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Abstract. We are concerned with a class of two-dimensional nonlinear wave equa-

tions ∂2
t u − div(c2(u)∇u) = 0 or ∂2

t u − c(u)div(c(u)∇u) = 0 with small initial data

(u(0, x), ∂tu(0, x)) = (εu0(x), εu1(x)), where c(u) is a smooth function, c(0) �= 0, x ∈ R
2,

u0(x), u1(x) ∈ C∞
0 (R2) depend only on r =

√
x2
1 + x2

2, and ε > 0 is sufficiently small.

Such equations arise in a pressure-gradient model of fluid dynamics, as well as in a liq-

uid crystal model or other variational wave equations. When c′(0) �= 0 or c′(0) = 0,

c′′(0) �= 0, we establish blowup and determine the lifespan of smooth solutions.

1. Introduction and main results. In this paper, we shall focus on two-dimen-

sional nonlinear wave equations of the form
{
∂2
t u− div(c2(u)∇u) = 0,

u(0, x) = εu0(x), ∂tu(0, x) = εu1(x),
(1.1)
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220 LI JUN, INGO WITT, AND YIN HUICHENG

where c(u) is a smooth function with c(0) �= 0, x ∈ R
2, u0(x), u1(x) ∈ C∞

0 (R2) depend

only on r =
√
x2
1 + x2

2, and ε > 0 is sufficiently small. We will assume c(u) = 1+u+O(u2)

or c(u) = 1 + u2 +O(u3) without loss of generality.

Equation (1.1) has an interesting physical background. In [1], [28], a pressure-gradient

model for the positive pressure function P derived from the 2-D compressible full Euler

system takes the form

∂t

(
∂tP

P

)
−ΔP = 0.

When initial data (P (0, x), ∂tP (0, x)) = (1 + εP0(x), εP1(x)) is given and one sets

u(t, x) = lnP (t, x), then one obtains ∂2
t u − div(eu∇u) = 0 with initial data u(0, x) =

ln(1+εP0(x)) and ∂tu(0, x) = εP1(x)(1+εP0(x))
−1. This is the case of c(u) = exp (

u

2
) in

(1.1). By [7], [13], [23], [27], a 2-D liquid crystal equation, or variational wave equation,

takes the form ∂2
t u − c(u)div(c(u)∇u) = 0. Especially for the nematic liquid crystal

equation, one has c(u) = α cos2 u + β sin2 u with positive constants α and β satisfying

α �= β. In this case, c(u) = α+(β−α) sin2 u = α+(β−α)u2 +O(u3), which essentially

corresponds to c(u) = 1 + u2 +O(u3) in (1.1).

There has been extensive and remarkable work concerning the global existence or

blowup and lifespan of smooth solutions to n-dimensional (n ≥ 2) nonlinear wave equa-

tions of the form
⎧
⎪⎪⎨
⎪⎪⎩

n∑

i,j=0

gij(u,∇u)∂2
iju = f(u,∇u,∇2u),

u(0, x) = εu0(x), ∂x0
u(0, x) = εu1(x),

(1.2)

where x0 = t, x = (x1, . . . , xn), ∇ = ∇x0,x, gij and f are smooth functions of their

arguments that satisfy gij(u,∇u) = cij + O(|u| + |∇u|) and f(u,∇u,∇2u) = O(|u|2 +
|∇u|2 + |∇2u|2), respectively, the cij are constants, and the linear operator

n∑
i,j=0

cij∂
2
ij is

strictly hyperbolic with respect to time t. For the functions gij and f independent of u,

for n ≥ 4, it has been shown that (1.2) admits a global smooth solution (see [9], [10],

[17]). For n = 2, 3, the authors of [3], [5], [12], [15] obtained the global existence if null

conditions hold. Otherwise, if these null conditions do not hold, then smooth solutions

blow up in finite time and their lifespan can be explicitly determined in terms of the

initial data (see [2], [3], [8], [11], [14], [25], and the references therein). If the functions

gij and f depend on u and the derivatives of u, then problem (1.2) is much harder and

there are some partial results on the global existence or blowup and lifespan of smooth

solutions when 2 ≤ n ≤ 4 (for n ≥ 5, (1.2) admits a global solution; see [18], [22]). For

2 ≤ n ≤ 4, lower bounds on the lifespan under some suitable restrictions were obtained

in [18], [19], [22], and the references therein. We especially point out that if the equation

in (1.2) has the form ∂2
t u − (1 + u)Δu = 0, then, for n = 3, the authors of [4] and

[20], [21] established the global existence of smooth solution. These solutions, however,

often exhibit a behavior at infinity much different from that of solutions to a linear wave

equation.
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BLOWUP OF SMOOTH SOLUTIONS TO NONLINEAR WAVE EQUATIONS 221

In this paper, we will concentrate on the nonlinear wave equation (1.1), show the

finite-time blowup of smooth solution, and give an explicit expression for the lifespan Tε

as ε → 0. The main result reads:

Theorem 1.1. Let u0(x), u1(x) ∈ C∞
0 (R2) depend only on r =

√
x2
1 + x2

2. If u0(x) �≡ 0

or u1(x) �≡ 0, then problem (1.1) possesses a C∞-solution for 0 ≤ t < Tε, where Tε stands

for the lifespan of smooth solution u(t, x).

