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Abstract: In this paper, a bivariate spectral quasi-
linearization method is used to solve the highly non-
linear two dimensional Bratu problem. The two dimen-
sional Bratu problem is also solved using the Chebyshev
spectral collocation method which uses Kronecker ten-
sor products. The bivariate spectral quasi-linearization
method and Chebyshev spectral collocation method solu-
tions converge to the lower branch solution. The results
obtained using the bivariate spectral quasi-linearization
methodwere comparedwith results from �nite di�erences
method, the weighted residual method and the homotopy
analysis method in literature. Tables and graphs gener-
ated to present the results obtained show a close agree-
ment with known results from literature.
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1 Introduction
The most of real life phenomena are modeled by partial
di�erential equations (PDEs). In science, engineering,
biological sciences and �uid mechanics, most of these
phenomena are described by PDEs, which are usually
non-linear [1, 2]. Due to the complexity of the domains
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in which they are de�ned, it is usually very di�cult or
even impossible, except for a few special cases, to �nd
exact solutions to the de�ning PDEs. This motivated re-
searchers to develop numerical and analytical methods to
approximate solutions to these non-linear PDEs. Some
of the well known analytical methods that have been
used to solve non-linear PDEs include homotopy pertu-
bation method [3], Adomain decomposition method [4] ,
power series expansions [5], the arti�cial small parame-
ter method [6] and the δ-pertubation expansion method
[7]. Although these methods help us to understand many
non-linear phenomena, they have their own disadvantage
in that the convergence of the solution series is not guar-
anteed due to their dependence on small or large physical
parameters. Some examples of numerical methods that
have been used to solve non-linear phenomena include
�nite element methods [8], �nite di�erence methods [9],
quasi-linearization technique [10], iterative �nite di�er-
ence method [11], the B-spline method [12]. It is worth
mentioning that the fractional-wavelet approach is an im-
portant technique which can be used to solve nonlinear
PDEs. For further reading on the fractional-wavelet ap-
proach and fractional calculus, we refer interested readers
to [13, 14].

An example of a highly non-linear di�erential equation
is the so-called Bratu problem, �rst set up by Bratu and
named after him [15]. The simplest form of the Bratu prob-
lem in one dimension is:

d2u
dx2 + λeu(x) = 0, x ∈ [0, 1] (1)

subject to boundary conditions u(0) = u(1) = 0. The exact
solution of Eq. (1) is given by

u(x) = −2 ln
[
cosh((x − 1

2 )
ω
2 )

cosh(ω4 )

]
(2)

where ω is the solution of the equation

ω = 2
√
2λ cosh

(
ω
4

)
[16]. The Bratu problem has no,

unique, or two solutions if λ > λc, λ = λc, or λ < λc re-
spectively, where the critical value λc = 3.51382 [17]. The
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generalization of the Bratu problem is the Liouville-Bratu-
Gelfand problem [16] which in the n-dimensional coordi-
nate system takes the form

∆u(x) + λeu(x) = 0, x ∈ Ω (3)

where the square domainΩ is bounded inRn togetherwith
homogeneous Dirichlet boundary conditions u(x) = 0,
x ∈ ∂Ω, where ∂Ω is the boundary of Ω.

In this study, we consider the two dimensional Bratu prob-
lem, which has the form

∂2u
∂x2 + ∂

2u
∂y2 + λeu = 0, (x, y) ∈ [0, 1] × [0, 1] (4)

subject to boundary conditions

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0 (5)

where λ is a positive number. Similar to the 1D case, de-
pending on the value of the parameter λ, Eq. (4) has no,
one, or two solutions if λ > λc, λ = λc or λ < λ, respec-
tively, where the critical value λc = 6.808124423 [18]. The
two dimensional Bratu problem has no exact solution as
is the case with the one dimensional Bratu problem. How-
ever, Odejide and Aregbesola [19] presented a near exact
solution that satis�es Eq. (4) at just one collocation point
(xc , yc) = (12 ,

