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Abstract

We characterize all pairs of graphs (G1, G2), for which the binomial edge ideal
JG1,G2 has linear relations. We show that JG1,G2 has a linear resolution if and only
if G1 and G2 are complete and one of them is just an edge. We also compute
some of the graded Betti numbers of the binomial edge ideal of a pair of graphs
with respect to some graphical terms. In particular, we show that for every pair
of graphs (G1, G2) with girth (i.e. the length of a shortest cycle in the graph)
greater than 3, βi,i+2(JG1,G2) = 0, for all i. Moreover, we give a lower bound for
the Castelnuovo-Mumford regularity of any binomial edge ideal JG1,G2 and hence
the ideal of adjacent 2-minors of a generic matrix. We also obtain an upper bound
for the regularity of JG1,G2 , if G1 is complete and G2 is a closed graph.

Keywords: Binomial edge ideal of a pair of graphs, Linear resolutions, Linear
relations, Castelnuovo-Mumford regularity

1 Introduction

The binomial edge ideal of a graph was introduced in [7], and at about the same time in
[13]. Let G be a finite simple graph with vertex set [n] and edge set E(G). Also, let S =
K[x1, . . . , xn, y1, . . . , yn] be the polynomial ring over a field K. Then the binomial edge
ideal of G in S, denoted by JG, is generated by binomials of the form fij = xiyj − xjyi,
where i < j and {i, j} ∈ E(G). This ideal also could be seen as the ideal generated by
a collection of 2-minors of a (2 × n)-matrix whose entries are all indeterminates. In [7],
the authors characterized those graphs, which, for certain labeling of their edges, have a
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quadratic Gröbner basis with respect to the lexicographic order induced by x1 > · · · >
xn > y1 > · · · > yn. These graphs are called closed graphs. Many of the other algebraic
properties of such ideals were studied in [1], [2], [7], [17] and [19]. In [3], the authors
introduced the binomial edge ideal of a pair of graphs, as a generalization of the binomial
edge ideal of a graph. Let G1 be a graph on the vertex set [m] and G2 a graph on the
vertex set [n], and let X = (xij) be an (m×n)-matrix of indeterminates. Let K[X] be the
polynomial ring in the variables xij, where i = 1, . . . ,m and j = 1, . . . , n. Let e = {i, j}
for some 1 6 i < j 6 m and f = {t, l} for some 1 6 t < l 6 n. To the pair (e, f), the
following 2-minor of X is assigned:

pe,f = [i, j|t, l] = xitxjl − xilxjt.

Then, the ideal
JG1,G2 = (pe,f : e ∈ E(G1), f ∈ E(G2))

is called the binomial edge ideal of the pair (G1, G2). Throughout the paper, by the
binomial generators of JG1,G2 , we mean elements of the form pe,f , as above, in JG1,G2 .
If G1 is a complete graph, then JG1,G2 is the generalized binomial edge ideal attached
to G2, which studied in [18]. If G1 and G2 are two paths, then JG1,G2 is the ideal of
adjacent 2-minors of X, which studied for example in [6], [8] and [15]. In [3], those pairs
of graphs (G1, G2) were characterized, for which for a certain labeling of their edges,
JG1,G2 has a quadratic Gröbner basis with respect to the lexicographic order, induced by
x11 > · · · > x1n > x21 > · · · > x2n > · · · > xm1 > · · · > xmn, were characterized. The
only pairs with this property, are the pairs (G1, G2) in which G1 is complete and G2 is
closed, or vice versa. In [3], it was shown that JG1,G2 is a radical ideal if and only if either
G1 or G2 is complete. Also, it was proved that JG1,G2 is a prime ideal if and only if G1 and
G1 are complete. Moreover, the authors determined all minimal prime ideals of JG1,G2 ,
and hence characterized all unmixed binomial edge ideal of pairs of graphs.

In this paper, we study some other algebraic properties and invariants of JG1,G2 . In
particular, when G1 is just an edge, we can recover the results of [19] on binomial edge
ideals.

Associated to the graph G is also a quadratic squarefree monomial ideal I(G) =
(xixj : {i, j} ∈ E(G)), in the polynomial ring R = K[x1, . . . , xn] over a field K, called the
edge ideal of G. In [4], Fröberg characterized all graphs whose edge ideals have a linear
resolution. He showed that I(G) has a linear resolution if and only if the complementary
graph G is chordal. In [19], the authors determined all graphs whose binomial edge ideals
have a linear resolution. They showed that JG has a linear resolution if and only if JG has
linear relations, if and only if G is a complete graph. The question arises whether there
is a graphical characterization for binomial edge ideals of pairs of graphs to have a linear
resolution. In this paper, we give a positive answer to this question. In Section 2, we show
that JG1,G2 has linear relations only if G1 and G2 are both complete graphs. Then, we
deduce that JG1,G2 has a linear resolution, if and only if G1 andG2 are complete graphs and
one of them is just an edge. Also, in this section, we determine some of the Betti numbers
of the binomial edge ideal of a pair of graphs. Actually, we show that β1,3(JG1,G2) =
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2e(G1)k3(G2)+2e(G2)k3(G1)+k3(G1)
(
p3(G2)−k3(G2)