(i) For c(u) = 1 + u+O(u2),

lim
ε→0

ε
√
Tε = τ0 ≡ − 1

2min
σ

F ′
0(σ)

. (1.3)

(ii) For c(u) = 1 + u2 +O(u3),

lim
ε→0

ε2 lnTε = ν0 ≡ − 1

2min
σ

{F0(σ)F ′
0(σ)}

. (1.4)

Here F0(σ) is the Friedlander radiation field for the 2-D linear wave equation �w = 0

with initial data (w(0, x), ∂tw(0, x)) = (u0(r), u1(r)).

Recall that F0(σ) =
1

2π
√
2

∫ +∞

σ

R(s;u1)−R′
s(s;u0)√

s− σ
ds, where

R(s;ui) =

∫
δ(s− 〈ω, x〉)ui(x) dx =

∫ ∞

−∞
ui(

√
s2 + y2) dy

is the Radon transform of ui(r) (i = 0, 1).

Henceforth, we shall also assume that u0, u1 are supported in the disk B(0,M), where

M > 0.

Remark 1.1. It follows from Theorem 1.1 that smooth solutions to (1.1) blow up

in finite time provided that u0(x) �≡ 0 or u1(x) �≡ 0 because F0 �≡ 0, F0(M) = 0,

and lim
σ→−∞

F0(σ) = 0. Further properties of the function F0(σ) can be found in [10,

Theorem 6.2.2].

Remark 1.2. For c(u) = 1+O(u3), (1.1) admits a global smooth solution (see [18]).

Remark 1.3. If c(u) = 1 + c1u + O(u2) or c(u) = 1 + c2u
2 + O(u3) in (1.1), with

c1 �= 0 and c2 �= 0, then one also has finite-time blowup of smooth solutions, and one can

establish an explicit expressions for Tε as in Theorem 1.1.

Remark 1.4. For the Cauchy problem for the 1-D liquid crystal equation ∂2
t u −

c(u)∂x(c(u)∂xu) = 0 with (u(0, x), ∂tu(0, x)) = (u0(x), u1(x)), it has been shown in

[7, Theorem 1] that if there exist positive constants c0 < c1 and an m0 ∈ R such that

c0 ≤ c(u) ≤ c1 for all u ∈ R and c′(m0) �= 0, then the C1-solution u(t, x) with special

initial data u0(x) = m0 + εφ(
x

ε
) and u1(x) = − sgn(c′(m0))c(u0(x))u

′
0(x) blows up in

finite time; here φ ∈ C1
0 (0, 1) and ε > 0 is sufficiently small. However, for small and

in general smooth initial data (εu0(x), εu1(x)) with compact support, which certainly

do not satisfy the assumptions on the initial data made in [7, Theorem 1], there are

no blowup results and precise estimates of the lifespan for the 1-D or 2-D liquid crystal

equations available in the literature so far. In fact, from the proof of Theorem 1.1

and Remark 2.1(ii), it follows that smooth solutions to the 2-D liquid crystal equation
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222 LI JUN, INGO WITT, AND YIN HUICHENG

∂2
t u− c(u)div(c(u)∇u) = 0 develop singularities in finite time for arbitrarily given small

and smooth, spherically symmetric initial data with compact support.

Remark 1.5. From the proof of Theorem 1.1, we infer that lim
t→Tε−

‖∇u(t, ·)‖L∞ = ∞.

Note that this is different from the geometric blowup lim
t→Tε−

‖∇2u(t, ·)‖L∞ = ∞ that oc-

curs for solutions u ∈ C2([0, Tε]×R
2) to the nonlinear wave equation

2∑
i,j=0

gij(∇u)∂2
iju = 0

with small initial data (u(0, x), ∂tu(0, x)) = (εu0(x), εu1(x)) (see [2], [3]). In this latter

case, a local shock is formed at blowup time for the unsteady potential flow equation

(see [24] ).

