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Interactions between proteins are orchestrated in a precise and time-

dependent manner, underlying cellular function. The binding affinity,

defined as the strength of these interactions, is translated into physico-chemi-

cal terms in the dissociation constant (Kd), the latter being an experimental

measure that determines whether an interaction will be formed in solution

or not. Predicting binding affinity from structural models has been a

matter of active research for more than 40 years because of its fundamental

role in drug development. However, all available approaches are incapable

of predicting the binding affinity of protein–protein complexes from coordi-

nates alone. Here, we examine both theoretical and experimental limitations

that complicate the derivation of structure–affinity relationships. Most work

so far has concentrated on binary interactions. Systems of increased com-

plexity are far from being understood. The main physico-chemical

measure that relates to binding affinity is the buried surface area, but it

does not hold for flexible complexes. For the latter, there must be a signifi-

cant entropic contribution that will have to be approximated in the future.

We foresee that any theoretical modelling of these interactions will have to

follow an integrative approach considering the biology, chemistry and phy-

sics that underlie protein–protein recognition.

1. Historical perspective
In order to understand our current view of proteins and their interactions, one

has to understand how previous knowledge about proteins was accumulated.

The present work rests on the shoulders of our predecessors, who essentially

determined the route of protein research in today’s post-genomic era. It is

truly amazing that we are able to routinely characterize and understand protein

folding, dynamics and interactions to such an extent and at such detailed resol-

ution. How did we end up with such a vast amount of data for protein

molecules? Protein science is exactly 223 years old, which translates into 224

years of trying to understand the nature of protein molecules.

Antoine François, comte de Fourcroy (1755–1809), successfully distin-

guished several types of proteins back in 1789, including albumin, fibrin,

gelatin and gluten. Some years later, Jöns Jacob Berzelius (1779–1848), in a

letter to Gerardus Johannes Mulder (1802–1880) dated 10 July 1838, first

suggested the term protein to describe a distinct class of biomolecules, stating:

The name protein that I propose for the organic oxide of fibrin and albumin, I wanted
to derive from [the Greek word] prvt1ĩo6, because it appears to be the primitive or
principal substance of animal nutrition.

While at Utrecht University, The Netherlands, Mulder described the chemical

composition of fibrin, egg albumin and serum albumin [1], which was pioneer-

ing work that led to the initial and critical observation that distinct proteins are

composed of the same chemical elements: carbon, nitrogen, oxygen, hydrogen,

phosphorus and sulphur. Additionally, Mulder successfully characterized
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protein degradation products, such as leucine, determining

an approximately correct molecular weight of the residue

(131 Da) [2].

In 1902, Franz Hofmeister (1850–1922) and Emil Fischer

(1852–1919), who spoke at a meeting in Karlsbad shortly

after one another, independently announced that proteins

are linear polymers consisting of amino acids linked by pep-

tide bonds. The nature of the peptide bond in addition to the

successful synthesis of the first optically active peptides by

Otto Warburg in Fischer’s laboratory were greatly influenced

by the search for the 20 building blocks of proteins and

prompted the investigation of the last few that were by that

time still unknown: amino acid residues were recognized as

protein constituents based on isolation from protein hydroly-

sates in a timeline of approximately 130 years [3] (leucine

being the first, identified in 1819 [4], and threonine being

the last, identified in 1936 [5]). The primary structure of the

proteins was finally elucidated in 1949, when Fred Sanger

sequenced bovine insulin [6].

In the late 1950s, John Kendrew determined the first crys-

tal structure, that of sperm whale myoglobin [7], whereas

Max Perutz determined the crystal structure of haemoglobin

[8]. Both Kendrew and Perutz were protagonists in a blos-

soming era for X-ray crystallography, working closely

together with William and Laurence Bragg, William Astbury

and John Desmond Bernal. Interestingly, the crystal structure

of haemoglobin is composed of four subunits, all non-

covalently bound. Such a quarternary structure did not

come as a surprise, since Theodor Svedberg had already

determined the molecular weight of haemoglobin and, there-

fore, its subunit composition in the mid-1920s [9]. Therefore,

one should not forget that the discovery of the quaternary

structure (QS) preceded the discovery of the primary [6],

secondary [10,11] and tertiary structures of proteins [7,8].

Whereas X-ray crystallography has proven to be the

primary method for studying the atomic structure of biologi-

cal macromolecules, nuclear magnetic resonance (NMR)

spectroscopy allows both the three-dimensional structure

and the dynamics of biomacromolecules to be probed. Kurt

Wüthrich with his group outlined a framework for NMR

structure determination of proteins in 1982 [12]. Two years

later, the first de novo NMR structure of a protein in solution

was determined—that of the bull seminal protease inhibitor

[13], reported the same year as the Lac repressor headpiece

[14]. In the following years, structures of a plethora of

biomacromolecules have been determined by X-ray crystallo-

graphy and NMR and, as of November 2012, approximately

87 000 structures have been deposited in the public repository

of macromolecular structures, the Protein Data Bank (PDB

database) [15,16].

Although the PDB already includes thousands of

macromolecular complexes involved in protein–protein

interactions, their importance in defining and orchestrating

cellular processes was only recently appreciated [17,18].

A partial explanation could be that the Aristotelian concept

of life that ‘the whole is greater than the sum of its parts’,

erroneously considered as the central dogma of vitalism,

seemingly contradicted the already established mechanistic

view of molecular biology.

In the case of protein synthesis, it was known that macro-

molecular interactions must play a major role. Still, DNA

replication, transcription and translation were unexplored

areas in biology at that time and up to now have been

considered active areas of research. On the other hand, com-

plete metabolic processes were characterized in detail, such

as glycolysis [19], the Krebs cycle [20], cholesterol and fatty

acid biosynthesis [21], which, again, erroneously led the com-

munity to believe that interactions were not essentially

involved in the cellular metabolism. Subsequently, the

dogma ‘one gene/one enzyme/one function’, framed by

Beadle and Tatum [22], was being validated, stating that

simple, linear connections are expected between the genotype

and the phenotype of an organism. Therefore, up to the

1970s, macromolecular interactions were considered purifi-

cation artefacts. For example, during the isolation and

characterization of enzymes in vitro, several experimental

difficulties arose as a result of protein–protein interactions,

such as co-precipitation, which was believed to be contami-

nation [23].

However, a unique observation back in 1958 by Frederic

Richards gradually started to spark the interest in protein

interaction phenomena [24]: Richards found that RNase A

resulted in a cleaved product, RNase S, when a particular

protease was used (subtilisin). RNase S is composed of two

molecules, the S-peptide and the S-protein. When these are

separated, no RNase activity is observed; however, when

recombined in the test tube, the RNase activity is recovered

[24]. Richards also foresaw the importance of the interactions

of colicin molecules with their macromolecular substrates [25]

and laid the foundations for the analysis of macromolecular

interactions by implementing the well-known Lee &

Richard’s [26] algorithm for calculating accessible surface

areas of biomolecules. In 1974, Robert Huber’s group eluci-

dated the crystal structure of the first protein–inhibitor

complex [27]—that of bovine trypsin with its pancreatic tryp-

sin inhibitor. Cyrus Chothia and Joël Janin [28] first

characterized the structure and stability factors of the

formed interface and concluded that the intrinsic interaction

energy was simply proportional to the area of the interface,

a first, rather coarse, but critical approximation to understand

protein–protein binding. A few years later, in 1978, Shoshana

Wodak and Joël Janin [29] implemented the first modelling

algorithm for docking protein molecules.

In the following years, an increasing amount of data for

protein–protein interactions was accumulated and dogmas

about single protein function were being scrambled one by

one: For DNA replication, which was thought to be catalysed

by a singlemolecule in the 1960s [30], the involvement of other

proteins (e.g. DNA helicase, DNA primase, single-strand

binding proteins) was found to be essential for fulfilling this

task apart from the polymerase [31]. For protein transport to

the mitochondria, more than 20 proteins were identified as

critical for this process [32]. In a meeting review published

in Cell in 1992, Bruce Alberts & Miake-Lye stated that:

. . . cell biochemistry would appear to be largely run by a set of
protein complexes, rather than proteins that act individually
and exist in isolated species.

Consequently, to understand how the cell works, a holistic

approach needs to be followed (shown in figure 1). Over

the last 20 years, this approach has yielded on a daily basis

fascinating results in both fundamental [33–39] and applied

[40–43] research. The outcome is substantial not only for

understanding life at the cellular level, but also for drug

design: dissection of protein–protein interactions has

opened routes to the production of therapeutics with novel
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functions aiming to cure, for example, amyloidosis-related

diseases [44,45] and cancer [46,47].

2. Role of protein quaternary structure in a cell
The levels of protein structure were first portrayed by

Linderstrøm-Lang & Schnellman [48], which defined QS as

being the highest level of structural hierarchy described by

the interactions of two or more non-covalently bound sub-

units that eventually form a functional molecule. QS was

first used to designate obligate complexes, such as haemo-

globin [8], and its main difference from non-obligate

complexes lies in the nature of the interacting subunits: if

the individual components of a complex can exist free in sol-

ution, then the complex is non-obligate; in contrast, if these

subunits constitute an integral part of the structure and

cannot be separated (or, if separated, the structure and func-

tion of the protein is irreversibly lost) then the complex is

referred to as being obligate. Note that the definition of

non-obligate and obligate interactions can also depend on

the localization (for details, see §5.1).

Several sections in collective books [49–51], original pub-

lications [52] and critical reviews [53–58] have concentrated

on describing the nature of both obligate and non-obligate

interactions, whereas, more recently, reviews about the struc-

ture, function and modulation of non-obligate complexes

have also appeared [59–62].

In this review, the focus will be on describing the structure

and function of non-obligate protein–protein complexes in the

context of recent findings, explaining the underlying theory of

how and why proteins interact as well as the recently accumu-

lated knowledge for their underlying affinity, describing the

efforts to connect QS to binding affinity.

Along with the description of recent findings, fundamen-

tal past observations will be assessed and a critical view on

modern models will be posed. The main motivation behind

this is the central role that protein–protein interactions play

in defining the fundamental functional and structural unit

of all living matter, the cell. Since the biological function of

a protein is defined by its interactions in the cell [63] and

inappropriate interactions can lead to diseases such as

amyloidoses [44,45] and cancer [46,47], development of

methods aiming to disrupt or modulate protein–protein

interactions is critical [64]. Therefore, in order to successfully

design drugs or interfaces with predefined properties, knowl-

edge and understanding of binding affinity and its

underlying contributing factors is deemed mandatory.