1
2 ) as well as the boundary conditions. The

analytical solution is given as

u(x, y) = 2 ln
[cosh(ω4 ) cosh[(x − 1

2 )(y −
1
2 )ω]

cosh((x − 1
2 )
ω
2 ) cosh(y −

1
2 )
ω
2

]
(6)

where ω is a solution of the equation

ω2 = λ cosh2
(
ω
4

)
. (7)

The two dimensional Bratu problem has attracted the at-
tention of many researchers because of its wide range of
physical, chemical and engineering applications. It is re-
ported in [16] that the Bratu problem is used to model the
thermal reactionprocess in a combustible non-deformable
material. The Bratu problem also appears in the Chan-
drasekhar model of the expansion of the universe, chem-
ical reactor theory and nanotechnology [20]. Recently,
the Bratu problem has found applications in engineer-
ing such as electro-spinning process for the fabrication
of nano-�bers [21]. Apart from the physical applications,
the Bratu problem is also used as a benchmark for newly
developed numerical and analytical methods [22].

Some of the numerical methods that have been used to
treat the Bratu problem in two dimensions include: a

wavelet homotopy analysis method (wHAM) by Zhaochen
and Shijun [22], the �nite di�erence (FD) and the weighted
residual method (WRM) by Odejide and Aregbesola [19]
and the Chebyshev pseudospectral method using Gegen-
bauer polynomials [23] by Boyd.

The main objective of this work is to solve (for the �rst
time), the so-called Bratu problem in two dimensions
using the bivariate spectral quasi-linearization method
(BSQLM). The BSQLM introduced by Motsa et al [24] is a
modi�cation of the spectral quasi-linearization method
[25] to solve non-linear PDEs in two dimensions. Some
of the problems successfully solved using the BSQLM in-
clude the modi�ed Kdv equation, Burger equation, the
Cahn-Hillard equation and the Fitzhugh-Nagumo equa-
tions [24]. It is in this work that researchers concluded
that the method is accurate, reliable and applicable to
nonlinear evolution equations. The obtained results also
showed that the method achieves high accuracy with rel-
atively fewer spatial grid points and converges fast to
the exact solution. Also, Motsa and Ansari [26] solved
non-dimensionalized PDEs describing a time dependent
boundary layer �ow and heat transfer of an incompress-
ible Oldroyd-B nano�uid past an impulsively stretching
sheet using the BSQLM. The results obtained converged
rapidly.

2 Method of solution

2.1 Bivariate spectral quasi-linearization
method

In this section, we brie�y describe the Bivariate spec-
tral quasi-linearizationmethod (BSQLM). TheBSQLMuses
the quasi-linearization method, Chebyshev collocation
method and bivariate Lagrange interpolation.

2.1.1 Quasi-linearization method

The quasi-linearization method (QLM) which is based on
Newton-Raphson method was introduced by Bellman and
Kalaba [27]. It is a technique for simplifying non-linear
PDEs using the linear terms of the Taylor series expan-
sion about an initial approximation. There are some tech-
niques, which can be used to transform nonlinear PDEs
to linear equations. As an example, the Hopf-Cole trans-
formation discussed in [28, 29], is used to turn a strongly
nonlinear Burgers equation into a linear equation. In this
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work, let us consider a general secondorder non-linear dif-
ferential equation

F(u) = R(x), x = (x, y) ∈ [a, b] × [c, d] (8)

subject to given boundary conditions. The unknown func-
tion u = (u, ∂u∂x ,

∂2u
∂x2 ,

∂2u
∂x∂y ,

∂u
∂y ,

∂2u
∂y2 ) and F is a non-linear

operator. Expanding F using linear Taylor series expan-
sion about v we get

F(v) +∇F(v) · (u − v) ≈ R(x) (9)

Assuming that v is an approximate solution su�ciently
close to u and adopting the notation ur and ur+1 for v and
u respectively, we have

∇F(ur) · ur+1 = ∇F(ur) · ur − F(ur) + R(x) (10)

where r = 0, 1, 2, · · · . Solving Eq. (10) generates a se-
quence {ur} and hence ur such that ur → u as r →∞.