Let us comment on the proof of Theorem 1.1. To show (1.3) or (1.4), first we study

the lower bound on the lifespan Tε for problem (1.1). As in [10, Chapter 6] or [4], [6],

by constructing a suitable approximate solution ua to (1.1) and then considering the

difference of the exact solution u and ua, applying the Klainerman-Sobolev inequality,

and further establishing some delicate energy estimate, we obtain the desired lower bound

on the lifespan Tε. On the other hand, the solution u to (1.1) is spherically symmetric for

t < Tε due to the spherical symmetry of the initial data (u0, u1). Based on this, we can

change (1.1) to a 2 × 2 equation system in the coordinates (t, r), with u still appearing

in the coefficients. Thanks to the good properties of the difference of the real solution

u and the approximate solution ua before blowup time Tε, we can treat the solution u

and its derivatives simultaneously to obtain a precise estimate on the upper bound of

Tε. We point out that the methods in this paper are partly motivated by [9] and [14],

where equations of the form ∂2
t u− c2(∂tu)Δu = 0 with c′(0) �= 0 were studied, but only

the estimates of the first-order derivatives of u were required.

The paper is organized as follows. In Section 2, we construct an approximate solution

ua to (1.1) in the two cases c(u) = 1 + u + O(u2) and c(u) = 1 + u2 + O(u3), and

we establish some related estimates. In Section 3, we obtain the lower bound on the

lifespan Tε by continuous induction, studying the nonlinear equation satisfied by u− ua.

In Section 4, we change the second-order equation in (1.1) to a 2× 2 first-order partial

differential system and further establish some delicate estimates on u and ∇u. From this,

together with the blowup lemma of Hörmander [10, Lemma 1.3.2], we obtain the upper

bound on Tε and thus complete the proof of Theorem 1.1. Some useful auxiliary lemmas

and conclusions are given in the appendix.

In what follows, we will make use of the following notation:

• Z stands for one of the Klainerman vector fields in the symmetric case,

∂r, ∂t, S = t∂t + r∂r, H = r∂t + t∂r.

• ∂ represents ∂r or ∂t.

• The norm ‖f‖L2 stands for ‖f(t, ·)‖L2(R2).

2. Construction of an approximate solution to (1.1). In this section, we con-

struct a suitable approximate solution ua to (1.1). Then the lower bound on Tε is

obtained, in Section 3, by a continuous induction argument through estimating the dif-

ference of the solution u and ua. As c(u) assumes the two different forms of c(u) =
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1 + u + O(u2) and c(u) = 1 + u2 + O(u3), respectively, and since the constructions will

be slightly different in these two cases, we divide this section into two parts.

2.1. Construction of ua when c(u) = 1 + u + O(u2). As in [10, Chapter 6], we intro-

duce the slow time variable τ = ε
√
1 + t and assume that the solution to (1.1) can be

approximated by

εr−
1
2V (τ, σ), r > 0,

where σ = r − t.

Let V (τ, σ) solve the equation
⎧
⎪⎨
⎪⎩

∂2
τσV + 2V ∂2

σV + 2(∂σV )2 = 0, (τ, σ) ∈ R
+ × R,

V (0, σ) = F0(σ),

suppV ⊆ {(τ, σ) : σ ≤ M};
(2.1)

F0(σ) was introduced in Theorem 1.1.

Recall that τ0 ≡ − 1

2min
σ

F ′
0(σ)

> 0. With regard to problem (2.1), one then has

Lemma 2.1. Problem (2.1) admits a C∞-solution V (τ, σ) for 0 ≤ τ < τ0, and V (τ, σ)

blows up as τ → τ0−.

Proof. Set W = ∂σV . Then it follows from (2.1) that
{
∂τW + 2V ∂σW + 2W 2 = 0, (τ, σ) ∈ R

+ × R,

W (0, σ) = F ′
0(σ).

(2.2)

The characteristic curve σ = σ(τ, s) of (2.1) emanating from (0, s) is defined by
⎧
⎨
⎩

dσ

dτ
(τ, s) = 2V (τ, σ(τ, s)),

σ(0, s) = s.
(2.3)

Along characteristic curves, one has
⎧
⎨
⎩

dW

dτ
(τ, σ(τ, s)) + 2W 2(τ, σ(τ, s)) = 0,

W (0, σ(0, s)) = F ′
0(s),

which yields, for τ < τ0,

W (τ, σ(τ, s)) =
F ′
0(s)

1 + 2F ′
0(s)τ

. (2.4)

Note that the equation in (2.1) is equivalent to ∂σ(∂σV +2V ∂σV ) = 0. Together with

the boundary condition for V in (2.1), this yields
⎧
⎨
⎩

dV

dτ
(τ, σ(τ, s)) = 0,

V (0, σ(0, s)) = F0(s).

This means

V (τ, σ(τ, s)) = F0(s). (2.5)
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From (2.5) and (2.3), one concludes

σ(τ, s) = s+ 2F0(s)τ, (2.6)

which implies that ∂sσ(τ, s) = 1 + 2F ′
0(s)τ > 0 for τ < τ0. Thus it follows from the

implicit function theorem that s = s(τ, σ) is a smooth function of the variables τ and

σ. Consequently, V (τ, σ) = F0(s(τ, σ)) is a smooth solution to (2.1) for τ < τ0, and as

τ → τ0−, the derivative Vσ(τ, σ) blows up due to (2.4). Lemma 2.1 is proved. �

From [10, Chapter 6], one has that F0(σ) ∈ C∞(R) is supported in (−∞,M ] and

obeys the estimates

|F (k)
0 (σ)| ≤ Ck(1 + |σ|)− 1

2
−k, k ∈ N0. (2.7)

From (2.7), we now derive a decay estimate for V (τ, σ) in (2.1) for τ < τ0 and σ → −∞.

