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On the birational gonalities of smooth curves

Abstract. Let C be a smooth curve of genus g. For each positive integer r
the birational r-gonality sr(C) of C is the minimal integer t such that there
is L ∈ Pict(C) with h0(C,L) = r + 1. Fix an integer r ≥ 3. In this paper we
prove the existence of an integer gr such that for every integer g ≥ gr there
is a smooth curve C of genus g with sr+1(C)/(r + 1) > sr(C)/r, i.e. in the
sequence of all birational gonalities of C at least one of the slope inequalities
fails.

1. Introduction. Let C be a smooth curve of genus g. For each positive
integer r the birational r-gonality sr(C) of C is the minimal integer t such
that there is L ∈ Pict(C) with h0(C,L) = r + 1 ([1], §2). In this paper we
prove the following result.

Theorem 1. Fix an integer r ≥ 3. Then there exists an integer gr such
that for every integer g ≥ gr there is a smooth curve C of genus g with
sr+1(C)/(r + 1) > sr(C)/r.

Theorem 1 means that for the curve C at least one slope inequality fails.
For any integer r ≥ 1 the r-gonality of C is the minimal degree of a line
bundle L on C with h0(C,L) ≥ r + 1. Obviously sr(C) ≥ dr(C) if r ≥ 2.
Equality holds if dr(C) < r ·d1(C) and C has no non-trivial morphism onto
a smooth curve of positive genus. In [6] H. Lange and G. Martens studied
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the slope inequality for the usual gonality sequence of smooth curves (it
may fail for some C, but not for a general C).
We work over an algebraically closed base field with characteristic zero.

2. Working inside a Hirzebruch surface. Fix e ∈ N. Let Fe
∼= P(OP1⊕

OP1(−e)) denote the Hirzebruch surface ([4], Chapter V, §2). We call π :
Fe → P

1 a ruling of Fe. We have Pic(Fe) ∼= Z
2 and take as a basis of Pic(Fe)

a fiber f of π and a section h of π with h2 = −e (π and h are unique if e > 0).
For any finite set S ⊂ Fe let 2S denote the first infinitesimal neighborhood
of S in Fe, i.e. the closed subscheme of Fe with (IS)2 has its ideal sheaf.
We have (2S)red = S and deg(2S) = 3 · �(S). Fix an integer a ≥ 0. The
line bundle OFe(ah+ bf) is spanned (resp. very ample) if and only if b ≥ ea
(resp. b > ea and a > 0) ([4], V.2.18). We have h1(Fe,OFe(ah+ bf)) = 0 if
and only if b ≥ −1. If b ≥ ae, then

h0(Fe,OFe(ah+ bf)) = (a+ 1)(2b− ea+ 2)/2

([5], Proposition 2.3). Assume a > 0 and b ≥ ae; if e = 0, then assume
b > 0. Fix any Y ∈ |OFe(ah + eaf)|. Since ωFe

∼= OFe(−2h + (−e − 2)f),
the adjunction formula gives

ωY
∼= OY ((a− 2)h+ (ea− e− 2)f).

Hence pa(Y ) = 1 + a(ea− e− 2)/2. We have

h0(Fe,OFe(ah+ eaf)) = (ea+ 2)(a+ 1)/2.

To prove Theorem 1 for the integer r we will use as C the normalization
of a nodal curve Y ∈ |OFe(ah+ eaf)|, where e := r − 1.

Notation 1. For all integers a ≥ 1 and e ≥ 1 set ga,e := 1+a(ae−2−e)/2.

Notice that if a ≥ 2, then ga,e − ga−1,e = ae− e− 1.

Lemma 1. Assume e ≥ 2. Fix integers a, x. If x = 0, assume a ≥ 1. If
x > 0, assume a ≥ 5 and 3x ≤ (ea− 2e+1)(a− 1)/2. Fix a general S ⊂ Fe

such that �(S) = x. Then

h1(Fe, I2S(ah+ eaf)) = 0, h0(Fe, I2S(ah+ eaf)) = (ea+ 2)(a+ 1)/2− 3x,

a general Y ∈ |I2S(ah+ eaf)| is integral, nodal and with Sing(Y ) = S.

