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Abstract

We study the block counting process and the fixation line of exchangeable co-

alescents. Formulas for the infinitesimal rates of both processes are provided. It is

shown that the block counting process is Siegmund dual to the fixation line. For ex-

changeable coalescents restricted to a sample of size n and with dust we provide a

convergence result for the block counting process as n tends to infinity. The associ-

ated limiting process is related to the frequencies of singletons of the coalescent. Via

duality we obtain an analog convergence result for the fixation line of exchangeable

coalescents with dust. The Dirichlet coalescent and the Poisson–Dirichlet coalescent

are studied in detail.
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1 Introduction

Coalescent processes have attracted the interest of many researchers over the last decades,
mainly in population genetics and probability. Most results in coalescent theory concern
coalescents with multiple collisions independently introduced by Pitman [23] and Sagitov
[26]. Less is known for the full class of exchangeable coalescents Π = (Πt)t≥0 allowing for
simultaneous multiple collisions of ancestral lineages. Note that Π is a Markovian process
taking values in the space P of partitions of N := {1, 2, . . .}. Schweinsberg [29] showed
that every exchangeable coalescent Π can be characterized by a finite measure Ξ on the
infinite simplex

∆ := {x = (xr)r∈N : x1 ≥ x2 ≥ · · · ≥ 0, |x| :=
∑∞

r=1 xr ≤ 1}. (1)

Exchangeable coalescents are therefore called Ξ-coalescents. The aim of this article is to
provide some more information on the block counting process and the fixation line of the
Ξ-coalescent and on the relation between these two processes. We therefore briefly recall
the definition of the block counting process and turn afterwards to the fixation line.
For t ≥ 0 let Nt denote the number of blocks of Πt. It is well known that N := (Nt)t≥0

is a Markovian process with state space S := N ∪ {∞}, called the block counting process

of Π. We use the notation N
(n)
t for the number of blocks of Πt restricted to a sample of

size n ∈ N. The block counting process has been studied intensively in the literature with
a main focus on coalescents with multiple collisions (Λ-coalescents). We will revisit some
of its properties throughout this article.
The definition of the fixation line is more involved. As in [29] decompose Ξ = Ξ({0})δ0+Ξ0

with δ0 the Dirac measure at 0 ∈ ∆ and Ξ0 having no atom at 0. For x = (xr)r∈N ∈ ∆
define (x, x) :=

∑∞
r=1 x

2
r and ν(dx) := Ξ0(dx)/(x, x). One possible definition of the fixation

line is based on the lookdown construction going back to Donnelly and Kurtz [2, 3]. For
some further information on the lookdown construction we refer the reader to [1]. Imagine
a population consists of countably many individuals distinguished by their levels. The level
of an individual is a positive integer, and the individual at time t ≥ 0 at level i ∈ N is
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Tübingen, Germany, E-mail addresses: florian.gaiser@uni-tuebingen.de, martin.moehle@uni-tuebingen.de

1



denoted by (t, i). In the following we use Schweinsberg’s Poisson process construction [29,
Section 3]. Define N0 := {0, 1, 2, . . .} and, for every x = (xr)r∈N ∈ ∆, let Px be the law of
a sequence ξ = (ξ1, ξ2, . . .) of independent and identically distributed N0-valued random
variables with distribution P(ξ1 = 0) := 1 − |x| and P(ξ1 = r) = xr, r ∈ N. Furthermore,
for i, j ∈ N with i < j let zij be the sequence (z1, z2, . . .) with zi = zj := 1 and zk := 0 for
k /∈ {i, j}. Take a Poisson process on [0,∞) × N

N
0 with intensity measure λ ⊗ µ, where λ

denotes Lebesgue measure on [0,∞) and

µ(A) := Ξ({0})
∑

i,j∈N

i<j

1{zij∈A} +

∫

∆

Px(A) ν(dx) (2)

for all measurable A ⊆ N
N
0 . Each atom (t, x) corresponds to a reproduction event which

is defined as follows. For r ∈ N define Jr := {j ∈ N : ξj = r}. For r ∈ N and j ∈ Jr,
the individual (t, j) is a child of the individual (t−,minJr). The other lineages are shifted
upwards keeping the order they had before the reproduction event. The construction of
this countable infinite population model is called the lookdown construction.
We are now able to define the fixation line. Fix i ∈ N. The levels of the offspring at time
t ≥ 0 of the individual (0, i + 1), that is the individual at time 0 at level i + 1, form a

subset of N, whose minimal element (if it exists) we denote by L
(i)
t + 1. If this subset is

empty, we define L
(i)
t := ∞. For example, if J1 = N and Jr = ∅ for all r ∈ N \ {1}, then

the individual at time 0 at level 2 has no offspring at all, so in this case we have L
(1)
t = ∞.

By construction, the process L(i) := (L
(i)
t )t≥0 has state space {i, i + 1, . . .} ∪ {∞} and

non-decreasing paths. Moreover, L
(1)
t ≤ L

(2)
t ≤ · · ·. We define Lt := L

(1)
t and L := (Lt)t≥0.

When Lt reaches level n, all the individuals at time t with levels 1, . . . , n are offspring of
the single individual (0, 1), an event called fixation in population genetics. The process
L is hence called the fixation line. This process can be traced back to Pfaffelhuber and
Wakolbinger [22] for the Kingman coalescent. For the Λ-coalescent the fixation line appears
in Labbé [15] and was further studied by Hénard [8, 9].
We close the introduction by a brief summary of the organization of the article. Section 2
contains the main results. Propositions 2.1 and 2.2 provide formulas for the infinitesimal
rates and the total rates of the block counting process N = (Nt)t≥0 and the fixation
line L = (Lt)t≥0 for arbitrary Ξ-coalescents. Theorem 2.3 shows that the block counting
process N is Siegmund dual to the fixation line L. For Ξ-coalescents with dust, Theorem
2.4 provides a convergence result for N and L when their initial state tends to infinity.
The limiting processes are related to the frequencies of singletons of the coalescent. In
Sections 3 and 4 we study the Dirichlet coalescent and the Poisson–Dirichlet coalescent
respectively. The proofs of the results stated in Section 2 are provided in Section 5. The
appendix deals with a duality relation for generalized Stirling numbers being closely related
to the Siegmund duality of N and L.

2 Results

Throughout the article we shall use the following subsets of the infinite simplex ∆ defined
in (1). For n ∈ N define ∆n := {x = (xr)r∈N ∈ ∆ : x1 + · · · + xn = 1}. Furthermore
let ∆f :=

⋃
n∈N

∆n = {x = (xr)r∈N ∈ ∆ : x1 + · · · + xn = 1 for some n ∈ N} and
∆∗ := {x ∈ ∆ : |x| = 1}. Note that ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆f ⊂ ∆∗ ⊂ ∆ and that
ν(∆n) ≤ nΞ(∆n) < ∞, since (x, x) =

∑n
r=1 x

2
r = 1/n +

∑n
r=1(xr − 1/n)2 ≥ 1/n for all

n ∈ N and x ∈ ∆n.
In order to state our first result it is convenient to introduce the following urn model
which is essentially a version of Kingman’s paintbox construction [12, Section 8]. Fix x =
(xr)r∈N ∈ ∆. Recall that |x| :=

∑∞
i=1 xi and define x0 := 1 − |x| for convenience. Imagine

a countable infinite number of boxes having labels r ∈ N0. Balls are allocated successively
to these boxes where it is assumed that every ball will go to box r ∈ N0 with probability
xr independently of the other balls. If Xr(i, x) denotes the number of balls in box r ∈ N0
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after i ∈ N0 balls have been allocated, then clearly (X0(i, x), X1(i, x), X2(i, x), . . .) has
an infinite multinomial distribution with parameters i and (x0, x1, x2, . . .). The random
variable

Y (i, x) := X0(i, x) +
∞∑

r=1

1{Xr(i,x)≥1} (3)

counts the balls contained in box 0 plus the number of other boxes which are non-empty.
In the language of Kingman’s paintbox, when a ball goes to box r ∈ N, it will be painted
with color r. The box 0 plays a distinguished role. Each ball going to box 0 is painted with
a new color never seen before. Y (i, x) is the number of different colors after i balls have
been painted.
Proposition 2.1 and 2.2 below underline the well known fact that the process (Y (i, x))i∈N0

plays a fundamental role in coalescent theory. Proposition 2.1 concerns the infinitesimal
rates of block counting process N . These rates are essentially known from the literature
(see, for example, [5]). We state the result for the record and since the case Ξ(∆f ) > 0
requires some attention.