)
+k3(G2)

(
p3(G1)−k3(G1)

)
, where

e(G), p3(G) and k3(G) are the number of edges, 3-paths and 3-cycles of a graph G,
respectively. Then, we deduce that for all i > 0, βi,i+2(JG1,G2) = 0, for every pairs of
graphs with girth greater than 3. In particular, we deduce that βi,i+2(I) = 0, for all i > 0,
whenever I is the ideal generated by adjacent 2-minors of the matrix X. In addition, we
show that if one of G1 or G2 is a non-complete connected graph, then β1,4(JG1,G2) 6= 0.

In Section 3, we give some bounds for the Castelnuovo-Mumford regularity of the
binomial edge ideal of a pair of graphs. We give a lower bound for the Castelnuovo-
Mumford regularity of JG1,G2 , for every pair (G1, G2) of graphs. Consequently, we give a
lower bound for the Castelnuovo-Mumford regularity of the ideal of adjacent 2-minors of
an (m×n) generic matrix. Also, by using an important result of Kalai and Meshulam on
the regularity of monomial ideals, we gain an upper bound for the Castelnuovo-Mumford
regularity of the binomial edge ideal of a pair of graphs, in which one of the graphs
is complete and the other one is closed. Precisely, we show that the regularity of the
binomial edge ideal of a pair of graphs (Km, G), where Km is the complete graph on [m]
and G is a closed graph, is less than or equal to min

{(
m
2

)
c(G), e(G)

}
+ 1, where c(G) is

the number of maximal cliques of G.
Throughout the paper, we mean by a graph G, a simple graph over n vertices, with

no isolated vertices. Whenever we say that G is a graph on [n], we mean that the set
of vertices of G is {v1, . . . , vn}. Also, by <, we mean the lexicographic order induced by
x11 > · · · > x1n > x21 > · · · > x2n > · · · > xm1 > · · · > xmn. Moreover, we consider S to
be standard graded, unless we mention something else. Non of the results of this paper
depends on the characteristic of the field K.

2 The binomial edge ideal of a pair of graphs with

linear resolution

In this section, we study the graded Betti numbers β1,3(JG1,G2) and β1,4(JG1,G2), and we
characterize all pairs of graphs (G1, G2), in which JG1,G2 has linear relations. Then, we
classify all pairs of graphs (G1, G2), in which JG1,G2 has a linear resolution. The following
theorem is one of two main theorems of this section:

Theorem 1. Let G1 and G2 be two graphs on [m] and [n], respectively. Then the following
conditions are equivalent:
(a) JG1,G2 has linear relations.
(b) JG1,G2 is a toric ideal, and G1 and G2 are connected.
(c) G1 and G2 are complete graphs.

In order to prove Theorem 1, we need some facts that we will mention in the following.
We denote the number of edges, 3-paths and 3-cycles of a graph G, by e(G), p3(G) and
k3(G), respectively. In the next result, we determine the first initial graded Betti number
of the binomial edge ideal of a graph:
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Theorem 2. Let G1 and G2 be two graphs on [m] and [n], respectively. Then we have

(a) β1,3(JG1,G2) = 2e(G1)k3(G2) + 2e(G2)k3(G1) + k3(G1)
(
p3(G2) − k3(G2)

)
+

k3(G2)
(
p3(G1)− k3(G1)

)
.

(b) β1,4(JG1,G2) 6= 0, if either G1 or G2 is non-complete and connected.

(c) βi−1,j(JG1,G2) = 0, for j > 2i, if G1 is closed and G2 is complete, or vice
versa. In particular, β1,j(JG1,G2) = 0, for j 6= 3, 4, if G1 is closed and G2 is complete, or
vice versa.

(d) βi,j(JG1,G2) = 0, for j > mn, if either G1 or G2 is a complete graph.

Proof. (a) Note that we can consider two different Z-gradings for S. One is the standard
grading and the other is grading by the weight w = (2, . . . , 2) ∈ Nmn. Thus, for every
p, q, βp,q(JG1,G2) in the standard grading coincides with βp,2q(JG1,G2) in the weighted one.
So, here, instead of computing β1,3(JG1,G2) in the standard grading, we will compute
β1,6(JG1,G2) in the weighted grading. For every e = {i, j} ∈ E(G1) and f = {k, l} ∈
E(G2), we set pij,kl := pe,f . Suppose that