2.1. Determination of non-obligate quaternary structure

at atomic resolution: how do proteins interact?
A plethora of non-obligate protein–protein complexes have

been successfully determined using traditional techniques,

such as X-ray crystallography and NMR spectroscopy.

These techniques provide a detailed picture of how proteins

interact at atomic resolution, meaning that their interfaces

(defined as the regions involved in protein interactions) are

well characterized and the contributing interactions docu-

mented. For example, water molecules important for the

interaction can be described, as well as formed salt bridges,

hydrogen bonds, degree of complementarity of the two part-

ners directly linked with the strength of the van der Waals

interactions, etc. Also, the shape of the interface can be exam-

ined and classified as being concave or convex, whereas the

biochemical nature of the interface and the rim (the area in

its close vicinity) is recognized by observing the contributing

amino acid residues. Such analysis is trivial and very fre-

quently used to compare properties of complexes of a

different nature [65–69]. Despite that, it has been argued

that the sizes of the datasets of derived protein–protein com-

plexes have often been too small, which may lead to

statistically unreliable conclusions [70]. Several tools of cen-

tral importance are routinely used that are able to recognize

structural parameters for protein–protein complexes [71],

including NACCESS [26] for surface calculations and

HBPLUS [72] for recognizing water molecules at the interface

and the underlying contacts. Several webservers have also

been designed to aid the annotation of macromolecular inter-

faces [73–77], such as PISA [74] (http://www.ebi.ac.uk/

msd-srv/prot_int/), and comprehensive databases compiled,

such as PICCOLO [77] (http://www-cryst.bioc.cam.ac.uk/

databases/piccolo). Recognizing the interfacial region is of

particular importance in protein–protein complexes since

the biological function of the complex is in most cases directly

related to the interactions made [78].

2.2. The concept of buried surface area and its

inherent limitations
In protein–protein interactions, the buried surface area (BSA)

is defined as the surface buried away from the solvent when

two or more proteins or subunits associate to form a complex.

The most widely used surface calculation method is the sol-

vent-accessible surface introduced by Lee & Richards [26].

In this method, a probe sphere traces the solvent-accessible

surface as it rolls over the protein. Protein atoms are assigned

their corresponding van der Waals radii. The solvent-

accessible surface area traced by the centre of the sphere

can be considered as an expanded van der Waals surface of

the molecule. In another method, if a water-sized probe

sphere touches the protein surface, then this surface is

defined as the contact surface (i.e. the contact point instead

of the centre of the sphere is used to trace the surface).

Since different methods have been developed to calculate

and represent the protein surface to date [79–83], the area

specific biological process 

complete identification of all
components

detailed rates
of all transitions 

reactant and
complex structures

connecting
structure and

affinity

drug/interface
design

Figure 1. Methodology to follow in protein–protein interaction identification

leading to drug/interface design.
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calculated is clearlydependentonboth themethodusedand the

radii considered for the protein atoms and the probe sphere. For

example, different van der Waals radii have been reported for

atoms in biomacromolecules [84] and substantial differences

in the algorithms used to calculate and representmolecular sur-

faces have been noted by Michael Connolly (http://www.

netsci.org/Science/Compchem/feature14.html).

Besides that, another inherent limitation for the calcu-

lation of BSAs of protein–protein complexes lies in the fact

that proteins do not associate as rigid entities, but may

undergo small-to-large conformational changes upon bind-

ing. Therefore, in order to calculate BSA one has to know

in detail the three-dimensional structures of the unbound

states of the proteins that interact, and calculate the BSA

according to

BSA ¼
X

Ncomp

n¼1

ASAn
free �ASAcomplex; ð2:1Þ

where ASAn
free indicates the accessible surface area of the

unboundmolecules and ASAcomplex that of the bound complex.

BSA ¼
X

Nfree
comp

n¼1

PNfree
conf(n)

a¼1 ASAn;a
free

Nfree
conf(n)

2

4

3

5�

PN
complex

confðnÞ

b¼1 ASAb
complex

N
complex
confðnÞ

: ð2:2Þ

However, since proteins undergo dynamic motions

directly associated with their function [85] the surface area

that is calculated using (2.1) represents an approximate

value and not necessarily the expanded van der Waals sur-

face that should be averaged over the surface formed by all

conformations of the free reactants (assuming that confor-

mations of the reactants are equally populated for

simplification) and the bound structure: where Ncomp indi-

cates the total number of free components in the complex, a

all possible representative conformations ð1; 2; . . . ;Nfree
confÞ

of the free reactant n, and b all possible representative

conformations ð1; 2; . . . ;N
complex
conf Þ of the complex.

However, although equation (2.2) is analytical, for simp-

lification purposes, equation (2.1) is used. Hence, in BSA

calculations, proteins are currently considered static and,

when the unbound structures are not available, the accessible

surface area is calculated from the separated components of

the complex, therefore considering that proteins bind as rigid

bodies. An interesting question about the definition of the func-

tional surface of protein–protein interactions is whether

functional solvent molecules or interacting ions and cofactors

should be included in the calculations, since solvent has been

proposed to functionally define the protein structure [86,87].

2.3. Non-covalent interactions formed in the interface

and accepted approximations
During the study of the three-dimensional structure of a

macromolecular complex in its bound conformation, molecu-

lar interactions present in the interface can be annotated. This

annotation is an integral part of any structural analysis of a

derived complex and has been recently critically reviewed

[88]. One of the major inconsistencies found in the literature

is the usage of different cut-offs for inter-residue interactions

ranging from 5 to 14 Å [89–92]. Because of this, there is no

consensus on the geometrical definition of non-covalent

interactions [93–95]. Deviations in the cut-offs for specific

interactions can also be found in the literature. Furthermore,

hydrophobic contacts can be analysed via a residue-based

criterion (e.g. using the Kyte–Doolittle scale [96]) or an

atom-based criterion, where hydrophobic contacts are

defined between atoms within 5 Å from each other [77].

The distance between a donor and an acceptor atom to

define a hydrogen bond also varies slightly between various

web servers [74–77]. Other interactions, such as annotation of

aromatic–sulphur or aromatic–aromatic interactions also

follow different criteria [76,77] depending on the method

used [97–101]. As a consequence, the different cut-offs used

for analysing crystal structures hamper a direct comparison

of annotated intermolecular interactions in the literature in

a large-scale manner. Figure 2 illustrates how the number

of interactions found for 195 protein–protein complexes

[102,103] substantially changes by varying the cut-off by

+1 Å [77]: their number changes as a function of distance

in a, not entirely, linear manner. This also indicates that the

number of interactions cannot simply be related to the bind-

ing strength and used to classify complexes as strong or weak

binding, as also highlighted previously [102].

2.3.1. Considerations for solvent effects
Since the release of the first crystal structure of a heteromeric

complex [27]—that of trypsin with the pancreatic trypsin

inhibitor (PTI)—the role of water has been clearly demon-

strated: the side chain of Asp189 of trypsin is in contact

with the Lys15 side chain of PTI via water-mediated hydro-

gen bonds. Its importance is also highlighted in the

structure of trypsin in complex with the homologous inhibi-

tor from soybean (STI), where the water molecule is absent,

since the salt bridge is formed directly via the bulkier posi-

tively charged residue Arg of STI that substitutes Lys15.

Apart from crystallography, various methods [104] can

tackle not only the structure but also the dynamics of water

molecules at protein surfaces and at interfaces of protein–

protein complexes such as high-resolution neutron diffraction

and multi-dimensional NMR. For example, buried water

molecules for PTI observed in solution by NMR are in

excellent agreement with crystallographic data [105].

Recently, several experimental [106] and theoretical [107]

advances have provided deeper understanding in the

structure of water around biomolecules. However, inconsisten-

cies between the long-lived residence time of water molecules

measured in solution and the NMR structures and positions of

water molecules observed in protein crystals still exist [106].

Differences in water structure can even be seen between crystal

structures of the same resolution (1.8 Å) and same space group

(figure 3a,b). In a recent study, it was shown that the appear-

ance of a catalytic water molecule in the electron density

obtained byX-ray diffraction depends onwhether the structure

was determined under cryo- or ambient conditions [108].

Water molecules in the interface of protein–protein

complexes may have structural and/or functional roles,

depending on their interactions [86,109]. For example,

water-mediated hydrogen bonds in an interface can contrib-

ute significantly to binding [110–112]. Water buried in the

interface, filling interfacial ‘gaps’, has also been frequently

reported [86], having an ambiguous role in modulating inter-

facial properties, since only a few H-bonds are formed and

van der Waals interactions seem to dominate [112]. Interfacial

water often participates in extensive water networks [113]; the

latter have been observed in highly solvated interfaces, such as
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in those of colicins in complex with their cognate or non-

cognate immunity proteins [114] and in the barstar inhibitor

barnase in complex with its cognate and non-cognate partner,

barstar [115] and RNAse S1 [116], respectively.

Water can also participate in allosteric phenomena [117].

Royer et al. [117] established that interfacial water of the

dimeric haemoglobin from Scapharca inaequivalvis is modulat-

ing the molecule’s allosteric cooperativity and contributes to

fast communication between the subunits via vibrational

energy transport that occurs on the 1–10 ps time scale

[118]. Even in the self-assembly of amyloid fibrils, water is

being considered as an active component in the process defin-

ing different interaction pathways [119]. One-dimensional

water wires at the interface of polar amyloidogenic proteins

that are gradually expelled mediate the interaction of the

forming fibrils [119], whereas, for hydrophobic peptides,

the assembly of the two sheets and expulsion of water mol-

ecules occur nearly simultaneously [119]. Hydrophobic

surfaces bind much faster (nearly 1000-fold) than hydrophilic

ones, since trapped water creates a barrier to rapid assembly.

In order to obtain biophysical insights into the role of water

in protein–protein interactions during the association process,

most theoretical studies on protein folding and association

deal mostly with hydrophobic interfaces [120,121], showing

that hydrophobic dewetting is fundamental for the interaction.

Yet, dewetting must occur rarely in vitro and in vivo since few
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Figure 2. Change in the number of intermolecular interactions for 195 protein–protein complexes using cut-offs +1 Å. m corresponds to the average value

calculated. (a) Hydrophobic contacts, (b) hydrogen bonds, (c) ionic, (d) van der Waals, (e) aromatic and ( f ) p–cation interactions.
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Figure 3. (a,b) Crystallographically determined structures of ubiquitin (PDB entries 1UBQ and 1UBI), along with their corresponding crystallographic water

molecules. Ubiquitin is shown in cartoon representation, whereas the oxygen atoms of water are shown as spheres.
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polar residues are enough to prevent the phenomenon [122].

