ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION

Raluca Vernic
Untverstry "Ovidus" Constanta, Romana

Abstract

This paper deals with the bivariate generalized Poisson distribution. The distribution is fitted to the aggregate amount of claıms for a compound class of policies submitted to clams of two kinds whose yearly frequencies are a priori dependent. A comparatıve study with the bivariate Poisson distribution and with two bivariate mixed Porsson distributions has been carried out, based on data concerning natural events insurance in the USA and third party lability automobile insurance in France

Keywords

Bivariate generalized Poisson distribution, generalized Poisson distribution, bivariate mixed Poisson distributions

1. INTRODUCTION

Whereas numerous bivariate discrete distributions are used in the statistic field (Kocherlakota and Kocherlakota, 1992), only a few of them, apart from the bivariate Poisson distribution, have been applied in the insurance field. It is worth noting the studys by PiCard (1976), Lemaire (1985) and Partrat (1993)

In this paper, we discuss the bivariate generalized Poisson distribution (BGPD) in detail. The distribution is derived from the generalized Porsson distribution (CONSUL, 1989; Ambagaspitiya and BaLAKRISHNAN, 1994) using the trivariate reduction method. In section 2 we present some properties of the BGPD The method of moments is used in section 3 for estimation of the parameters We illustrate the usage of this method through two examples in section 4
2. BIVARIATE GENERALIZED POISSON DISTRIBUTION (BGPD)

2.1 Development of the distribution

We use the trivariate reduction method to construct the distribution (KOCHERLAKOTA and Kocherlakota, 1992). Let $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} be independent generalized Poisson
random variables (GPD), $N_{1} \sim G P D\left(\lambda_{1}, \theta_{1}\right), i=1,2,3$. Let $X=N_{1}+N_{3}$ and $Y=N_{2}+N_{3}$ We get the joint probabiltty function (p.f) of (X, Y) as

$$
\begin{equation*}
P(X=r, Y=s)=\sum_{k=0}^{\min (r, 1)} f_{1}(r-k) f_{2}(s-k) f_{3}(k), \tag{2.1}
\end{equation*}
$$

where $f_{1}(n)$ is the p.f. of the random variable N,
Since $\mathrm{N} \sim \operatorname{GPD}(\lambda, \theta)$. if its p f is given by (Consul and Shoukri, 1985)

$$
f(n)=P(N=n)=\left\{\begin{array}{c}
\frac{\lambda(\lambda+n \theta)^{n-1} \exp (-\lambda-n \theta)}{n^{\prime}} \text { for } n=0,1,2, \ldots \tag{22}\\
0, \text { otherwise }
\end{array}\right\},
$$

where $\lambda>0, \max (-1,-\lambda / m) \leq \theta<1$ and $m \geq 4$ is the largest positive integer for which $\lambda+\theta m>0$ when $\theta<0$, from (21) we have

$$
\begin{align*}
& P(X=r, Y=s)=p(r, s)=\lambda_{1} \lambda_{2} \lambda_{3} \exp \left\{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)-r \theta_{1}-s \theta_{2}\right\} \\
& \sum_{k=0}^{\operatorname{mnn}(r, s)} \frac{1}{(r-k)!(s-k)^{\prime} k^{\prime}}\left(\lambda_{1}+(r-k) \theta_{1}\right)^{r-k-1}\left(\lambda_{2}+(s-k) \theta_{2}\right)^{1-k-1}\left(\lambda_{3}+k \theta_{3}\right)^{k-1}(\tag{23}\\
& \exp \left\{k\left(\theta_{1}+\theta_{2}-\theta_{3}\right)\right\}, \mathrm{r}, \mathrm{~s} \in N .
\end{align*}
$$

2.2 Properties of the distribution

Remark All the formulas that follows for the GPD are taken from Ambagaspitiya and BALAKRISHNAN (1994) and the general equations for a bidimensional distribution are from Kocherlakota and Kocherlakota (1992)

Probability generating function (pgf)

The pgf of a random variable N is defined by $\prod_{N}(t)=E\left(t^{N}\right)$ and the pgf of the par of random variables (X, Y) is $\prod\left(t_{1}, t_{2}\right)=E\left(t_{1}^{X} t_{2}^{Y}\right)$