· · · −→ Se(G1)e(G2)(−4)
ψ−→ S −→ S/JG1,G2 −→ 0

is the minimal graded free resolution of S/JG1,G2 , in which ψ(εij,kl) = pij,kl such
that εij,kl is an element of the standard basis of the free S-module Se(G1)e(G2)(−4).
Moreover, S is also Zm+n-multigraded, with mdeg(xij) = εi,j+m, where εi,j+m is
the sum of the i-th and the (j + m)-th canonical basis vectors of Zm+n. So,
mdeg(εij,kl) =mdeg(pij,kl) = εi,k+m + εj,l+m. Let Z1 be the relation module of S/JG1,G2 ,
and consider a relation r =

∑
gij,klεij,kl of degree 6 (in the weighted grading), that is, an

element in (Z1)6. Since S/JG1,G2 is Zm+n-graded, it follows that (Z1)6 is also Zm+n-graded,
and hence is generated by multihomogeneous elements. Thus we may assume that r is
multihomogeneous, say of multidegree a ∈ Zm+n. Then all nonzero summands gij,klεij,kl
are of multidegree a, with |a| = 6 (here |a| is the sum of the components of a). Let
gij,klεij,kl 6= 0. Then a =mdeg(gij,kl)+mdeg(εij,kl) =mdeg(gij,kl) + εi,k+m + εj,l+m. There-
fore, mdeg(gij,kl) = εs,t+m for some s, t. If s = i and t = k or l, then a = 2εi,k+m+εj,l+m or
εi,l+m + εi,k+m + εj,l+m, and hence there is only one summand in r with this multidregree
and r /∈ Z1, a contradiction. Similarly, if s = j and t = k or l, then r /∈ Z1, a
contradiction. So, it remains to consider the following cases:

Case (1). Suppose that s = i and t 6= k, l. Let t < k < l. Then,
a = εi,t+m + εi,k+m + εj,l+m. So, r has exactly three summands and hence
r = gij,tkεij,tk + gij,tlεij,tl + gij,klεij,kl. But, it happens if and only if G2 contains a
3-cycle over the vertices t, k and l. Thus r is a relation of the ideal (pij,tk, pij,tl, pij,kl),

which is the ideal of 2-minors of the matrix

[
xit xik xil
xjt xjk xjl

]
. So, the generating relations
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are xilεij,tk − xikεij,tl + xitεij,kl and xjlεij,tk − xjkεij,tl + xjtεij,kl, by Hilbert-Burch theorem.
But, multidegree of the latter is not equal to a. Hence, in this multidegree, we just
consider xilεij,tk − xikεij,tl + xitεij,kl. Therefore, in this case, we obtain e(G1)k3(G2)
elements in (Z1)6.

Case (2). Suppose that s = j and t 6= k, l. Let t < k < l. Then,
a = εj,t+m + εi,k+m + εj,l+m. So, r has exactly three summands and hence
r = gij,tkεij,tk + gij,tlεij,tl + gij,klεij,kl. But, it happens if and only if G2 contains a
3-cycle over the vertices t, k and l. By repeating the discussion in Case (1), we obtain
that xjlεij,tk−xjkεij,tl +xjtεij,kl is the only possible generating relation in this case. Thus,
in this case, we get e(G1)k3(G2) elements in (Z1)6.

Case (3). Suppose that s 6= i, j and t = k. Let s < i < j. Then,
a = εs,k+m + εi,k+m + εj,l+m. So, r has exactly three summands and hence
r = gsi,klεsi,kl + gsj,klεsj,kl + gij,klεij,kl. But, it happens if and only if G1 contains a
3-cycle over the vertices s, i and j. Thus r is a relation of the ideal (psi,kl, psj,kl, pij,kl),

which is the ideal of 2-minors of the matrix

[
xsk xik xjk
xsl xil xjl

]
. So, the generating relations

are xjkεsi,kl− xikεsj,kl + xskεij,kl and xjlεij,tk− xilεij,tl + xslεij,kl, by Hilbert-Burch theorem.
But, multidegree of the latter is not equal to a. Hence, in this multidegree, we just
consider xjkεsi,kl − xikεsj,kl + xskεij,kl. Therefore, in this case, we obtain e(G2)k3(G1)
elements in (Z1)6.

Case (4). Suppose that s 6= i, j and t = l. Let s < i < j. Then,
a = εs,l+m + εi,k+m + εj,l+m. So, r has exactly three summands and hence
r = gsi,klεsi,kl + gsj,klεsj,kl + gij,klεij,kl. But, it happens if and only if G1 contains a
3-cycle over the vertices s, i and j. By repeating the discussion in Case (3), we obtain
that xjlεij,tk − xilεij,tl + xslεij,kl is the only possible generating relation in this case. Thus,
in this case, we get e(G2)k3(G1) elements in (Z1)6.