On average, for protein–protein complexes approximately 70

per cent of the interfacial residues are hydrophilic.

The association mechanism of hydrophilic interfaces has

only recently been investigated [113], showing that interfacial

watermay form an adhesive hydrogen-bond network between

the interfaces at the encounter complex stage of association and

consequently stabilize early intermediates before native con-

tacts are formed. Note that this does not contradict Janin’s

observations for the percentage of hydration of protein–

protein interfaces, which is around 25 per cent [66], since

only a few residues will retain their water molecules in the pro-

duct complex; the others will form hydrogen bonds and salt

bridges with other polar residues and/or backbone atoms.

Overall, in years to come, the advent of both experimental

and computational techniques to map the structure, position

and dynamics of water molecules around proteins will allow

the study of water–protein interactions in a more detailed

manner, unveiling fundamental roles for water, currently

either hypothesized or even unknown [86,109,122], and this

in much more complicated environments, such as that of

the cell itself [109,123].

3. Definition of binding affinity for
macromolecular recognition

The binding of two proteins can be viewed as a reversible and

rapid process in an equilibrium that is governed by the law of

mass action. The binding affinity is the strength of the inter-

action between two (or more than two) molecules that bind

reversibly (interact). It is translated into physico-chemical

terms in the dissociation constant (Kd), the latter being the

concentration of the free protein that occupies half of the

overall sites of the second protein at equilibrium.

By convention, the protein present in fixed and limited

amounts will be termed the receptor protein (A), whereas

the reaction component that is varied will be termed the

ligand protein (B).

Certain assumptions inherent to any measurement of a

protein–protein interaction should be considered:

— All interactions studied are assumed to be reversible and

the association reaction is bimolecular; on the other hand,

the dissociation reaction is unimolecular.

— The receptor protein must have a fixed concentration and,

therefore, receptor molecules are equivalent and indepen-

dent (do not interact).

— The interactions are measured at equilibrium.

— The two proteins that are measured in solution do not

undergo any other chemical reactions and are assumed

to exist only in their free or bound states.

— The measured affinity (Kd) is proportional to the number

of occupied receptor binding sites.

Therefore, for a simple reversible reaction between pro-

teins A and B, one can write:

Aþ BOAB; ð3:1Þ

and, in more detail,

½A� þ ½B�  �
���!
kon

koff
½AB�; ð3:2Þ

where [A] and [B] denote the concentrations of the free pro-

teins (reactants), whereas [AB] denotes the concentration of

their bound complex (product). kon represents the association

rate constant, measured in M21s21; koff represents the dis-

sociation rate constant.

When the system is at equilibrium, Kd is defined as

Kd ¼
½A�½B�

AB
¼

koff
kon

: ð3:3Þ

One can re-write equation (3.2) in terms of total concen-

tration of both proteins [A] and [B]. After applying the

assumption for the conservation of mass, where

½A� ¼ ½At� � ½AB� ð3:4Þ

and

½B� ¼ ½Bt� � ½AB�; ð3:5Þ

and introducing these in equation (3.3), one gets

Kd ¼
ð½At� � ½AB�Þð½Bt� � ½AB�Þ

½AB�
; ð3:6Þ

and, by re-arranging equation (3.6), this gives the fractional

saturation (FS)

½AB�

½At�
¼

½Bt� � ½AB�

Kd þ ½Bt� � ½AB�
¼

½B�

Kd þ ½B�
: ð3:7Þ

In other words, and according to equation (3.7), the FS

corresponds to the fraction of the molecules of protein A

that are saturated with the molecules of protein B.

By assuming that a single binding site is present, a rec-

tangular hyperbola will be visible in a plot of FS [AB]/[At]

versus [B]. Instead, one might highlight these binding events

using a plot of FS [AB]/[At] versus log[B], or the well-known

Scatchard plot, a plot of ligand bound/ligand free.

The Scatchard plot is the traditional method for analysing

binding data where the concentration of the ligand [B] is

measured. It is described by the following equation:

½Bb�

½B�
¼
�½Bb�

Kd
þ
n½At�

Kd
; ð3:8Þ

where a straight line is derived for the simple model (one

binding site is present) and n denotes the stoichiometry of

the interaction (in the simple case, n ¼ 1) and [Bb] the concen-

tration of the bound ligand. The straight line’s characteristics

are: x-intercept, n[At]; y-intercept, n[At]/Kd; slope, 21/Kd.

As an example, a simulated Scatchard plot for the 1 nM

interaction between Ran GTPase–GDP and importin b is illus-

trated in figure 4, showing the abovementioned characteristics.

It is quite useful to assess the linearity of the Scatchard

plot, since deviation from simple binding (and, therefore, dis-

tortion of the linearity of the plot) is expected to be the result

of either multiple sites or non-specific binding, which may be

difficult to distinguish in practice [124].

The binding affinity can also be translated in physical

terms into the Gibbs free energy of dissociation (DGd),

which, for an interaction to occur, must be positive,

DGd ¼ �RT ln
Kd

c0
¼ DHd � TDSd; ð3:9Þ

where c0 is the concentration that defines the standard state,

being 1 mol l21 by conventional criteria, R is the gas constant

(8.3144 J K21 mol21 equal to 1.9872 cal K21mol 21), T is the

absolute temperature (kelvin), whereas DHd, DSd and DGd
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denote, respectively, the changes in enthalpy, entropy and bind-

ing free energy upon complex dissociation. The binding affinity

is related to the Gibbs free energy of association (DGa) as

DGa ¼ �DGd: ð3:10Þ

Both free energies describe all the chemical and energetic

factors involved in the dissociation and association reaction,

respectively.

The free energy of binding, DGa, can be decomposed into

two opposing general energies, one favouring the complexa-

tion of the unbound partners and one opposing it,

DGa ¼ DGbond þ DGentropy; ð3:11Þ

where DGbond and DGentropy denote the intrinsic ‘non-bonded

interaction energy’ that includes all chemical forces acting

on the interface of the complex and entropy, respectively,

analogous to the physical enthalpy and entropy changes,

respectively. Such simplification is useful for assessing the

energy of macromolecular binding and has been rediscovered

several times [28,125,126], from recognizing forces that

participate in insulin dimerization [125] to analysis of

cooperative effects of protein–protein interactions [127].

3.1. Experimental methods and associated errors
Understanding complex biochemical pathways requires

quantitative in vitro analysis of protein–protein binding

[128–130]. For the determination of the FS or binding

parameters of a biological reaction between two proteins in

such pathways, several methods have been developed

[131,132], including NMR spectroscopy, equilibrium dialysis,

dynamic light scattering, analytical ultracentrifugation,

ultrafiltration, electrophoretic methods, differential scann-

ing calorimetry, homogeneous time-resolved fluorescence,

fluorescence correlation spectroscopy/fluorescence cross-

correlation spectroscopy, spectroscopic assays, affinity

capillary electrophoresis, biolayer interferometry, dual polar-

ization interferometry, static light scattering and microscale

thermophoresis. Overall, these methods can be classified in

two general categories, namely direct (or separative) and

indirect (non-separative) methods [133]. Direct methods

measure the actual concentrations of the bound and free

proteins, whereas indirect methods imply the concentrations

from a signal that is being observed.

Gel filtration, ultracentrifugation, ultrafiltration or equili-

brium dialysis are direct methods that can be used to

measure binding of protein–protein interactions. Direct

methods might be appropriate only for binding reactions

exhibiting slow dissociation rates, since the process of separ-

ating the bound and free proteins must be faster than the rate

of dissociation of the complex. If dissociation and separation

of the reactants occur on similar time scales, these methods

are inappropriate since the equilibrium will be disturbed by

the separation of the reactants [133].

Optical methods, such as absorbance, resonance or fluor-

escence spectroscopy techniques, belong to the indirect

methods, where the assumption is made that the measured

signal is directly proportional to the concentration of the pro-

duct, assuming that the proteins exist in only two states: the

free and the bound populations, with each having its unique

optical characteristic. Consequently, if OB is the signal when

protein B is present at a given concentration, O0 the signal

in its absence, and Osat the value at saturation of the reaction,

one can measure the FS using

FS ¼
OB �O0

Osat �O0
: ð3:12Þ

Three of the most frequently used methods to measure

the binding affinity of protein–protein interactions will be

compared and discussed in more detail in the following,

namely isothermal titration calorimetry (ITC) [134], surface

plasmon resonance (SPR) [135] and fluorescence-based

methods [136]. One should, however, bear in mind that

more than 20 methods have been described in the literature

for determining biomolecular binding kinetics [137]. The

determination of the actual affinity clearly depends on

the method used along with its inherent sensitivity and

on the strength of the interactions that are being measured.

3.1.1. Isothermal titration calorimetry
One of the most commonly used calorimetric approaches to

study protein–protein interactions is ITC, which measures

the heat uptake or release during a biomolecular interaction.

An ITC experiment consists of successive additions of protein

B to a solution of protein A, the latter contained in a reaction

cell (figure 5a). Each addition leads to a specific amount of

protein–protein complexes, as dictated by the binding affi-

nity that can be observed by monitoring the heat release (or

uptake; figure 5b).

Microcalorimetry reports on the enthalpy of association,

DHa, that can be related directly to the dissociation enthalpy,

DHd; if the titration is performed at different temperatures,

changes in heat capacity (DCp) at constant pressure are also

reported and are equal to

DCp ¼
dðDHdÞ

dT
¼

dðDSdÞ

dT
; ð3:13Þ

where dT corresponds to the changes in the temperature.

What distinguishes ITC from the other techniques is

that, besides measuring binding affinity, it also allows the

enthalpy, entropy and change in heat capacity of the

interaction (DHd, DSd and DCp, respectively) to be deter-

mined. On the other hand, ITC cannot be used for very

low- or very high-affinity protein–protein interactions since

the change in heat capacity is not correctly captured by the

method. However, some studies have reported affinity data

obtained with ITC for very low-affinity complexes [102].