Let the pgf's of the random variables under consideration be $\prod_{t}(t), 1=1,2,3$ Then the joint pgf of (X, Y) is

$$
\begin{equation*}
\prod\left(t_{1}, t_{2}\right)=\prod_{1}\left(t_{1}\right) \prod_{2}\left(t_{2}\right) \prod_{3}\left(t_{1} t_{2}\right) \tag{24}
\end{equation*}
$$

For simplicity, we assume the parameters $\theta_{1}>0, t=1,2,3$ AmBAGASPITIYA and Balakrishnan (1994) has expressed the pgf of the GPD in terms of Lambert's W function when $\theta>0$, as follows

$$
\begin{equation*}
\prod_{N}(t)=\exp \left\{-\frac{\lambda}{\theta}[w(-\theta \exp (-\theta))+\theta]\right\} \tag{2.5}
\end{equation*}
$$

where the Lambert's W function is defined as $W(x) \exp (W(x))=x$. For more details about this function see Corless et al. (1994)

From (2 4) and (2 5), the pgf of (X,Y) is

$$
\begin{align*}
\prod\left(t_{1}, t_{2}\right)= & \exp \left\{-\frac{\lambda_{1}}{\theta_{1}} W\left(-\theta_{1} t_{1} \exp \left(-\theta_{1}\right)\right)-\frac{\lambda_{2}}{\theta_{2}} W\left(-\theta_{2} t_{2} \exp \left(-\theta_{2}\right)\right)-\right. \\
& \left.-\frac{\lambda_{3}}{\theta_{3}} W\left(-\theta_{3} t_{1} t_{2} \exp \left(-\theta_{3}\right)\right)-\lambda\right\} \tag{2.6}
\end{align*}
$$

with $\lambda=\lambda_{1}+\lambda_{2}+\lambda_{3}$.

Moment generating function (mgf)

If the mgf of N_{t} is $M_{t}(t), l=1,2,3$ then the mgf of (X, Y) is

$$
\begin{equation*}
M\left(t_{1}, t_{2}\right)=M_{1}\left(t_{1}\right) M_{2}\left(t_{2}\right) M_{3}\left(t_{1}+t_{2}\right) \tag{2.7}
\end{equation*}
$$

The mgf of the GPD, when $\theta>0$, is given by

$$
\begin{equation*}
M_{N}(t)=\exp \left\{-\frac{\lambda}{\theta}[W(-\theta \exp (-\theta+t))+\theta]\right\} \tag{2.8}
\end{equation*}
$$

Using (2.8) in (2.7) we get

$$
\begin{align*}
M\left(t_{1}, t_{2}\right)= & \exp \left\{-\frac{\lambda_{1}}{\theta_{1}} W\left(-\theta_{1} \exp \left(-\theta_{1}+t_{1}\right)\right)-\frac{\lambda_{2}}{\theta_{2}} W\left(-\theta_{2} \exp \left(-\theta_{2}+t_{2}\right)\right)-\right. \\
& \left.-\frac{\lambda_{3}}{\theta_{3}} W\left(-\theta_{3} \exp \left(-\theta_{3}+t_{1}+t_{2}\right)\right)-\lambda\right\} \tag{29}
\end{align*}
$$

Moments

The expressions for the first four central moments of the GPD are as follows

$$
\begin{align*}
& E(N)=\mu_{1}=\lambda M \\
& V(N)=\mu_{2}=\lambda M^{3} \\
& \mu_{3}=\lambda(3 M-2) M^{4} \tag{210}\\
& \mu_{4}=3 \lambda^{2} M^{6}+\lambda\left(15 M^{2}-20 M+6\right) M^{5}, \quad \text { where } M=(1-\theta)^{-1} .
\end{align*}
$$

Since $X=N_{1}+N_{3}$ and N_{1}, N_{3} independent, we have $E(X)=E\left(N_{1}\right)+E\left(N_{3}\right)$ and $V(X)=V\left(N_{1}\right)+V\left(N_{3}\right)$, so that

$$
\left\{\begin{array}{l}
E(X)=\lambda_{1} M_{1}+\lambda_{3} M_{3} \tag{2.11}\\
V(X)=\lambda_{1} M_{1}^{3}+\lambda_{3} M_{3}^{3} \\
E(Y)=\lambda_{2} M_{2}+\lambda_{3} M_{3} \\
V(Y)=\lambda_{2} M_{2}^{3}+\lambda_{3} M_{3}^{3}
\end{array}\right\}
$$