Proposition 2.1 (Rates of the block counting process) Let Ξ be a finite measure
on ∆ and let Π be a Ξ-coalescent. The block counting process N = (Nt)t≥0 of Π moves
from state i ∈ N to state j ∈ N with j < i at the rate

qij = Ξ({0})

(
i

2

)
δj,i−1 +

∫

∆

P(Y (i, x) = j) ν(dx) (4)

with Y (i, x) defined via (3). The probability below the integral in (4) can be provided ex-

plicitly as P(Y (i, x) = j) =
∑j

k=1 fijk(x), where

fijk(x) :=
xj−k

0

(j − k)!

∑

i1,...,ik∈N

i1+···+ik=i−j+k

i!

i1! · · · ik!

∑

r1,...,rk∈N

r1<···<rk

xi1
r1
· · ·xik

rk
. (5)

The total rates are

qi :=
i−1∑

j=1

qij = Ξ({0})

(
i

2

)
+

∫

∆

P(Y (i, x) < i) ν(dx)

= Ξ({0})

(
i

2

)
+

∫

∆

(
1 − xi

0 −
i∑

k=1

(
i

k

)
xi−k

0

∑

r1,...,rk∈N

all distinct

xr1
· · ·xrk

)
ν(dx), i ∈ N.(6)

Moreover, q∞j = ν(∆j) − ν(∆j−1) for all j ∈ N (∆0 := ∅) and q∞∞ = −ν(∆f ).

Remarks.

1. From qi+1 − qi = iΞ({0}) +
∫
∆

P(Y (i+ 1, x) = i, Y (i, x) = i) ν(dx) ≥ 0 we conclude
that qi+1 ≥ qi with equality qi+1 = qi if and only if Ξ(∆ \∆i−1) = 0, i ∈ N. Thus, if
Ξ(∆ \ ∆f ) > 0 then the total rates qi, i ∈ N, are pairwise distinct.

2. For the rates of the block counting process of the Dirichlet coalescent and the
Poisson–Dirichlet coalescent we refer the reader to (14), (15) and (20).

3. For the Λ-coalescent the rate (4) reduces to the well known formula (see, for example,
[23] or [17, Eq. (13)])

qij =

(
i

j − 1

) ∫

[0,1]

xi−j−1(1 − x)j−1 Λ(dx), i, j ∈ N, j < i, (7)

and the total rates are [17, Eq. (14)]

qi = Λ({0})

(
i

2

)
+

∫

(0,1]

1 − (1 − x)i − ix(1 − x)i−1

x2
Λ(dx), i ∈ N.
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For the β(a, b)-coalescent with parameters a, b ∈ (0,∞) the rate (7) reduces to

qij =
Γ(a+ b)

Γ(a)Γ(b)

Γ(i+ 1)

Γ(i− 2 + a+ b)

Γ(j − 1 + b)

Γ(j)

Γ(i− j − 1 + a)

Γ(i− j + 2)
, i, j ∈ N, j < i.

(8)

We now state the analog result for the rates of the fixation line L = (Lt)t≥0.

Proposition 2.2 (Rates of the fixation line) Let Ξ be a finite measure on ∆. The
fixation line L = (Lt)t≥0 moves from state i ∈ N to state j ∈ N with j > i at the rate

γij = Ξ({0})

(
j

2

)
δj,i+1 +

∫

∆

P(Y (j, x) = i, Y (j + 1, x) = i+ 1) ν(dx) (9)

with Y (., x) defined in (3). Moreover, γi∞ = ν(∆i) for all i ∈ N and γ∞∞ = 0. The
probability below the integral in (9) can be provided explicitly, namely P(Y (j, x) = i, Y (j+

1, x) = i+ 1) =
∑i

k=1 gijk(x), where

gijk(x) :=
xi−k

0

(i− k)!

∑

i1,...,ik∈N

i1+···+ik=j−i+k

j!

i1! · · · ik!

∑

r1,...,rk∈N

r1<···<rk

xi1
r1
· · ·xik

rk

(
1 −

k∑

l=1

xrl

)
. (10)

The total rates are γi :=
∑

j∈{i+1,i+2,...}∪{∞} γij = qi+1, i ∈ N.

Remarks.

1. In general gijk(x) is not equal to fjik(x) (see (5)) because of the additional factor

1 −
∑k

l=1 xrl
occurring on the right hand side in (10). This additional factor comes

from the fact that in the paintbox construction, on the event that box 0 contains i−k
balls and that the boxes r1, . . . , rk are non-empty, {Y (j+1, x) = i+1} corresponds to
the event that ball j+1 belongs to a box r ∈ N0 \{r1, . . . , rk}, which has probability

1 −
∑k

l=1 xrl
.

2. Note that γi+1 = γi if and only if Ξ(∆ \ ∆i) = 0, i ∈ N. If Ξ(∆ \ ∆f ) > 0 then the
total rates γi, i ∈ N, are pairwise distinct.

3. For the Λ-coalescent the rate (9) reduces to

γij =

(
j

i− 1

) ∫

[0,1]

xj−i−1(1 − x)i Λ(dx), i, j ∈ N, i < j, (11)

in agreement with [9, Lemma 2.3]. The total rates are

γi = qi+1 = Λ({0})

(
i+ 1

2

)
+

∫

(0,1]

1 − (1 + ix)(1 − x)i

x2
Λ(dx), i ∈ N.

For the Λ-coalescent the equality γi = qi+1 was already observed by Hénard [9].

For the Kingman coalescent (Λ = δ0) we have γi = γi,i+1 =
(
i+1
2

)
and γij = 0 for all

j /∈ {i, i + 1}. Thus, L is a pure birth process with state space N ∪ {∞} and birth
rates γi =

(
i+1
2

)
, i ∈ N. This process explodes, i.e. P(Lt = ∞) > 0 for all t > 0, since∑∞

i=1 1/γi < ∞. In fact, L reaches ∞ in finite time almost surely. For more details
on explosion of L we refer the reader to Remark 3 after Theorem 2.3.

For the β(a, b)-coalescent with a, b ∈ (0,∞) the rates (11) of the fixation line process
reduce to

γij =
Γ(a+ b)

Γ(a)Γ(b)

Γ(i+ b)

Γ(i)

Γ(j + 1)

Γ(j − 1 + a+ b)

Γ(j − i− 1 + a)

Γ(j − i+ 2)
, i, j ∈ N, i < j. (12)
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Simple formulas for the total rates γi seem to be only available for particular param-
eter choices of a and b. For example, for the β(2 − α, α)-coalescent with parameter
0 < α < 2, which has attracted the interest of several researchers, the fixation line
has total rates

γi =
∞∑

j=i+1

γij =
1

Γ(2 − α)Γ(α)

Γ(i+ α)

Γ(i)

∞∑

j=i+1

Γ(j − i+ 1 − α)

Γ(j − i+ 2)

=
1

Γ(2 − α)Γ(α)

Γ(i+ α)

Γ(i)

Γ(2 − α)

α
=

Γ(i+ α)

Γ(α+ 1)Γ(i)
=

i−1∏

k=1

k + α

k
, i ∈ N.

In particular, γi = i for the Bolthausen–Sznitman coalescent (α = 1). Another class
of beta-coalescents for which a nice formula for the total rate γi is available is the
β(3, b)-coalescent with parameter b > 0. In this case the fixation line process has
total rates

γi =
∞∑

j=i+1

γij =
Γ(3 + b)

Γ(3)Γ(b)

Γ(i+ b)

Γ(i)

∞∑

j=i+1

Γ(j + 1)

Γ(j + b+ 2)

=
Γ(3 + b)

Γ(3)Γ(b)

Γ(i+ b)

Γ(i)

Γ(i+ 2)

bΓ(i+ b+ 2)

=
(b+ 1)(b+ 2)

2

i(i+ 1)

(i+ b)(i+ b+ 1)
, i ∈ N.

We now turn to the duality of the block counting process N and the fixation line L.
The following result (Theorem 2.3) is a reformulation and generalization of Lemma 2.1
of Hénard [9]. Note that Theorem 2.3 holds for any Ξ-coalescent. Recall the notation
S := N ∪ {∞}.

Theorem 2.3 (Siegmund duality of N and L) Let Π be a Ξ-coalescent and let N =
(Nt)t≥0 and L = (Lt)t≥0 denote the block counting process and the fixation line of Π
respectively. Then N is dual (in the sense of Liggett [16, p. 84, Definition 3.1]) to L with
respect to the Siegmund duality kernel H : S2 → {0, 1} defined via H(i, j) := 1 for i ≤ j
and H(i, j) := 0 otherwise, i.e.

P(N
(i)
t ≤ j) = P(Nt ≤ j |N0 = i) = E(H(Nt, j) |N0 = i)

= E(H(i, Lt) |L0 = j) = P(Lt ≥ i |L0 = j) = P(L
(j)
t ≥ i)

for all i, j ∈ S and all t ≥ 0. If Q = (qij)i,j∈S and Γ = (γij)i,j∈S denote the generator
matrices of N and L respectively then qi,≤j :=

∑
k∈S,k≤j qik =

∑
k∈S,k≥i γjk =: γj,≥i for

all i, j ∈ S.