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.2 0.4 0.6 0.8 1.0

nAt

scatchard plot

1 : 1 interaction
Ran GTPase-GDP/importin b  

[B
]/

[B
t]

[B] (nM)

nAt/Kd

–1/Kd

Figure 4. Simulated scatchard plot for Ran GTPase-GDP and importin b. We

assume a 1 : 1 interaction, having exactly 1 nM affinity (see text).
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3.1.2. Surface plasmon resonance
SPR is an optical method to measure the refractive index near a

sensor surface. In Biacore, particularly, this surface forms the

floor of a flow cell through which an aqueous solution can

pass under continuous flow (figure 5c). In order to detect a

binary interaction, one protein is immobilized onto the sensor

surface. Its binding partner (the analyte) is injected into the aqu-

eous solution through the flow cell. As the analyte binds to the

immobilized partner, the accumulation of proteins on the sur-

face results in an increase in the refractive index. Measurement

of this change is performed and the result is plotted as response

units (RUs) versus time (figure 5d). After a defined association

time, a solution without the analyte is injected that dissociates

the bound complex between the immobilized protein and

the partner. During dissociation, a decrease in SPR signal

(expressed in RUs) is observed. From these, kinetic constants

can be retrieved; however, one should keep inmind that protein

immobilization affects the conformational and rotational

entropy, and, therefore, association rates. On the other hand,

SPR has been shown to be the preferredmethod for characteriz-

ing the kinetics for protein–protein interactions, since most

reported Kds are determined by this method [136]. However,

since diffusion is affected when using SPR, other methods

should be used for kon data collection [138].

3.1.3. Fluorescence-based methods
In most of these methods (e.g. fluorescence (de)polarization

(FP) or Förster resonance energy transfer, competitive

binding assays are used in which a labelled ligand molecule

is bound and subsequently displaced by any of a variety of

competitive inhibitors [136]. A small amount of the labelled

ligand is first bound to protein A and is subsequently

displaced by titrating the unlabelled protein B. In that

way, the inhibition constant Ki of the unlabelled ligand can

be measured. Since the comparison is always of the Ki of

the unlabelled inhibitor, the labelled one does not have to

be physiological; therefore, any adverse effects that might

appear in this system become unimportant. Since the IC50 is

the concentration of inhibitor necessary to displace half the

labelled ligand, if [At]� Kd, IC50 is related to Ki by

Ki ¼
IC50

1þ ½Lt�=Kd
; ð3:14Þ

where [Lt] is the concentration of the labelled ligand and Kd is

the equilibrium dissociation constant. For the determination

of absolute affinities, measurement of the concentration of

the labelled ligand is essential. Such methods, which fall

into the category of spectroscopic methods, are very useful

because additional information can be derived, such as struc-

tural data, binding distances between the fluorophore and

the protein, etc. However, these are successful mostly for

high-affinity interactions and are limited in studying more

complicated equilibria.

This is mainly because the response is not a direct

measure of binding, but rather proportional to it [133]. Over-

all, measurement of an affinity value for protein–protein

complexes is always associated with the method used and
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Figure 5. (a,b) Isothermal titration calorimetry and (c,d) surface plasmon resonance (SPR) techniques. (a) Titrations used to measure heat capacity changes and

(b) calculation of Ka. (c) SPR method and (d ) monitoring of the association/dissociation process of the mobile agent. See text for details.
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the experimental conditions reported. For example, FP

assays are homogeneous assays that give robust results

if the size ratio between components of the complex is

high [139]. For complexes of different natures, measurements

are performed under different temperature, ionic strength

and pH. These differences could lead to an observable

variation over the reported data. Kd values are usually

reported with standard errors of 20–50%, equivalent to

0.1–0.25 kcal mol21 for DGd [102]. Changes in temperature

(18–358C) or pH (5.5–8.5) can alter Kd by a factor of 2 or

10, respectively, corresponding to 0.3–1 in a logarithmic

scale. In addition, the stoichiometry of the interaction (n)

can be determined with a precision of +20%, as reported

by Wilkinson [133]. Moreover, incorrect corrections for

non-specific binding, usage of a labelling method for pro-

teins that may alter the binding behaviour of the complex,

presence of non-binding contaminants or of contami-

nants that might enhance binding, etc. might also hamper

the actual calculation of binding affinity. All these poten-

tial sources of errors must be treated carefully during

measurement [140].

3.2. Conceptual models for biomolecular recognition
Since molecular recognition is a fundamental phenomenon

governing all processes of life, different models that concep-

tually describe the process have been developed over the

last 130 years [141–146]. Three of the proposed mechanisms

to describe binding are shown in figure 6a.

For proteins that interact in a rather rigid manner, a lock-

and-key binding might occur [141], as hypothesized in 1894

by Emil Fischer [143]. The complex of trypsin with BPTI

[27] is an example of such a lock-and-key mechanism: the

interface of the unbound structures is nearly identical to

that of their bound conformation (interface root mean

square deviation (i-r.m.s.d.) is less than 0.3 Å). These inter-

actions, along with other examples found in the literature

[102], show that one plausible mechanism for protein binding

is that one protein might be a (near) rigid complementary

image of its partner protein.

A second mechanism describing molecular recognition is

the induced-fit model, proposed by Koshland [142,147]. In

induced fit, binding of one protein to the other induces

specific conformational changes that result in the bound

complex (figure 6b). The induced-fit model describes that:

— a precise orientation of catalytic groups is required for the

reaction,

— proteins might cause an observable change in their bind-

ing interface, ranging from small side-chain or surface

loop movements to large hinge movement of domains

or even folding/unfolding events, and

— these changes will bring catalytic groups into the

proper orientation.

Aw

+B

+B

At

+B

+B

Aw

Aw

At

+B

+B

At

+B

+B

AtBAt

AwB

Aw AwB

AtB

AtB

AwB

AwB

AtB

(a)

(b)

(c)

(d)

Figure 6. The three basic mechanisms proposed for molecular recognition: (a) lock and key, (b) induced fit, and (c) conformational selection (dynamic fit). On the

left, At and Aw denote protein A in its tight (binding competent) and weak (binding incompetent) conformation. The chemical pathways that do not exist in each

proposed model are indicated by light grey arrows and the way the binding occurs by black arrows. Note that protein B can also undergo conformational transitions;

it is shown here rigid for simplicity.
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A third mechanism of molecular recognition is the

fluctuation (dynamic) fit [143] (figure 6c), also recently

rediscovered and termed (among others) conformatio-

nal selection [148,149], conformational selectivity [149],

population shift [150], selected fit [151] and pre-existing equili-

brium [152]. For consistency with current literature, the

conformational selection term will be used here. The confor-

mational selection model hypothesizes that the reactants

pre-exist in multiple conformations, the best fitting one of

which will proceed to form the product complex. Confor-

mational selection has been reviewed by both Koshland &

Neet [153] and Citri [154] considering that it is either a useful

addition to the induced-fit hypothesis or an alternative mech-

anism of macromolecular recognition: fluctuating protein

molecules (the concept of protein motility) could provide a

good basis for the conformational changes that occur during

recognition, where one particular form that is able to bind

the substrate will further proceed to react. Conformational

selection has been observed in several macromolecular recog-

nition events, even coupled with the induced-fit model [155–

158], both in a simultaneous [157] and in a sequential

manner [158]. Simultaneous occurrence of both mechanisms

means that, depending on ligand concentrations, a shift in

the recognition mechanism is observed. Hammes et al. [157]

observed that at low ligand concentrations conformational

selection dominates the binding process, whereas, by increas-

ing the concentration, an induced-fit mechanism is observed.

Sequential occurrence of both processes simply implies that

the conformation selected from the fluctuating biomolecules

undergoes a subsequent structural rearrangement in the inter-

mediate complex that then proceeds to the final bound form

[158,159]. Although a clear distinction between induced-fit

and conformational selection is hard to observe experimen-

tally, both can be equally plausible for observed

conformational changes. Conformational changes are illus-

trated here for the thioredoxin reductase–thioredoxin

complex (PDB ID: 1F6M): thioredoxin undergoes a confor-

mational change of 6 Å in backbone r.m.s.d., whereas the

interface of the proteins differs by almost 5 Å, a result of a

rotation of the nucleotide-binding domain by 678 (figure 7a).

A more notable example is the complex formed between the

antagonist of the interleukin-1 receptor and its receptor:

when the receptor molecule is in its unbound conformation,

its globular shape is maintained but the binding site is

hindered by its C-terminal domainwithwhich it strongly inter-

acts. However, in the bound conformation of the complex, the

C-terminal domain is displaced following a hinge motion,

allowing the antagonist to bind in the active site. This motion

results in an r.m.s.d. of the receptor molecule’s backbone as

large as 20 Å (figure 7b).

The concept of allostery, as originally proposed by Monod

et al. [144], also falls into the conformational selection mechan-

ism for molecular recognition. It states that proteins may exist

in discrete interconvertible states independent of the ligand

thioredoxin reductase
thioredoxin

interleukin-1 receptor 

antagonist

(a)

(b)

Figure 7. Conformational changes in protein–protein complexes; unbound conformations are shown in greyscale, whereas bound conformations are shown in colour code

by assigning a secondary structure; (a) the complex between thioredoxin reductase and thioredoxin is illustrated in cartoon representation, and (b) the interleukin-1 receptor

in complex with its antagonist; both complexes undergo extensive conformational changes upon ligand binding (see also text).
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structure and/or occupancy; the ratio of these different confor-

mational states is determined by the thermal equilibrium.

Presence of ligand merely shifts the equilibrium toward one

state or another. This model quantified allosteric events and

provided the thermodynamic basis for the dynamic-fit

model, elaborated by Burgen [146] and others.

Clarification of which model prevails in macromolecular

recognition has not yet been provided since all three distinct

conceptual models have been observed experimentally. As a

general scheme, one should bear in mind that all three mech-

anisms may exist both in a simultaneous or in a sequential

manner, being recognition mechanisms that can cover a

broad spectrum of binding events [157,158,160].

3.3. Overall determinants for binding affinity
Various structural determinants of the binding affinity of

protein–protein complexes have been proposed throughout

the years leading to the construction of different models

[28,126,138,161–174], covering nearly all physico-chemical

aspects of both the reactants and the product complex. All

descriptors for binding affinity must meet four criteria in

order to be related to binding affinity:

— They themselves, or their indirect/direct physical effects,

must be generated in the complex structure and be

absent or different in the unbound conformation of the

reactant proteins. If this descriptor or its effect is always

constant (its value does not change) between the free

and bound forms of the proteins, it must not have any

impact on binding affinity else the definition of binding

affinity (see §3) will be violated.

— Descriptors that are related to the association of the com-

plex are describing the kon rate. Since the kon rate is

concentration dependent, at least one of the descriptors

must also be concentration dependent.

— Descriptors related to the koff and, therefore, the dis-

sociation rate of the protein–protein complex must

not be concentration dependent, since otherwise the

definition of binding affinity would again be violated.

— Descriptors must be causal, since the observation of a cor-

relation does not necessarily imply causality.

3.3.1. Buried surface area
The BSA has been the primary descriptor to be related to

binding affinity, and more specifically to the intrinsic bond

(or interaction) energy, DGbond, according to the Chothia–

Janin model [28]. Further justification has been provided by

Miller et al. [175], who showed that BSA compensates for

the area not buried intramolecularly within the potentially

unstable subunits.