Proof. First assume x = 0. Since OFe(ah + aef) is spanned, Bertini’s
theorem gives that a general Y ∈ |OFe(ah+ aef)| is smooth. Since
h0(Fe,OFe(h+ef))+h0(Fe,OFe((c−1)h+(c−1)rf)) < h0(Fe,OFe(ch+cf))

for every integer c ∈ {1, . . . , a − 1} and |OFe(uh + vf)| has h in the base
locus if u > 0 and v < eu, Y is also irreducible.
Now assume x > 0. Fix a general S ⊂ Fe such that �(S) = x. Since

3x ≤ h0(Fe,OFe((a− 2)h+ e(a− 2)f)),
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e ≥ 2 and a− 2 ≥ 3, a theorem of A. Laface gives

h1(Fe, I2S((a− 2)h+ e(a− 2)f)) = 0

([5], Proposition 5.2 and case m = 2 of Theorem 7.2). Hence

h1(Fe, I2S((a− i)h+ e(a− i)f)) = 0

for i = 0, 1. Hence

h0(Fe, I2S(ah+ eaf)) = (ea+ 2)(a+ 1)/2− 3x.

Fix P ∈ Fe \S and a general A ∈ |OFe(h+e)f)| containing P . The curve
A is smooth if P /∈ h, while A = h ∪ F with F ∈ |OFe(f)| if P ∈ h. In all
cases we see that OA(ah+ eaf) is spanned at P (in the case P ∈ h use the
following facts: Oh(ah+ eah) ∼= Oh, F ∼= P

1, and OP1(a) is spanned). Since
h1(Fe,OFe((a− 1)h+ e(a− 1)f)) = 0, P ∈ A and OA(ah+ eaf) is spanned
at P , the exact sequence

(1)
0 → I2S((a− 1)h+ e(a− 1)f) → I2S((a− 1)h+ e(a− 1)f)

→ OA(ah+ eaf) → 0

gives that I2S(ah + eaf) is spanned at P . Since this is true for all P /∈ S,
Bertini’s theorem gives Sing(Y ) = S. In particular Y has no multiple
component. Fix P ∈ S. Since S is general, we have P /∈ h. Since |OFe(h+
ef)| induces a morphism with injective differential at P , |OFe(2h + 2af)|
spans the jets at P of OFe up to order 2. Hence we may find Y

′ ∈ |OFe(2h+
2ef)| with an ordinary node at P . Since

h1(Fe, I2S((a− 2)h+ e(a− 2)f)) = 0,

we have
h1(Fe, I{P}∪2(S\{P})((a− 2)h+ e(a− 2)f)) = 0.

Hence

h0(Fe, I{P}∪2(S\{P})((a− 2)h+ e(a− 2)f))

= h0(Fe, I2(S\{P})((a− 2)h+ e(a− 2)f))− 1.

Hence there is Y ′′ ∈ |I2(S\{P})((a − 2)h + e(a − 2)f)| such that P /∈ Y ′′.
Hence Y ′′∪Y ′ has an ordinary node at P . Since Y ′′∪Y ′ ∈ |I2S(ah+eaf)|, S
is finite and Y is general, Y is nodal. Recall that Sing(Y ) = S and that S is
general. Since S is general, no pair of points of S is on the same fiber of the
ruling of Fe. Hence no fiber of Fe may be an irreducible component of Y .
Since OFe(ch+ ecf) · OFe((a− c)h+ e(a− c)f) = ec(a− c), we immediately
see that Y is irreducible. �
Lemma 2. Assume e ≥ 2. Fix integers a, x. If x = 0, assume a ≥ 1.
If x > 0, assume a ≥ 5 and 3x ≤ (ea − 2e + 1)(a − 1)/2. Fix a general
S ⊂ Fe such that �(S) = x and a general Y ∈ |I2S(ah+ eaf)|. Let u : C →
Y denote the normalization map. The line bundle u∗(OY (f)) is spanned
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and h0(C, u∗(OY (f))) = 2. Let ρ : C → P
1 be the morphism induced by

|u∗(OY (f))|. Then ρ is not composed with an involution, i.e. there are no
(C ′, ρ′, ρ′′) with C ′ a smooth curve, ρ′ : C → C ′, ρ′′ : C ′ → P

1, ρ = ρ′′ ◦ ρ′,
deg(ρ′) ≥ 2 and deg(ρ′′) ≥ 2.