Remarks.

1. Note that L is dual to N with respect to the transposed duality kernel H⊤ : S2 →
{0, 1} defined via H⊤(i, j) := H(j, i) for all i, j ∈ S. Let S̃ := S \ {1,∞} = N \ {1}
denote the set of states which are transient for N and L. Define the matrix H̃ :=
(H(i, j))i,j∈S̃ . The matrix inverse H̃−1 of H̃ has entries

H̃−1(i, j) =






1 if j = i,
−1 if j = i+ 1,
0 otherwise.

For i, j ∈ S̃ define gij :=
∫ ∞

0
P(N

(i)
t = j) dt and ĝij :=

∫ ∞

0
P(L

(i)
t = j) dt, and let

G = (gij)i,j∈S̃ and Ĝ = (ĝij)i,j∈S̃ denote the Green matrices of N and L respectively
(see, for example, Norris [21, p. 145]).
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From Theorem 2.3 it follows that GH̃ = H̃Ĝ⊤. Thus, G can be computed from Ĝ
and vice versa via G = H̃Ĝ⊤H̃−1 and Ĝ = (H̃−1GH̃)⊤, i.e.

gi2 =
∑

k∈S̃

k≥i

ĝ2k, gij =
∑

k∈S̃

k≥i

(ĝjk − ĝj−1,k), i ∈ S̃, j ∈ S̃ \ {2}

and
ĝij =

∑

k∈S̃

k≤i

(gjk − gj+1,k), i, j ∈ S̃.

2. As in [29] we say that Π comes down from infinity if P(Nt < ∞) = 1 for all t > 0.
We say that Π stays infinite if P(Nt = ∞) = 1 for all t > 0. Note that there exist
coalescents, for example the Dirichlet coalescent studied in Section 3, that neither
come down from infinity nor stay infinite. We refer the reader to [28, 29] and [10]
for methods to determine wether a coalescent Π comes down from infinity or stays
infinite.

3. We say that L does not explode if T∞ := inf{t > 0 : Lt− = ∞} = ∞ almost surely.
Note that L does not explode if and only if P(Lt < ∞) = 1 for all t ≥ 0. By the
general explosion criterium for Markov chains, L does not explode if and only if∑∞

n=0 1/γχn
= ∞ almost surely, where χ = (χn)n∈N0 denotes the jump chain of L.

Note that χ has transition probabilities pij := γij/γi, 1 ≤ i < j ≤ ∞.

4. If Π comes down from infinity then L explodes. Moreover, Π stays infinite if and
only if L does not explode.

Proof. If Π comes down from infinity, then Π eventually becomes absorbed almost
surely, i.e. limt→∞ P(Nt = 1) = 1. Thus, by duality, P(Lt = ∞) = P(Nt = 1) > 0 for
all sufficiently large t, i.e. L explodes.

If Π stays infinite, then P(Nt = ∞) = 1 for all t ≥ 0. Thus, P(Lt = ∞) = P(Nt = 1) =
0 for all t ≥ 0, i.e. L does not explode. Conversely, suppose that L does not explode.
Then, by the first statement, Π does not come down from infinity. Moreover, we must
have γi∞ = 0 for all i ∈ N, because otherwise every Lt would be equal to ∞ with
positive probability. Since γi∞ = ν(∆i) it follows that ν(∆f ) = limi→∞ ν(∆i) =
0. Thus, Ξ(∆f ) = 0. But under the additional assumption that Ξ(∆f ) = 0 the
coalescent does not come down from infinity if and only if the coalescent stays infinite
(see [29]).

5. Recall that L explodes if Π comes down from infinity. The converse holds under the
additional assumption that Ξ(∆f ) = 0, but it does not hold in general. Examples
where L explodes but Π does not come down from infinity are provided in Section 3
(Dirichlet coalescent).

A Ξ-coalescent Π = (Πt)t≥0 has proper frequencies if, for all times t ≥ 0, the frequency
of singletons St of Πt satisfies St = 0 almost surely. For a precise definition of St we refer
the reader to [18, Section 3]. Schweinsberg [29, Proposition 30] showed that Π does not
have proper frequencies if and only if Ξ({0}) = 0 and

∫
∆
|x| ν(dx) < ∞. In this case the

process Z := (Zt)t≥0 := (− logSt)t≥0 (with the convention − log 0 := ∞) is a drift-free
subordinator with state space [0,∞] and Laplace exponent

Φ(η) =

∫

∆

(1 − (1 − |x|)η) ν(dx), η ≥ 0. (13)

Note that E(Sη
t ) = E(e−ηZt) = e−tΦ(η), η ≥ 0. A coalescent without proper frequencies is

also called a coalescent with dust component [6]. Theorem 2.4 below clarifies the asymptotic
behavior of the block counting process N (n) and the fixation line L(n) as n → ∞ for Ξ-
coalescents with dust. Note that we use the conventions e−∞ := 0, e∞ := ∞ and 1/0 := ∞.
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Theorem 2.4 Let Π be a Ξ-coalescent with dust, i.e. Ξ({0}) = 0 and
∫
∆
|x| ν(dx) < ∞.

Then, the following two assertions hold.

a) As n → ∞ the scaled block counting process (N
(n)
t /n)t≥0 converges in D[0,1][0,∞)

to the frequency of singleton process S = (St)t≥0 = (e−Zt)t≥0.

b) As n → ∞ the scaled fixation line process (L
(n)
t /n)t≥0 converges in D[1,∞][0,∞) to

the inverse frequency of singleton process (1/St)t≥0 = (eZt)t≥0.

Remarks.

1. Theorem 2.4 can be stated logarithmically as follows. For Ξ-coalescents with dust,

as n→ ∞, both processes (log n− logN
(n)
t )t≥0 and (logL

(n)
t − log n)t≥0 converge in

D[0,∞][0,∞) to the drift-free subordinator Z with Laplace exponent (13). Clearly,
Theorem 2.4 holds for Λ-coalescents with dust, for example for β(a, b)-coalescents
with a > 1 and b > 0.

2. If Ξ is concentrated on ∆∗ then the coalescent has dust if and only if ν is finite.
In this case the Laplace exponent (13) satisfies Φ(η) = ν(∆∗), η > 0, so St has
the same distribution as 1{Tf >t} for all t ≥ 0, where Tf is exponentially distributed
with parameter ν(∆∗). Examples are the Dirichlet coalescent studied in Section 3, the
Poisson–Dirichlet coalescent [27, Section 3] and the two-parameter Poisson–Dirichlet
coalescent [18, Section 6]. More information on the two-parameter Poisson–Dirichlet
coalescent is provided in Section 4.

3. Theorem 2.4 excludes dust-free coalescents. For the Bolthausen–Sznitman coalescent
we refer the reader to [14], [19] and [30] for asymptotic results concerning the block
counting process N (n) and the fixation line L(n). For dust-free coalescents different
from the Bolthausen–Sznitman coalescent we leave the asymptotic analysis of N (n)

and L(n) for future work.

3 The Dirichlet coalescent

Let X := (X1, . . . , XN ) be symmetric Dirichlet distributed with parameters N ∈ N

and α > 0 and let X(1) ≥ · · · ≥ X(N) denote the order statistics of X. We
consider the Ξ-coalescent when the characteristic measure ν is the distribution of
(X(1), . . . , X(N), 0, 0, . . .). We call this coalescent the Dirichlet coalescent with parame-
ters N ∈ N and α > 0. Note that ν is concentrated on ∆N . The Dirichlet coalescent
neither comes down from infinity nor stays infinite. More precisely, using the notation Af

and Tf from [29], P(Nt = ∞) = P(Tf > t) = e−t for all t ≥ 0, since (see [29, Lemma 41])
Tf is exponentially distributed with parameter

∫
∆
Px(Af ) ν(dx) =

∫
∆f

Px(Af ) ν(dx) =

ν(∆f ) = 1. Note that the fixation line L = (Lt)t≥0 explodes, since the coalescent does not
stay infinite.
In agreement with [11] we use the notation [x|y]n :=

∏n−1
k=0(x+ky) and (x|y)n :=

∏n−1
k=0(x−

ky) for x, y ∈ R and n ∈ N0 with the convention that empty products are equal to 1. We
furthermore write [x]n := [x|1]n and (x)n := (x|1)n. The proof of the following lemma is
given at the end of this section.

Lemma 3.1 (Rates of the block counting process) The block counting process of
the Dirichlet coalescent with parameters N ∈ N and α > 0 has infinitesimal rates

qij =
(Nα|α)j

[Nα]i
Sα(i, j) 1 ≤ j < i, (14)

where the Sα(i, j) := S(i, j;−1, α, 0) are the generalized Stirling numbers defined in [11]
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satisfying the recursion Sα(i+ 1, j) = Sα(i, j − 1) + (i+ αj)Sα(i, j). Alternatively,

qij =

(
N

j

)

(
Nα+ i− 1

i

)
∑

i1,...,ij∈N

i1+···+ij=i

(
i1 + α− 1

i1

)
· · ·

(
ij + α− 1

ij

)
, 1 ≤ j < i. (15)

Remarks.

