E. BALLICO

On the birational gonalities of smooth curves

Abstract

Let C be a smooth curve of genus g. For each positive integer r the birational r-gonality $s_{r}(C)$ of C is the minimal integer t such that there is $L \in \operatorname{Pic}^{t}(C)$ with $h^{0}(C, L)=r+1$. Fix an integer $r \geq 3$. In this paper we prove the existence of an integer g_{r} such that for every integer $g \geq g_{r}$ there is a smooth curve C of genus g with $s_{r+1}(C) /(r+1)>s_{r}(C) / r$, i.e. in the sequence of all birational gonalities of C at least one of the slope inequalities fails.

1. Introduction. Let C be a smooth curve of genus g. For each positive integer r the birational r-gonality $s_{r}(C)$ of C is the minimal integer t such that there is $L \in \operatorname{Pic}^{t}(C)$ with $h^{0}(C, L)=r+1([1], \S 2)$. In this paper we prove the following result.

Theorem 1. Fix an integer $r \geq 3$. Then there exists an integer g_{r} such that for every integer $g \geq g_{r}$ there is a smooth curve C of genus g with $s_{r+1}(C) /(r+1)>s_{r}(C) / r$.

Theorem 1 means that for the curve C at least one slope inequality fails. For any integer $r \geq 1$ the r-gonality of C is the minimal degree of a line bundle L on C with $h^{0}(C, L) \geq r+1$. Obviously $s_{r}(C) \geq d_{r}(C)$ if $r \geq 2$. Equality holds if $d_{r}(C)<r \cdot d_{1}(C)$ and C has no non-trivial morphism onto a smooth curve of positive genus. In [6] H. Lange and G. Martens studied

[^0]the slope inequality for the usual gonality sequence of smooth curves (it may fail for some C, but not for a general C).

We work over an algebraically closed base field with characteristic zero.
2. Working inside a Hirzebruch surface. Fix $e \in \mathbb{N}$. Let $F_{e} \cong \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus\right.$ $\mathcal{O}_{\mathbb{P}^{1}}(-e)$) denote the Hirzebruch surface ([4], Chapter V, $\left.\S 2\right)$. We call π : $F_{e} \rightarrow \mathbb{P}^{1}$ a ruling of F_{e}. We have $\operatorname{Pic}\left(F_{e}\right) \cong \mathbb{Z}^{2}$ and take as a basis of $\operatorname{Pic}\left(F_{e}\right)$ a fiber f of π and a section h of π with $h^{2}=-e(\pi$ and h are unique if $e>0)$. For any finite set $S \subset F_{e}$ let $2 S$ denote the first infinitesimal neighborhood of S in F_{e}, i.e. the closed subscheme of F_{e} with $\left(\mathcal{I}_{S}\right)^{2}$ has its ideal sheaf. We have $(2 S)_{\text {red }}=S$ and $\operatorname{deg}(2 S)=3 \cdot \sharp(S)$. Fix an integer $a \geq 0$. The line bundle $\mathcal{O}_{F_{e}}(a h+b f)$ is spanned (resp. very ample) if and only if $b \geq e a$ $($ resp. $b>e a$ and $a>0)\left([4]\right.$, V.2.18). We have $h^{1}\left(F_{e}, \mathcal{O}_{F_{e}}(a h+b f)\right)=0$ if and only if $b \geq-1$. If $b \geq a e$, then

$$
h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(a h+b f)\right)=(a+1)(2 b-e a+2) / 2
$$

([5], Proposition 2.3). Assume $a>0$ and $b \geq a e$; if $e=0$, then assume $b>0$. Fix any $Y \in\left|\mathcal{O}_{F_{e}}(a h+e a f)\right|$. Since $\omega_{F_{e}} \cong \mathcal{O}_{F_{e}}(-2 h+(-e-2) f)$, the adjunction formula gives

$$
\omega_{Y} \cong \mathcal{O}_{Y}((a-2) h+(e a-e-2) f)
$$

Hence $p_{a}(Y)=1+a(e a-e-2) / 2$. We have

$$
h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(a h+e a f)\right)=(e a+2)(a+1) / 2
$$

To prove Theorem 1 for the integer r we will use as C the normalization of a nodal curve $Y \in\left|\mathcal{O}_{F_{e}}(a h+e a f)\right|$, where $e:=r-1$.

Notation 1. For all integers $a \geq 1$ and $e \geq 1$ set $g_{a, e}:=1+a(a e-2-e) / 2$.
Notice that if $a \geq 2$, then $g_{a, e}-g_{a-1, e}=a e-e-1$.
Lemma 1. Assume $e \geq 2$. Fix integers a, x. If $x=0$, assume $a \geq 1$. If $x>0$, assume $a \geq 5$ and $3 x \leq(e a-2 e+1)(a-1) / 2$. Fix a general $S \subset F_{e}$ such that $\sharp(S)=x$. Then
$h^{1}\left(F_{e}, \mathcal{I}_{2 S}(a h+e a f)\right)=0, h^{0}\left(F_{e}, \mathcal{I}_{2 S}(a h+e a f)\right)=(e a+2)(a+1) / 2-3 x$, a general $Y \in\left|\mathcal{I}_{2 S}(a h+e a f)\right|$ is integral, nodal and with $\operatorname{Sing}(Y)=S$.