Proof. Obviously u∗(OY (f)) is spanned. Since ae+1−e−2 ≥ e(a−2)−1,
Serre’s duality gives

h1(Fe,OFe(−ah−(ae+1)f)) = h1(Fe,OFe((a−2)h+(ae+1−e−2)f)) = 0.

Hence h0(Y,OY (f)) = 2. Since hi(Fe,OFe) = 0, i = 1, 2, ωFe
∼= OFe(−2h+

(−e− 2)f)), Y is nodal and S = Sing(Y ), we have

H0(Y, ωY ) ∼= H0(Fe,OFe((a− 2)h+ (ae− e− 2)f))

and H0(C, ωC) is induced (after deleting the base points) from

H0(Fe, IS((a− 2)h+ (ae− 2− e)f)).

Hence h0(C, u∗(OY (f))) = 2 = h0(Y,OY (f)) if and only if

h1(C, u∗(OY (f))) = x+ h1(Y,OY (f)),

i.e. if and only if h1(Fe, IS((a− 2)h+(ae− e− 3)f)) = 0. The last equality
is true, because S is general and x ≤ (a−1)(ea−2−2e)/2 = h0(Fe, IS((a−
2)h+ (ae− e− 3)f)).
For any P ∈ Fe let FP be the fiber of the ruling of Fe containing P . We
fix P ∈ Fe \h such that FP ∩S = ∅. Let Z ⊂ FP be the degree two effective
divisor with P as its support. Take any S1 ⊂ FP \ {P, h ∩ FP } such that
�(S1) = a− 2 and set Z ′ := Z ∪ S1. Taking the inclusion FP ↪→ Fe, we may
also see Z ′ as a degree a zero-dimensional subscheme of Fe.
Claim. h1(Fe, I2S∪Z′(ah+ aef)) = 0.
Proof of the Claim. Set T := h ∪ FP ∈ |OFe(h + f)|. Since S ∩ h = ∅
and S ∩ FP = ∅, we have S ∩ T = ∅. Hence (2S ∪ Z ′) ∩ T = Z ′. We proved
during the proof of Lemma 1 that h1(Fe, I2S((a − 1)h + (a − 1)ef))) = 0.
Hence h1(Fe, I2S((a− 1)h+ (ae− e+ e− 1)f)) = 0. Notice that

I2S((a− 1)h+ (ae− e+ e− 1)f) ∼= I2S(ah+ aef)(−T ).

Since h1(Fe, I2S(ah+ aef)) = 0 (Lemma 1), the Claim is true if

h1(T, IZ′,T (ah+ aef)) = 0.

The nodal curve T has two irreducible components, h and FP , and both
components are isomorphic to P1. Since Z ′∩h = ∅, we have Z ′∩h∩FP = ∅
and hence the OT -sheaf IZ′(ah+aef) is a line bundle. Since Z ′∩h = ∅ and
Oh(ah+aef) ∼= Oh, we have IZ′,T (ah+aef)|h ∼= Oh. Since deg(Z ′) = a, we
have IZ′,T (ah+ aef) ∩ FP

∼= OFP
. Hence a Mayer–Vietoris exact sequence

gives h1(T, IZ′,T (ah+ aef)) = 0, concluding the proof of the Claim.
The Claim is equivalent to

h0(Fe, I2S∪Z′(ah+ aef)) = h0(Fe, I2S(ah+ aef))− a.
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Set Γ :=
⋃

Q∈S FQ. We take all Y ∈ |I2S(ah + eaf)| containing some
Z ′. The set of all P ∈ Fe has dimension 2. For fixed P the set of all
S1 ⊂ FP \ FP ∩ ({P} ∪ h) with �(S1) = a − 2 has dimension a − 2. Each
Y may contain only finitely many schemes Z ′, because each non-constant
morphism C → P

1 has only finitely many ramification points. Varying first
P ∈ Fe \ (h ∪ Γ) and then all S1 ⊂ FP \ (h ∩ FP ∪ {P}) with �(S1) = a− 2,
we get that a general Y ∈ |I2S(ah + aef)| contains some Z ′ for some P ∈
Fe \ (h ∪ Γ). Let u : C → P

1 be the normalization of any such Y , say
containing Z ′ = Z ∪ S1 with Z ⊂ FP . We saw that h0(C, u∗(OY (f))) = 2.
Let ρ : C → P