BSA is a macroscopic descriptor for the hydrophobic

interactions of proteins and its magnitude has been estimated

to be 0.025 kcal mol21 per 1 Å2 of hydrophobic surface

removed from contact with water,

DGbond ¼ 0:025 � BSA: ð3:15Þ

This hydrophobic interaction is not only a favourable

attraction of hydrophobic surfaces, but also expresses the

gain in entropy of the water molecules released upon com-

plexation (figure 8a). Since water molecules are less mobile

near hydrophobic regions in the reactants, when the product

complex is formed, water molecules will be released into the

bulk solvent and gain mobility, and thus entropy (figure 8b).

All other non-covalent interactions observed in the interface

are theorized as negligible, since proteins are never in

vacuum, but are highly solvated when unbound (figure 8a).

Therefore, all interactions of an interface are always satis-

fied, in both the unbound and bound conformations of the

proteins, by contacting solvent molecules or protein residues,

respectively. This model however neglects, for example, salt

bridges or cation–p interactions, because, even if counter-

ions are present, the strength of the interaction might vary

depending on the nature of the ion. Despite that, the

Chothia–Janin model makes clear that the net contribution

of non-covalent interactions, even if zero, must not be ignored

because interactions determine the specificity of the complex.

A highly specific interaction must reconcile with three cri-

teria, all concerning interface complementarity:

+ Na
+– –

–

Cl

N–H O=C

O=C

+

N–H

bulk water,

strong hydrogen
bonding/weak

orientation
effects
mobile

water at hydrophobic

surface,

weak hydrogen
bonding/strong

orientation effects
stable

unbound complex

(a) (b)

bound complex

hydrophobic surface

Figure 8. Water in protein–protein interactions and the explanation of the Chothia– Janin theory for the affinity of protein–protein complexes; (a) intermolecular

interactions are recovered in the bound conformation, being already present with the molecules of the solvent and its ions; (b) water at hydrophobic interfaces loses

its entropy in comparison with bulk water, which is highly mobile.
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— Complementarity of ions. If not all charged groups form

salt bridges in the interface, the subunit association

would require an ionic bond to the solvent

(2–6 kcal mol21) to be broken and, therefore, would

highly destabilize the protein–protein complex.

— Complementarity of hydrogen bonds. A hydrogen bond

that is not satisfied within the protein–protein interface

would result in a large change in free energy

(0.5–6 kcal mol21) [176].

— Steric complementarity. Although van der Waals inter-

actions are weak in nature, the number of atoms in

the interface is large, and therefore they contribute

to the specificity in a non-negligible manner.

The contribution of macroscopic descriptors of hydro-

phobic interaction (BSA, apolar BSA, polar BSA, number of

atoms in the interface, etc.) to the binding affinity has been

validated in a qualitative manner for a large number of com-

plexes assembled [102,177]. For complexes that bind without

obvious conformational change, these descriptors exhibit

very significant relations to binding affinity, in an, almost,

linear manner [102]. On the other hand, the affinities of

complexes that undergo conformational changes are not

in agreement with the Chothia–Janin theory [102]; there-

fore, hydrophobic interactions [28] must not be the only

determinant for the intrinsic bond energy.

3.3.2. Hot spots and anchor residues
Warm- and hot-spot residues represent only a small fraction

of interface, yet these residues contribute significantly to the

binding free energy [161]. Warm and hot spots are defined

as the residues whose mutation to alanine results in a desta-

bilization of the bound state ensemble by 1–2 and 4 or more

kcal mol21, respectively. Null spots, in contrast, do not gener-

ate such a free energy difference. Experimentally, the

contribution of a residue to the binding free energy can be

assessed via alanine scanning mutagenesis, initially

described by the Wells group [178,179]. A mutation to alanine

essentially removes the side chain of the reference residue,

leaving only the b-carbon. Subsequent kinetics analyses

may provide clues regarding the role played by individual

residues in protein binding. Note that a mutation to glycine

might theoretically be a better solution because the whole

side chain is removed. Nevertheless, mutations to glycine

are not preferred as they might introduce local or global

changes to the conformation (and dynamics) of the molecule.

Several algorithms have been developed [180–185] to

identify hot-spot residues on protein–protein interfaces;

these have been recently extensively reviewed [186–188].

Although they can be classified into two general classes

(energy-based and feature-based methods), all are built on

the following observations for the hot spots:

— They are most often found in central regions of the inter-

face [161].

— Their amino acid composition differs from that of non-

hot-spot residues [182].

— They are more conserved than non-hot spots [189].

— They are occluded from solvent [161,190].

Subsequently, the ‘water exclusion hypothesis’ (or O-ring

theory [161]) has been proposed that may rationalize the role

of the hot spots, whereas coupling of hot spots has also been

reported [191]. Briefly, hot spots that are buried in the inter-

face are surrounded by polar regions of higher packing

density. These regions occlude solvent and lower the local

dielectric constant and consequently enhance the effect of

dipole–dipole or ionic interactions in the formed complex

[161,190]. Li & Liu [192] have also hypothesized a double

water exclusion hypothesis, where hot spots are always

water-free.

Hot-spot residues clearly demonstrate that hydrophobic

interactions are not the absolute determinant for binding as

described by Chothia and Janin. It is evident that the three

complementarity principles mentioned above can be vio-

lated. Still, the hot-spot theory is qualitatively in line

[190,193] with the Chothia–Janin theory [28] because bulkier

residues tend to be found more frequently in hot spots, and

these have the largest surface area [194].

Hot spots can affect either kon or koff (or both) [195],

suggesting that the kinetic behaviour of the complex is

affected in a different manner by specific hot spots. As an

example, mutation of Arg17 to Ala in the trypsin—PTI com-

plex leads to a significant effect on both kon and koff rates,

whereas Lys15 to Ala has only a marginal effect on kon but

a similar destabilization effect on koff to the Arg17 to Ala

mutation [196]. The Camacho group has proposed that

amino acids that bury the largest solvent-accessible surface

area after forming the complex have anchor side chains that

are found in the free form in conformations similar to those

observed in the bound complex [162]. Such anchors are pro-

posed to reduce the number of possible binding pathways

and therefore avoid structural rearrangements at the core of

the binding interface. This would allow for a relatively

smooth recognition process. Anchor residues must provide

most of the specificity necessary for protein–protein recog-

nition [196], whereas other important residues on the

interface contribute to the stabilization (and, therefore, the

off rate) of the formed complex [196]. Although the observed

anchor residues can rationalize encounter complex selection,

the transition from the recognition state to the final complex

structure is difficult to determine computationally because of

the increasing role of short-range interactions that may be

harder to evaluate. In general, despite the fact that hot-spot

residues are found in protein–protein interfaces, all evidence

for their existence comes primarily from rigid and tight

protein–protein interactions. This remains to be experimen-

tally explored for transient complexes and complexes

showing large conformational changes upon binding in

particular [197].

3.3.3. Allosteric regulators and non-interface affinity modifiers
Although allostery has been defined initially as the regulation

of a protein by a small molecule that differs from its substrate

[144], the definition changed to account for regulation of a

protein by a change in its tertiary structure/QS induced by a

small molecule. In general, allosteric effects are now recognized

as changes in the dynamics or structure of a protein by a

modulator; the latter can be of any type, from a small molecule

to another protein [198]. Such changes can shift the population

of the inactive protein to its active form, thereby significantly

altering its binding affinity, e.g. the binding of oxygen to hae-

moglobin. Examples of such ligands can be, besides oxygen,

electron donor organic molecules (e.g. ATP), or post-transla-

tional modification events, such as phosphorylation, the latter

rsif.royalsocietypublishing.org
J
R
Soc

Interface
10:20120835

12

 on February 4, 2014rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/
http://rsif.royalsocietypublishing.org/


being the most common covalent protein modification to

achieve allosteric control. Such modifications alter the binding

affinity of the partners through changes in the dynamics and/

or structure of the chains that interact. Therefore, not only inter-

facial or rim regions can affect the binding affinity of protein–

protein interactions, but also modifications of sites remote from

the interfacial region through any possible mechanism of allo-

steric regulation.

4. Structure prediction of macromolecular
complexes: is the docking problem
still unsolved?

Although current structural biology tools have broadened our

knowledge in single protein structure, function and dynamics,

the situation differs substantially in the case of protein–protein

complexes: owing to experimental limitations in probing

protein–protein interactions [199] and solving the structure

of biomolecular complexes [200] complementary computa-

tional approaches are often needed to assist experimentalists

in investigating how two proteins of known structure interact

and form a three-dimensional complex.

Protein–protein docking algorithms have been developed

for this purpose. They use geometric, steric and energetic cri-

teria to predict the atomic structure of a complex [64,201,202].

Every docking program incorporates two key elements:

— the search algorithm that samples configurational and

conformational degrees of freedom and

— the scoring function that ranks the generated solutions.

Although predicting the structure of a complex by dock-

ing should be relatively simple for proteins that bind with

near-rigid body manner and have highly complementary

interface regions (such as trypsin–PTI [27] or barnase–

barstar [115]), this is clearly not the case. Finding a correct

solution for a biomolecular interaction at atomic resolu-

tion can be influenced by several factors inherent to any

simulation of biomolecular recognition:

— Proteins are not static structures, as explained in §3.2.

Their highly dynamic nature can cover the entire scale

of conformational changes upon binding from small

side-chain reorientations to unfolding/folding transitions.

Next to that, different motions of the protein molecules

can be exhibited in solution, such as hinge motions

[203], secondary structure rearrangement [204], or even

high plasticity of the interfacial region [205]. Although

several methods can be used for predicting protein

dynamics and/or conformational changes [206], none

has been shown to perform reasonably well for proteins

with different motions [207]. For example, protein

motions can be experimentally monitored within a time

scale of femtoseconds (e.g. with neutron scattering) to

more than a second (e.g. with SAXS, SANS or H-D

exchange), whereas molecular dynamics simulations can

reach up to milliseconds (but not in a routine manner,

being rather limited to nanoseconds–microseconds in

most cases) for systems of small to medium size [208].

— The binding site is not always conserved or cannot always

be identified [209–211]. Again, results show that most

recent interface predictors can distinguish an interface

with fair accuracy [188]. However, for weak transient

protein–protein complexes, interface prediction might

fail [188,210,211].