2.1.2 Bivariate Lagrange interpolation and Chebyshev
di�erentiation

We seek the solution u of Eq. (10) of the form

u(x, y) ≈
N∑
j=0

M∑
i=0

u(xj , yi)Lji(x, y) (11)

where the functions Lji(x, y) = Lj(x)Li(y) are bivariate La-
grange polynomials de�ned as

Lj(x) =
N∏
k=0
k= ̸j

x − xk
xj − xk

, Li(y) =
M∏
k=0
k= ̸i

y − yk
yi − xk

(12)

The functions Lj(x) and Li(y) both obey the Kronecker
delta equation, that is,

Lji(xn , ym) =
{
1, if j = n, i = m
0, otherwise

(13)

Before applying the spectral method, it is convenient to
transform the physical domain [a, b]× [c, d] in the x-y axis
to the computational domain [−1, 1] × [−1, 1] in the ξ -η
axis using linear transformations x(ξ ) = a+b

2 + b−a
2 ξ and

y(η) = c+d
2 + d−c

2 η. Approximating the partial derivatives of
u at Chebyshev-Gauss-Lobatto collocation points

{xj}Nj=0 = cos
(
πj
N

)
, {yi}Mi=0 = cos

(
πi
M

)
, (14)

we have

∂u
∂x

∣∣∣∣x=xj
y=yi

≈
N∑
p=0

M∑
q=0

u(xp , yq)
dLp(xj)
dx Lq(yi) (15)

=
N∑
p=0

Djpu(xp , yi) = DUi . (16)

∂u
∂y

∣∣∣∣x=xj
y=yi

≈
M∑
q=0

diqu(xj , yq) =
M∑
q=0

diqUq , (17)

and

∂2u
∂x∂y

∣∣∣∣x=xj
y=yi

≈
N∑
p=0

M∑
q=0

u(xp , yq)
dLp(xj)
dx

dLq(yi)
dy

=
M∑
q=0

diq
(
DUq

)
, (18)

where D̂ =
( b−a

2
)
D and d̂iq =

( d−c
2
)
diq are the stan-

dard Chebyshev di�erentiation matrices [30] of orders
(N + 1) × (N + 1) and (M + 1) × (M + 1), respectively,
and Ui =

(
u(x0, yi), u(x1, yi), · · · , u(xN , yi)

)T , for i =
0, 1, 2, · · · , N. The superscript T denotes matrix transpo-
sition. Higher order derivatives of u are de�ned as follows:

∂nu
∂xn

∣∣∣∣x=xj
y=yi

≈ DnUi ,
∂nu
∂yn

∣∣∣∣x=xj
y=yi

≈
M∑
q=0

dniqUq , n = 2, 3, · · · .

and

∂n+mu
∂xn∂ym =

M∑
q=0

dmiq
(
DnUq

)
, n,m = 1, 2, · · ·

Expanding Eq. (10) we get

α5,r
∂2ur+1
∂x2 + α4,r

∂2ur+1
∂y2 + α3,r

∂2ur+1
∂x∂y + α2,r

∂ur+1
∂x

+ α1,r
∂ur+1
∂y + α0,rur+1 = Kr , (19)

where

α5,r =
∂F(ur)
∂uxx

, α4,r =
∂F(ur)
∂uyy

, α3,r =
∂F(ur)
∂uxy

,

α2,r =
∂F(ur)
∂ux

, α1,r =
∂F(ur)
∂uy

, α0,r =
∂F(ur)
∂u

and

Kr = α5,r
∂2ur
∂x2 + α4,r

∂2ur
∂y2 + α3,r

∂2ur
∂x∂y + α2,r

∂ur
∂x + α1,r

∂ur
∂y

+ α0,rur − F(ur) + R(x).