Proof. First assume $x=0$. Since $\mathcal{O}_{F_{e}}(a h+a e f)$ is spanned, Bertini's theorem gives that a general $Y \in\left|\mathcal{O}_{F_{e}}(a h+a e f)\right|$ is smooth. Since
$h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)+h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}((c-1) h+(c-1) r f)\right)<h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(c h+c f)\right)$
for every integer $c \in\{1, \ldots, a-1\}$ and $\left|\mathcal{O}_{F_{e}}(u h+v f)\right|$ has h in the base locus if $u>0$ and $v<e u, Y$ is also irreducible.

Now assume $x>0$. Fix a general $S \subset F_{e}$ such that $\sharp(S)=x$. Since

$$
3 x \leq h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}((a-2) h+e(a-2) f)\right)
$$

$e \geq 2$ and $a-2 \geq 3$, a theorem of A. Laface gives

$$
h^{1}\left(F_{e}, \mathcal{I}_{2 S}((a-2) h+e(a-2) f)\right)=0
$$

([5], Proposition 5.2 and case $m=2$ of Theorem 7.2). Hence

$$
h^{1}\left(F_{e}, \mathcal{I}_{2 S}((a-i) h+e(a-i) f)\right)=0
$$

for $i=0,1$. Hence

$$
h^{0}\left(F_{e}, \mathcal{I}_{2 S}(a h+e a f)\right)=(e a+2)(a+1) / 2-3 x
$$

Fix $P \in F_{e} \backslash S$ and a general $\left.A \in \mid \mathcal{O}_{F_{e}}(h+e) f\right) \mid$ containing P. The curve A is smooth if $P \notin h$, while $A=h \cup F$ with $F \in\left|\mathcal{O}_{F_{e}}(f)\right|$ if $P \in h$. In all cases we see that $\mathcal{O}_{A}(a h+e a f)$ is spanned at P (in the case $P \in h$ use the following facts: $\mathcal{O}_{h}(a h+e a h) \cong \mathcal{O}_{h}, F \cong \mathbb{P}^{1}$, and $\mathcal{O}_{\mathbb{P}^{1}}(a)$ is spanned). Since $h^{1}\left(F_{e}, \mathcal{O}_{F_{e}}((a-1) h+e(a-1) f)\right)=0, P \in A$ and $\mathcal{O}_{A}(a h+e a f)$ is spanned at P, the exact sequence

$$
\begin{align*}
0 & \rightarrow \mathcal{I}_{2 S}((a-1) h+e(a-1) f) \rightarrow \mathcal{I}_{2 S}((a-1) h+e(a-1) f) \\
& \rightarrow \mathcal{O}_{A}(a h+e a f) \rightarrow 0 \tag{1}
\end{align*}
$$

gives that $\mathcal{I}_{2 S}(a h+e a f)$ is spanned at P. Since this is true for all $P \notin S$, Bertini's theorem gives $\operatorname{Sing}(Y)=S$. In particular Y has no multiple component. Fix $P \in S$. Since S is general, we have $P \notin h$. Since $\mid \mathcal{O}_{F_{e}}(h+$ $e f) \mid$ induces a morphism with injective differential at $P,\left|\mathcal{O}_{F_{e}}(2 h+2 a f)\right|$ spans the jets at P of $\mathcal{O}_{F_{e}}$ up to order 2 . Hence we may find $Y^{\prime} \in \mid \mathcal{O}_{F_{e}}(2 h+$ $2 e f) \mid$ with an ordinary node at P. Since

$$
h^{1}\left(F_{e}, \mathcal{I}_{2 S}((a-2) h+e(a-2) f)\right)=0
$$

we have

$$
h^{1}\left(F_{e}, \mathcal{I}_{\{P\} \cup 2(S \backslash\{P\})}((a-2) h+e(a-2) f)\right)=0
$$

Hence

$$
\begin{aligned}
h^{0}\left(F_{e}, \mathcal{I}_{\{P\} \cup 2(S \backslash\{P\})}(\right. & (a-2) h+e(a-2) f)) \\
& =h^{0}\left(F_{e}, \mathcal{I}_{2(S \backslash\{P\})}((a-2) h+e(a-2) f)\right)-1 .
\end{aligned}
$$

Hence there is $Y^{\prime \prime} \in\left|\mathcal{I}_{2(S \backslash\{P\})}((a-2) h+e(a-2) f)\right|$ such that $P \notin Y^{\prime \prime}$. Hence $Y^{\prime \prime} \cup Y^{\prime}$ has an ordinary node at P. Since $Y^{\prime \prime} \cup Y^{\prime} \in\left|\mathcal{I}_{2 S}(a h+e a f)\right|, S$ is finite and Y is general, Y is nodal. Recall that $\operatorname{Sing}(Y)=S$ and that S is general. Since S is general, no pair of points of S is on the same fiber of the ruling of F_{e}. Hence no fiber of F_{e} may be an irreducible component of Y. Since $\mathcal{O}_{F_{e}}(c h+e c f) \cdot \mathcal{O}_{F_{e}}((a-c) h+e(a-c) f)=e c(a-c)$, we immediately see that Y is irreducible.