1 be the morphism associated to |u∗(OY (f))|. Notice that ρ
is induced by the ruling ρ1 : Fe → P

1. Set Q := ρ1(P ). By the construction
ρ−1(Q) ∼= Z∪S1, i.e. the fiber of ρ over Q contains a point with multiplicity
two and a − 2 points with multiplicity one. Hence there are no (C ′, ρ′, ρ′′)
with C ′ a smooth curve, ρ′ : C → C ′, ρ′′ : C ′ → P

1, ρ = ρ′′ ◦ ρ′, deg(ρ′) ≥ 2
and deg(ρ′′) ≥ 2. �

Lemma 3. Fix S, Y, C, u as in Lemma 1 and take any spanned line bundle
L of degree > 0. Fix a general A ∈ |L| and set B := u(A). Then S ∩B = ∅
and h1(Fe, IS∪B((a− 2)h+ (ae− e− 2)f)) > 0.

Proof. Since deg(L) > 0, A = ∅. Since L is spanned, h0(C,L(−Q)) =
h0(C,L) − 1 for each Q ∈ C and in particular for each Q ∈ A. Riemann–
Roch gives h1(C,OC(A \ {Q}) = h1(C,OC(A) for every Q ∈ A. Since
H0(C, ωC) ∼= H0(Fe, IS((a− 2)h+ (ae− e− 2)f)), we get

h0(Fe, IS∪(B\{P}((a− 2)h+ (ae− e− 2)f))

= h0(Fe, IS∪B((a− 2)h+ (ae− e− 2)f)

for every P ∈ B. Hence h1(Fe, IS∪B((a− 2)h+ (ae− e− 2)f)) > 0. �

Lemma 4. Take e, a, x, S, Y, C as in Lemma 2. Then d1(C) = a.

Proof. The line bundle u∗(OY (f)) gives d1(C) ≤ a. Assume z := d1(C) < a
and take L ∈ Picz(C) evincing d1(C), i.e. evincing the gonality of C. Fix a
general A ∈ |L| and set B := u(A). Lemma 3 gives

h1(F0, IS∪B((a− 2)h+ (ae− 2− e)f)) > 0.

Since L is spanned and A is general, we have S ∩ B = B ∩ h = ∅.
Lemma 2 gives h0(C, u∗(OY (f))) = 2. Let v : C → P

1 be the morphism
induced by |L| and v′ : C → P

1 the morphism induced by |u∗(OY (f))|.
Since v′ is not composed with an involution (Lemma 3), the induced map
(v, v′) : C → P

1 × P
1 is birational onto its image. Hence for general B we

have �(D ∩ B) ≤ 1 for every D ∈ |OFe(f)|. Since h0(Fe,OFe(h + ef)) > z,
there is A1 ∈ |OFe(h+ef)| containing B. Since B∩h = ∅ and �(D∩B) ≤ 1
for every D ∈ |OFe(f)|, A1 is irreducible. Hence E ∼= P

1. Since S is general
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and h0(Fe,OFe(h+ ef)) = e+ 2, we have �(S ∩A1) ≤ e+ 1. Hence

�(A1 ∩ (S ∪B)) ≤ z + e+ 1 ≤ a+ e.

Since deg(OA1((a− 2)h+ (ae− e− 2)f)) = ae− e− 2 ≥ a+ e− 1, we have

h1(A1, IA1∩(S∪B),A1
((a− 2)h+ (ae− e− 2)f)) = 0.

Hence the case i = 1 of (1) gives

h1(Fe, IS\S∩A1
((a− 3)h+ ((a− 1)e− e− 2)f)) > 0.

Since S \ S \ S ∩A1 is general and

x ≤ e(a− 2)(ea− 3e+ 2)/2 ≤ h0(Fe,OFe((a− 3)h+ ((a− 1)e− e− 2)f)),

we have

h1(Fe, IS\S∩A1
((a− 3)h+ ((a− 1)e− e− 2)f)) = 0,

a contradiction. �
Lemma 5. Fix integers e ≥ 2 and a ≥ 2. Fix any integral Y ∈ |OFe(ah+
eaf)| and call u : C → Y the normalization map. Then se+1+2j(C) ≤ ae+je
for every integer j ≥ 0.