Case (5). Suppose that s 6= i, j and t 6= k, l. Let s < i < j and t < k < l.
Then, a = εs,t+m + εi,k+m + εj,l+m. Thus, we have r = gsi,tkεsi,tk + gsi,tlεsi,tl +
gsi,klεsi,kl + gsj,tkεsj,tk + gsj,tlεsj,tl + gsj,klεsj,kl + gij,tkεij,tk + gij,tlεij,tl + gij,klεij,kl. Since
mdeg(r) = a = εs,t+m + εi,k+m + εj,l+m, we have r = c1xjlεsi,tk + c2xjkεsi,tl + c3xjtεsi,kl +
c4xilεsj,tk + c5xikεsj,tl + c6xitεsj,kl + c7xslεij,tk + c8xskεij,tl + c9xstεij,kl, where c1, . . . , c9 ∈ K.
By easy computations, we have that the generating relations in this case, are exactly
correspond to the solution space of the homogeneous system of equations c1 + c5 + c9 = 0,
−c1 + c6 + c8 = 0, c2 + c4 − c9 = 0, c2 + c6 − c7 = 0, c3 − c4 − c8 = 0 and
c3 + c5 + c7 = 0, whose dimension is 4. Thus, the generating relations are as follows:
r1 = xjlεsi,tk − xjkεsi,tl + xjtεsi,kl + xilεsj,tk − xikεsj,tl + xitεsj,kl, where the vertices i, s, j
make a 3-path with edges {s, i} and {s, j} in G1, and the vertices t, k, l induce a 3-cycle
in G2; r2 = xslεij,tk − xskεij,tl + xstεij,kl + xilεsj,tk − xikεsj,tl + xitεsj,kl, where the vertices
i, s, j make a 3-path with edges {s, j} and {i, j} in G1, and the vertices t, k, l induce a
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3-cycle in G2; r3 = xjlεsi,tk − xilεsj,tk + xslεij,tk + xjkεsi,tl − xikεsj,tl + xskεij,tl, where the
vertices i, s, j induce a 3-cycle in G1, and the vertices t, k, l make a 3-path with edges
{t, k} and {t, l} in G2; r4 = xjkεsi,tl − xikεsj,tl + xskεij,tl + xjtεsi,kl − xitεsj,kl + xstεij,kl,
where the vertices i, s, j induce a 3-cycle in G1, and the vertices t, k, l make a 3-path
with edges {t, l} and {k, l} in G2. Note that if the vertices i, s, j do not induce any cycles
in G1, then just one of the elements r1 and r2 could appear. Similarly, if the vertices
t, k, l do not induce any cycles in G2, then just one of the elements r3 and r4 could
appear. Therefore, in this case, we have k3(G2)(p3(G1) − k3(G1)) elements in (Z1)6, re-
garding r1 and r2, and also k3(G1)(p3(G2)−k3(G2)) elements in (Z1)6, regarding r3 and r4.

Comparing the multidegrees in these 5 cases, we obtain that the minimal generating
relations of degree 6 are of the above forms, and hence the result follows.

(b) Without loss of generality, we may assume that G2 is connected and non-complete.
Thus, there exist 3 vertices k, t, l in [n] with k < t < l which induce a 3-path in G2 with
edges {k, t} and {t, l}. Suppose that {i, j} is an edge in G1. Let γ := pij,ktεij,tl−pij,tlεij,kt.
Clearly, γ ∈ Z1 and deg(γ) = 4 in the standard grading. We show that γ is a minimal
relation. Then we have β1,4(JG1,G2) > 0. Note that degw(γ) = 8 (with the weighted
grading mentioned in part (a)), and using Zm+n-grading introduced in part (a), we have
mdeg(γ) = εi,k+m + εj,t+m + εi,t+m + εj,l+m. If γ is not a minimal relation, then it must
be reduced by elements of (Z1)6. By comparing the multidegrees of γ and the generating
relations in (Z1)6, one obtains that non of the generating relations of the form of Case
(3), Case (4) and Case (5) could occur in the expression of γ in terms of the elements
of (Z1)6. If the generating relations of the form of Case (1) and Case (2) occur in that
expression of γ, then the vertices k, t, l induce a 3-cycle in G2, which is a contradiction,
since {k, l} is not an edge of G2.

(c) Suppose that G1 is complete and G2 is closed. Then we have
in<(JG1,G2) = (xikxjl : i < j, k < l , {i, j} ∈ E(G1), {k, l} ∈ E(G2)), by [3,
Theorem 1.3]. Thus, it can be seen as the edge ideal of an n-partite graph over the
vertex set V =

⋃n
p=1 Vp, where Vp = {x1p, . . . , xmp}, for all p = 1, . . . , n. We denote

this n-partite graph by in<(G1, G2). So, we have in<(JG1,G2) = I(in<(G1, G2)). But,
βi−1,j(I(in<(G1, G2))) = 0, for all j > 2i, by [10, Lemma 2.2]. On the other hand, we
have βi−1,j(JG1,G2) 6 βi−1,j(in<(JG1,G2)), for all i, j, by [5, Corollary 3.3.3]. So, if G1 is
complete and G2 is closed, then βi−1,j(JG1,G2) = 0, for all j > 2i.