Lemma 2.2. For any positive constant b < τ0 and 0 ≤ τ ≤ b, the smooth solution V to

(2.1) satisfies the estimates

|Zα∂l
τ∂

m
σ V (τ, σ)| ≤ Clm

αb (1 + |σ|)− 1
2
−l−m, α, l,m ∈ N0, (2.8)

where Clm
αb are positive constants depending on b, α, l, and m.

Proof. When τ ≤ b, it follows from (2.6)–(2.7) that
|s|
2

≤ |σ| ≤ 2|s| for large |s|.
Together with (2.4)–(2.5), this yields

|V (τ, σ)| ≤ Cb(1 + |σ|)− 1
2 , |∂σV (τ, σ)| ≤ Cb(1 + |σ|)− 3

2 . (2.9)

By (2.6) and (2.4), one has

∂σs(τ, σ) =
1

1 + 2F ′
0(s)τ

and

∂2
σV (τ, σ(τ, s)) =

F ′′
0 (s)

(1 + 2F ′
0(s)τ )

2
− 2F ′

0(s)F
′′
0 (s)

(1 + 2F ′
0(s)τ )

3
,

which yields

|∂2
σV (τ, σ)| ≤ Cb(1 + |σ|)− 5

2 . (2.10)

On the other hand, it follows from (2.1) and (2.10) that

|∂2
τσV (τ, σ)| ≤ Cb(1 + |σ|)− 7

2

and further

|∂τV (τ, σ)| ≤ Cb(1 + |σ|)− 5
2 . (2.11)

Based on (2.9)–(2.11), by an inductive argument, one arrives at

|∂l
τ∂

m
σ V (τ, σ)| ≤ Clm

b (1 + |σ|)− 1
2
−l−m, l,m ∈ N0.

Due to S = σ∂σ +
εt

2
√
1 + t

∂τ and H = −σ∂σ +
εr

2
√
1 + t

∂τ by Lemma A.1(ii), one

analogously obtains

|Zα∂l
τ∂

m
σ V (τ, σ)| ≤ Clm

αb (1 + |σ|)− 1
2
−l−m, α, l,m ∈ N0,

and this completes the proof of Lemma 2.2. �
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Next we construct an approximate solution uI
a to (1.1) for 0 ≤ τ = ε

√
1 + t < τ0.

Let w0 be the solution of the linear wave equation
⎧
⎪⎨
⎪⎩

∂2
tw0 −△w0 = 0,

w0(0, x) = u0(x),

∂tw0(0, x) = u1(x).

It follows from [10, Theorem 6.2.1] that, for any constants l > 0 and 0 < m < 1,

|Zα(w0(t, x)− r−
1
2F0(σ))| ≤ Cαl(1 + t)−

3
2 (1 + |σ|) 1

2 , r ≥ lt, (2.12)

|∂kw0(t, x)| ≤ Ckm(1 + t)−1−|k|, r ≤ mt. (2.13)

Choose a C∞-function χ(s) such that χ(s) = 1 for s ≤ 1 and χ(s) = 0 for s ≥ 2. For

0 ≤ τ = ε
√
1 + t < τ0, we take the approximate solution uI

a to (1.1) to be

uI
a(t, x) = ε

(
χ(εt)w0(t, x) + r−

1
2 (1− χ(εt))χ(−3εσ)V (σ, τ )

)
. (2.14)

By Lemma 2.2 and [10, Theorem 6.2.1], one has that, for a fixed positive constant

b < τ0,

|ZαuI
a(t, x)| ≤ Cαbε(1 + t)−

1
2 (1 + |σ|)− 1

2 , τ ≤ b. (2.15)

Set JI
a = ∂2

t u
I
a − c2(uI

a)△uI
a − 2c(uI

a)c
′(uI

a)|∇uI
a|2.

Lemma 2.3. One has
∫ b2

ε2
−1

0

‖ZαJI
a‖L2 dt ≤ Cαbε

3
2 .

Proof. We divide the proof into three parts.

(i) 0 ≤ t ≤ 1

ε
. In this case, χ(εt) = 1 and uI

a = εw0. This yields

JI
a = ε(1− c2(εw0))Δw0 − 2ε2c(εw0)c

′(εw0)|∇w0|2.
It follows from (2.15) and a direct computation that

‖ZαJI
a‖L2 ≤ Cε2(1 + t)−

1
2 , 0 ≤ t ≤ 1

ε
. (2.16)

(ii)
1

ε
≤ t ≤ 2

ε
. Now we rewrite uI

a as

uI
a = εw0(t, x) + ε(1− χ(εt))

(
r−

1
2χ(−3εσ)V (τ, σ)− w0(t, x)

)
.