1. The Dirichlet coalescent is closely related to the Chinese restaurant process [24].
Imagine a restaurant with N ∈ N tables each of infinite capacity. Customers enter
successively the restaurant. When the (i + 1)th customer arrives and j tables are
already occupied (by at least one person), the customer sits at an empty table with
probability (Nα−jα)/(Nα+i). This corresponds to Pitman’s [24] Chinese restaurant
process with κ := α and θ := Nα. Let Ki denote the number of occupied tables after
the ith customer has been seated. It is easily verified by induction on i that Ki has
distribution P(Ki = j) = (Nα|α)jSα(i, j)/[Nα]i, j ∈ {1, . . . , i}. Note that Ki has
mean

E(Ki) = N −N
[(N − 1)α]i

[Nα]i
.

2. The Dirichlet coalescent has total rates qi :=
∑i−1

j=1 qij =
∑i−1

j=1 P(Ki = j) = 1 −
P(Ki = i) = 1 − (Nα|α)i/[Nα]i. Note that 0 = q1 < q2 < · · · < qN < 1 = qN+1 =
qN+2 = · · ·. The Dirichlet coalescent therefore serves as an example showing that in
general the total rates of a coalescent do not need to be pairwise distinct.

Examples.

1. For α = 1 the Stirling number S1(i, j) is the Lah number S(i, j;−1, 1, 0) = i!
j!

(
i−1
j−1

)

and we conclude that qij =
(
N
j

)(
i−1
j−1

)
/
(
N+i−1

i

)
. In this case Ki is hypergeometric

distributed with parameters N + i− 1, N and i. The total rates are qi = 1−N !(N −
1)!/(N − i)!/(N + i− 1)! for i ≤ N and qi = 1 for i > N .

2. For α → ∞ it follows that qij = N−i(N)jS(i, j), where the S(i, j) are the usual
Stirling numbers of the second kind. In this case Ki counts the number of non-
empty boxes when i balls are allocated at random to N boxes. This corresponds to
the Dirac Ξ-coalescent where the measure ν assigns its total mass 1 to the single
point x ∈ ∆ whose first N coordinates are all equal to 1/N .

3. For α→ 0 and N → ∞ such that Nα→ θ ∈ (0,∞) the rates qij converge to those of
the Poisson–Dirichlet coalescent with parameter θ and α = 0 studied in the following
Section 4.

In the following we provide the asymptotics of some functionals of the Dirichlet n-
coalescent when the sample size n tends to infinity. By Theorem 2.4 and Remark 3 there-

after, (N
(n)
t /n)t≥0 converges inD[0,1][0,∞) to (St)t≥0 as n→ ∞ and (L

(n)
t /n)t≥0 converges

in D[1,∞][0,∞) to (1/St)t≥0, where St := 1{Tf >t} and Tf is exponentially distributed with
parameter 1.
Let Cn denote the number of jumps and τn := inf{t > 0 : Nt = 1} denote the absorption
time of the Dirichlet n-coalescent. The following lemma clarifies the asymptotics of Cn

and τn as n→ ∞. Its proof is given at the end of this section.

Lemma 3.2 (Asymptotics of the number of jumps and the absorption time)
For the Dirichlet coalescent with parameter N ∈ N and α > 0 the following two statements
hold.

(i) The number of jumps Cn converges to C∞ := 1 + CN in distribution as n → ∞.

The limit C∞ has distribution P(C∞ = k) = r
(k−1)
N1 , 1 ≤ k ≤ N , and rij := qij/qi,

1 ≤ j < i, denote the transition probabilities of the jump chain of the block counting
process.
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(ii) The absorption time τn converges to τ∞ := E + τN in distribution as n→ ∞, where
E is standard exponentially distributed and independent of τN .

We now turn to the fixation line L = (Lt)t≥0 of the Dirichlet coalescent.

Lemma 3.3 (Rates of the fixation line) The fixation line of the Dirichlet coalescent
with parameters N ∈ N and α > 0 has rates

γij =
(Nα|α)i+1

[Nα]j+1
Sα(j, i), i, j ∈ N, i < j. (16)

Moreover γi∞ = 0 for i ∈ {1, . . . , N − 1} and γi∞ = 1 for i ∈ {N,N + 1, . . .}.

Remark. Note that γij = Nα−iα
Nα+j qji = P(Kj = i,Kj+1 = i+ 1) = P(Kj ≤ i,Kj+1 > i) =

P(Kj ≤ i) − P(Kj+1 ≤ i). Summation over all j ∈ {i+ 1, i+ 2, . . .} ∪ {∞} shows that the
fixation line has total rates γi = qi+1, i ∈ N, in agreement with Proposition 2.2.

Example. For α = 1 we obtain

γij =
N − i

N + j
qji =

(
N − 1

i

)(
j − 1

j − i

)/(
N + j

N

)
.

By duality (Theorem 2.3), for all i, j ∈ N with i > j, the two quantities

qi,≤j =

j∑

k=1

qik =
1

[Nα]i

j∑

k=1

(Nα|α)jSα(i, j) (17)

and

γj,≥i =
∑

k∈N∪{∞}
k≥i

γjk =





(Nα|α)j+1

∞∑

k=i

Sα(k, j)

[Nα]k+1
if j < N

γj∞ = 1 if j ≥ N

(18)

coincide. The equality of (17) and (18) follows alternatively from [20, Lemma 4.1], applied
to the Markov chain K, or from Lemma 6.1 in the appendix, applied with a := −1, b := α,
r := 0 and t := Nα. Note that limi→∞ qi,≤j = limi→∞ P(Ki ≤ j) = 0 for all j < N , since
all states j < N of the Markov chain K are transient.

In the remaining part of this section we prove Lemma 3.1, Lemma 3.2 and Lemma 3.3.

Proof. (of Lemma 3.1) Since the measure ν is concentrated on ∆N it follows from (4) and
(5) that

qij =
i!

j!

∑

i1,...,ij∈N

i1+···+ij=i

φ(i1, . . . , ij)

i1! · · · ij !
, (19)

where

φ(i1, . . . , ij) :=

∫

∆

∑

r1,...,rj∈N

all distinct

xi1
r1
· · ·xij

rj
ν(dx) =

∫

∆

N∑

r1,...,rj=1

all distinct

xi1
r1
· · ·xij

rj
ν(dx).

The function below the latter integral is symmetric with respect to x1, . . . , xN . Thus,

φ(i1, . . . , ij) =

∫ N∑

r1,...,rj=1

all distinct

xi1
r1
· · ·xij

rj
DN (α)(dx1, . . . ,dxN ) = (N)jE(Xi1

1 · · ·X
ij

j ),

where the last equality holds, since the Dirichlet distribution DN (α) is symmetric and,
hence, the integrals over each summand is the same. The moments of the symmet-
ric Dirichlet distribution DN (α) are well known (see, for example, [13, p. 488]) to be
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E(Xi1
1 · · ·X

ij

j ) = [α]i1 · · · [α]ij
/[Nα]i, where i := i1 + · · · + ij . Plugging all this into (19)

leads to

qij =
i!

j!

(N)j

[Nα]i

∑

i1,...,ij∈N

i1+···+ij=i

[α]i1 · · · [α]ij

i1! · · · ij !

=

(
N
j

)
(
Nα+i−1

i

)
∑

i1,...,ij∈N

i1+···+ij=i

(
i1 + α− 1

i1

)
· · ·

(
ij + α− 1

ij

)
,

which is (15). Since (Nα|α)j = (N)jα
j and

Sα(i, j) =
i!

j!

∑

i1,...,ij∈N

i1+···+ij=i

1

i1! · · · ij !

Γ(α+ i1)

Γ(α+ 1)
· · ·

Γ(α+ ij)

Γ(α+ 1)

it follows that the right hand side of (15) is equal to the right hand side of (14). ✷

Proof. (of Lemma 3.2) Clearly, (Cn)n∈N satisfies the distributional recursion Cn
d
= 1+CIn

with initial condition C1 = 0, where In denotes the state of the jump chain of the block
counting process of the Dirichlet n-coalescent with parameters N ∈ N and α > 0 after its
first jump. By Lemma 3.1 and the remarks thereafter, In has distribution

P(In = k) =
qnk

qn
=

P(Kn = k)

1 − P(Kn = n)
, 1 ≤ k < n.

Since Kn → N in distribution as n → ∞ we conclude that In → N in distribution as

n→ ∞. Thus, Cn
d
= 1 + CIn

→ 1 + CN in distribution as n→ ∞.