Approximating the u and its derivatives in Eq. (19) at col-
location points (xj , yi) we get

α5,r(x, yi)D̂2Ur+1,i + α4,r(x, yi)
M∑
q=0

d̂2jqUr+1,q
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+ α3,r(x, yi)
M∑
q=0

d̂2iq
(
D̂2Ur+1,q

)
+ α2,r(x, yi)D̂Ur+1,i

+ α1,r(x, yi)
M∑
q=0

d̂iq
(
D̂Ur+1,q

)
+ α0,i(x, yi)Ur+1,i

= Kr,i (20)

where
αa,r(x, yi)
= 

αa,r(x0, yi)
αa,r(x1, yi)

. . .
αa,r(xN , yi)


and

Kr,i = α5,r(x, yi)D̂2Ur,i + α4,r(x, yi)
M∑
q=0

d̂2jqUr,q

+ α3,r(x, yi)
M∑
q=0

d̂2iq
(
D̂2Ur,q

)
+ α2,r(x, yi)D̂Ur,i

+ α1,r(x, yi)
M∑
q=0

d̂iq
(
D̂Ur,q

)
+ α0,i(x, yi)Ur,i

− F(ur(x, yi)) + R(x, yi).

In compact form, Eq. (20) can be written as:
A0,0 A0,1 · · · A0,M
A1,0 A1,1 · · · A1,M
...

...
. . .

...
AN−1,0 AN−1,1 · · · AN−1,M
AN,0 AN,1 · · · AN,M




Ur+1,0
Ur+1,1

...
Ur+1,N−1
Ur+1,N

 =


K0
K1
...

KM−1
KM


where

Aii = α5,r(x, yi)D̂2 + α4,r(x, yi)d̂iiI
+ α3,r(x, yi)d̂2iiD̂2 + α2,rx, yiD̂
+ α1,r(x, yi)d̂iiD̂ + α0,r(x, yi)

Aij = d̂ijI, when i = ̸ j

2.2 Application to the current problem

The equivalent form of Eq. (4) in the ξ -η axis is

∂2u
∂ξ2 + ∂

2u
∂η2 + λ4 e

u(ξ ,η) = 0, (ξ , η) ∈ [−1, 1] × [−1, 1] (21)

subject to boundary conditions

u(−1, η) = u(1, η) = u(ξ , −1) = u(ξ , 1) = 0. (22)

Applying formula Eq. (10) on Eq. (21)we get its linear coun-
terpart

∂2ur+1
∂ξ2 + ∂

2ur+1
∂η2 + λ4 e

urur+1 =
λ
4 e

ur [ur − 1], (23)

r = 0, 1, 2, · · · together with boundary conditions

ur+1(−1, η) = ur+1(1, η) = ur+1(ξ , −1) = ur+1(ξ , 1) = 0.

Applying the spectral collocation method we get

N∑
p=0

D̂2
jpUr+1(ξp , ηi) +

M∑
q=0

d̂2iqUr+1(ξj , ηq)

+ λ4 e
Ur(ξj ,ηi)Ur+1(ξj , ηi) = Ki , (24)

subject to boundary conditions

Ur+1(ξN , ηj) = Ur+1(ξ0, ηj)
= Ur+1(ξi , ηM) = Ur+1(ξi , η0) = 0. (25)

Substituting Eqn. (25) into Eq. (24) we get

N−1∑
p=1

D̂2
jpUr+1(ξp , ηi) +

M−1∑
q=1

d̂2iqUr+1(ξj , ηq)

+ λ4 e
Ur(ξj ,ηi)Ur+1(ξj , ηi) = Ki , (26)

⇒ AUr+1 = Ki (27)

Eq. (27) can be written in a matrix form as
A0,0 A0,1 · · · A0,M
A1,0 A1,2 · · · A1,M
...

...
. . .

...
AN−1,0 AN−1,1 · · · AN−1,M
AN,0 AN,1 · · · AN,M




Ur+1,0
Ur+1,1

...
Ur+1,N−1
Ur+1,N

 =


K0
K1
...

KM−1
KM

 (28)

where

Aii = D̂2 + d̂ii I + diag
[
λ
4 e

Ur,i
]
,

Aij = d̂2ijI,

Ki = λ
4 e

Ur,i ◦
[
Ur,i − i

]
.

The column vector i =
[
11 · · ·1

]T and the Hamadard prod-
uct A ◦ B is the element-wise multiplication of matrices A
and B of the same order. Boundary conditions are applied
to the system (28) as follows:

I 0 · · · 0 0
0 Â1,1 · · · Â1,M−1 0
...

...
. . .

...
...