Lemma 2. Assume $e \geq 2$. Fix integers a, x. If $x=0$, assume $a \geq 1$. If $x>0$, assume $a \geq 5$ and $3 x \leq(e a-2 e+1)(a-1) / 2$. Fix a general $S \subset F_{e}$ such that $\sharp(S)=x$ and a general $Y \in\left|\mathcal{I}_{2 S}(a h+e a f)\right|$. Let $u: C \rightarrow$ Y denote the normalization map. The line bundle $u^{*}\left(\mathcal{O}_{Y}(f)\right)$ is spanned
and $h^{0}\left(C, u^{*}\left(\mathcal{O}_{Y}(f)\right)\right)=2$. Let $\rho: C \rightarrow \mathbb{P}^{1}$ be the morphism induced by $\left|u^{*}\left(\mathcal{O}_{Y}(f)\right)\right|$. Then ρ is not composed with an involution, i.e. there are no $\left(C^{\prime}, \rho^{\prime}, \rho^{\prime \prime}\right)$ with C^{\prime} a smooth curve, $\rho^{\prime}: C \rightarrow C^{\prime}, \rho^{\prime \prime}: C^{\prime} \rightarrow \mathbb{P}^{1}, \rho=\rho^{\prime \prime} \circ \rho^{\prime}$, $\operatorname{deg}\left(\rho^{\prime}\right) \geq 2$ and $\operatorname{deg}\left(\rho^{\prime \prime}\right) \geq 2$.

Proof. Obviously $u^{*}\left(\mathcal{O}_{Y}(f)\right)$ is spanned. Since $a e+1-e-2 \geq e(a-2)-1$, Serre's duality gives
$h^{1}\left(F_{e}, \mathcal{O}_{F_{e}}(-a h-(a e+1) f)\right)=h^{1}\left(F_{e}, \mathcal{O}_{F_{e}}((a-2) h+(a e+1-e-2) f)\right)=0$. Hence $h^{0}\left(Y, \mathcal{O}_{Y}(f)\right)=2$. Since $h^{i}\left(F_{e}, \mathcal{O}_{F_{e}}\right)=0, i=1,2, \omega_{F_{e}} \cong \mathcal{O}_{F_{e}}(-2 h+$ $(-e-2) f)$), Y is nodal and $S=\operatorname{Sing}(Y)$, we have

$$
H^{0}\left(Y, \omega_{Y}\right) \cong H^{0}\left(F_{e}, \mathcal{O}_{F_{e}}((a-2) h+(a e-e-2) f)\right)
$$

and $H^{0}\left(C, \omega_{C}\right)$ is induced (after deleting the base points) from

$$
H^{0}\left(F_{e}, \mathcal{I}_{S}((a-2) h+(a e-2-e) f)\right)
$$

Hence $h^{0}\left(C, u^{*}\left(\mathcal{O}_{Y}(f)\right)\right)=2=h^{0}\left(Y, \mathcal{O}_{Y}(f)\right)$ if and only if

$$
h^{1}\left(C, u^{*}\left(\mathcal{O}_{Y}(f)\right)\right)=x+h^{1}\left(Y, \mathcal{O}_{Y}(f)\right)
$$

i.e. if and only if $h^{1}\left(F_{e}, \mathcal{I}_{S}((a-2) h+(a e-e-3) f)\right)=0$. The last equality is true, because S is general and $x \leq(a-1)(e a-2-2 e) / 2=h^{0}\left(F_{e}, \mathcal{I}_{S}((a-\right.$ 2) $h+(a e-e-3) f))$.

For any $P \in F_{e}$ let F_{P} be the fiber of the ruling of F_{e} containing P. We fix $P \in F_{e} \backslash h$ such that $F_{P} \cap S=\emptyset$. Let $Z \subset F_{P}$ be the degree two effective divisor with P as its support. Take any $S_{1} \subset F_{P} \backslash\left\{P, h \cap F_{P}\right\}$ such that $\sharp\left(S_{1}\right)=a-2$ and set $Z^{\prime}:=Z \cup S_{1}$. Taking the inclusion $F_{P} \hookrightarrow F_{e}$, we may also see Z^{\prime} as a degree a zero-dimensional subscheme of F_{e}.
Claim. $h^{1}\left(F_{e}, \mathcal{I}_{2 S \cup Z^{\prime}}(a h+a e f)\right)=0$.
Proof of the Claim. Set $T:=h \cup F_{P} \in\left|\mathcal{O}_{F_{e}}(h+f)\right|$. Since $S \cap h=\emptyset$ and $S \cap F_{P}=\emptyset$, we have $S \cap T=\emptyset$. Hence $\left(2 S \cup Z^{\prime}\right) \cap T=Z^{\prime}$. We proved during the proof of Lemma 1 that $\left.h^{1}\left(F_{e}, \mathcal{I}_{2 S}((a-1) h+(a-1) e f)\right)\right)=0$. Hence $h^{1}\left(F_{e}, \mathcal{I}_{2 S}((a-1) h+(a e-e+e-1) f)\right)=0$. Notice that

$$
\mathcal{I}_{2 S}((a-1) h+(a e-e+e-1) f) \cong \mathcal{I}_{2 S}(a h+a e f)(-T)
$$