Proof. We have h0(Fe,OFe(h+ (e+ j)ef)) = e+ 2 + 2j, for every integer
j ≥ 0. Since a ≥ 2, we have h0(Fe, IY (h + yf)) = 0 for any y. We have
OFe(h + (e + j)f) · OFe(ah + eaf) = a(e + j). Since for any j ≥ 0 the
linear system |OFe((h + (e + j)f)| embeds Fe \ h, the spanned line bundle
u∗(OY ((h+ (e+ j)f)) gives se+1+2j(C) ≤ ae+ je. �
Lemma 6. Fix an integer e ≥ 2. There is an integer Ae ≥ 5 with the
following property. Fix integers a, x such that a ≥ Ae and 0 ≤ x ≤ ae−e−2.
Moreover, every base point free linear system on C with degree ≤ ae and
birationally very ample is induced (after deleting the base points) from a
linear subspace of H0(Fe,OFe(h+ ef)).

Proof. Fix an integer z ≤ ae such that there is a spanned L ∈ Picz(C)
such that the morphism v : C → P

k, k := h0(C,L) − 1, induced by |L| is
birational onto its image. Fix a general A ∈ |L| and set B := u(A). Since
L is spanned and A is general, we have S ∩B = ∅ and B ∩h = ∅. Lemma 3

h1(F0, IS∪B((a− 2)h+ (ae− 2− e)f)) > 0.

(a) Since the monodromy group G of the general hyperplane section of
v(C) is the full symmetric group Sz, B is in uniform position in Fe and
in particular for all integers c, t such that 0 ≤ c ≤ a and t ≥ ec and any
B′ ⊂ B, either h0(Fe, IB′(ch + tf)) = max{0, (c + 1)(t + 1) − �(B′)} or
h0(Fe, IB(ch+ tf)) > 0. In particular, �(D∩B) ≤ 1 for every D ∈ |OFe(f)|.
(b) In this step we assume h0(Fe, IB(h+ ef)) > 0. Let t be the minimal
non-negative integer such that h0(Fe, IB(h + tf)) > 0. By assumption we
have t ≤ e. Varying A in |L|, we get that |L| is obtained (after deleting
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the base locus) from a linear subspace of |OFe(h+ tf)|. Since |OFe(h+ tf)|
sends Fe \ h onto P1 if t < e, while v is birational onto its image, we get
t = e. Since h0(Fe, IB(h + (e − 1)f)) = 0, step (a) gives �(D ∩ B) ≤ e − 1
for every Γ ∈ |IB(h+(e−1)f))|. Since �(D∩B) ≤ 1 for every D ∈ |OFe(1)|
and z > e, T is irreducible. Hence T ∼= P

1. Since �(B) ≤ Y · T = ae, we
have z ≤ ae and if inequality holds, then |L| is induced without deleting
any base point from |OFe(h+ ef)|. Hence k ≤ e+1 and v is induced (after
deleting the base points) from a linear subspace of H0(Fe,OFe(h+ef)). We
get that if L evinces se+1(C) and the assumption of this step holds, then
se+1(C) = ae and L ∼= u∗(OY (h+ ef)).
(c) From now on we assume h0(Fe, IB(h + ef)) = 0. To conclude the
proof of the lemma it is sufficient to find a contradiction for a � 0 and
any x ≤ ae − e − 2. Set c := �z/(e + 1)�. Set S0 := S and B0 := B.
Fix A1 ∈ |OFe(h + ef)| such that a1 := �(A1 ∩ B0) is maximal. Set S1 :=
S0 \S0∩A1 and B1 := B0 \B0∩A1. For each integer i ≥ 2 define recursively
the curve Ai ∈ |OFe(h + ef)|, the integer ai, and the sets Si, Bi in the
following way. Fix Ai ∈ |OFe(h + ef)| such that ai := �(Ai ∩ Bi−1) is
maximal. Set Si := Si−1 \ Si−1 ∩ Ai and Bi := Bi−1 \ Bi−1 ∩ Ai. Since
h0(Fe,OFe(h + ef)) = e + 2 and h0(Fe, IB(h + ef)) = 0, step (a) gives
ai ≤ e+1 for all i. Since h0(Fe,OFe(h+ef)) = e+2 and ai is maximal, either
ai = e+1 or Bi = ∅. Hence ai = e+1 for i ≤ c, ac+1 = z− c(a+1) ≤ e+1
and ai = 0 for all i ≥ c+2. Assume a ≥ 4e. Hence (e+1)2(a−3) ≥ e(e+2)a.
Since z ≤ ea, we get c ≤ a− 4. For each integer i = 1, . . . , c+ 1 we have an
exact sequence