0 ÂN−1,1 · · · ÂN−1,M−1 0
0 0 · · · 0 I




Ûr+1,0
Ûr+1,1

...
Ûr+1,N−1
Ûr+1,N

 =


0
K̂1
...

K̂M−1
0

 (29)
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where I and 0 are identity and zero matrices, respectively,
of order N ×M and

Âij =


1 0 · · · 0 0

Aij

0 0 · · · 0 1

 and K̂i =


0

Ki

0

 (30)

2.3 Chebyshev spectral collocation method

As mentioned before, the exact solution of the two di-
mensional Bratu problem is unknown. As a basis of com-
parison, we will use the Chebyshev spectral collocation
method, which uses Kronecker multiplication, abbrevi-
ated CSCM-K in this work, to solve the transformed Eq.
(21) subject to boundary conditions Eq. (22). We intend to
use the CSCM-K because of its known high order accuracy
[31]. In multi-dimensional problems, the spectral colloca-
tionmethodsmake use of Kronecker products to discretize
the di�erential operators. It is worth noting that though
the BSQLM uses spectral collocation, its main di�erence
with the CSCM-K is the manner in which the two methods
treat non-linearity.

De�nition 2.1. If A and B are of dimensions p × q and r × s,
respectively, then the Kronecker product A⊗ B is the matrix
of dimension pr×qswith p×q block formwhere the i, j block
is ai,jB, that is

A ⊗ B =


a1,1B a1,2B · · · a1,q−1B a1,qB
a2,1B a2,2B · · · a2,q−1B a1,qB
...

...
. . .

...
...

ap−1,1B ap−1,2B · · · ap−1,q−1B ap−1,qB
ap,1B ap,2B · · · ap,q−1B ap,qB

 (31)

The matrix A ⊗ B is not dense, at the same time not as
sparse as matrices from traditional methods, like the �-
nite element or �nite di�erence methods. Since Eq. (22) is
highly non-linear, its solution is computed iteratively us-
ing the linear system

Mus+1 = fs , s = 0, 1, 2, · · · (32)

where M = I ⊗ D̂2 + D̂2 ⊗ I, fs = − exp(us) and us is the
current iteration. I ⊗ D̂2 and D̂2 ⊗ I denote second order
spectral di�erentiation in the x and y directions respec-
tively. A⊗B can be easily computed using the MATLAB com-
mand kron(A,B). The homogeneous boundary conditions
Eq. (22) are implemented by deleting the �rst and the last
rows and columns of the spectral di�erentiation matrix.

3 Results and discussion
Solving Eq. (7) for di�erent values of the parameter λ
(shown in Table 1), we obtain two values of ω labeled ω1
and ω2. Substituting the values of ω1 and ω2 into Eq.
(6) and take the maximum of u(x, y)(denoted umax1 and
umax2) we get results, which are shown in Table 1. We con-
sider the values of λ as done in [19].

A graphical representation of the results in Table 1 is
done in Figure 1

0 1 2 3 4 5 6 7 8

λ

0

1
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3
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6
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9

In
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 n
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m

 o
f u

(x
) λc = 7.027661438

Figure 1: The maximum values of u(x, y) versus λ.

Figure 1 shows that the analytical solution has two
branches (lower and upper). It is also clear that the Bratu
problem has two solutions for 0 < λ < λc, one solution
for λ = λc and no solution for λ > λc. The mesh plots of
the lower branch (λ = 5, ω1 = 2.811554938) and upper
branch (λ = 5, ω2 = 7.548098106) are shown in Figure 2.

In Table 2, we compare the values of umax of the three
methods, WRM, CSCM-K and BSQLM.We consider the val-
ues of the parameter λ as done in [19]. We also consider
the solution in the domain subdivided into equal 4 × 4
sub-regions. Since the exact solution of the two dimen-
sional Bratu problem is not known in literature, we use
the results fromWRM and CSCM-K as our basis of compar-
ison to the BSQLM results. The results in Table 2 show that
the BSQLM solution agree to 5 decimal places with the re-
sults from CSCM-K, which is known to be highly accurate
method.