(d) By [3, Theorem 1.2], in<(JG1,G2) is a squarefree monomial ideal in S. Thus, the
result follows by Hochster’s formula, since βi,j(JG1,G2) 6 βi,j(in<(JG1,G2)), for all i, j.

Notice that, by setting G1 = K2, Theorem 2 yields all parts of [19, Theorem 2.2].
The length of any shortest cycle (if any) in a graph G is called the girth of G. The

girth of acyclic graphs, i.e. graphs with no cycle, is considered as infinity.
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Corollary 3. If G1 and G2 are graphs with girth greater than 3, then βi,i+2(JG1,G2) = 0,
for all i > 0. In particular, if G1 and G2 are bipartite graphs, one has βi,i+2(JG1,G2) = 0,
for all i > 0.

A (2 × 2) adjacent minor of X is the determinant of a submatrix with row indices
i, i + 1 and column indices j, j + 1. We call the ideal generated by all of the (2 × 2)
adjacent minors of X, the ideal of adjacent 2-minors of X.

Corollary 4. Let I be the ideal of adjacent 2-minors of an (m×n) generic matrix. Then
β1,4(I) 6= 0, and βi,i+2(I) = 0, for all i > 0.

Proof. It is enough to note that I = JPm,Pn .

Applying Theorem 2, part (a), we gain the following:

Corollary 5. Let m,n > 3 and t > 4. Then

(a) β1,3(JKm,Kn) = 2
((

m
3

)(
n+1
3

)
+
(
n
3

)(
m+1
3

))
.

(b) β1,3(JKm,Ct) = 3t
(
m
3

)
, where Ct is a cycle over t vertices.

(c) β1,3(JKm,T ) = (2n + p3(T ) − 2)
(
m
3

)
, where T is a tree over n vertices. In par-

ticular, β1,3(JKm,Pn) = (3n− 4)
(
m
3

)
.

Remark 6. If G1 is a closed graph and G2 is complete, or vice versa, we apply consec-
utive cancellations to show that β1,3(JG1,G2) = β1,3(in<(JG1,G2)). Actually, we have
β0,3(JG1,G2) = β0,3(in<(JG1,G2)) = 0 and β2,3(JG1,G2) = β2,3(in<(JG1,G2)) = 0, by minimal-
ity of the free resolutions. On the other hand, by [16, Theorem 22.12], the sequence of
graded Betti numbers of JG1,G2 is obtained from the sequence of graded Betti numbers of
in<(JG1,G2) by consecutive cancellations. So, we have β1,3(JG1,G2) = β1,3(in<(JG1,G2)).
A sequence qi,j of numbers is said to be obtained from a sequence pi,j by a consecutive
cancellation if there exist indices s and r such that qs,r = ps,r − 1, qs+1,r = ps+1,r − 1 and
qi,j = pi,j for all other values of i, j.

Recall that a homogeneous ideal I whose generators all have degree d is said to have
a d-linear resolution (or simply linear resolution) if for all i > 0, βi,j(I) = 0 for all
j 6= i+ d. Also, if β1,j(I) = 0 for all j 6= d+ 1, then we say that I has linear relations.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. (a) ⇒ (c): Suppose that JG1,G2 has linear relations. Thus,
β1,j(JG1,G2) = 0, for all j > 3. In particular, β1,4(JG1,G2) = 0. So that G1 and G2 are
both connected, since if one of them, say G1, has connected components H1, . . . , Hc,
then the minimal graded free resolution of S/JG1,G2 is the tensor product of those of
S/JG1,H1 , . . . , S/JG1,Hc , and hence β1,4(JG1,G2) >

∑
16i<j6c β0,2(JG1,Hi

)β0,2(JG1,Hj
) > 0.

Therefore, G1 and G2 are both complete graphs, by Theorem 2, part (b).
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(c) ⇒ (a): Suppose that G1 and G2 are complete graphs. Then JG1,G2 = I2(X) is
the ideal of 2-minors of X, the (m × n)-matrix of indeterminates. Thus, by Kurano’s
theorem, JG1,G2 has linear relations (see [11]).

(b) ⇒ (c): Suppose that JG1,G2 is a toric ideal. Then, it is a prime ideal. So, G1 and
G2 are both complete graphs, by [3, Corollary 2.2].

(c) ⇒ (b): Let G1 and G2 be complete graphs. Then, by [21, Proposition 9.1.2],
JG1,G2 = I2(X) is the toric ideal of K[Km,n], where K[Km,n] = K[{sitj : 1 6 i 6
m, 1 6 j 6 n}] and Km,n is the complete bipartite graph over the set of vertices
{s1, . . . , sm, t1, . . . , tn}. More precisely, JG1,G2 is the kernel of the graded homomorphism
of K-algebras

ϕ : K
[
{xij : 1 6 i 6 m 1 6 j 6 n}

]
−→ K[Km,n],

in which ϕ(xij) = sitj, for all i, j.