The sequence (τn)n∈N satisfies the distributional recursion τn
d
= En + τIn

with initial con-
dition τ1 = 0, where En is independent of In and exponentially distributed with parameter
qn = 1 − P(Kn = n). Since qn → 1 as n → ∞ and In → N in distribution as n → ∞ we

conclude that τn
d
= En + τIn

→ E + τN as n → ∞, where E is standard exponentially
distributed and independent of τN . ✷

Proof. (of Lemma 3.3) Since ν is concentrated on ∆N it follows from (9) and (10) that

γij =
j!

i!

∑

j1,...,ji∈N

j1+···+ji=j

ψ(j1, . . . , ji)

j1! · · · ji!
,

where

ψ(j1, . . . , ji) :=

∫

∆

N∑

r1,...,ri=1
all distinct

xj1
r1
· · ·xji

ri

(
1 −

i∑

k=1

xrk

)
ν(dx).

The same arguments as in the proof of Lemma 3.1 show that

ψ(j1, . . . , ji) = (N)iE

(
Xj1

1 · · ·Xji

i

(
1 −

i∑

k=1

Xk

))

= (N)i

(
[α]j1 · · · [α]ji

[Nα]j
−

i∑

k=1

[α]j1 · · · [α]jk+1 · · · [α]ji

[Nα]j+1

)

= (N)i
[α]j1 · · · [α]ji

[Nα]j+1

(
(Nα+ j) −

i∑

k=1

(α+ jk)

)

=
Nα− iα

Nα+ j
(N)i

[α]j1 · · · [α]ji

[Nα]j
=

Nα− iα

Nα+ j
φ(j1, . . . , ji).

It follows that γij = qji(Nα − iα)/(Nα + j) and (16) follows from (14). Moreover, by
Proposition 2.2, γi∞ = ν(∆i) for all i ∈ N. It remains to note that ν(∆i) = 0 for i < N
and ν(∆i) = 1 for i ≥ N . ✷
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4 The Poisson–Dirichlet coalescent

If Ξ({0}) = 0 and if the measure ν(dx) = Ξ0(dx)/(x, x) is the Poisson–Dirichlet dis-
tribution with parameters 0 ≤ α < 1 and θ > −α then the Ξ-coalescent is called the
two-parameter Poisson–Dirichlet coalescent [18]. Note that ν is concentrated on ∆∗ \ ∆f .
Since

∫
∆
|x| ν(dx) = ν(∆∗) = 1 < ∞ it follows that this coalescent has dust and hence

cannot come down from infinity. Since Ξ(∆f ) = 0, this coalescent stays infinite, and, hence,
L does not explode. The associated block counting process has rates (see [18, p. 2170])

qij = cj,α,θ
Γ(θ + αj)

Γ(θ + i)
sα(i, j), i > j, (20)

where

cj,α,θ :=

j∏

k=1

Γ(θ + 1 + (k − 1)α)

Γ(1 − α)Γ(θ + kα)

and

sα(i, j) :=
i!

j!

∑

i1,...,ij∈N

i1+···+ij=i

Γ(i1 − α) · · ·Γ(ij − α)

i1! · · · ij !

is a kind of generalized absolute Stirling number of the first kind satisfying the recursion
sα(i + 1, j) = Γ(1 − α)sα(i, j − 1) + (i − αj)sα(i, j). More precisely, sα(i, j)/(Γ(1 − α))j

coincides with the generalized Stirling number S(i, j;−1,−α, 0) as defined in Hsu and
Shiue [11]. For α = 0 (and hence θ > 0) the rate qij reduces to

qij = θj Γ(θ)

Γ(θ + i)
s(i, j), i > j,

where the s(i, j) := S(i, j;−1, 0, 0) are the (usual) absolute Stirling numbers of the first
kind. For θ = 0 (and hence 0 < α < 1) we obtain

qij =
αj−1

(Γ(1 − α))j

(j − 1)!

(i− 1)!
sα(i, j) = αj−1 (j − 1)!

(i− 1)!
S(i, j;−1,−α, 0), i > j.

In order to compute the total rates of the block counting process of the two-parameter
Poisson–Dirichlet coalescent we proceed as follows. Let K = (Kn)n∈N0

be a Markov chain
with state space N0, K0 := 0, K1 := 1 and transition probabilities pk(n) := P(Kn+1 =
k + 1 |Kn = k) := (θ + αk)/(θ + n) and P(Kn+1 = k |Kn = k) = 1 − pk(n) for n ∈ N and
k ∈ {1, . . . , n}. Note that 1 ≤ Kn ≤ n, n ∈ N. As for the Dirichlet coalescent one may
interpret Kn as the number of occupied tables in a particular Chinese restaurant process.
When customer n + 1 enters the restaurant and k tables are already occupied, he sits at
an empty table with probability pk(n). In the following it is verified by induction on n ∈ N

that Kn has distribution (see also Pitman [24, p. 65, Eq. (3.11)])

P(Kn = k) = ck,α,θ
Γ(θ + αk)

Γ(θ + n)
sα(n, k), k ∈ N0.

For n = 1 this is obvious, since K1 = 1, c1,α,θ = Γ(θ+1)/Γ(1−α)/Γ(θ+α) and sα(1, 1) =
Γ(1−α). The induction step from n ∈ N to n+1 works as follows. By the Markov property,
P(Kn+1 = k) = pk−1(n) P(Kn = k − 1) + (1 − pk(n)) P(Kn = k). By induction,

pk−1(n) P(Kn = k − 1) =
θ + α(k − 1)

θ + n
ck−1,α,θ

Γ(θ + α(k − 1))

Γ(θ + n)
sα(n, k − 1)

=
Γ(θ + 1 + α(k − 1))

Γ(θ + n+ 1)
ck−1,α,θ sα(n, k − 1)

=
Γ(θ + kα)Γ(1 − α)

Γ(θ + n+ 1)
ck,α,θ sα(n, k − 1)
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and

(1 − pk(n)) P(Kn = k) =
n− αk

θ + n
ck,α,θ

Γ(θ + kα)

Γ(θ + n)
sα(n, k)

=
Γ(θ + kα)

Γ(θ + n+ 1)
ck,α,θ (n− αk) sα(n, k).

Summation of these two terms yields

P(Kn+1 = k) =
Γ(θ + αk)

Γ(θ + n+ 1)
ck,α,θ

(
Γ(1 − α)sα(n, k − 1) + (n− αk)sα(n, k)

)

=
Γ(θ + αk)

Γ(θ + n+ 1)
ck,α,θ sα(n+ 1, k),

which completes the induction. As a consequence, the block counting process of the two-
parameter Poisson–Dirichlet coalescent has total rates

qi =
i−1∑

j=1

qij =
i−1∑

j=1

P(Ki = j) = 1 − P(Ki = i)

= 1 − ci,α,θ
Γ(θ + αi)

Γ(θ + i)
sα(i, i)

= 1 −
Γ(θ + αi)

Γ(θ + i)

i∏

k=1

Γ(θ + 1 + (k − 1)α)

Γ(θ + kα)
, i ∈ N.

For α = 0 the total rates reduce to qi = 1−θiΓ(θ)/Γ(θ+ i), i ∈ N, and for θ = 0 we obtain
qi = 1 − αi−1, i ∈ N.
Let us now turn to the fixation line. The rates γij , i < j, of the fixation line are obtained
similarly as the rates qij as follows. Since the measure ν is concentrated on ∆∗ it follows
from (9) and (10) that

γij =
j!

i!

∑

j1,...,ji∈N

j1+···+ji=j

I(j1, . . . , ji)

j1! · · · ji!
,

where

I(j1, . . . , ji) :=

∫

∆

∑

r1,...,ri∈N

all distinct

xj1
r1
· · ·xji

ri

(
1 −

i∑

k=1

xrk

)
ν(dx).

By [7, Eq. (2.1)], I(j1, . . . , ji) =
∫

Ri x
j1
1 · · ·xji

i (1 −
∑i

k=1 xk)µi(dx1, . . . ,dxi), where µi

denotes the ith correlation measure associated with the Poisson–Dirichlet distribution. The
density (correlation function) of µi is known explicitly (see, for example, [7, Theorem 2.1])

and we obtain I(j1, . . . , ji) = ci,α,θ

∫
∆i
xj1−α−1

1 · · ·xji−α−1
i (1−

∑i
k=1 xk)θ+αi dx1 · · ·dxi.

The last integral is known (Liouville’s integration formula), and it follows that

I(j1, . . . , ji) = ci,α,θ
Γ(j1 − α) · · ·Γ(ji − α)Γ(θ + αi+ 1)

Γ(θ + j + 1)
,

j := j1 + · · · + ji > i. Plugging this expression into the above formula for γij leads to

γij = ci,α,θ
Γ(θ + αi+ 1)

Γ(θ + j + 1)

j!

i!

∑

j1,...,ji∈N

j1+···+ji=j

Γ(j1 − α) · · ·Γ(ji − α)

j1! · · · ji!