Since $h^{1}\left(F_{e}, \mathcal{I}_{2 S}(a h+a e f)\right)=0($ Lemma 1$)$, the Claim is true if

$$
h^{1}\left(T, \mathcal{I}_{Z^{\prime}, T}(a h+a e f)\right)=0
$$

The nodal curve T has two irreducible components, h and F_{P}, and both components are isomorphic to \mathbb{P}^{1}. Since $Z^{\prime} \cap h=\emptyset$, we have $Z^{\prime} \cap h \cap F_{P}=\emptyset$ and hence the $\mathcal{O}_{T^{-s h e a f}} \mathcal{I}_{Z^{\prime}}(a h+a e f)$ is a line bundle. Since $Z^{\prime} \cap h=\emptyset$ and $\mathcal{O}_{h}(a h+a e f) \cong \mathcal{O}_{h}$, we have $\mathcal{I}_{Z^{\prime}, T}(a h+a e f) \mid h \cong \mathcal{O}_{h}$. Since $\operatorname{deg}\left(Z^{\prime}\right)=a$, we have $\mathcal{I}_{Z^{\prime}, T}(a h+a e f) \cap F_{P} \cong \mathcal{O}_{F_{P}}$. Hence a Mayer-Vietoris exact sequence gives $h^{1}\left(T, \mathcal{I}_{Z^{\prime}, T}(a h+a e f)\right)=0$, concluding the proof of the Claim.

The Claim is equivalent to

$$
h^{0}\left(F_{e}, \mathcal{I}_{2 S \cup Z^{\prime}}(a h+a e f)\right)=h^{0}\left(F_{e}, \mathcal{I}_{2 S}(a h+a e f)\right)-a
$$

Set $\Gamma:=\bigcup_{Q \in S} F_{Q}$. We take all $Y \in\left|\mathcal{I}_{2 S}(a h+e a f)\right|$ containing some Z^{\prime}. The set of all $P \in F_{e}$ has dimension 2. For fixed P the set of all $S_{1} \subset F_{P} \backslash F_{P} \cap(\{P\} \cup h)$ with $\sharp\left(S_{1}\right)=a-2$ has dimension $a-2$. Each Y may contain only finitely many schemes Z^{\prime}, because each non-constant morphism $C \rightarrow \mathbb{P}^{1}$ has only finitely many ramification points. Varying first $P \in F_{e} \backslash(h \cup \Gamma)$ and then all $S_{1} \subset F_{P} \backslash\left(h \cap F_{P} \cup\{P\}\right)$ with $\sharp\left(S_{1}\right)=a-2$, we get that a general $Y \in\left|\mathcal{I}_{2 S}(a h+a e f)\right|$ contains some Z^{\prime} for some $P \in$ $F_{e} \backslash(h \cup \Gamma)$. Let $u: C \rightarrow \mathbb{P}^{1}$ be the normalization of any such Y, say containing $Z^{\prime}=Z \cup S_{1}$ with $Z \subset F_{P}$. We saw that $h^{0}\left(C, u^{*}\left(\mathcal{O}_{Y}(f)\right)\right)=2$. Let $\rho: C \rightarrow \mathbb{P}^{1}$ be the morphism associated to $\left|u^{*}\left(\mathcal{O}_{Y}(f)\right)\right|$. Notice that ρ is induced by the ruling $\rho_{1}: F_{e} \rightarrow \mathbb{P}^{1}$. Set $Q:=\rho_{1}(P)$. By the construction $\rho^{-1}(Q) \cong Z \cup S_{1}$, i.e. the fiber of ρ over Q contains a point with multiplicity two and $a-2$ points with multiplicity one. Hence there are no ($C^{\prime}, \rho^{\prime}, \rho^{\prime \prime}$) with C^{\prime} a smooth curve, $\rho^{\prime}: C \rightarrow C^{\prime}, \rho^{\prime \prime}: C^{\prime} \rightarrow \mathbb{P}^{1}, \rho=\rho^{\prime \prime} \circ \rho^{\prime}, \operatorname{deg}\left(\rho^{\prime}\right) \geq 2$ and $\operatorname{deg}\left(\rho^{\prime \prime}\right) \geq 2$.

Lemma 3. Fix S, Y, C, u as in Lemma 1 and take any spanned line bundle L of degree >0. Fix a general $A \in|L|$ and set $B:=u(A)$. Then $S \cap B=\emptyset$ and $h^{1}\left(F_{e}, \mathcal{I}_{S \cup B}((a-2) h+(a e-e-2) f)\right)>0$.

Proof. Since $\operatorname{deg}(L)>0, A \neq \emptyset$. Since L is spanned, $h^{0}(C, L(-Q))=$ $h^{0}(C, L)-1$ for each $Q \in C$ and in particular for each $Q \in A$. RiemannRoch gives $h^{1}\left(C, \mathcal{O}_{C}(A \backslash\{Q\})=h^{1}\left(C, \mathcal{O}_{C}(A)\right.\right.$ for every $Q \in A$. Since $H^{0}\left(C, \omega_{C}\right) \cong H^{0}\left(F_{e}, \mathcal{I}_{S}((a-2) h+(a e-e-2) f)\right)$, we get

$$
\begin{aligned}
h^{0}\left(F_{e}, \mathcal{I}_{S \cup(B \backslash\{P\}}\right. & ((a-2) h+(a e-e-2) f)) \\
& =h^{0}\left(F_{e}, \mathcal{I}_{S \cup B}((a-2) h+(a e-e-2) f)\right.
\end{aligned}
$$

for every $P \in B$. Hence $h^{1}\left(F_{e}, \mathcal{I}_{S \cup B}((a-2) h+(a e-e-2) f)\right)>0$.
Lemma 4. Take e, a, x, S, Y, C as in Lemma 2. Then $d_{1}(C)=a$.
Proof. The line bundle $u^{*}\left(\mathcal{O}_{Y}(f)\right)$ gives $d_{1}(C) \leq a$. Assume $z:=d_{1}(C)<a$ and take $L \in \operatorname{Pic}^{z}(C)$ evincing $d_{1}(C)$, i.e. evincing the gonality of C. Fix a general $A \in|L|$ and set $B:=u(A)$. Lemma 3 gives