0 → ISi∪Bi((a− 2− i)f + (e(a− i)− e− 2)f)

→ ISi−1∪Bi−1((a− 1− i)h+ (e(a− i+ 1)− e− 2)f)(2)

→ IAi∩(Si−1∪Bi−1,Ai
((a− 1− i)h+ (e(a− i+ 1)− e− 2)f) → 0.

Fix i ∈ {1, . . . , c}. By step (a) we have �(D∩B) ≤ 1 for every D ∈ |OFe(f)|.
Hence Ai is irreducible. Hence Ai

∼= P
1. Since �(D ∩ B) ≤ 1 for every

B ∈ |OFe(f)| and B ∩ h = ∅, even if ac+1 ≤ a we may take an irreducible
Ac+1 ∈ |OFe(f)| containing Bc+1. Assume for a moment c+1 ≤ a−5. Since
e ≥ 2, we have e(a− c+1)− e− 2 ≥ 2e+1. Set xi := �(Si−1 ∩Ai). Since S
is general, we have xi ≤ e+ 1. Hence xi + ai ≤ 2e+ 2. Since Ai

∼= P
1 and

deg(OAi((a− 1− i)h+ (e(a− i+ 1)− e− 2)f)) = e(a− i+ 1)− e− 2)

≥ e(a− c+ 1)− e− 2 ≥ 2e+ 1,

we have

h1(Ai, IAi∩(Si−1∪Bi−1,Ai
((a− 1− i)h+ (e(a− i+ 1)− e− 2)f)) = 0.

Hence applying (2) first for i = 1, then for i = 2, and so on up to i = c+ 1,
we get

h1(Fe, ISc+1((a− 3− c)f + (e(a− c− 1)− e− 2)f)) > 0.
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Since 2e ≥ e+ 1, we have

h1(Fe,OFe((a− 3− c)f + (e(a− c− 1)− e− 2)f)) = 0.

Since S is general and Sc ⊆ S, to have h1(Fe, ISc+1((a − 3 − c)f + (e(a −
c− 1)− e− 2)f)) = 0 (and hence a contradiction), it is sufficient to have

�(Sc) ≤ h0(Fe,OFe((a− 3− c)f + (e(a− c− 1)− e− 2)f)).

Since �(Sc) ≤ x, it is sufficient to have x ≤ (a−3−c)(e(a−3−c)+2e−2)/2.
Since x ≤ ae − e − 2, it is sufficient to have (a − c − 3)2e/2 ≥ ae. Thus it
is sufficient to have c ≤ a − 3 − √

2a. Since c ≤ ea/(e + 1), it is sufficient
to have a− (e+ 1)

√
2a− 3e− 3 ≥ 0. Hence we may take Ae = 32(e+ 1)2.

Notice that we also checked the assumption a− c− 1 ≤ a− 5. �
Lemma 7. Take e ≥ 2, Ae, a ≥ Ae, 0 ≤ x ≤ ea− e− 2, S, Y and C as in
Lemma 5.
(a) We have se(C) = ea− 1−min{1, x}.
(b) If x > 0, then each L ∈ Pic(C) evincing se(C) is induced by

|I{P}(h + ef)| (after deleting the degree 2 base locus u−1(P )) for some
P ∈ S. For an arbitrary x any spanned and birationally very ample line
bundle M of degree ea − 1 is induced by |I{P}(h + ef)| (after deleting the
degree 1 base locus u−1(P )) for some P ∈ Y \ (S ∪ h).