= ci,α,θ
Γ(θ + αi+ 1)

Γ(θ + j + 1)
sα(j, i), i < j. (21)

For α = 0 the rate γij reduces to

γij = θi Γ(θ + 1)

Γ(θ + j + 1)
s(j, i), i < j
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whereas for θ = 0 we obtain

γij =
αi

(Γ(1 − α))i

i!

j!
sα(j, i) = αi i!

j!
S(j, i;−1,−α, 0), i < j.

In particular,

qi,≤j =

j∑

k=1

qik =
1

Γ(θ + i)

j∑

k=1

ck,α,θΓ(θ + αk)sα(i, k), i > j, (22)

and

γj,≥i =
∞∑

k=i

γjk = cj,α,θΓ(θ + αj + 1)
∞∑

k=i

sα(k, j)

Γ(θ + k + 1)
, i > j. (23)

The two expressions (22) and (23) are equal by duality (Theorem 2.3). The equality of (22)
and (23) also follows from [20, Lemma 4.1], applied to the Markov chain K. Alternatively,
one may apply Lemma 6.1 in the appendix with a := −1, b := −α, r := 0 and t := θ.
Note however that formally the case θ = 0 is not covered by Lemma 6.1. As a last option
one may prove the equality of (22) and (23) directly (using the recursion for generalized
Stirling numbers) as follows. We have

qki − qk+1,i

= ci,α,θ
Γ(θ + αi)

Γ(θ + k)
sα(k, i) − ci,α,θ

Γ(θ + αi)

Γ(θ + k + 1)
sα(k + 1, i)

= ci,α,θ
Γ(θ + αi)

Γ(θ + k)
sα(k, i)

−ci,α,θ
Γ(θ + αi)

Γ(θ + k + 1)

(
Γ(1 − α)sα(k, i− 1) + (k − αi)sα(k, i)

)

= ci,α,θ
Γ(θ + αi)

Γ(θ + k + 1)
sα(k, i)((θ + k) − (k − αi))

−ci,α,θ
Γ(θ + αi)

Γ(θ + k + 1)
Γ(1 − α)sα(k, i− 1)

= ci,α,θ
Γ(θ + 1 + αi)

Γ(θ + k + 1)
sα(k, i) − ci−1,α,θ

Γ(θ + 1 + (i− 1)α)

Γ(θ + k + 1)
sα(k, i− 1).

Summation over all i ∈ {1, . . . , j} yields

qk,≤j − qk+1,≤j = cj,α,θ
Γ(θ + 1 + αj)

Γ(θ + k + 1)
sα(k, j).

Another summation over all k ≥ i yields qi,≤j = cj,α,θΓ(θ + 1 + αj)
∑∞

k=i sα(k, j)/Γ(θ +
k + 1), which shows that (22) and (23) coincide.

5 Proofs

Proof. (of Proposition 2.1) The formulas (4) and (6) for the rates qij and the total rates
qi of the block counting process are known from the literature [5, Eqs. (1.2) and (1.3)]. For
given x = (xr)r∈N ∈ ∆ the block counting process jumps from ∞ to j ∈ N if and only if
x1 + · · ·+ xj = 1 and x1, . . . , xj > 0, i.e. if and only if x ∈ ∆j \∆j−1 with the convention
∆0 := ∅. Integration with respect to ν yields q∞j = ν(∆j \ ∆j−1) = ν(∆j) − ν(∆j−1)
for all j ∈ N. Since the generator Q = (qij)i,j∈S is conservative, it follows that q∞∞ =
−

∑
j∈N

q∞j = −
∑

j∈N
(∆(νj) − ∆(νj−1)) = − limn→∞ ν(∆n) = −ν(∆f ). ✷

Proof. (of Proposition 2.2) We generalize Hénard’s proof of Lemma 2.3 in [9]. Recall the
pathwise definition of the fixation line based on the lookdown construction provided in the
introduction. Assume first that Ξ({0}) = 0. The fixation line jumps from i ∈ N to j ∈ N

with j > i if and only if there exists k ∈ {1, . . . , i} and 1 ≤ r1 < · · · < rk such that
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(i) exactly i− k of the individuals 1, . . . , j belong to J0 :=
⋃

r∈N
Jr,

(ii) for every l ∈ {1, . . . , k} at least one of the individuals 1, . . . , j belongs to Jrl
and

(iii) the individual j + 1 does not belong to Jr1 ∪ · · · ∪ Jrk
.

For fixed x = (xr)r∈N ∈ ∆ this event has probability

(
j

i− k

)
(1 − |x|)i−k

∑

i1,...,ik∈N

i1+···+ik=j−(i−k)

(j − (i− k))!

i1! · · · ik!
xi1

r1
· · ·xik

rk

(
1 −

k∑

l=1

xrl

)
.

Summing this probability over all k ∈ {1, . . . , i} and 1 ≤ r1 < · · · < rk and integrating with

respect to the law ν yields γij =
∫
∆

∑i
k=1 gijk(x) ν(dx) with gijk(x) defined in (10). From

the definition of Y (., x) in (3) it follows that
∑i

k=1 gijk(x) = P(Y (j, x) = i, Y (j + 1, x) =
i+ 1).
If Ξ({0}) > 0 then the rate γij increases by Ξ({0})

(
j
2

)
δj,i+1, since

(
j
2

)
δj,i+1 is the rate at

which the fixation line of the Kingman coalescent jumps from i to j. Thus (9) is established.
Similarly, given x = (xr)r∈N ∈ ∆, the fixation line jumps from i ∈ N to ∞ if and only if
x1+· · ·+xi = 1, i.e. if and only if x ∈ ∆i. Integration with respect to ν yields γi∞ = ν(∆i),
i ∈ N. Clearly, γ∞∞ = 0, since the state ∞ is absorbing.
It remains to determine the total rates γi, i ∈ N. From the definition of Y (., x) in (3)
via the paintbox construction it follows that Y (j + 1, x) − Y (j, x) ∈ {0, 1} for all j ∈ N

and x ∈ ∆. Thus, for all i, j ∈ N, P(Y (j, x) = i, Y (j + 1, x) = i + 1) = P(Y (j, x) ≤
i, Y (j + 1, x) > i) = P(Y (j, x) ≤ i) − P(Y (j + 1, x) ≤ i). Summation over all j ∈ N with
j > i yields

∑

j∈N

j>i

P(Y (j, x) = i, Y (j + 1, x) = i+ 1) =
∑

j∈N

j>i

(
P(Y (j, x) ≤ i) − P(Y (j + 1, x) ≤ i)

)

= P(Y (i+ 1, x) ≤ i) − lim
k→∞

P(Y (k, x) ≤ i)

=

{
P(Y (i+ 1, x) ≤ i) if x ∈ ∆ \ ∆i,

0 if x ∈ ∆i,

since P(Y (k, x) ≤ i) → 0 as k → ∞ if x ∈ ∆ \ ∆i and P(Y (k, x) ≤ i) = 1 for all k ∈ N if
x ∈ ∆i. Thus, the total rates of the fixation line are

γi = γi∞ +
∑

j∈N

j>i

γij

= γi∞ + Ξ({0})

(
i+ 1

2

)
+

∫

∆\∆i

P(Y (i+ 1, x) ≤ i) ν(dx)

= Ξ({0})

(
i+ 1

2

)
+

∫

∆

P(Y (i+ 1, x) ≤ i) ν(dx), i ∈ N.

A comparison with the total rate qi of the block counting process shows that γi = qi+1,
i ∈ N. ✷

Proof. (of Theorem 2.3) From Y (k + 1, x) − Y (k, x) ∈ {0, 1} for all k ∈ N and x ∈ ∆ we
conclude that

P(Y (k, x) = j, Y (k + 1, x) = j + 1) = P(Y (k, x) ≤ j, Y (k + 1, x) > j)

= P(Y (k, x) ≤ j) − P(Y (k + 1, x) ≤ j)

for all j, k ∈ N and x ∈ ∆. Integration with respect to ν and taking the formula (9) for
the rates of the fixation line into account, it follows for all j, k ∈ N with j < k that

γjk = Ξ({0})

(
k

2

)
δk,j+1 +

∫

∆

P(Y (k, x) = j, Y (k + 1, x) = j + 1) ν(dx)
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= Ξ({0})

(
k

2

)
δj,k−1 +

∫

∆

(
P(Y (k, x) ≤ j) − P(Y (k + 1, x) ≤ j)

)
ν(dx)

=

j∑

l=1

(
Ξ({0})

(
k

2

)
δl,k−1 +

∫

∆

P(Y (k, x) = l) ν(dx)

−Ξ({0})

(
k + 1

2

)
δlk −

∫

∆

P(Y (k + 1, x) = l) ν(dx)

)

=

j∑

l=1

(qkl − qk+1,l) = qk,≤j − qk+1,≤j , j, k ∈ N, j < k,

where the second last equality holds by (4). Let i, j ∈ N with i > j. Summing over all
k ∈ N with k ≥ i yields

∑

k∈N

k≥i

γjk =
∑

k∈N

k≥i

(qk,≤j − qk+1,≤j) = qi,≤j − lim
k→∞

qk,≤j = qi,≤j − ν(∆j).