$$
h^{1}\left(F_{0}, \mathcal{I}_{S \cup B}((a-2) h+(a e-2-e) f)\right)>0 .
$$

Since L is spanned and A is general, we have $S \cap B=B \cap h=\emptyset$. Lemma 2 gives $h^{0}\left(C, u^{*}\left(\mathcal{O}_{Y}(f)\right)\right)=2$. Let $v: C \rightarrow \mathbb{P}^{1}$ be the morphism induced by $|L|$ and $v^{\prime}: C \rightarrow \mathbb{P}^{1}$ the morphism induced by $\left|u^{*}\left(\mathcal{O}_{Y}(f)\right)\right|$. Since v^{\prime} is not composed with an involution (Lemma 3), the induced map $\left(v, v^{\prime}\right): C \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ is birational onto its image. Hence for general B we have $\sharp(D \cap B) \leq 1$ for every $D \in\left|\mathcal{O}_{F_{e}}(f)\right|$. Since $h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)>z$, there is $A_{1} \in\left|\mathcal{O}_{F_{e}}(h+e f)\right|$ containing B. Since $B \cap h=\emptyset$ and $\sharp(D \cap B) \leq 1$ for every $D \in\left|\mathcal{O}_{F_{e}}(f)\right|, A_{1}$ is irreducible. Hence $E \cong \mathbb{P}^{1}$. Since S is general
and $h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)=e+2$, we have $\sharp\left(S \cap A_{1}\right) \leq e+1$. Hence

$$
\sharp\left(A_{1} \cap(S \cup B)\right) \leq z+e+1 \leq a+e .
$$

Since $\operatorname{deg}\left(\mathcal{O}_{A_{1}}((a-2) h+(a e-e-2) f)\right)=a e-e-2 \geq a+e-1$, we have

$$
h^{1}\left(A_{1}, \mathcal{I}_{A_{1} \cap(S \cup B), A_{1}}((a-2) h+(a e-e-2) f)\right)=0 .
$$

Hence the case $i=1$ of (1) gives

$$
h^{1}\left(F_{e}, \mathcal{I}_{S \backslash S \cap A_{1}}((a-3) h+((a-1) e-e-2) f)\right)>0 .
$$

Since $S \backslash S \backslash S \cap A_{1}$ is general and
$x \leq e(a-2)(e a-3 e+2) / 2 \leq h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}((a-3) h+((a-1) e-e-2) f)\right)$, we have

$$
h^{1}\left(F_{e}, \mathcal{I}_{S \backslash S \cap A_{1}}((a-3) h+((a-1) e-e-2) f)\right)=0
$$

a contradiction.
Lemma 5. Fix integers $e \geq 2$ and $a \geq 2$. Fix any integral $Y \in \mid \mathcal{O}_{F_{e}}(a h+$ eaf) \mid and call $u: C \rightarrow Y$ the normalization map. Then $s_{e+1+2 j}(C) \leq a e+j e$ for every integer $j \geq 0$.

Proof. We have $h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+(e+j) e f)\right)=e+2+2 j$, for every integer $j \geq 0$. Since $a \geq 2$, we have $h^{0}\left(F_{e}, \mathcal{I}_{Y}(h+y f)\right)=0$ for any y. We have $\mathcal{O}_{F_{e}}(h+(e+j) f) \cdot \mathcal{O}_{F_{e}}(a h+e a f)=a(e+j)$. Since for any $j \geq 0$ the linear system $\mid \mathcal{O}_{F_{e}}\left((h+(e+j) f) \mid\right.$ embeds $F_{e} \backslash h$, the spanned line bundle $u^{*}\left(\mathcal{O}_{Y}((h+(e+j) f))\right.$ gives $s_{e+1+2 j}(C) \leq a e+j e$.

Lemma 6. Fix an integer $e \geq 2$. There is an integer $A_{e} \geq 5$ with the following property. Fix integers a, x such that $a \geq A_{e}$ and $0 \leq x \leq a e-e-2$. Moreover, every base point free linear system on C with degree \leq ae and birationally very ample is induced (after deleting the base points) from a linear subspace of $H^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)$.

Proof. Fix an integer $z \leq a e$ such that there is a spanned $L \in \operatorname{Pic}^{z}(C)$ such that the morphism $v: C \rightarrow \mathbb{P}^{k}, k:=h^{0}(C, L)-1$, induced by $|L|$ is birational onto its image. Fix a general $A \in|L|$ and set $B:=u(A)$. Since L is spanned and A is general, we have $S \cap B=\emptyset$ and $B \cap h=\emptyset$. Lemma 3