Then

JI
a = J1 + J2 + J3 + J4, (2.17)

where
J1 = (1− c2(uI

a))ΔuI
a − 2c(uI

a)c
′(uI

a)|∇uI
a|2,

J2 = ε(∂2
t −Δ)

{
(1− χ(εt))r−

1
2χ(−3εσ)

(
V (τ, σ)− F0(σ)

)}
,

J3 = ε(∂2
t −Δ)

{
χ(−3εσ)

(
r−

1
2F0(σ)− w0(t, x)

)}
,

J4 = ε(∂2
t −Δ)

{
(1− χ(εt))(χ(−3εσ)− 1)w0(t, x)

}
.

We treat each Ji (1 ≤ i ≤ 4) in (2.17) separately.
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From (2.15) one obtains

‖ZαJI
1 ‖L2 ≤ Cαbε

2(1 + t)−
1
2 . (2.18)

Since

J2 = εr−
1
2 (∂t − ∂r)(∂t + ∂r)

{
(1− χ(εt))χ(−3εσ)

(
V (τ, σ)− F0(σ)

)}

− ε

4
r−

5
2 (1− χ(εt))χ(−3εσ)

(
V (τ, σ)− F0(σ)

)

= O(ε3)r−
1
2 (1 + |σ|)− 1

2 +O(ε2)r−
1
2

∫ τ

0

∂2
τσV (s, σ) ds

+O(ε2)(1 + t)−
1
2 r−

1
2 (1 + |σ|)− 3

2 +O(ε)(1 + t)−
5
2

and ∣∣∣∣Z
α
(
r−

1
2

∫ τ

0

∂2
sσV (s, σ)ds

)∣∣∣∣ ≤ Cαbε(1 + t)
1
2 r−

1
2 (1 + |σ|)− 3

2 ,

one has

‖ZαJ2‖L2 ≤ Cαbε
2(1 + t)−

1
2 . (2.19)

Note that − 2

3ε
≤ σ ≤ M holds in the support of J3, which implies r ≥ 1

3
t. Together

with (2.12), this yields

J3 =O(ε3)(1 + |σ|) 1
2 (1 + t)−

3
2 + O(ε2)∂

(
r−

1
2F0(σ)− w0

)

+O(ε)(1 + t)−
5
2 (1 + |σ|)− 1

2 .

On the other hand, it follows from property (i) of Lemma A.1 that

|Zα∂
(
r−

1
2F0(σ)− w0(t, x)

)
|

≤Cα|∂Zα
(
r−

1
2F0(σ)− w0(t, x)

)
|

≤ Cα(1 + |σ|)−1|ZZα
(
r−

1
2F0(σ)− w0(t, x)

)
|

≤ Cα(1 + t)−
3
2 (1 + |σ|)− 1

2 .

One then obtains

‖ZαJ3‖L2 ≤ Cαε
2(1 + t)−

1
2 . (2.20)

Analogously, together with (2.13), one arrives at

‖ZαJ4‖L2 ≤ Cαbε
2(1 + t)−2. (2.21)

Collecting (2.18)–(2.21) yields

‖ZαJI
a‖L2 ≤ Cαbε

2(1 + t)−
1
2 ,

1

ε
≤ t ≤ 2

ε
. (2.22)
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(iii)
2

ε
≤ t ≤ b2

ε2
− 1. Together with (2.1), by a direct computation one has

JI
a =− ε2r−

1
2 ∂2

τσV̂

(
1√
1 + t

− r−
1
2

)

− ε2r−1

(
∂2
τσV̂ + 2V̂ ∂2

σV̂ + 2(∂σV̂ )2
)

+O(ε3)r−
1
2 (1 + t)−1∂V̂ +O(ε2)(1 + t)−

3
2 r−

1
2 ∂V̂ ,

(2.23)

where V̂ (τ, σ) = χ(−3εσ)V (τ, σ).

It follows from (2.1) that

ε2r−1

(
∂2
τσV̂ + 2V̂ ∂2

σV̂ + 2(∂σV̂ )2
)

=O(ε3)r−1(1 + |σ|)− 3
2 − ε2r−1χ(−3εσ)(1− χ(−3εσ))∂2

τσV

=O(ε3)r−1(1 + |σ|)− 3
2 ;

(2.24)

here we have used the fact that χ(−3εσ)(1 − χ(−3εσ)) is supported in the interval

[− 2

3ε
,− 1

3ε
].