The last equality holds since, by (4),

qk,≤j =

j∑

l=1

qkl = Ξ({0})

(
k

2

)
δj,k−1 +

∫

∆

P(Y (k, x) ≤ j) ν(dx)

→

∫

∆

1∆j
(x) ν(dx) = ν(∆j)

as k → ∞ by dominated convergence. Note that P(Y (k, x) ≤ j) ≤ P(Y (j + 1, x) ≤ j) for
all k > j and that the dominating map x 7→ P(Y (j + 1, x) ≤ j) is ν-integrable.
Since γj∞ = ν(∆j) it follows that

qi,≤j =
∑

k∈S

k≥i

γjk = γj,≥i (24)

for all i, j ∈ N with i > j. Eq. (24) holds as well for i, j ∈ N with i ≤ j since in this
case both sides in (24) are equal to 0. Moreover, qi,≤∞ = 0 = γ∞,≥i for all i ∈ S and
q∞,≤j = ν(∆j) = γj∞ = γj,≥∞ for all j ∈ N. Thus, (24) holds for all i, j ∈ S.
LetQ = (qij)i,j∈S and Γ = (γij)i,j∈S denote the generator matrices ofN and L respectively
and let H = (hij)i,j∈S denote the matrix with entries hij := 1 for i ≤ j and hij := 0
for i > j. Since (QH)ij =

∑
k∈S,k≤j qikhkj =

∑
k∈S,k≤j qik = qi,≤j and (HΓ⊤)ij =∑

k∈S,k≥i hikγjk =
∑

k∈S,k≥i γjk = γj,≥i it follows that QH = HΓ⊤. It follows that

QkH = H(Γ⊤)k for all k ∈ N and, hence, etQH = H(etΓ)⊤ for all t ≥ 0. Since etQ and
etΓ are the transition matrices of the block counting process N = (Nt)t≥0 and the fixation
line L = (Lt)t≥0 respectively, this shows that N is Siegmund dual to L with respect to the
kernel H. ✷

Remark. For Λ-coalescents Lemma 2.1 of Hénard [9] essentially states the Siegmund
duality of N and L and Lemma 2.4 of [9] is a reformulation of this duality in terms of the
generators of N and L.

Proof. (of Theorem 2.4) For n ∈ N and i ∈ {1, . . . , n} let τn,i := inf{t > 0 :

i is not a singleton of Π
(n)
t } denote the length of the ith external branch of Π(n). For

every i ∈ N the sequence (τn,i)n≥i is non-increasing in n with τn,i ց τi almost surely
as n → ∞, where τi := inf{t > 0 : {i} is not a singleton of Πt} denotes the length of
the ith external branch of Π. Let t1, . . . , tk ≥ 0. Conditional on St1 , . . . , Stk

, the prob-
ability that i is still a singleton at time ti for all i ∈ {1, . . . , k}, is St1 · · ·Stk

. Thus,
P(τ1 > t1, . . . , τk > tk) = E(St1 · · ·Stk

). In particular, P(τ1 > t, . . . , τk > t) = E(Sk
t ).
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Proof of part a). For n ∈ N and t ≥ 0 decompose N
(n)
t = E

(n)
t + I

(n)
t , where E

(n)
t :=∑n

i=1 1{τn,i>t} and I
(n)
t := N

(n)
t −E

(n)
t denotes the number of singleton and non-singleton

blocks of Π
(n)
t respectively. We think of E

(n)
t and I

(n)
t as the number of ‘external’ and

‘internal’ blocks of Π
(n)
t and proceed similar as in the proof of Theorem 3 of [18]. For t ≥ 0

and n, k ∈ N,

E((E
(n)
t )k) = E((1{τn,1>t} + · · · + 1{τn,n>t})

k)

=
∑

k1,...,kn∈N0
k1+···+kn=k

k!

k1! · · · kn!
E(1k1

{τn,1>t} · · · 1
kn

{τn,n>t})

=
k∑

j=1

(
n

j

) ∑

k1,...,kj∈N

k1+···+kj=k

E(1k1

{τn,1>t} · · · 1
kj

{τn,j>t}),

where the last equality holds since the random variables τn,i, i ∈ {1, . . . , n}, are exchange-
able. Thus,

E((E
(n)
t )k) =

k∑

j=1

(n)jS(k, j)P(τn,1 > t, . . . , τn,j > t), t ≥ 0, n, k ∈ N, (25)

where (n)j := n(n− 1) · · · (n− j+ 1) and S(., .) denote the Stirling numbers of the second
kind. Dividing by nk, letting n→ ∞ and noting that (n)j/n

k → δjk it follows that

lim
n→∞

E((E
(n)
t /n)k) = P(τ1 > t, . . . , τk > t) = E(Sk

t ), k ∈ N. (26)

Since 0 ≤ E
(n)
t /n ≤ 1 and 0 ≤ St ≤ 1 the convergence (26) of moments implies the

convergence E
(n)
t /n → St in distribution as n → ∞. In order to show that N

(n)
t /n → St

in distribution as n → ∞ it remains to verify that I
(n)
t /n → 0 in distribution as n → ∞.

In the following it is verified that the latter convergence even holds in L1. Each internal
branch is generated by a collision. Thus, if Cn denotes the total number of collisions, the

inequality E(I
(n)
t ) ≤ E(Cn) holds. The assumption that the coalescent has dust ensures

that Cn/n→ 0 in L1 by Lemma 4.1 of [5]. Thus, I
(n)
t /n→ 0 in L1 as n→ ∞, which yields

the desired convergence N
(n)
t /n→ St in distribution as n→ ∞. Thus, the convergence of

the one-dimensional distributions is established.
Let us now turn to the proof of the convergence in D[0,1][0,∞). Let (T

(n)
t )t≥0 and (Tt)t≥0

denote the semigroups of (N
(n)
t /n)t≥0 and (St)t≥0 respectively. By Ethier and Kurtz [4,

p. 172, Theorem 2.11], applied with state spaces E := [0, 1] and En := {j/n : j ∈
{1, . . . , n}}, n ∈ N, and with the maps ηn : En → E and πn : B(E) → B(En) defined via
ηn(x) := x for all x ∈ En and πnf(x) := f(x) for all f ∈ B(E) and all x ∈ En, it suffices
to verify that for every t ≥ 0 and f ∈ C(E),

lim
n→∞

sup
x∈En

|T
(n)
t πnf(x) − πnTtf(x)| = 0.

For f ∈ C(E) and x ∈ En we have T
(n)
t πnf(x) = E(πnf(N

(n)
s+t/n) |N

(n)
s /n = x) =

E(f(N
(nx)
t /n)) and πnTtf(x) = Ttf(x) = E(f(xSt)). Thus, we have to verify that

limn→∞ supx∈En
|E(f(N

(nx)
t )/n) − E(f(xSt))| = 0. Since the polynomials are dense in

C(E) it suffices to verify the latter equation for monomials f(x) = xk, so we have to prove
that

lim
n→∞

sup
x∈En

|E((N
(nx)
t )k)/nk − xk

E(Sk
t )| = 0, k ∈ N, t ≥ 0.

Using the decomposition N
(nx)
t = E

(nx)
t + I

(nx)
t and the facts that I

(nx)
t ≤ Cnx ≤ Cn and

that Cn/n→ 0 in L1 (see Lemma 4.1 of [5]), it suffices to show that

lim
n→∞

sup
x∈En

|E((E
(nx)
t )k)/nk − xk

E(Sk
t )| = 0.
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By (25), E((E
(nx)
t )k) =

∑k
j=1(nx)jS(k, j)P(τnx,1 > t, . . . , τnx,j > t). Thus, it suffices to

verify that

lim
n→∞

sup
x∈En

∣∣∣∣
(nx)k

nk
P(τnx,1 > t, . . . , τnx,k > t) − xk

E(Sk
t )

∣∣∣∣ = 0.

Since (nx)k/n
k → xk as n→ ∞ uniformly on [0, 1] it remains to prove that

lim
n→∞

sup
x∈En

xk|P(τnx,1 > t, . . . , τnx,k > t) − E(Sk
t )| = 0.

This is seen as follows. Choose a sequence (εn)n∈N satisfying εn → 0 and nεn → ∞ (for
example εn := n−1/2) and distinguish the two cases x ∈ En ∩ [0, εn] and x ∈ En ∩ (εn, 1].
Clearly,

sup
x∈En∩[0,εn]

xk|P(τnx,1 > t, . . . , τnx,k > t) − E(Sk
t )| ≤ 2εk

n → 0, n→ ∞.