Remark 7. By [19, Theorem 2.1], when G1 = K2, we have that JG1,G2 has linear relations
if and only if in<(JG1,G2) does. But this is not true, in general, that is when G1 is not an
edge. For example, computations by CoCoA show that β1,4(in<(JK3,K3)) = 1, and hence
in<(JK3,K3) does not have linear relations.

Let B be a K-algebra and A a K-subalgebra of B. Recall that A is called an algebra
retract of B, if there exists a surjective K-algebra homomorphism π : B → A whose
composition with the inclusion map A→ B is the identity on A.

Let G1 and G2 be graphs on [m] and [n], and let H1 and H2 be subgraphs of G1 and
G2 over m1 6 m and n1 6 n vertices, respectively. So, one could consider an m1 × n1

submatrix Y of X, correspond to the vertices of H1 and H2. Here, we also use Y to denote
the set of variables appeared in the matrix Y . So that the binomial generators of JH1,H2

are contained in the ring K[Y ]. With these notations, we have the following proposition:

Proposition 8. Let G1 and G2 be two graphs over [m] and [n], respectively. If H1 and
H2 are induced subgraphs of G1 and G2, respectively, then we have
(a) β

K[Y ]
i,j (JH1,H2) 6 β

K[X]
i,j (JG1,G2), for all i, j.

(b) regK[Y ](JH1,H2) 6 regK[X](JG1,G2).
(c) pdK[Y ](JH1,H2) 6 pdK[X](JG1,G2).

Proof. (a) Let H1 and H2 be induced subgraphs of G1 and G2 over m1 6 m and n1 6 n
vertices, respectively. So, one could consider an m1 × n1 submatrix Y of X, correspond
to the vertices of H1 and H2. Note that JH1,H2 is an ideal of K[X] whose binomial
generators are in K[Y ]. By JH1,H2K[Y ], we mean an ideal of K[Y ], whose generators are
the same as JH1,H2 (as an ideal of K[X]). We have JG1,G2 ∩K[Y ] = JH1,H2K[Y ]. Because,
obviously, JH1,H2K[Y ] ⊆ JG1,G2 ∩K[Y ]. For the other containment, let f ∈ JG1,G2 ∩K[Y ].
So, f =

∑t
s=1 rsps, for some binomial generators ps of JG1,G2 and rs ∈ K[X], where

s = 1, . . . , t. Now, it is enough to set all variables xij in X, which do not belong to Y ,
equal to zero in f =

∑t
s=1 rsps. The left hand side of this equality does not change, since

f ∈ K[Y ]. But, in the right hand side, if pi = xjkxql−xjlxqk /∈ K[Y ], for some i, then one
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of the variables appeared in pi does not belong to Y , say xjk /∈ Y . So, j /∈ [m1] or k /∈ [n1].
Hence, xjl /∈ Y or xqk /∈ Y . So, after substituting desired variables by zero, pi will be

omitted in the expression of f . Thus, we get f =
∑t′

i=1 r
′
si
psi , where r′si ’s are obtained

by putting zero instead of variables of X \ Y in rs’s, and psi ’s belong to K[Y ]. Since
H1 and H2 are induced subgraphs of G1 and G2, psi ’s belong to JH1,H2K[Y ], and hence
f ∈ JH1,H2K[Y ]. Now, set A = K[Y ]/JH1,H2K[Y ] and B = K[X]/JG1,G2 . Thus, A is a K-
subalgebra of B. Let π : B → A be the epimorphism induced by setting all variables xij
in X, which do not belong to Y , equal to zero. So, we have the maps A ↪→ B

π→ A whose
composition is the identity on A. Hence, A is an algebra retract of B. Now, applying [14,
Corollary 2.8], the result follows. Parts (b) and (c) follow immediately from (a).

Corollary 9. Let G1 and G2 be two graphs over [m] and [n], respectively, and let S1 =
[xi, yi : 1 6 i 6 m] and S2 = [xi, yi : 1 6 i 6 n]. Then we have

(a) β
K[X]
ij (JG1,G2) > max{βS1

ij (JG1), β
S2
ij (JG2)}, for all i, j.

(b) regK[X](JG1,G2) > max{regS1
(JG1), regS2

(JG2)}.
(c) pdK[X](JG1,G2) > max{pdS1

(JG1), pdS2
(JG2)}.

Proof. since G1 and G2 contain at least an edge, by Proposition 8, we have that
β
K[Y1]
ij (JG1,K2) 6 β

K[X]
ij (JG1,G2) and β

K[Y2]
ij (JK2,G2) 6 β

K[X]
ij (JG1,G2), for all i, j, where Y1

and Y2 are appropriate subsets of X. But, obviously, β
K[Y1]
ij (JG1,K2) = βS1

ij (JG1) and

β
K[Y2]
ij (JK2,G2) = βS2

ij (JG2). So, we get part (a). Parts (b) and (c) follow immediately from
(a).

