6 Conclusion and Future Work

In this paper, we reviewed different proposed algorithms

dealing with binarization of well-known GWO, which is

a real coded optimizer. Based on the encoding scheme,

updating strategy, and transfer function, we classified

them into different categories.

Then, we proposed SetGWO, a novel algorithm based

on set encoding and set updating strategy, for binariza-

tion of GWO. We compared SetGWO with the other

three binary GWO algorithms, binary GA, and binary
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Table 5 Quality comparison results on Vertex Cover

DataSet Optimal SetGWO BCROSS BPSO BGA BPROB BGWO

CodeMiner 1109 994 992 837 930 798 889
Airline 2101 2085 2096 2071 2078 2029 2087
USAir97 2126 2111 2109 2077 2087 2027 2085
CPAN authors 2248 2139 1748 1358 1528 1524 1291
EuroSiS 7586 7278 6604 5778 6053 5235 6230
YeastS 7182 6503 6483 5441 5705 4654 6216

Table 6 Quality comparison results on 0/1 Knapsack

DataSet Optimal SetGWO BCROSS BPSO BGA BPROB BGWO

knapPI 1 100 9147 9147 9147 9147 9147 9147 9147

knapPI 1 200 11238 11238 11238 11056 10704 10444 11238

knapPI 1 500 28857 28857 28655 28131 26984 25421 28241
knapPI 1 1000 54503 53203 52197 51944 41370 40250 45680
knapPI 1 2000 110625 107295 106777 101759 76772 74157 88432
knapPI 1 5000 276457 267867 261892 219935 163179 159982 153179

Table 7 Quality comparison results on Influence Maximization

DataSet Best Known SetGWO BCROSS BPSO BGA BPROB BGWO

HAM 316 416 415 351 384 353 333
Ego-Faceboob 383 464 461 407 395 324 451
Wiki-vote 265 240 219 124 169 161 122
PGP 513 624 614 495 496 465 418
Hepph 4410 4499 4148 4021 4070 3995 4118
NetHept 980 1080 1055 956 1024 840 702

PSO on 18 different datasets of three benchmark prob-

lems (Infleunce Maximization, Vertex Cover, and Knap-

sack) and showed that our proposed algorithm, Set-

GWO, outperforms other binary GWO algorithms with

respect to quality of solution, running time and scala-

bility.

The main advantages of SetGWO can be summa-
rized as follows:

• Since it uses the set encoding scheme, the size of

each wolf is k (the size of the solution) instead of n

(the number of elements); thus, the updating pro-

cess takes less time than the other approaches which

use other encoding schemes.

• Because of using set encoding scheme and set op-
erators, there is no need to use transfer function

and boundary checking, which decreases the run-

ning time.

• Because of using an exclusive exploration set for

each omega, denoted by Si, the exploration, and as

a result the quality of solution, is improved.
• The newly defined distance measure helps the algo-

rithm to better determine the distance of two solu-

tions in a discrete space.

• The encircling strategy in SetGWO (updating the

position of an omega according to its closest leader)

helps the algorithm to do more meaningful exploita-

tion in discrete spaces.

There are several future directions for this research.

First, we will apply and analyze SetGWO on Feature

Selection Problem, in which the goal is finding a subset

of the original features of a dataset, such that an in-

duction algorithm running on data containing only the

selected features will generate a predictive model that

has the highest possible accuracy. Second, we plan for

parallelizing SetGWO to improve its scalability on very

large datasets. And, third, we will modify SetGWO in
order to fit for permutation problems.

Note that in this paper, we have focused on differ-
ent binary variants of GWO, and thus we have com-

pared our results with only two other non-GWO al-
gorithms (binary GA and binary PSO). In the future
work, we plan to compare the perfarmance of SetGWO
with other state-of-the-art algorithms.
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Fig. 4 Running time comparison results on Vertex Cover

Fig. 5 Running time comparison results on Knapsack
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Figures

Figure 1

Encircling Strategy in GWO

Figure 2

Flowchart of SetGWO



Figure 3

Encircling strategy in SetGWO

Figure 4



Running time comparison results on Vertex Cover

Figure 5

Running time comparison results on Knapsack

Figure 6

Running time comparison results on Influence Maximization



Figure 7

Scalability comparison results on Knapsack in terms of quality of solutions



Figure 8

Scalability comparison results on Knapsack in terms of running time