Substituting (2.24) into (2.23) yields

‖ZαJI
a‖L2 ≤ Cαb

(
ε3(1 + t)−

1
2 + ε2(1 + t)−

3
2

)
. (2.25)

Consequently, combining (2.16), (2.22), and (2.25), one obtains

∫ b2

ε2
−1

0

‖ZαJI
a‖L2 dt ≤ Cαbε

3
2 ,

which finishes the proof of Lemma 2.3. �

2.2. Construction of ua when c(u) = 1 + u2 + O(u3). When c(u) = 1 + u2 + O(u3),

set the slow time variable to τ = ε2 ln(1 + t) as in [4], and assume that the solution to

(1.1) can be approximated by

εr−
1
2G(τ, σ), r > 0,

where σ = r − t and where G(τ, σ) solves the equation

⎧
⎪⎨
⎪⎩

∂2
τσG+G2∂2

σG+ 2G(∂σG)2 = 0, (τ, σ) ∈ R
+ × R,

G(0, σ) = F0(σ),

suppG ⊆ {(τ, σ) : σ ≤ M}.
(2.26)

Recall that ν0 ≡ − 1

2min
σ

{F0(σ)F ′
0(σ)}

> 0. With regard to problem (2.26), one has

Lemma 2.4. Problem (2.26) admits a C∞-solution G(τ, σ) for 0 ≤ τ < ν0, and G(τ, σ)

blows up as τ → ν0−.
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Proof. Set Q = ∂σG. Then it follows from (2.26) that
⎧
⎪⎨
⎪⎩

∂τQ+G2∂σQ+ 2GQ2 = 0, (τ, σ) ∈ R
+ × R,

Q(0, σ) = F ′
0(σ),

suppQ ⊆ {(τ, σ) : σ ≤ M}.
(2.27)

The characteristic curve σ = σ(τ, s) of (2.26) emanating from (0, s) is defined by
⎧
⎨
⎩

dσ

dτ
(τ, s) = G2(τ, σ(τ, s)),

σ(0, s) = s.
(2.28)

Along characteristic curves, one has
⎧
⎨
⎩

dQ

dτ
(τ, σ(τ, s)) + 2(GQ2)(τ, σ(τ, s)) = 0,

Q(0, σ(0, s)) = F ′
0(s)

and ⎧
⎨
⎩

dG

dτ
(τ, σ(τ, s)) = 0,

G(0, σ(0, s)) = F0(s).

Then, for τ < ν0, ⎧
⎪⎨
⎪⎩

G(τ, σ(τ, s)) = F0(s),

Q(τ, σ(τ, s)) =
F ′
0(s)

1 + 2F0(s)F ′
0(s)τ

.

Together with (2.28), this yields

σ(τ, s) = s+ F 2
0 (s)τ, (2.29)

which means that, for τ < ν0,

∂sσ(τ, s) = 1 + 2F0(s)F
′
0(s)τ > 0.

Therefore, it follows from the implicit function theorem that s = s(τ, σ) can be taken as

a smooth function of τ and σ. Thus G(τ, σ) = F0(s(τ, σ)) is a smooth solution of (2.26)

when τ < ν0. One then completes the proof of Lemma 2.4 as the one of Lemma 2.1. �

Parallel to Lemma 2.2, one has

Lemma 2.5. For any positive constant b < ν0 and 0 ≤ τ ≤ b, the smooth solution G of

(2.26) satisfies the estimates

|Zα∂l
τ∂

m
σ G(τ, σ)| ≤ Clm

αb (1 + |σ|)− 1
2
−l−m, α, l,m ∈ N0. (2.30)

Proof. Since the proof is similar to that of Lemma 2.2, it is omitted. �

Next we construct an approximate solution uII
a to (1.1) for 0 ≤ τ = ε2 ln(1 + t) < ν0.

As in the first part, we take the approximate solution uII
a of (1.1) to be

uII
a (t, x) = ε

(
χ(εt)w0(t, x) + r−

1
2 (1− χ(εt))χ(−3εσ)G(τ, σ)

)
. (2.31)

By Lemma 2.5 and [10, Theorem 6.2.1], one has

|ZαuII
a (t, x)| ≤ Cαbε(1 + t)−

1
2 (1 + |σ|)− 1

2 , τ ≤ b < ν0. (2.32)
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Set JII
a = ∂2

t u
II
a − c2(uII

a )△uII
a − 2c(uII

a )c′(uII
a )|∇uII

a |2. Then one has

Lemma 2.6.
∫ e

b

ε2
−1

0

‖ZαJII
a ‖L2 dt ≤ Cαbε

3
2 | ln ε|.

Proof. We divide this proof procedure into two parts.

(i) 0 ≤ t ≤ 2

ε
. As in (i) and (ii) of the proof of Lemma 2.3, one has

‖ZαJII
a ‖L2 ≤ Cαbε

2| ln ε|(1 + t)−
1
2 . (2.33)

Note that the factor ln ε in (2.33) appears due to

G(τ, σ)− F0(σ)

=τ

∫ τ

0

∂sG(s, σ) ds

=ε2 ln(1 + t)

∫ τ

0

∂sG(s, σ) ds

=O(ε2| ln ε|), 1

ε
≤ t ≤ 2

ε
.