$$
h^{1}\left(F_{0}, \mathcal{I}_{S \cup B}((a-2) h+(a e-2-e) f)\right)>0
$$

(a) Since the monodromy group G of the general hyperplane section of $v(C)$ is the full symmetric group S_{z}, B is in uniform position in F_{e} and in particular for all integers c, t such that $0 \leq c \leq a$ and $t \geq e c$ and any $B^{\prime} \subset B$, either $h^{0}\left(F_{e}, \mathcal{I}_{B^{\prime}}(c h+t f)\right)=\max \left\{0,(c+1)(t+1)-\sharp\left(B^{\prime}\right)\right\}$ or $h^{0}\left(F_{e}, \mathcal{I}_{B}(c h+t f)\right)>0$. In particular, $\sharp(D \cap B) \leq 1$ for every $D \in\left|\mathcal{O}_{F_{e}}(f)\right|$.
(b) In this step we assume $h^{0}\left(F_{e}, \mathcal{I}_{B}(h+e f)\right)>0$. Let t be the minimal non-negative integer such that $h^{0}\left(F_{e}, \mathcal{I}_{B}(h+t f)\right)>0$. By assumption we have $t \leq e$. Varying A in $|L|$, we get that $|L|$ is obtained (after deleting
the base locus) from a linear subspace of $\left|\mathcal{O}_{F_{e}}(h+t f)\right|$. Since $\left|\mathcal{O}_{F_{e}}(h+t f)\right|$ sends $F_{e} \backslash h$ onto \mathbb{P}^{1} if $t<e$, while v is birational onto its image, we get $t=e$. Since $h^{0}\left(F_{e}, \mathcal{I}_{B}(h+(e-1) f)\right)=0$, step (a) gives $\sharp(D \cap B) \leq e-1$ for every $\left.\Gamma \in \mid \mathcal{I}_{B}(h+(e-1) f)\right) \mid$. Since $\sharp(D \cap B) \leq 1$ for every $D \in\left|\mathcal{O}_{F_{e}}(1)\right|$ and $z>e, T$ is irreducible. Hence $T \cong \mathbb{P}^{1}$. Since $\sharp(B) \leq Y \cdot T=a e$, we have $z \leq a e$ and if inequality holds, then $|L|$ is induced without deleting any base point from $\left|\mathcal{O}_{F_{e}}(h+e f)\right|$. Hence $k \leq e+1$ and v is induced (after deleting the base points) from a linear subspace of $H^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)$. We get that if L evinces $s_{e+1}(C)$ and the assumption of this step holds, then $s_{e+1}(C)=a e$ and $L \cong u^{*}\left(\mathcal{O}_{Y}(h+e f)\right)$.
(c) From now on we assume $h^{0}\left(F_{e}, \mathcal{I}_{B}(h+e f)\right)=0$. To conclude the proof of the lemma it is sufficient to find a contradiction for $a \gg 0$ and any $x \leq a e-e-2$. Set $c:=\lfloor z /(e+1)\rfloor$. Set $S_{0}:=S$ and $B_{0}:=B$. Fix $A_{1} \in\left|\mathcal{O}_{F_{e}}(h+e f)\right|$ such that $a_{1}:=\sharp\left(A_{1} \cap B_{0}\right)$ is maximal. Set $S_{1}:=$ $S_{0} \backslash S_{0} \cap A_{1}$ and $B_{1}:=B_{0} \backslash B_{0} \cap A_{1}$. For each integer $i \geq 2$ define recursively the curve $A_{i} \in\left|\mathcal{O}_{F_{e}}(h+e f)\right|$, the integer a_{i}, and the sets S_{i}, B_{i} in the following way. Fix $A_{i} \in\left|\mathcal{O}_{F_{e}}(h+e f)\right|$ such that $a_{i}:=\sharp\left(A_{i} \cap B_{i-1}\right)$ is maximal. Set $S_{i}:=S_{i-1} \backslash S_{i-1} \cap A_{i}$ and $B_{i}:=B_{i-1} \backslash B_{i-1} \cap A_{i}$. Since $h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)=e+2$ and $h^{0}\left(F_{e}, \mathcal{I}_{B}(h+e f)\right)=0$, step (a) gives $a_{i} \leq e+1$ for all i. Since $h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)=e+2$ and a_{i} is maximal, either $a_{i}=e+1$ or $B_{i}=\emptyset$. Hence $a_{i}=e+1$ for $i \leq c, a_{c+1}=z-c(a+1) \leq e+1$ and $a_{i}=0$ for all $i \geq c+2$. Assume $a \geq 4 e$. Hence $(e+1)^{2}(a-3) \geq e(e+2) a$. Since $z \leq e a$, we get $c \leq a-4$. For each integer $i=1, \ldots, c+1$ we have an exact sequence

$$
\begin{align*}
0 & \rightarrow \mathcal{I}_{S_{i} \cup B_{i}}((a-2-i) f+(e(a-i)-e-2) f) \\
& \rightarrow \mathcal{I}_{S_{i-1} \cup B_{i-1}}((a-1-i) h+(e(a-i+1)-e-2) f) \tag{2}\\
& \rightarrow \mathcal{I}_{A_{i} \cap\left(S_{i-1} \cup B_{i-1}, A_{i}\right.}((a-1-i) h+(e(a-i+1)-e-2) f) \rightarrow 0 .
\end{align*}
$$