— Current docking methods cannot distinguish whether

two proteins will bind or not, i.e. predict the binding affi-

nity. Docking programs will always yield some answer,

independently of the affinity of the protein–protein inter-

action [212]. Recent studies have highlighted this fact,

but, to date, no single docking program has been shown

to be successful in identifying native complexes in cross-

docking studies, except in the case of highly complemen-

tary interfaces [212–215]. Cross-docking is defined as the

all-against-all binary docking procedure in which all com-

binations of proteins are docked to each other and the

native complexes must be predicted.

— Scoring, defined as the selection of a preferred solution

from the pool of generated conformers, has greatly

improved during recent years [215], driven, among

others, by blind prediction experiments such as CAPRI

[216], the Critical Assessment of PRedicted Interactions

(http://www.ebi.ac.uk/msd-srv/capri/). There are even

strong critiques about scoring [177,217], even noting that

it might be nearly random [218].

Most docking methods are successful for proteins that

undergo minor-to-medium conformational rearrangements

upon binding. For these systems, scoring functions can ident-

ify near-native models that can be subsequently refined

[219,220]. Next to that, implementation of novel clustering

algorithms [221–223] (clustering refers to the identification

and classification of similar docking predictions into clusters)

is allowing more efficient analysis of similar solutions, redu-

cing both the computational time and the heterogeneity that

could hinder identification of near-native poses.

Recently, there has been a trend in docking simulations to

incorporate available experimental information into the dock-

ing and/or scoring process. This can dramatically reduce the

conformational space to be sampled [202,224,225]. Such infor-

mation can be used either a priori in docking, and therefore

drive the docking procedure [226,227], as was originally

done in HADDOCK [224], or a posteriori, meaning that gener-

ated solutions are filtered according to the experimentally

observed attributes of the complex [225,228,229]. Recently,

more groups are integrating experimental data coming

from different sources and the idea of integrative docking

[230,231], originally described in the initial HADDOCK publi-

cation [224], has become amatter of great importance in current

molecular modelling research [232,233]. Integrative docking

can be used either for modelling large macromolecular com-

plexes [234], such as the nuclear pore [235] or other cellular

machineries, using for example experimental data such as elec-

tron density maps [236], or for the detailed characterization of

macromolecular assemblies of lower molecular weight using

rather classical experimental information from NMR [224].

As an example, approximately 100 biomolecular structures of

complexes determined usingHADDOCK [236] in combination

with various amounts of experimental data (mainly NMR)

have been deposited into the PDB [15] as of November 2012.

Although docking is a powerful technique to predict

the structure of a complex, based on its known constituents,

prediction of the complex based on homology, the so-

called template-based methods, is now rapidly increasing

[237–239], as illustrated by novel theoretical applications
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[211]. The Vakser group has recently claimed [211] that

templates exist for nearly all complexes of structurally charac-

terized proteins in the PDB, although the authors also report

that such observations have not been validated for targets

released during the CAPRI experiment. Also, Barry Honig’s

group has already shown that homologous interfaces can

be identified for a vast number of protein–protein complexes

and that the expected interface should, in principle, look simi-

lar to related ones that have been crystallographically

determined [210]. This is, however, not always the case

[240,241]. For example, the exact interaction geometry is

less likely to be conserved as illustrated by the homologous

complexes of the chemotaxis histidine kinase CheA with

its phosphorylation target CheY for Escherichia coli and

Thermotoga maritima [242]: in this system, a rotation of

approximately 908 is observed between the formed interfaces

[242]. In general, however, close homologues (30–40% or

higher sequence identity) have been shown to interact in a

rather similar manner [243,244].

4.1. Is scoring in protein–protein docking related to

binding affinity?
Several models have been developed to date for predicting

the energetics of macromolecular complexes [28,126,138,

161–173,245]. Although some have been very successful on

small training sets [126,163], and even coupled to successful

docking predictions [246,247], the published models did far

less well on larger datasets [168,169,177] and their predictive

value remains, in general, poor [177].

For algorithms developed for protein–protein docking

coupled with binding affinity prediction, the classical

model of Horton & Lewis [126], aimed at predicting binding

affinity by decomposing the interface into its polar and

apolar BSA, showed a very strong correlation with exper-

imental measurements and crystal structures that were

available at the time it was developed [126]. Nowadays,

this model is clearly insufficient for binding affinity

prediction, since the BSA is moderately correlated with the

binding affinity, even for rigid binders (r ¼ 0.54 for 70 com-

plexes) [102]. Another example is the algorithm based on

the Freire equations [245] for describing binding free energy

and modified for predicting binding affinity of a protein–

peptide interaction by the Holmes group [247]. The algorithm

did fairly well in predicting the actual energy of the reference

structure even when coupled with docking; however, a lot of

non-native poses generated had equivalent binding affinities,

a common problem. The Holmes function assumes that the

complex binds without any conformational change [245].

This contrasts with the current view of protein–peptide

recognition indicating that, next to the multitude of confor-

mations that a peptide can adopt in solution, folding events

occasionally happen upon binding [61]. Another binding affi-

nity predictor coupled with docking is the one developed by

Ma and co-workers [165]. Their function ranked and scored

the docking results for 10 protein complexes and, while it

showed encouraging results, it did not succeed in ranking

native solutions first [165]. As far as scoring functions in

protein–ligand docking are concerned, these have been opti-

mized mainly for drug design purposes. This means that an

estimate of the binding affinity of the ligand can be obtained

only in a qualitative and relative manner and for structurally

similar ligands. In contrast, protein–protein docking scoring

functions have not been developed for predicting binding

affinities [177], but rather for identifying the best solutions.

Top-performing scoring functions in protein–protein dock-

ing [224,248–250] have proven to be reasonably reliable

against blind cases in the CAPRI experiment [216,251],

being able to identify models close to the experimentally

determined ones. However, the same functions poorly pre-

dict experimentally measured binding affinities [177]. Next

to that, scoring functions are not yet able to distinguish

binders from non-binders, as shown by cross-docking simu-

lations. A large-scale effort to predict designed interfaces

that do actually bind was made by 28 different groups in a

recent CAPRI experiment [168]. Results show that the algor-

ithms can efficiently distinguish binders corresponding to

experimentally determined structures from non-binders

with designed interfaces. However, all scoring functions

failed to predict the designed interface that actually binds

from the remaining designs (86 in total) that do not.

4.2. Structure–affinity models for protein–protein

binding affinity prediction
Various sophisticated approaches for estimating the affinity

of protein–protein interactions have been developed to date

[252], some of which also include elaborate models that

approximate the energetic contributions of the solvent [253].

However, in the context of macromolecular docking, where

thousands of models may be generated, these methods are

computationally prohibitive. Alternative, more approximate

methods that mostly relate to changes in the solvent-accessible

surface area upon binding have been proposed instead and

these will be discussed in the following.

Since the initial model of Chothia & Janin [28] for predict-

ing the interaction energy of protein–protein complexes, an

extensive binding affinity benchmark has been assembled

[102]. This dataset includes 144 protein–protein complexes

of different affinities and amount of conformational changes

to serve as a catalyst for coupling docking results to binding

affinity prediction, or just for deriving new binding affinity

predictors. Three original algorithms have been developed

to date using this benchmark [169,170,172].

One has been developed using descriptors covering all

possible combinations of residues in the interface for different

binding conformations of the complexes (840 descriptors for

144 complexes in total) [172]. Using a genetic algorithm,

these descriptors could be reduced to 378, most of which

describe hydrophobic and steric interactions. This number

is still much higher than the number of experimental data,

indicating possible over-fitting.

Moal et al. [169] have designed a machine learning

approach, combining four differentmachine learningmethods.

Although their results are fairly good for the training set, when

the four methods were combined using a consensus approach,

they yielded a correlation coefficient r with experimental

measurements of 0.55, similar to the one that the simple BSA

shares with the affinity of rigid complexes [102]. Another mul-

tiple regression model from the Weng group [170] exhibits a

slightly higher correlation (r ¼ 0.63). However, the predictive

power for affinities of antibody–antigen complexes is insignif-

icant (r ¼ 0.24). Both methods cross-validated their algorithms

using leave-one-out-cross-validation (LOOCV). The idea

behind this cross-validation method is to predict the affinity

of a single protein–protein complex from the dataset, based
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on the optimized regression equation derived from all other

complexes. There are some concerns about LOOCV:

— It tends to include unnecessary components in the model

and has been shown [254] to be asymptotically incorrect.

— It does not work well for data with strong clusterization

[255].

— It underestimates the true predictive error [256].

The Weng group used all the data for training [170]. No

independent test set for validating the model was assembled.

The model developed by Moal et al. [169], who did use an

independent test set, did not hold any predictive capacity

on this test set.

4.2.1. Possible reasons for the limitations of current scoring

and affinity prediction models: is there a theoretical

prediction limit?
Different possibilities can account for the poor prediction of

binding affinities using current biophysical models:

— The quality of the experimental data or the crystal coordi-

nates might be ambiguous.

— Very few, if any, of the present models do account for con-

formational changes taking place upon binding or for the

presence of cofactors that might be needed for binding.

— Allosteric regulation or more complicated kinetics of the

complex (two-state kinetics, etc.) might hinder actual pre-

dictions. Current models only account for the simplest of

the mechanisms—the lock-and-key model, as described

in §3.

— Effects of pH, temperature, concentration and solvent are

usually ignored.

— The performance (especially for affinity prediction

models) depends on the quality and size of the set of

experimental data used for testing, as well as on the diver-

sity of the biological systems they represent.

— The current models only account for properties of

the interface [102], or, rarely, from the rim region—the

latter, if included, only for kon prediction [138,257].

None account for contributions from the non-interface

surface, which can play a significant role in modulating

affinity (see §3.3).

— A final possibility is that linking a structure that has been

determined in its crystalline state with the affinity that has

been measured in solution state can introduce ambiguities

in the derived results because of the different natures of

the two states.

Overall, the ideal prediction limit that can be set for

structure–affinity models (assuming that all modelling ambi-

guities are eliminated and results are only dependent on the

measured data) must be within the experimental error,

which, for a large dataset, can change Kd by a factor of

10–50, and DGd by 1.4–2.3 kcal mol21 [102,172].

Finally, one of the central reasons for current models’

limitations could well be that the current scoring functions

do not account for the underlying energetics of the free

components. Figure 9 illustrates this point: assuming

two different protein–protein complexes, A–B and X–Y

with similar energies of their bound state but different ener-

gies of their free states, any model considering only the

bound state will predict similar binding affinities for those

two complexes

DGAB
a ¼ DGXY

a ; ð4:1Þ

while, experimentally, they will have different affinities

owing to the differences in their respective free states,

DGAB;XY
a ¼ GAB;XY

a � ðGA;X
free þ GB;Y

freeÞ: ð4:2Þ

The free state contribution is typically neglected in docking.