Let $\mu_{r, 4}=E\left[\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}\right]$ be the ($\left.\mathrm{r}, \mathrm{s}\right)^{\text {th }}$ central moment of (X, Y). The equation for μ_{r} given $\mu_{k}^{(1)}$ the $\mathrm{k}^{\text {th }}$ central moment of $N_{\mathrm{t}}, 1=1,2,3$, is

$$
\mu_{r,,}=\sum_{l=0}^{r} \sum_{j=0}^{\dot{\prime}}\binom{r}{l}\binom{s}{J} \mu_{l}^{(1)} \mu_{j}^{(2)} \mu_{r+s-t-J}^{(3)}
$$

Hence

$$
\left\{\begin{array}{l}
\mu_{11}=\lambda_{3} M_{3}^{3} \tag{2.12}\\
\mu_{21}=\mu_{12}=\lambda_{3}\left(3 M_{3}-2\right) M_{3}^{4}
\end{array}\right\}
$$

This is enough to apply the method of moments.

Recurrence relations

The terms in the first row and column can be computed using the univariate generalızed Poisson distribution, as is seen from

$$
\begin{array}{ll}
p(0,0)=\exp \{-\lambda\} \\
p(0, s)=\frac{\lambda_{2}\left(\lambda_{2}+s \theta_{2}\right)^{s-1}}{s!} \exp \left\{-\lambda-s \theta_{2}\right\}=f\left(s, \lambda_{2}, \theta_{2}\right) \exp \left\{-\left(\lambda_{1}+\lambda_{3}\right)\right\}, & s>0 \\
p(r, 0)=\frac{\lambda_{1}\left(\lambda_{1}+r \theta_{1}\right)^{r-1}}{r^{\prime}} \exp \left\{-\lambda-r \theta_{1}\right\}=f\left(r, \lambda_{1}, \theta_{1}\right) \exp \left\{-\left(\lambda_{2}+\lambda_{3}\right)\right\}, & r>0
\end{array}
$$

Given the probabilities in the first row and column, the probabilities for $r \geq 1, s \geq 1$ can be computed recursively as

$$
p(r, s)=\lambda_{3} \exp \{\lambda\} \sum_{k=0}^{\operatorname{man}\{r, s\}} \frac{1}{k^{1}} p(r-k, 0) p(0, s-k)\left(\lambda_{3}+k \theta_{3}\right)^{k-1} \exp \left\{-k \theta_{3}\right\}
$$

Independence

Using (2 12) we have $\operatorname{cov}(X, Y)=\lambda_{3} M_{3}^{3}$, hence

$$
\rho_{X, Y}=\frac{\lambda_{3} M_{3}^{3}}{\left[\left(\lambda_{1} M_{1}^{3}+\lambda_{3} M_{3}^{3}\right)\left(\lambda_{2} M_{2}^{3}+\lambda_{3} M_{3}^{3}\right)\right]^{1 / 2}}
$$

Since $\lambda_{3} \geq 0$ and $M_{3}>0$, it follows that for this model $\rho_{x, y} \geq 0$. This shows that the condition of zero correlation is a necessary and sufficient condition for the independence of the random variables X and Y

Marginal distributions

The marginal distributions are.

$$
\begin{aligned}
& P(X=r)=\lambda_{1} \lambda_{3} \exp \left\{-\left(\lambda_{1}+\lambda_{3}\right)-r \theta_{3}\right\} \sum_{t=0}^{r} \frac{\left(\lambda_{1}+\imath \theta_{1}\right)^{t-1}\left(\lambda_{3}+(r-i) \theta_{3}\right)^{r-t-1}}{i^{\prime}(r-\imath)!} . \\
& \exp \left\{-\imath\left(\theta_{1}-\theta_{3}\right)\right\} \\
& P(Y=s)=\lambda_{2} \lambda_{3} \exp \left\{-\left(\lambda_{2}+\lambda_{3}\right)-s \theta_{3}\right\} \sum_{t=0}^{s} \frac{\left(\lambda_{2}+\imath \theta_{2}\right)^{t-1}\left(\lambda_{3}+(s-t) \theta_{3}\right)^{s-t-1}}{t^{\prime}(s-\imath)!} . \\
& \exp \left\{-l\left(\theta_{2}-\theta_{3}\right)\right\} .
\end{aligned}
$$