(ii)
2

ε
≤ t ≤ e

b

ε2 − 1. It follows from a direct computation that

JII
a = −2ε3r−

1
2 ∂2

τσĜ

(
1

1 + t
− 1

r

)

− 2ε3r−
3
2

(
∂2
τσĜ+ Ĝ2∂2

σĜ+ 2Ĝ(∂σĜ)2
)
+O(ε3)(1 + t)−

5
2 ,

(2.34)

where Ĝ(τ, σ) = χ(−3εσ)G(τ, σ).

Note that

ε3r−
3
2

(
∂2
τσĜ+ Ĝ2∂2

σĜ+ 2Ĝ(∂σĜ)2
)

=O(ε4)r−
3
2 (1 + |σ|)− 3

2 + ε3r−
3
2χ(−3εσ)(1− χ2(−3εσ))∂2

τσG

=O(ε4)(1 + t)−1r−
1
2 (1 + |σ|)− 3

2 .

One then obtains

‖ZαJII
a ‖L2 ≤ Cαb

(
ε4(1 + t)−1 + ε3(1 + t)−

3
2

)
. (2.35)

Combining (2.35) and (2.33) yields

∫ e
b

ε2 −1

0

‖ZαJII
a ‖L2 dt ≤ Cαbε

3
2 | ln ε|.

This completes the proof of Lemma 2.6. �

Remark 2.1. Consider the 2-D variational wave equation ∂2
t u− c(u)div(c(u)∇u) = 0

with initial data (u(0, x), ∂tu(0, x)) = (εu0(x), εu1(x)).
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(i) Let c(u) = 1 + u + O(u2). As in the first part, u can then be approximated by

εr−
1
2V (τ, σ), where τ = ε

√
1 + t, σ = r − t, and V (τ, σ) solves the equation

⎧
⎪⎨
⎪⎩

∂2
τσV + 2V ∂2

σV + (∂σV )2 = 0, (τ, σ) ∈ R
+ × R,

V (0, σ) = F0(σ),

suppV ⊆ {(τ, σ) : σ ≤ M}.
(2.36)

Applying the method of characteristics, one easily proves that (2.36) admits a smooth

solution only for 0 ≤ τ < τ0 = − 1

minF ′
0(σ)

.

(ii) Let c(u) = 1 + u2 + O(u3). As in Section 2.2, u can then be approximated by

εr−
1
2G(τ, σ), where τ = ε2 ln(1 + t), σ = r − t, and G(τ, σ) solves the equation

⎧
⎪⎨
⎪⎩

∂2
τσG+G2∂2

σV +G(∂σG)2 = 0, (τ, σ) ∈ R
+ × R,

G(0, σ) = F0(σ),

suppG ⊆ {(τ, σ) : σ ≤ M}.
(2.37)

As shown in [26, Theorem 1.2], for some special class of initial data G(0, σ), C1-solutions

G to (2.37) blow up in finite time. The Friedlander radiation field F0(σ), however, does

not meet the assumptions of [26] due to F
(k)
0 (M) = 0 for any k ∈ N0, which is different

from F ′
0(M) �= 0 assumed in [26]. Nonetheless, one can still obtain the finite-time blowup

of smooth solution to (2.37) (see Lemma A.5).

3. The lower bound on the lifespan Tε. In this section, based on the preparations

in Section 2, we establish the lower bound on the lifespan Tε by utilizing continuous

induction and the energy method.

First we deal with the case that c(u) = 1 + u+O(u2) in (1.1).

Lemma 3.1. Let c(u) = 1 + u + O(u2). Then, for sufficiently small ε and 0 ≤ τ =

ε
√
1 + t ≤ b < τ0, (1.1) admits a C∞-solution u which satisfies the estimate

|Zκ∂(u− uI
a)| ≤ Cbε

3
2 (1 + t)−

1
2 (1 + |t− r|)− 1

2 (3.1)

for |κ| ≤ 2; here uI
a was introduced in (2.14).

Proof. Set v = u− uI
a. Then

{
∂2
t v − c2(u)Δv = F,

v(0, x) = ∂tv(0, x) = 0,
(3.2)

where

F = −JI
a + (c2(u)− c2(uI

a))ΔuI
a + 2c(u)c′(u)|∇v|2 + 4c(u)c′(u)∇v · ∇uI

a

+ 2
(
c(u)c′(u)− c(uI

a)c
′(uI

a)
)
|∇uI

a|2.
(3.3)

We will use continuous induction to prove (3.1). To this end, we assume that, for

some T ≤ b2

ε2
− 1,

|Zκ∂v| ≤ ε(1 + t)−
1
2 (1 + |t− r|)− 1

2 , |κ| ≤ 2, t ≤ T, (3.4)
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holds and then prove that

|Zκ∂v| ≤ 1

2
ε(1 + t)−

1
2 (1 + |t− r|)− 1

2 , |κ| ≤ 2, t ≤ T. (3.5)