Now, we go to the second main result of this section:

Theorem 10. Let G1 and G2 be two graphs over [m] and [n], respectively. Then JG1,G2

has a linear resolution if and only if G1 and G2 are complete graphs, and m = 2 or n = 2.

Proof. If G1 and G2 are complete graphs such that one of them is an edge, then JG1,G2

has a linear resolution, by [19, Theorem 2.1]. Conversely, suppose that JG1,G2 has a linear
resolution. So, it has linear relations, and hence G1 and G2 are both complete graphs, on
[m] and [n], respectively, by Theorem 1. Suppose on the contrary that m,n > 3. Then,
both of G1 and G2 have an induced 3-cycle. Thus, the graded Betti numbers of JG1,G2 is
greater than or equal to the graded Betti numbers of JK3,K3 , by Proposition 8. On the
other hand, by [20, Theorem 5.4.6], S/JK3,K3 is Gorenstein, and hence its minimal graded
free resolution is symmetric. So that JK3,K3 has no linear resolution, since it is generated
by quadratic forms. Hence, JG1,G2 has no linear resolution as well, a contradiction. So,
we have m = 2 or n = 2.

3 The Castelnuovo-Mumford regularity of the bino-

mial edge ideal of a pair of graphs

In this section, we study the Castelnuovo-Mumford regularity (or regularity, for short,)
of the binomial edge ideal of a pair of graphs. Indeed, we give a lower bound for the
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regularity of the binomial edge ideal of an arbitrary pair of graphs. Consequently, we
obtain a lower bound for the ideals of adjacent 2-minors. Also, we obtain an upper bound
for the regularity of the binomial edge ideal of a pair of graphs (Km, G), in which G is
a closed graph. In order to prove the main theorem of this section, we need some facts
which we will mention in the sequel.

Notice that if G is a closed graph, then we have in<(JG) = (xiyj : i < j, {vi, vj} ∈
E(G)). Thus, it can be seen as the edge ideal of a bipartite graph over the vertex set
V = {x1, . . . , xn, y1, . . . , yn}. We denote this bipartite graph by in<(G). So, we have
in<(JG) = I(in<(G)) (see also [19, Theorem 2.2, part (c)]). Moreover, as we mentioned
in the proof of Theorem 2, if G1 is complete and G2 is closed, then we have in<(JG1,G2) =
(xikxjl : i < j, k < l , {i, j} ∈ E(G1), {k, l} ∈ E(G2)), by [3, Theorem 1.3]. So that it
can be seen as the edge ideal of an n-partite graph over the vertex set V =

⋃n
p=1 Vp, where

Vp = {x1p, . . . , xmp}, for all p = 1, . . . , n. We denote this n-partite graph by in<(G1, G2).
Thus, we have in<(JG1,G2) = I(in<(G1, G2)).

A graph G is called chordal if each induced cycle in G has length 3, and G is called
co-chordal if the complementary graph G is chordal. The co-chordal cover number
of a graph G, which is denoted by cochord(G), is the minimum number of subgraphs
H1, . . . , Hs of G such that every Hi is cochordal and

⋃s
i=1E(Hi) = E(G).

In [22], Woodroofe posed an upper bound for the regularity of the edge ideal of a
graph:

Theorem 11. [22, Theorem 11] For any graph G, we have reg(I(G)) 6 cochord(G) + 1.

The following theorem is a special case of the result proved by Kalai and Meshulam.
Their result is on simplicial complexes, in general.

Theorem 12. [9, Theorem 1.2] If G1, . . . , Gs are graphs on the same vertex set, then
reg(S/I(

⋃s
i=1Gi)) 6

∑s
i=1 reg(S/I(Gi)).

We denote by c(G), the number of maximal cliques of the graph G. Here, we mean
by a maximal clique of a graph G, an induced subgraph of G which is a complete graph
and is also maximal with this property. Now, we are ready to prove the main theorem of
this section:

Theorem 13. Let G be a closed graph on [n] and m,n > 2. Then we have

reg(JKm,G) 6 min
{(m

2

)
c(G), e(G)

}
+ 1.

Proof. Since G is closed, we have in<(JG) = I(in<(G)) and in<(JKm,G) = I(in<(Km, G)),
as we mentioned above. Note that in<(Km, G) could be seen as a multipartite graph in
the following two ways:

(1) Consider in<(Km, G) as an n-partite graph over the vertex set V =
⋃n
p=1 Vp, where

Vp = {x1p, . . . , xmp}, for all p = 1, . . . , n. It can be easily checked that for every i, j with
1 6 i < j 6 n, the induced subgraph of in<(Km, G) on Vi,j := Vi ∪ Vj is isomorphic to
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in<(Km). On the other hand, we have that in<(Km, G) =
⋃
{i,j}∈E(G)

(
in<(Km, G)

)
Vij

.