In particular, if $\theta_{1}=\theta_{2}=\theta_{3}=\theta$, this reduces to $X \sim G P\left(\lambda_{1}+\lambda_{3}, \theta\right)$ and $Y \sim$ $G P\left(\lambda_{2}+\lambda_{3}, \theta\right)$.

3 ESTIMATION OF THE PARAMETERS: METHOD OF MOMENTS

Let $\left(x_{n} y_{i}\right), i=1,2, \ldots, n$ be a random sample of size n from the population. We will assume that the frequency of the pair (r, s) is $n_{r s}$ for $r=0,1,2, \ldots s=0,1,2, \ldots$ We recall that $\sum_{r, s} n_{r s}=n$. Also

$$
\left\{\begin{array}{l}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{n} \sum_{r=0} r n_{r+} \quad, \quad \hat{\sigma}_{X}^{2}=\frac{1}{n} \sum_{r=0}(r-\bar{x})^{2} n_{r+} \tag{3.1}\\
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{t}=\frac{1}{n} \sum_{s=0} s n_{+s} ; \quad \hat{\sigma}_{Y}^{2}=\frac{1}{n} \sum_{r=0}(s-\bar{y})^{2} n_{+\mathrm{s}} \\
\hat{\mu}_{11}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\frac{1}{n} \sum_{r_{1},=0} r s n_{r s}-\bar{x} \bar{y} \\
\hat{\mu}_{21}=\frac{1}{n} \sum_{r=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\left(y_{i}-\bar{y}\right)=\frac{1}{n} \sum_{r, s=0}(r-\bar{x})^{2}(s-\bar{y}) n_{r s}
\end{array}\right\}
$$

The classical method of moments consists of equating the sample moments to their populations equivalents, expressed in terms of the parameters The number of moments required is six, equal to the number of parameters. Using (31), (2.11) and (2 12) we have

$$
\left\{\begin{array}{l}
\bar{x}=\lambda_{1} M_{1}+\lambda_{3} M_{3} \tag{3.2}\\
\bar{y}=\lambda_{2} M_{2}+\lambda_{3} M_{3} \\
\hat{\sigma}_{x}^{2}=\lambda_{1} M_{1}^{3}+\lambda_{3} M_{3}^{3} \\
\hat{\sigma}_{Y}^{2}=\lambda_{2} M_{2}^{3}+\lambda_{3} M_{3}^{3} \\
\hat{\mu}_{11}=\lambda_{3} M_{3}^{3} \\
\hat{\mu}_{21}=\lambda_{3}\left(3 M_{3}-2\right) M_{3}^{4}
\end{array}\right\}\left\{\begin{array}{l}
M_{3}=\frac{1+\sqrt{1+3 a}}{3} \\
\lambda_{3}=\frac{\hat{\mu}_{11}}{M_{3}^{3}} \\
M_{1}=\sqrt{\frac{\hat{\sigma}_{X}^{2}-\hat{\mu}_{11}}{\bar{x}-\lambda_{3} M_{3}}} \\
\lambda_{1}=\frac{\bar{x}-\lambda_{3} M_{3}}{M_{1}} \\
M_{2}=\sqrt{\frac{\hat{\sigma}_{Y}^{2}-\hat{\mu}_{11}}{\bar{y}-\lambda_{3} M_{3}}} \\
\lambda_{2}=\frac{\bar{y}-\lambda_{3} M_{3}}{M_{2}}
\end{array}\right\},
$$

where $a=\frac{\hat{\mu}_{21}}{\hat{\mu}_{11}}$
We use the fact that $\theta<1$, so $M=\frac{1}{1-\theta}>0$, when chosen the solution for M_{i}, $t=1,2,3$.