Fix $i \in\{1, \ldots, c\}$. By step (a) we have $\sharp(D \cap B) \leq 1$ for every $D \in\left|\mathcal{O}_{F_{e}}(f)\right|$. Hence A_{i} is irreducible. Hence $A_{i} \cong \mathbb{P}^{1}$. Since $\sharp(D \cap B) \leq 1$ for every $B \in\left|\mathcal{O}_{F_{e}}(f)\right|$ and $B \cap h=\emptyset$, even if $a_{c+1} \leq a$ we may take an irreducible $A_{c+1} \in\left|\mathcal{O}_{F_{e}}(f)\right|$ containing B_{c+1}. Assume for a moment $c+1 \leq a-5$. Since $e \geq 2$, we have $e(a-c+1)-e-2 \geq 2 e+1$. Set $x_{i}:=\sharp\left(S_{i-1} \cap A_{i}\right)$. Since S is general, we have $x_{i} \leq e+1$. Hence $x_{i}+a_{i} \leq 2 e+2$. Since $A_{i} \cong \mathbb{P}^{1}$ and

$$
\begin{aligned}
& \left.\operatorname{deg}\left(\mathcal{O}_{A_{i}}((a-1-i) h+(e(a-i+1)-e-2) f)\right)=e(a-i+1)-e-2\right) \\
& \quad \geq e(a-c+1)-e-2 \geq 2 e+1
\end{aligned}
$$

we have

$$
h^{1}\left(A_{i}, \mathcal{I}_{A_{i} \cap\left(S_{i-1} \cup B_{i-1}, A_{i}\right.}((a-1-i) h+(e(a-i+1)-e-2) f)\right)=0 .
$$

Hence applying (2) first for $i=1$, then for $i=2$, and so on up to $i=c+1$, we get

$$
h^{1}\left(F_{e}, \mathcal{I}_{S_{c+1}}((a-3-c) f+(e(a-c-1)-e-2) f)\right)>0
$$

Since $2 e \geq e+1$, we have

$$
h^{1}\left(F_{e}, \mathcal{O}_{F_{e}}((a-3-c) f+(e(a-c-1)-e-2) f)\right)=0
$$

Since S is general and $S_{c} \subseteq S$, to have $h^{1}\left(F_{e}, \mathcal{I}_{S_{c+1}}((a-3-c) f+(e(a-\right.$ $c-1)-e-2) f))=0$ (and hence a contradiction), it is sufficient to have

$$
\sharp\left(S_{c}\right) \leq h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}((a-3-c) f+(e(a-c-1)-e-2) f)\right) .
$$

Since $\sharp\left(S_{c}\right) \leq x$, it is sufficient to have $x \leq(a-3-c)(e(a-3-c)+2 e-2) / 2$. Since $x \leq a e-e-2$, it is sufficient to have $(a-c-3)^{2} e / 2 \geq a e$. Thus it is sufficient to have $c \leq a-3-\sqrt{2 a}$. Since $c \leq e a /(e+1)$, it is sufficient to have $a-(e+1) \sqrt{2 a}-3 e-3 \geq 0$. Hence we may take $A_{e}=32(e+1)^{2}$. Notice that we also checked the assumption $a-c-1 \leq a-5$.

Lemma 7. Take $e \geq 2, A_{e}, a \geq A_{e}, 0 \leq x \leq e a-e-2, S, Y$ and C as in Lemma 5.
(a) We have $s_{e}(C)=e a-1-\min \{1, x\}$.
(b) If $x>0$, then each $L \in \operatorname{Pic}(C)$ evincing $s_{e}(C)$ is induced by $\left|\mathcal{I}_{\{P\}}(h+e f)\right|$ (after deleting the degree 2 base locus $u^{-1}(P)$) for some $P \in S$. For an arbitrary x any spanned and birationally very ample line bundle M of degree ea-1 is induced by $\left|\mathcal{I}_{\{P\}}(h+e f)\right|$ (after deleting the degree 1 base locus $\left.u^{-1}(P)\right)$ for some $P \in Y \backslash(S \cup h)$.

Proof. The linear systems described in part (b) shows that $s_{e}(C) \leq e a-$ $1-\min \{1, x\}$. By Lemma 7 any such birationally very ample and spanned complete linear system $|L|$ is induced (after deleting the base locus) from a codimension 1 linear subspace V of $H^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)$. Call $\mathcal{B} \subset F_{e}$ the base scheme of V as a linear system on F_{e} and \mathbb{B} the base locus of $u^{*}(V)$ on C. Since $h^{0}\left(C, u^{*}\left(\mathcal{O}_{Y}(h+e f)\right)\right) \geq e+2$, we have $\mathbb{B} \neq \emptyset$. Obviously $\mathbb{B}_{\text {red }}=u^{-1}(\mathcal{B} \cap Y)$. Hence $\mathcal{B} \cap Y \neq \emptyset$. Since $\mathcal{O}_{h}(h+e f) \cong \mathcal{O}_{h}$,

$$
h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)=2+h^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(e f)\right)
$$