Thus, by Theorem 12, we obtain

reg(S/I(in<(Km, G))) 6 e(G)reg(S/I(in<(Km))) = e(G),

where the last equality holds, since reg(S/I(in<(Km))) = reg(S/in<(JKm)) =
reg(S/JKm) = 1, by [19, Theorem 2.1].

(2) Consider in<(Km, G) as an m-partite graph over the vertex set W =
⋃m
p=1Wp,

where Wp = {xp1, . . . , xpn}, for all p = 1, . . . ,m. It can be easily checked that for every i, j
with 1 6 i < j 6 m, the induced subgraph of in<(Km, G) on Wi,j := Wi∪Wj is isomorphic

to in<(G). On the other hand, we have that in<(Km, G) =
⋃

16i<j6m

(
in<(Km, G)

)
Wij

.

Thus, by Theorem 12 and Theorem 11, we obtain

reg(S/I(in<(Km, G))) 6

(
m

2

)
reg(S/I(in<(G))) 6

(
m

2

)
cochord(in<(G)).

Now, similar to the proof of [19, Theorem 3.2], we show that cochord(in<(G)) 6 c(G).
Let H be a maximal clique of G. Then in<(H) is an induced subgraph of in<(G). By [19,
Theorem 2.1], I(in<(H)) has a linear resolution. Hence, by Fröberg’s theorem, [4, Theo-
rem 1], the complementary graph of in<(H) is chordal. On the other hand, all maximal
cliques of G, say H1, . . . , Hc(G), cover all edges of G. So, clearly, in<(H1), . . . , in<(Hc(G))
cover all edges of in<(G). Thus, by definition, we have cochord(in<(G)) 6 c(G). Hence,
reg(S/I(in<(Km, G))) 6

(
m
2

)
c(G).

Therefore, by the above two cases, we have

reg(I(in<(Km, G))) = reg(S/I(in<(Km, G))) + 1 6 min
{(m

2

)
c(G), e(G)

}
+ 1,

and hence the desired result follows, since reg(JKm,G) 6 reg(in<(JKm,G)), by [5, Corol-
lary 3.3.4].

Note that, by setting m = 2, one could see that Theorem 13 yields the result of [19]
on the regularity of the binomial edge ideal of a graph (see [19, Theorem 3.2]).

Corollary 14. Let G be a closed graph on [n] and m,n > 2. Then βi,2i(JKm,G) = 0, for

all i > min
{(

m
2

)
c(G), e(G)

}
+1. In particular, we have βi,2i(JG) = 0, for all i > c(G)+1.

Proof. Note that reg(JKm,G) = max{j − i : βi,j(JKm,G) 6= 0}. So, if there exists some

i > min
{(

m
2

)
c(G), e(G)

}
+ 1 with βi,2i(JKm,G) 6= 0, then we have reg(JKm,G) > i. Hence,

reg(JKm,G) > min
{(

m
2

)
c(G), e(G)

}
+ 1, which is a contradiction, by Theorem 13. For the

second part, it is enough to set m = 2.
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The following corollary shows that the upper bound posed in Theorem 13 is sharp.

Corollary 15. Let Pn be the path of length n−1 and m > 2 be an integer. Then we have
reg(JKm,Pn) = n. In particular, the regularity of JKm,Pn does not depend on m.

Proof. Since Pn is a closed graph, we can apply Theorem 13. So that we have

reg(JKm,Pn) 6 min
{(

m
2

)
c(Pn), e(Pn)

}
+ 1 = min

{(
m
2

)
(n − 1), (n − 1)

}
+ 1 = n. On

the other hand, by Corollary 9, part (b), we have reg(JPn) 6 reg(JKm,Pn). But, one has
reg(JPn) = n (see [19, Remark 3.3]). Therefore, reg(JKm,Pn) = n, as desired.

Remark 16. The bound for the regularity in Theorem 13 might be strict. For instance,
by using CoCoA, one can see that reg(JK3,K3) = 3, but Theorem 13 gives 4 as an upper
bound.

The following corollary gives a lower bound for the regularity of the binomial edge
ideal of a pair of graphs.

Corollary 17. Let G1 and G2 be two graphs on [m] and [n], respectively. If p1 − 1 and
p2 − 1 are the lengths of the longest induced paths in G1 and G2, respectively, then we
have reg(JG1,G2) > max{p1, p2}.

Proof. It is enough to apply Proposition 8 and Corollary 15.

Corollary 18. Let I be the ideal of adjacent 2-minors of an m × n generic matrix with
m 6 n. Then we have reg(I) > n.

We end this section by the following question about an upper bound for the regularity
in a more general case, without the assumption of closedness:

Question. Let G be a graph. Is it true that

reg(JKm,G) 6 min
{(m

2

)
c(G), e(G)

}
+ 1?

In particular, by setting m = 2, is it true that reg(JG) 6 c(G) + 1?

Note that the latter bound is true if G is a tree, as it was shown in [12] that for any
graph G on n vertices, one has reg(JG) 6 n.
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