4. NUMERICAL EXAMPLES

Example 1: The North atlantic coastal states in the USA (from Texas to Mane) can be affected by tropical cyclones. We divided these states into three geographical zones:

Zone 1. Texas, Loursiane, The Mississipı, Alabama;
Zone 2: Florida;
Zone 3: Other states
We were interested in studying the joint distribution of the pair (X, Y), where X and Y are the yearly frequency of hurricanes affecting respectively zone 1 and zone 3. To do that we used the data in table 1, first row in each cell, giving the realizations of (X, Y) observed during the 93 years from 1899 to 1991 (PARTRAT, 1993)

For these data we compute

$$
\begin{array}{lll}
\bar{x}=074194, & \hat{\sigma}_{X}^{2}=0.62158, & \hat{\mu}_{11}=002532 \\
\bar{y}=0.47312, & \hat{\sigma}_{Y}^{2}=052885, & \hat{\mu}_{21}=0.128341
\end{array}
$$

Under the hypothesis (X, Y) bivariate Poisson distributed $P_{2}\left(\lambda_{1}, \lambda_{2}, \mu\right)$, we have from Partrat (1993), method of maxımum likelıhood, the mle $\hat{\lambda}_{1}=0.71876$,
$\hat{\lambda}_{2}=0.44994, \hat{\mu}=0.02317$. The theoretical frequencies for $P_{2}\left(\hat{\lambda}_{1}, \hat{\lambda}_{2}, \hat{\mu}\right)$ are given in table I, middle row in each cell

TABLE 1
COMPARISON OF OBSERVID AND THEORETICAL YEARI.Y FREQUENCIES OF HURRICANES (1899-1991) having affect ed zone I and zone 3

Zone 3 Zone 1	0	1	2	3	Σ
0	27	9	3	2	41
	2824	1271	286	048	4429
	2629	1126	284	065	4104
1	24	13	1	0	38
	2030	979	235	042	3286
	2381	1029	262	061	3733
2	8	2	1	0	11
	729	375	096	019	1219
	790	347	092	020	1249
3	1	0	2	0	3
	212	116	032	006	366
	124	056	028	006	214
Σ	60	24	7	2	93
	5795	2741	649	115	
	5924	2558	666	152	

first row . observed frequency middle row : theoretical frequency for P_{2}
last row .theoretical frequency for BGPD
The χ^{2} goodness-of-fit test, after grouping in 7 categories $(0,0),(0,1),(0,2$ and above), $(1,0),(1,1),(2,0)$, (other cases) to fulfill the Cochran criterium, lead us to $\chi_{o b s}^{2}=\sum(o b s-t h)^{2} / t h=596$ and a significance value $\hat{\alpha}$ verifying $020 \leq \hat{\alpha} \leq$ 054.

We consider now the case of (X, Y) BGPD-distributed Then from the method of moments we have

$$
\left\{\begin{array}{ll}
\lambda_{1}=081257, & \theta_{1}=-0.10868 \\
\lambda_{2}=0.44555, & \theta_{2}=0.03995 \\
\lambda_{3}=000538, & \theta_{3}=0.40306
\end{array}\right\}
$$

The theoretical frequencies in this case are given in table 1, last row in each cell, and $\chi_{o b r}^{2}=2.66$ for the same categories: $0 \leq \hat{\alpha} \leq 0.85$.

Example 2: Automobile third party liability insurance.
The claims experience of a large automobile portfolo in France including 181038 liability policıes was observed during the year 1989. The corresponding yearly claim frequencies, collected in table 2 (first row in each cell), have been divided into material damage only (type 1) and bodıly injury (type 2) claıms We obtaın

$$
\begin{array}{lll}
\bar{x}=0.05100, & \hat{\sigma}_{X}^{2}=0.05388, & \hat{\mu}_{11}=0.00019 \\
\bar{y}=000553, & \hat{\sigma}_{Y}^{2}=0.00552, & \hat{\mu}_{21}=0.00023
\end{array}
$$