Proof. The linear systems described in part (b) shows that se(C) ≤ ea −
1−min{1, x}. By Lemma 7 any such birationally very ample and spanned
complete linear system |L| is induced (after deleting the base locus) from a
codimension 1 linear subspace V of H0(Fe,OFe(h + ef)). Call B ⊂ Fe the
base scheme of V as a linear system on Fe and B the base locus of u∗(V )
on C. Since h0(C, u∗(OY (h + ef))) ≥ e + 2, we have B = ∅. Obviously
Bred = u−1(B ∩ Y ). Hence B ∩ Y = ∅. Since Oh(h+ ef) ∼= Oh,

h0(Fe,OFe(h+ ef)) = 2 + h0(Fe,OFe(ef))

and V has codimension 1 in H0(Fe,OFe(h+ ef)), we have h∩B = ∅. Since
|OFe(h+ef)| induces an embedding of Fe \h, the scheme B must be a single
point, P , with its reduced structure. Since B ∩ Y = ∅, we have P ∈ Y . We
have deg(L) = ae− 1 if P /∈ S and deg(L) = ae− 2 if P ∈ S. �

3. Proof of Theorem 1. We fix the integer r ≥ 3 for which we want
to prove Theorem 1 and set e := r − 1. Hence e ≥ 2. Fix Ae as in
Lemma 6 and any integer g ≥ eA2

e/2 − eAe + e + 2. Let a be the minimal
integer such that g ≤ ga,e. Since ga,e − ga−1,e = ae − e − 1, we have
a ≥ Ae and there is a unique integer x such that 0 ≤ x ≤ ae − e − 2 and
g = ga,e − x. Take C as in Lemmas 6 and 7. Lemma 6 gives se+1(C)) = ae.
Hence it is sufficient to prove that se+2(C) > (e + 2)ea/(e + 1). Assume
z := se+2(C) ≤ (e + 2)ea/(e + 1) and fix L ∈ Picz(C) evincing se+2(C).
The line bundle L is spanned, h0(C,L) = e+3 and |L| induces a morphism
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v : C → P
e+2 birationally onto its image and with v(C) a degree z non-

degenerate curve with arithmetic genus ≥ g. Set m1 := �(z − 1)/(e + 2)�,
ε1 = z − 1−m1(e+ 2), μ1 := 0 if ε1 = e+ 1 and μ1 := 1 if ε1 = e+ 1. Set
π1(z, e+ 2) = (e+ 2)m1(m1 − 1)/2 +m1(ε1 + 1) + μ1. Notice that

π1(z, e+2) ≤ z(z+2)/2(e+2) ≤ ea(e+2)(ea(e+2)+2e+2)/(2(e+2)(e+1)2).

Notice that e2(e+2)2/(2(e+2)(e+1)2) < e/2. Since g > ga−1,e = 1+ (a−
1)(ae − 2 − 2e)/2, we have g > π(z, e + 2) if a � 0, say if a ≥ A′e. Hence
[3], Theorem 3.15, gives that v(C) is contained in a degree e + 1 surface
T ⊂ P

e+2. By the classification of all minimal degree surfaces ([2]), either T
is a cone over a rational normal curve or T ∼= Fm embedded by the complete
linear system |OFe+1(h+(e+1+m)f)| for some integer m ≡ e+1 (mod 2)
with 0 ≤ m ≤ e− 1. In the latter case we set E := v(C). In the former case
T is the image of Fe+1 by the complete linear system |OFe+1(h+ (e+1)f)|;
in this case set m := e+ 1 and call E the strict transform of v(C) in Fe+1.
In both cases E is a curve contained in Fm with C as its normalization.
Call u′ : C → E the normalization map. Hence there are integers c, y such
that E ∈ |OFm(ch + yf)| with y ≥ mc and c > 0. Lemma 4 gives c ≥ a; if
m = 0 it also gives y ≥ a.
(a) Here we assume m ≤ e − 1. Let T ′ ⊂ P

e be the image of Fm by the
complete linear system |OFm(h + (e + m)f)|. Since either T ′ ∼= Fm (case
m = e− 1) or T ′ is the blowing down of h (case m = e− 1), the image of E
in T ′ gives se(C) ≤ OFm(h+(e+m)f) · OFm(ch+ yf) = z− c. Since c ≥ a,
Lemma 7 gives z ≥ c+ ae− 2 ≥ a(e+ 1)− 2, contradicting the assumption
z ≤ ea(e+ 2)/(e+ 1) (with a > 2(e+ 1)2).
(b) Now assume m = e+ 1. Since y ≥ mc = (e+ 1)c and c ≥ a (Lemma
6), this case is impossible.
The proof of Theorem 1 is complete.
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