While docking scoring functions might not perform well

in affinity prediction, this does not imply that they fail in

scoring docking poses for which they have been developed.

Indeed, most do show a strong performance in ranking and

selecting high-quality models in the CAPRI competition

[216,251].

An ideal scoring function that could also predict binding

affinity should, in principle, be able to (indirectly or directly)

account for the free energy of the unbound partners. Some

binding affinity prediction algorithms can reasonably well

describe the energy of a (near) rigid binding complex [258].

However, predicting the binding affinity of non-rigid binders

will require a more detailed statistical–mechanical treatment

in which the full ensemble of unbound structures for each

partner, and their contribution to the free energy of the free

state, should be considered. Such an approach should, in

principle, be able to deal with more flexible molecules.

A full description of the free energy conformational land-

scape of highly flexible or even (partially) unfolded

molecules will remain out of our reach for the near future.

Overall, models developed to date describe the thermo-

dynamics of an association reaction by its product only,

ignoring reactants and possible accompanying structural

changes. Novel functions will have to be developed that

can predict the dissociation constant within the experimental

error in order to have an actual use in modern drug discovery

for protein–protein interactions. The availability of a

protein–protein binding affinity benchmark [102] should

foster the development and improvement of binding affinity

prediction algorithms. Hopefully, in the not too distant

future, binding affinity prediction and scoring will start to

converge.

DGa
AB

DGa
XY

G A B X YGA
free + GB

free

GX
free + GY

free

GAB
bound GXY

bound,

Figure 9. Schematic of the energy landscape of two different protein–

protein complexes.
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4.3. Prediction of kinetic rates
The association of protein–protein complexes is dictated by the

rotational and translational diffusion of the partners, their sur-

face properties, the electrostatic interactions that guide the

interaction, as well as the solvent properties, which are, for

example, at the origin of the hydrophobic effect. Several

simple models have been constructed to predict kon, mostly

based on the Einstein–Stokes equation [259] and Poisson–

Boltzmann calculations [260]. Although the limit of colli-

sion rate is approximately 1010 M21 s21 (calculated by the

Einstein–Stokes equation), no single protein–protein complex

can achieve this without the aid of electrostatic steering [257].

This limit is three to six orders of magnitude above typically

observed association rates, highlighting that most collisions

do not lead to fruitful association. Much work has been done

on the prediction and improvement of kon rates especially for

complexes whose association is assisted by charge interactions.

Studies have revealed that enhancing electrostatic steering

leads to a substantial increase in kon [261–263], reaching the

limits of the diffusion collision rate. One of the most recent

models proposed for predicting association rates is TransComp

[138]: it implements the transient-complex theory for predict-

ing kon and simulates the formation of a transient complex

via diffusion where proteins have near-native separation

and relative orientation but have not yet formed short-range

interactions. The theory predicts that kon is defined as

kon ¼ k0on exp �
DG�el
kBT

� �

; ð4:3Þ

where the basal rate constant for reaching the transient com-

plex by random diffusion is included and the electrostatic

interaction free energy of the transient complex. A moderation

factor f is applied to DG�el; when the latter is very negative, to

correct for overestimation of kon,

f ¼ 1þ 10�4 exp �
DG�el
kBT

� �� ��1

: ð4:4Þ

The transition-state theory applied to protein–protein kon
rate prediction has been tested on 49 protein–protein com-

plexes with known kon rates ranging from 2.1 � 104 to 1.3 �

109 M21 s21 [138]. The correlation between the predicted

and experimental log kon has an r2 of 0.72, and the r.m.s.d.

is 0.73, corresponding to a fivefold error in kon prediction.

The method is valid so far for complexes for which the

association rate is diffusion limited (kon. ≏104 M21 s21)

and the reactant proteins undergo negligible, if any, confor-

mational rearrangements.

The Schreiber group developed a kon prediction, the PARE

function, 13 years ago [264], yielding comparable results to

TransComp discussed above (G. Schreiber 2012, personal

communication). Briefly, in PARE, kon is determined using

ln kon ¼ ln k0on �
DU

RT

1

1þ ka

� �

; ð4:5Þ

where ln koon is the basal on rate of the interactions, and the

electrostatic and salt influence is explicitly considered; DU is

the electrostatic energy of the interaction, R is the gas constant

and T is the temperature. a is set to 6 Å and k is the Debye–

Hückel screening parameter relating to the ionic strength of

the solution.

U in equation (4.5) is calculated using

U ¼
1

2

X

i;j

qiqj

4p1o1rij

e�kðrij�aÞ

1þ ka
; ð4:6Þ

where i and j are atoms bearing charges and 1 is the dielectric

constant of the medium.

DU is therefore calculated by

DU ¼ Ucomplex � ðUprotein1 þUprotein2Þ: ð4:7Þ

Note that, for proteins that bind with large conformation-

al changes, disordered proteins being at the far end of the

spectrum, kon determines the binding affinity to a higher

extent than koff [265], whereas, for rigid complexes, koff is

the major determinant for binding affinity [265].

Engineering proteins to achieve desirable kinetic rates is

non-trivial [257,263], even in non-crowding conditions

[266]. For example, especially for protein–protein binding

affinity engineering, charges have been shown to play mul-

tiple and complex roles in binding [267,268]. When present

in remote areas from the interface, they could lead to the for-

mation of non-specific complexes. For example, Tiemeyer

et al. [269] showed that the surface charge distribution

is very important for the orientation of proteins on lipid

membranes. Significant effects of charges on kon could be

sometimes concomitant with effects on koff, indicating

that the association rate might be difficult to modulate in a

significant and controlled manner independently of the

dissociation rate [266]. This becomes even more challenging

in in vivo conditions, where macromolecular crowding can

also affect the association rates of protein–protein complexes

[123,270–274]: increasing the rates by increasing the effective

concentration, and decreasing the rates by decreasing the dif-

fusion of the particles. In recent work, Ando & Skolnick [270]

quantified the significant role of hydrodynamic forces in

macromolecular motion and Elcock [271] highlighted their

importance in protein–protein binding. Another mechanism

that can affect kon by altering the transition state is the intro-

duction or deletion of steric clashes during association [275].

For example, the association rate constants of the IFN_2–

IFNAR2 complex changed when Ala19 of IFN_2 (located at

the interface) was replaced by a Trp [275]: this mutation

introduced a repulsive interaction, resulting in a reduced

kon. However, in parallel, it also reduced koff, by the formation

of a favourable interaction with Trp100 on IFNAR2. While

substantial progress has been made towards rationalizing the

association effects [113,138,171,265,276], dissociation events

are still not well understood. For koff, breaking of short-range

interactions between proteins and interfacial properties

should be the rate-limiting step. The rate at which the two pro-

teins diffuse away from each other (which will decrease with

increased long-range electrostatic interactions) does not seem

to affect koff much [257]. However, van der Waals interactions

only partially correlate with koff rates when the dataset of

Zhou and the affinity benchmark [98] are considered, and

only for near-rigid binders (figure 10a). koff should also

depend on complex–solvent interactions, since in macromol-

ecular crowding conditions hydrodynamic effects are

dominant [270,277]. Indeed, a significant correlation is calcu-

lated between koff and the desolvation energy, independently

of the conformational change (figure 10b).

Currently, only one model has been proposed to predict

the koff of protein–protein interactions with reasonable
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accuracy [173]. The authors provided separate models for

predicting kon, koff and Kd, but the properties determining

the Kd are different from those coming from the determinants

after division of koff by kon. Also, for calculation of kon rates

the bound complex was used. This is counterintuitive since

kon describes the association of the unbound proteins.

5. Protein–protein interactions in vivo: the
p53 example

Protein–protein complexes employ all kinds of attributes that

large macromolecules may have in order to accomplish their

functions within the cell. Promiscuity, specificity, selectivity and

binding affinity are factors that can modulate protein–protein

recognition and their combination is unique and case specific.

These are defined as follows:

— Specificity is the ability of a protein to bind a single partner

protein for performing a task.

— (Binding) affinity indicates the existence and strength of an

interaction between proteins.

— Promiscuity (cross-reactivity/multi-specificity) denotes the

ability of a single protein to perform multiple functions,

thereby interacting with more than one partner in a

specific manner.

— Selectivity defines a protein that is binding/using a range

of other proteins, but some better than others.

Designing a protein–protein complex with a preferred

attribute is very difficult since all these attributes are related

to each other [64]. The tumour suppressor protein p53 is a

great example for such a combination of properties [278].

p53 is an important hub in multiple signalling networks

and is the protein most frequently involved in human

cancer. It has been described as ‘the guardian angel of the

cell’ [278,279]. p53 has a highly versatile structure, featuring

every possible conformation, from ordered secondary struc-

ture elements and well-defined folds to completely

disordered regions. Its core domain is always folded and

binds to DNA and a few other proteins [280], whereas its

two flanking regions are mostly in a disordered state under-

going disorder-to-order transitions [280–283]. These may

bind hundreds of signalling proteins. A sequence segment

within one of these regions exhibits chameleon features

[282], meaning that it can adopt three different ordered con-

formations, excluding loop orientation (a-helix, b-sheet with

flanking strands, beta-turn-like), depending on the partner

with which it interacts. Therefore, in the cell, interactions of

a specific protein binding site with many partners, such as

the rigid core domain of p53, are likely to be mutually

exclusive, resulting in competition for interactions among

alternative partners [281]. Such competition must be a critical

determinant for the specificity of the underlying interactions.

The selectivity of such binding sites is determined by the rela-

tive binding affinities of alternative interaction partners and by

the local concentrations of each protein. However, selectivity is

extremely difficult to predict, either in vivo or in vitro, since a

number of factors (such as post-translational modifications,

subcellular localization and differences in subcellular distri-

butions, interactions with additional proteins) may modify

dramatically the interactions.

5.1. Cellular complexity, compartmentalization

and crowding effects influence

protein–protein interactions
As discussed previously, functional, structural and dyna-

mic properties of the individual proteins influence binary

interactions. In addition to protein variants coming from

post-translational processes [284], alternative splicing [285]

and other (e.g. genetic) factors that may influence gene

expression [286], the structure of the interactome is one of

the crucial factors underlying the complexity of life, from

cells to complete organisms. It is highly dynamic with

changes as a function of time, localization in the cell, as

well as in response to environmental stimuli [287]. Even

interactomes from cells derived from the same tissue, or syn-

chronized cells, may substantially differ. As a consequence, a

protein that can be found in different cellular compartments

may exhibit different functions, different interactions, or dis-

crete post-translational modifications. Therefore, not only the

combination of promiscuity, specificity, selectivity and bind-

ing affinity for a specific protein–protein interaction defines

the recognition but also all the endogenous and exogenous

factors that influence the cell.