Rounding o� the results in Table 2 to the nearest 5 dec-
imal places for λ(= 1, 2, 3, 4, 5, 6) we get the results in
Table 3. These results compare very well with the results
obtained by [22] after solving the two dimensional Bratu
problem using the optimal homotopy analysis (oHAM)
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(a) Upper branch solution λ = 5 and ω2 = 7.548098106
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(b) Lower branch solution λ = 5 and ω1 = 2.811554938

Figure 2:Mesh plots of the upper and lower solutions for selected
values of λ and ω

and wavelet homotopy analysis (wHAM) and the iterative
wHAM.

We solve the two dimensional Bratu problem using
BSQLM for λ = 1 and 10 × 10 sub-regions of the problem
domain [0, 1]× [0, 1]. A graphical representation of the so-
lution is ameshplot in Figure 3which agreeswith the solu-
tion plot in [22]. With the fuel ignition model as one of the
physical applications of the Bratu problem, taking u(x, y)
to represent temperature, the results in Figure 3 show that
there is a continuous decrease of temperature from the
midpoint towards the boundary. Table 4 compares umax
from BSQLM, CSCM-K and FDM for di�erent values of the
λc as done in [19]. For all the cases, we consider equal sub-
regions and a tolerance level of 10−6. The results show
that the BSQLM produces results in good agreement with
CSCM-K.Due to lack of an exact solution, it is impossible to
directly compute the accuracy of the BSQLM in solving the
two dimensional Bratu problem. We now compare the two
methods, BSQLM and CSCM-K in terms of speed of conver-
gence and computational e�ciency.

Table 5 shows a comparison between BSQLM and
CSCM-K in terms of runtime in seconds and number of it-
erations for the solutions to converge within a tolerance
level of 10−15 for di�erent values of equal sub-regions
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Figure 3: Solution of the Bratu problem using BSQLM for λ = 1.

Table 4: The maximum values of u(x, y) for various values of λc and
N × N.

N × N λc WRM [19] CSCM-K BSQLM
5 × 5 6.739545 1.2295280 0.9396735 0.9396720

10 × 10 6.792610 1.3835357 1.2979979 1.2979965
20 × 20 6.80497 1.3911583 1.3488587 1.3488579
40 × 40 6.81565 1.3881487 1.2560298 1.2560290

100 × 100 7.12222 1.3565527 1.1507510 1.1507509

Table 5: Runtime and the number of iterations

N × N
BSQLM CSCM-K

Runtime(s) No. of iter Runtime(s) No. of iter
5 × 5 0.035430 6 0.020919 12

10 × 10 0.039587 5 0.035721 12
20 × 20 0.132422 4 0.532621 12
40 × 40 0.497956 4 4.559524 12
60 × 60 7.462640 3 21.314275 12
80 × 80 31.353469 3 144.779811 12

100 × 100 126.152106 3 577.760840 12

N ×N. In all the cases, we consider the constant parameter
λ = 1. It is worth noting that after the 10 × 10 sub-region,
the BSQLM solution takes less time to converge than the
CSCM-K solution. This shows that the BSQLM ismore com-
putationally e�cient than CSCM-K. Moreover, as the sub-
divisions are made �ner, the BSQLM needs less iterations
to converge than the CSCM-K, which needs a constant 12
iterations to converge. This proves that the BSQLM is faster
than CSCM-K.

4 Conclusion
We solved the two dimensional Bratu problem using the
bivariate spectral collocation method (BSQLM) and the

Chebyshev spectral collocation method that uses Kro-
necker multiplication (CSCM-K). Both methods produced
solutions which converge to the lower solution. We com-
pared the results with those from �nite di�erence method
(FDM) and weighted residual method (WRM) in literature.
We observed that results from BSQLM and CSCM-K are in
close agreement with the results in Table 2. Rounding-o�
the results in Table 2 to 5 decimal places for selected values
of λ, we get results in Table 3, which are in excellent agree-
ment with the results obtained using the oHAM, wHAM
and iterative HAM. This proves that the BSQLM is capa-
ble of producing reliable results as it compares well with
the wHAM, which is known to have a high computational
e�ciency. From the results in Table 5, we conclude that
BSQLM is faster and more computationally e�cient than
CSCM-K.
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