TABLE 2
COMPARISON OF OBSERVED AND THEORETICAL YEARLY FREQUENCIES

Type 2 Type 1	0	1	2 and above	Σ
0	171345	918	2	17226500
	1713487	8971	47	17225050
	1713487	8975	46	17225080
	17135130	92308	002	17227440
1	8273	73	0	834600
	82755	863	07	836250
	82795	849	08	836520
	824839	7101	014	831954
2	389	5	0	39400
	3982	62	0	40440
	3915	70	01	39860
	41541	352	137	42030
3	31	1	0	3200
	191	04	0	1950
	213	06	0	2190
	2218	019	006	2243
$\begin{gathered} 4 \\ \text { and above } \end{gathered}$	1	0	0	100
	10	01	0	110
	14	01	0	150
	132	001	0	133
Σ	180039	997	2	
	1800425	9901	54	
	1800424	9901	55	181038.00
	18003860	99781	159	
first row observed frequency second row theoretical frequency for $P-G_{2}$ third row : theoretical frequency for $P_{-} I G_{2}$ last row . theoretical frequency for BGPD				

For the comparative study we have, from Partrat (1993)

- Bivariate Poisson Gamma $P_{-} G_{2}(a ; r, \beta)$ the m.l.e. $\left\{\begin{array}{l}\hat{a}=0.10840 \\ \hat{r}=1.00772 \\ \hat{\beta}=1975693\end{array}\right\}$.

The theoretical frequencies are provided in table 2 , second row in each cell.

- Bıvariate Poısson Inverse Gaussian $P_{-} I G_{2}(a, \mu, \gamma)$ the m l.e. $\left\{\begin{array}{l}\hat{a}=010840 \\ \hat{\mu}=005101 \\ \hat{\gamma}=005155\end{array}\right\}$.

The theoretical frequencies are provided in table 2, third row
Under the hypothesis (X, Y) BGPD, we have, using (3 1)
$\left\{\begin{array}{ll}\hat{\lambda}_{1}=004945, & \hat{\theta}_{1}=002701 \\ \hat{\lambda}_{2}=0.00537, & \hat{\theta}_{2}=-000266 \\ \hat{\lambda}_{3}=0.00016, & \hat{\theta}_{3}=0.04976\end{array}\right\}$, the theoretical frequencies are given in table 2, last row

The χ^{2} goodness-of-fit test is applied on the 9 following categories: $(0,0),(0,1)$, (0,2 and above); (1,0), (1,1 and above): $(2,0) ;(3,0) ;(4$ and above, 0$)$; (other cases) For this grouping we obtam

- In the $P_{-} G_{2}$ case $\chi_{s_{1}}^{2}=11.94$ and a significance value $0.03 \leq \hat{\alpha} \leq 015$;
- In the $P_{-} I G_{2}$ case. $\chi_{o b r}^{2}=8.8$ and a significance value $0.12 \leq \hat{\alpha} \leq 0.36$

In the BGPD case we used 7 categories $(0,0),(0,1),(1,0) ;(1,1),(2,0),(3,0)$; (other cases), and we have $\chi_{o b s}^{2}=636$ with a significance value $000 \leq \hat{\alpha} \leq 0.4$.

References

Ambagaspiliya, R S \& Balakrishnan, N (1994) On the compound generalızed Poisson distributions ASTIN Bullctun 24, 255-263
Consul, P C (1989) Generalized Ponson Distribution, Propertues and Apphcations Marcel Dehker Ine, New York/Basel
Consul, P C \& Shoukri, M M (1985) The generalized Poisson distribution when the sample mean is larger than the sample vanance Communtations in Statistics-Simulatoon and Computation 14, 15331547
Corless, R M Gonnet, G H , Hare, D EG \& Jeffrey, D J (1994) The Lambert W function To appear in Advances in Computational Mathematics
Kocherlakoia, S \& Kocherlakota, K (1992) Bivariate discrete distributions, Marcel Dekker Inc
Lemaire, J (1985) Ainomobile msiarance Actuarial models, Kluwer Publ

Partrat, C (1993) Compound model for two dependent hinds of clam, XXIVe ASTIN Colloguum, Cambridge
Picard, P (1976) Generalisation de l`étude sur la survenance des simstres en assurance automobile, Bulletun de l'Instıtut des Acuaures Françaıs. Vol. 297, 204-267

Raluca Vernic
Department of Mathematics and Informatics
Unversity "Ovidus" of Constanta
Bd Mamata 124
8700 Constanta
Romania