Moreover, since pt,k(m) := P(τm,1 > t, . . . , τm,k > t) is non-increasing in m (≥ k), it
follows for all n ∈ N with nεn ≥ k that

sup
x∈En∩(εn,1]

xk|P(τnx,1 > t, . . . , τnx,k > t) − E(Sk
t )| ≤ sup

x∈En∩(εn,1]

|pt,k(nx) − E(Sk
t )|

≤ pt,k(⌊nεn⌋) − E(Sk
t ) → 0

as n→ ∞. The proof of part a) is complete.

Proof of part b). We have to verify that (L
(n)
t /n)t≥0 converges in D[1,∞][0,∞) to

(1/St)t≥0 as n → ∞. Define ϕ : D[0,1][0,∞) → D[1,∞][0,∞) via ϕ(x) := (1/xt)t≥0 for
all x = (xt)t≥0 ∈ D[0,1][0,∞) with the convention 1/0 := ∞. Since the transformation

ϕ is continuous we will (equivalently) verify that (n/L
(n)
t )t≥0 converges in D[0,1][0,∞) to

(St)t≥0 as n→ ∞.
Let Fn := {n/j : j ∈ {n, n + 1, . . .}} ∪ {0} and F := [0, 1] denote the state spaces

and (U
(n)
t )t≥0 and (Ut)t≥0 the semigroups of (n/L

(n)
t )t≥0 and (St)t≥0 respectively. Define

πn : B(F ) → B(Fn) via πnf(x) := f(x), f ∈ B(F ), x ∈ Fn. By Ethier and Kurtz [4,
p. 172, Theorem 2.11] it suffices to verify that for all t ≥ 0 and all f ∈ C(F ),

lim
n→∞

sup
x∈Fn

|U
(n)
t πnf(x) − πnUtf(x)| = 0.

For f ∈ C(F ) and x ∈ Fn we have U
(n)
t πnf(x) = E(πnf(n/L

(n)
s+t) |n/L

(n)
s = x) =

E(f(n/L
(n/x)
t )) and πnUtf(x) = Utf(x) = E(f(xSt)). Thus, we have to verify that

lim
n→∞

sup
x∈Fn

|E(f(n/L
(n/x)
t )) − E(f(xSt))| = 0.

Since the polynomials are dense in C(F ) it suffices to verify the latter equation for mono-

mials f(x) = xk, so we have to prove that limn→∞ supx∈Fn
|E((n/L

(n/x)
t )k)−xk

E(Sk
t )| = 0

for all t ≥ 0 and k ∈ N. In the following it is even shown that

lim
n→∞

sup
x∈[0,1]

|E((n/L
(⌊n/x⌋)
t )k) − xk

E(Sk
t )| = 0, t ≥ 0, k ∈ N, (27)

where ⌊n/x⌋ := max{z ∈ Z : z ≤ n/x}.
For m ∈ N, t ≥ 0 and y ∈ (0, 1], it follows by duality (Theorem 2.3 applied with i :=
⌈m/y⌉ := min{z ∈ Z : z ≥ m/y} and j := m)

P(m/L
(m)
t ≤ y) = P(L

(m)
t ≥ m/y) = P(L

(m)
t ≥ ⌈m/y⌉)

= P(N
(⌈m/y⌉)
t ≤ m) = P

(
N

(⌈m/y⌉)
t

⌈m/y⌉
≤

m

⌈m/y⌉

)
.
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Since N
(m)
t /m → St in distribution as m → ∞ by part a) of Theorem 2.4, which is

already proven, and since limm→∞m/⌈m/y⌉ = y, we conclude that limm→∞ P(m/L
(m)
t ≤

y) = P(St ≤ y), if y ∈ (0, 1] is a continuity point of the distribution function of St. The

point y = 0 has to be treated separately. For all m ∈ N we have P(m/L
(m)
t ≤ 0) =

P(L
(m)
t = ∞) = limn→∞ P(L

(m)
t ≥ n) = limn→∞ P(N

(n)
t ≤ m) = limn→∞ P(N

(n)
t /n ≤

m/n) = P(St ≤ 0), if y = 0 is a continuity point of the distribution function of St. The

pointwise convergence of the distribution functions implies the convergence m/L
(m)
t → St

in distribution as m→ ∞.
Fix x ∈ (0, 1]. Replacing m by ⌊n/x⌋ it follows by an application of Slutzky’s theorem

that n/L
(⌊n/x⌋)
t → xSt in distribution as n→ ∞. This convergence obviously holds as well

for x = 0 with the convention n/0 := ∞. Noting that the map y 7→ yk is bounded and
continuous on [0, 1] we conclude that

lim
n→∞

E((n/L
(⌊n/x⌋)
t )k) = xk

E(Sk
t ), t ≥ 0, k ∈ N, x ∈ [0, 1].

In order to see that this pointwise convergence holds even uniformly for all x ∈ [0, 1] we
proceed as follows. Fix t ≥ 0, k ∈ N and n ∈ N. By the pathwise construction of the

fixation line, we have L
(1)
t ≤ L

(2)
t ≤ · · ·. It follows that the map x 7→ E((n/L

(⌊n/x⌋)
t )k)

is non-decreasing on [0, 1]. Clearly, the limiting map x 7→ xk
E(Sk

t ) is non-decreasing,
bounded and continuous on [0, 1]. Thus, the pointwise convergence holds even uniformly
for all x ∈ [0, 1]. Note that the proof that this pointwise convergence holds even uniformly
works the same as the proof that pointwise convergence of distribution functions is uniform
if the limiting distribution function is continuous (Pólya [25, Satz I]). Therefore, (27) is
established. The proof is complete. ✷

6 Appendix

We establish a sort of duality relation for generalized Stirling numbers. Let a, b, r ∈ R and
suppose that t /∈ {0, a, 2a, 3a, . . .} such that we can define

qij :=
(t− r|b)j

(t|a)i
S(i, j), i, j ∈ N0,

where (t|a)i :=
∏i−1

k=0(t−ak) and the coefficients S(i, j) := S(i, j; a, b, r) are the generalized
Stirling numbers as defined in [11]. The recursion S(i+1, j) = S(i, j−1)+(jb−ia+r)S(i, j)
for the generalized Stirling numbers (see [11, Theorem 1]) obviously transforms into the
recursion

qi+1,j =
t− r − (j − 1)b

t− ia
qi,j−1 +

jb− ia+ r

t− ia
qij (28)

for the quantities qij (qi,−1 := 0). Note that
∑∞

j=0 qij = 1 for all i ∈ N0. For i, j ∈ N0 we

define qi,≤j :=
∑j

k=0 qik.

Lemma 6.1 Fix j ∈ N0 and suppose that the limit limk→∞ qk,≤j exists. Then, for all
i ∈ N0,

qi,≤j − lim
k→∞

qk,≤j =
∞∑

k=i

t− r − jb

t− ka
qkj . (29)

Remark. At a first glance Lemma 6.1 looks somewhat technical and does not seem to
have many applications. Indeed, in general it seems to be not straightforward to verify the
existence of the limit limk→∞ qk,≤j and to determine this limit (if it exists). However, for
particular parameter choices (for instance for a ≤ 0, b > 0, r = 0 and t > 0 an integer
multiple of b), the qij turn out to be non-negative. In this case there exists a random
variable Ki with distribution P(Ki = j) = qij , j ∈ N0. Based on the recursion (28) the
sequence K := (Ki)i∈N0

can be even constructed such that K is a Markov chain with

18



initial state K0 = 0 satisfying Ki+1 −Ki ∈ {0, 1} for all i ∈ N0. Hence, qi,≤j = P(Ki ≤ j)
is non-increasing in i, which ensures the existence of the limit limi→∞ qi,≤j . If all states
0, 1, . . . , j of the chain K are transient, then limi→∞ qi,≤j = 0 and (29) reduces to

j∑

k=0

qik =
∞∑

k=i

t− r − jb

t− ka
qkj . (30)

Roughly speaking, (30) is a sort of analytic reformulation of a particular Siegmund duality.
For typical examples we refer the reader to the equality of (17) and (18) for the Dirichlet
coalescent and to the equality of (22) and (23) for the Poisson–Dirichlet coalescent.

Proof. (of Lemma 6.1) The proof of Lemma 6.1 is purely analytic and straightforward.
For all k, i ∈ N0 we have

qki − qk+1,i = qki −
t− r − (i− 1)b

t− ka
qk,i−1 −

ib− ka+ r

t− ka
qki

=
t− r − ib

t− ka
qki −

t− r − (i− 1)b

t− ka
qk,i−1.

Summation over all i ∈ {0, . . . , j} yields

qk,≤j − qk+1,≤j =
t− r − jb

t− ka
qkj .

Another summation over all k ≥ i yields the result. ✷
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