and V has codimension 1 in $H^{0}\left(F_{e}, \mathcal{O}_{F_{e}}(h+e f)\right)$, we have $h \cap \mathcal{B}=\emptyset$. Since $\left|\mathcal{O}_{F_{e}}(h+e f)\right|$ induces an embedding of $F_{e} \backslash h$, the scheme \mathcal{B} must be a single point, P, with its reduced structure. Since $\mathcal{B} \cap Y \neq \emptyset$, we have $P \in Y$. We have $\operatorname{deg}(L)=a e-1$ if $P \notin S$ and $\operatorname{deg}(L)=a e-2$ if $P \in S$.
3. Proof of Theorem 1. We fix the integer $r \geq 3$ for which we want to prove Theorem 1 and set $e:=r-1$. Hence $e \geq 2$. Fix A_{e} as in Lemma 6 and any integer $g \geq e A_{e}^{2} / 2-e A_{e}+e+2$. Let a be the minimal integer such that $g \leq g_{a, e}$. Since $g_{a, e}-g_{a-1, e}=a e-e-1$, we have $a \geq A_{e}$ and there is a unique integer x such that $0 \leq x \leq a e-e-2$ and $g=g_{a, e}-x$. Take C as in Lemmas 6 and 7 . Lemma 6 gives $\left.s_{e+1}(C)\right)=a e$. Hence it is sufficient to prove that $s_{e+2}(C)>(e+2) e a /(e+1)$. Assume $z:=s_{e+2}(C) \leq(e+2) e a /(e+1)$ and fix $L \in \operatorname{Pic}^{z}(C)$ evincing $s_{e+2}(C)$. The line bundle L is spanned, $h^{0}(C, L)=e+3$ and $|L|$ induces a morphism
$v: C \rightarrow \mathbb{P}^{e+2}$ birationally onto its image and with $v(C)$ a degree z nondegenerate curve with arithmetic genus $\geq g$. Set $m_{1}:=\lfloor(z-1) /(e+2)\rfloor$, $\epsilon_{1}=z-1-m_{1}(e+2), \mu_{1}:=0$ if $\epsilon_{1} \neq e+1$ and $\mu_{1}:=1$ if $\epsilon_{1}=e+1$. Set $\pi_{1}(z, e+2)=(e+2) m_{1}\left(m_{1}-1\right) / 2+m_{1}\left(\epsilon_{1}+1\right)+\mu_{1}$. Notice that
$\pi_{1}(z, e+2) \leq z(z+2) / 2(e+2) \leq e a(e+2)(e a(e+2)+2 e+2) /\left(2(e+2)(e+1)^{2}\right)$.
Notice that $e^{2}(e+2)^{2} /\left(2(e+2)(e+1)^{2}\right)<e / 2$. Since $g>g_{a-1, e}=1+(a-$ $1)(a e-2-2 e) / 2$, we have $g>\pi(z, e+2)$ if $a \gg 0$, say if $a \geq A_{e}^{\prime}$. Hence [3], Theorem 3.15, gives that $v(C)$ is contained in a degree $e+1$ surface $T \subset \mathbb{P}^{e+2}$. By the classification of all minimal degree surfaces ([2]), either T is a cone over a rational normal curve or $T \cong F_{m}$ embedded by the complete linear system $\left|\mathcal{O}_{F_{e+1}}(h+(e+1+m) f)\right|$ for some integer $m \equiv e+1(\bmod 2)$ with $0 \leq m \leq e-1$. In the latter case we set $E:=v(C)$. In the former case T is the image of F_{e+1} by the complete linear system $\left|\mathcal{O}_{F_{e+1}}(h+(e+1) f)\right|$; in this case set $m:=e+1$ and call E the strict transform of $v(C)$ in F_{e+1}. In both cases E is a curve contained in F_{m} with C as its normalization. Call $u^{\prime}: C \rightarrow E$ the normalization map. Hence there are integers c, y such that $E \in\left|\mathcal{O}_{F_{m}}(c h+y f)\right|$ with $y \geq m c$ and $c>0$. Lemma 4 gives $c \geq a$; if $m=0$ it also gives $y \geq a$.
(a) Here we assume $m \leq e-1$. Let $T^{\prime} \subset \mathbb{P}^{e}$ be the image of F_{m} by the complete linear system $\left|\mathcal{O}_{F_{m}}(h+(e+m) f)\right|$. Since either $T^{\prime} \cong F_{m}$ (case $m \neq e-1$) or T^{\prime} is the blowing down of h (case $m=e-1$), the image of E in T^{\prime} gives $s_{e}(C) \leq \mathcal{O}_{F_{m}}(h+(e+m) f) \cdot \mathcal{O}_{F_{m}}(c h+y f)=z-c$. Since $c \geq a$, Lemma 7 gives $z \geq c+a e-2 \geq a(e+1)-2$, contradicting the assumption $z \leq e a(e+2) /(e+1)\left(\right.$ with $\left.a>2(e+1)^{2}\right)$.
(b) Now assume $m=e+1$. Since $y \geq m c=(e+1) c$ and $c \geq a$ (Lemma 6), this case is impossible.

The proof of Theorem 1 is complete.

References

[1] Coppens, M., Martens, G., Linear series on 4-gonal curves, Math. Nachr. 213, no. 1 (2000), 35-55.
[2] Eisenbud, D., Harris, J., On varieties of minimal degree (a centennial account), Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 3-13, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.
[3] Harris, J., Eisenbud, D., Curves in projective space, Séminaire de Mathématiques Supérieures, 85, Presses de l'Université de Montréal, Montréal, Que., 1982.
[4] Hatshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.
[5] Laface, A., On linear systems of curves on rational scrolls, Geom. Dedicata 90, no. 1 (2002), 127-144; generalized version in arXiv:math/0205271v2.
[6] Lange, H., Martens, G., On the gonality sequence of an algebraic curve, Manuscripta Math. 137 (2012), 457-473.
E. Ballico
Dept. of Mathematics
University of Trento
38123 Povo (TN)
Italy
e-mail: ballico@science.unitn.it

Received May 17, 2012

[^0]: 2000 Mathematics Subject Classification. 14H45; 14H50; 32L10.
 Key words and phrases. Birational gonality sequence, smooth curve, nodal curve, Hirzebruch surface.

 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