Protein interactions are governed by several forces, such

as compartmentalization and electrostatic and hydrophobic

effects. Co-localization, an endogenous property of the living

cell, already increases the effective concentration of biomole-

cules, leading to non-specific protein interactions in their

microcompartment. Co-localization, together with normal

mechanisms of natural selection, can lead to the formation of
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interacting domains, hetero- or homodimers [198]. For

example, when proteins are not co-localized, a singe mutation

can lead to a change of a couple of kcal mol21, but, since the

concentration of proteins in the cells is usually in the micromo-

lar to nanomolar range, binding is negligible. However, when

proteins are co-localized (boosting greatly the effective concen-

tration of proteins), a small effect on the dissociation constant

can translate into substantial binding, since its value can be

brought below the effective concentration of the co-localized

partner (being approx. micromolar).

One of the most prominent endogenous properties of the

cell is macromolecular crowding, a phenomenon that alters

the properties of molecules in a solution when high concen-

trations of macromolecules such as proteins are present

[274]. Macromolecular crowding enhances significantly inter-

actions in a non-specific manner and is expected to affect both

diffusion-limited and transition-state-limited association reac-

tions, by decreasing or increasing their rates [123,272].

However, it is still unknown to what extent cellular hetero-

geneity and physiological properties of biological structures

are affected, since no single experimental study has yet

reported conclusive evidence on the role of macromolecular

crowding. Models for macromolecular crowding should be

developed in order to have a more realistic view of in-cell

protein–protein interactions [271], given the available exper-

imental data [272]. Towards this goal, novel in-cell NMR

methodology [288,289] should contribute to our understand-

ing of protein–protein interactions in different cellular

environments and under different cellular conditions.

6. Design of protein–protein interfaces,
modulators and inhibitors

Two general approaches deal with the modulation

of protein–protein interactions, namely (i) redesign of the

interface by genetic/protein engineering, aiming to alter

properties of the protein–protein complex or even the speci-

ficity of an interaction, and (ii) inhibitor design, aiming to

disrupt protein–protein interactions. A book on this topic

has been published by Adler et al. [290].

6.1. Interface design of protein–protein complexes
Experimentally, redesign of natural protein–protein inter-

faces has been successfully applied in several cases [64,291],

including various systems of structural [292] significance for

interface design or major biological importance [293,294].

The current main goals of interface design are to increase

the affinity and/or alter the specificity of an interaction

[64,295]. Such studies include careful combination of exper-

imental approaches (mutagenesis studies coupled with

experimental measurements of affinity and determination of

the structure of the complex of the derived variants) and

theoretical methods (docking, interface/hot-spot prediction,

free energy calculation, calculation of interfacial hydrophobi-

city, etc.) [292–294,296–300]. Most of the successful design

methodologies include either promotion of dipole inter-

actions between a-helices [300–302] or binding of an

a-helix to the binding site of the target [293,296,303]. Several

other methods have mapped known side-chain interactions

from a crystal structure onto another protein that can then

be used as a scaffold [304,305]. Recently, homodimer designs

composed of paired b-strands have been reported [292,297].

Several limitations of the designed binders have been

reported, such as significant rotation of the binders in the crystal

structure compared with the predicted orientation of the

protein–protein complex, even by as much as 1808 [294], or the

existence of multiple low-energy binding conformations [296].

It has long been known that introducing changes to increase affi-

nity of the partners might hamper the specificity of the

interaction [306]. This may lead to the formation of interfaces

withdifferent properties fromexpected, despite successful engin-

eering of the binders. Another issue regarding interface design is

that new hydrogen-bond networks are daunting to design [307],

whereas hydrophobic matching of the interface [292] can lead to

aggregation. Finally, most of the designs reported to date have

been aimed towards protein–protein complexes that have a

high degree of surface complementarity. Engineering of more

transient protein–protein interactions, with fewer concave inter-

faces, has not yet been reported. In general, by increasing the

affinityof a givenprotein–protein complex, several other proper-

ties of the proteins might be influenced, from their individual

stability or solubility to the complex’s general properties,

such as promiscuity and specificity. Therefore, design of

protein–protein interfaces is a daunting task, since careful

investigation of all altered properties of the reactants and the

derived product should be reported in order to assess the

modulation of the interfacial properties in detail.

A very notable example for the limitations of present scor-

ing functions in interface design has been reported [168],

where none of the current computational methods used to

calculate energetic properties of protein–protein interfaces

could discriminate designed complexes that were not able

to bind from the one that actually binds. Therefore, although

several components of scoring functions should be useful in

discriminating designed interfaces from naturally occurring

ones, such as the backbone conformational rigidity, electro-

static interactions or solvation energy [168], there is still a

gap in our understanding of naturally occurring protein–

protein interfaces compared with designed ones.

6.2. Small-molecule and peptide inhibitors of

protein–protein complexes
The design of inhibitors of protein–protein interactions

(protein–protein interaction inhibitors) is also being actively

pursued [41,60,197, 308–313]. Some designed inhibitors, such

as Navitoclax (ABT-263), an inhibitor of the Bcl-2 family of pro-

teins, have even reached pre-clinical or clinical trials [314]. Most

of the protein–protein interaction inhibitors target directly the

interface of the complexes, the so-called interfacial inhibitors

[315]. Note that this is not synonymous with orthosteric inhibi-

tors, which in our understanding bind to the primary active site

of an enzyme or ligandbinding site of a receptormolecule [316].

Some inhibitors have been developed that bind at remote

locations from the interface, preventing conformational changes

required for the formation of the complex (allosteric or non-

interfacial inhibitors) [315]. Since protein–protein interfaces

are larger than classical enzymatic binding sites, inhibitors or

modulators that have been designed for these are also larger

in size [317]. Therefore, the traditional drug likeness rules set

by Lipinski et al. [318] are not generally applicable for this

class of inhibitors [319]. Properties of inhibitors of protein–

protein interactions are still under investigation, although a
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consensus seems to emerge [320–327]. Rationalization of the

chemical space of protein–protein interaction inhibitors by

using machine learning strategies or sets of molecular descrip-

tors indicated that commercially available libraries are not

sufficiently adequate for targeting protein–protein interactions

[328], and their specificity, for example for p53-MDM2 inhi-

bition [329], has not yet been fully elucidated. Current studies

indicate that this class of inhibitors is generally lipophilic with

a higher unsaturation index and ring complexity than

common inhibitors [315]. However, whether lipophilicity is a

consequence of the way these inhibitors are designed or of the

nature of the interfaces that they target still remains to be

explored.

Next to chemical substances aiming at disrupting

protein–protein interactions, peptide inhibitors have also

been reported [290,308,311,312,315,330]. It has become clear

that protein–peptide interactions are of high abundance in

the living cell, constituting 15–40% of all interactions [331].

Accordingly, discovery and development of protein–peptide

inhibitors is of great interest. A few examples follow consid-

ering highly potent and selective cyclic [332,333] and other

modified peptides [313,334,335]. Stapled peptides produced

by connecting two structurally optimized amino acids have

also been reported [336,337]. All have been reviewed recently

[338–340]. Peptides that modulate protein–protein inter-

actions may be rationally developed by mimicking one of

the two partners involved in a protein–protein interaction

[341], or directly derived from the screening of peptide

sequences that do not originate from natural proteins [342].

Peptides may be antagonists of protein–protein interactions

or inhibit the specified interaction. Examples are also avail-

able where the inhibitors shift the protein equilibrium,

affecting oligomerization; such inhibitors are termed shiftides

[343]. An example is the inhibition of HIV-1-IN by peptides

derived from its cellular binding protein, LEDGF/p75 [343]:

the derived peptides inhibit HIV-1-IN activity in a non-

competitive manner, preventing DNA binding by shifting

the HIV-1-IN oligomerization equilibrium towards its

inactive tetrameric form rather than the active dimer.

Notably, a lead chemical compound, now in clinical trials,

ABT-737 [344], has been designed as a peptidomimetic,

meaning that modulation of Bcl-XL by the BH3 peptide

occurring in the cell was mimicked to derive an inhibitor

with similar binding characteristics. However, peptide inhibi-

tors have the disadvantage of being easily degraded and thus

not orally available. Also, because of their nature, peptides

can interact non-specifically with various targets when pre-

sent in the cell [345]. Improvements in chemical peptide

synthesis are required to allow easy chemical modifications

and use of non-natural amino acids [328,338,341], in order to

possibly improve the stability and specificity of peptide inhibi-

tors. Structurally improving peptides for binding specificity

should also improve their advantage over small molecules as,

in principle, owing to their nature, they should be easily accom-

modated in the interfaces of protein–protein interactions.

7. Conclusions
Despite past and current efforts in relating protein structure to

binding affinity for protein–protein interactions, the under-

lying dissociation constants, measured in vitro, can still not be

reproduced computationally within experimental error for a

large dataset of protein–protein complexes. It has been evident

that the main physico-chemical measure that relates to binding

affinity for protein–protein interactions is the interface area.

However, for protein–protein complexes that change signifi-

cantly their conformation upon binding, even the interface

area that is buried upon complexation is not related to binding

affinity. Consequently, theremust be a significant entropic con-

tribution that will have to be approximated in the future by

accounting for structural properties that may be connected to

the complexation entropy.

Apart from the direct contributions from the interface that

have already been modelled in a satisfactory manner (see

§3.3 and 4), vibrational entropy, translational entropy,

rotational entropy, conformational flexibility and solvent effects

will also have to be accounted for—and, of course, also the

effect of the crowded cellular environment. Spolar & Record

[346] have attributed the large excess in entropy observed in

flexible association to the conformational entropy after entropy

decomposition into the abovementioned terms. The availability

of an ever-increasing amount of structural and thermodynamic

data for protein–protein complexes should stir developments in

this research area and hopefully lead to a better understanding

of the underlying relations.

Finally, most work so far has been concentrated on binary

protein–protein interactions. Molecular associations including

multi-component systems, allosteric interactions, multi-state

kinetics, or even conformational transitions of membrane pro-

teins are far from being sufficiently well understood to allow

the derivation in a systematic manner of useful structure–affi-

nity relations. We foresee that any theoretical modelling of

these interactions in the future will have to follow an inte-

grated approach considering the biology, chemistry and

physics that underlie protein–protein recognition.

This work was supported by the Dutch Foundation for Scientific
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