Note that from (3.4) one has

|Zκv| ≤ Cε(1 + t)−
1
2 (1 + |t− r|) 1

2 , |κ| ≤ 2, t ≤ T. (3.6)

Applying Zα to both sides of (3.2) yields, for |α| ≤ 4,

(∂2
t − c2(u)Δ)Zαv =G

≡
∑

|β|≤|α|
CαβZ

βF +
[
Zα, (c2(u)− 1)Δ

]
v

+
∑

|β|<|α|
C ′

αβZ
β
(
(c2(u)− 1)Δv

)
;

(3.7)

here the commutator relation [Zα, ∂2
t −△] =

∑

|β|<|α|
C ′′

αβZ
β(∂2

t −△) with suitable con-

stants Cαβ, C
′
αβ , C

′′
αβ has been made use of.

Next we derive an estimate of ‖∂Zαv‖L2 from (3.7). Define the energy

E(t) =
1

2

∑

|α|≤4

∫

R2

(|∂tZαv|2 + c2(u)|∇Zαv|2) dx.

Multiplying both sides of (3.7) by ∂tZ
αv (|α| ≤ 4), integrating by parts in R

2, and noting

that |∂u| = |∂uI
a+∂v| ≤ Cbε(1+ t)−

1
2 from the construction of uI

a and assumption (3.4),

one arrives at

E′(t) ≤ Cbε√
1 + t

E(t) +
∑

|α|≤4

∫

R2

|G| · |∂tZαv| dx. (3.8)

Moreover, due to the inductive hypothesis (3.4) and (2.15), one has

|Zκu| ≤ Cbε(1 + t)−
1
2 (1 + |σ|) 1

2 ≤ Cbε, |κ| ≤ 2, t ≤ T. (3.9)

We now treat each term in the sum
∑

|α|≤4

∫

R2

|G| · |∂tZαv| dx separately.

(A) Treatment of
∑

|β|<|α|

∫

R2

|Zβ
(
(c2(u)− 1)Δv

)
| · |∂tZαv| dx. It follows from (3.9)

that, for |β| < |α|,
∫

R2

|Zβ((c2(u)− 1)Δv)| · |∂tZαv| dx

≤ Cb

∑

|β1|+|β2|=|β|

∫

R2

|Zβ1u| · |Zβ2Δv| · |∂tZαv| dx

≤ Cb

∑

|β1|+|β2|=|β|

∫

R2

|Zβ1v| · |Zβ2Δv| · |∂tZαv| dx

+ Cb

∑

|β1|+|β2|=|β|

∫

R2

|Zβ1uI
a| · |Zβ2Δv| · |∂tZαv| dx.

(3.10)
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The troublesome term in (3.10) is Zβ1v since a term of the form Zβ1v might not be

contained in the energy E(t). However, thanks to property (i) of Lemma A.1, one has

|Zβ2Δv| ≤ 2

1 + |t− r|
∑

|β′

2|=|β2|+1

|Zβ′

2∂v|.

Due to |β| < |α| ≤ 4, by (3.4) and Lemma A.2, the first term in the right-hand side of

(3.10) can then be estimated as
∫

R2

|Zβ1v| · |Zβ2Δv| · |∂tZαv| dx

≤ Cb

∑

|β′

2|=|β2|+1

∫

R2

∣∣∣∣
1

1 + |t− r|Z
β1v

∣∣∣∣ · |Z
β′

2∂v| · |∂tZαv| dx

≤ Cbε√
1 + t

E(t).

(3.11)

Analogously,
∫

R2

|Zβ1uI
a| · |Zβ2Δv| · |∂tZαv| dx ≤ Cbε√

1 + t
E(t).

Therefore, one obtains

∑

|β|<|α|

∫

R2

|Zβ
(
(c2(u)− 1)Δv

)
| · |∂tZαv| dx ≤ Cbε√

1 + t
E(t). (3.12)

(B) Treatment of

∫

R2

|
[
Zα,

(
c2(u)− 1

)
Δ
]
v| · |∂tZαv| dx. For

∫

R2

|
[
Zα,

(
c2(u)− 1

)
Δ
]
v| · |∂tZαv| dx

≤ Cb

∑

|α1|+|α2|=|α|
|α1|≥1

∫

R2

|Zα1u| · |Zα2Δv| · |∂tZαv| dx

≤ Cb

( ∑

|α1|+|α2|=|α|
|α1|≥1

∫

R2

|Zα1uI
a| · |Zα2Δv| · |∂tZαv| dx

+
∑

|α1|+|α2|=|α|
|α1|≥1

∫

R2

|Zα1v| · |Zα2Δv| · |∂tZαv| dx
)
,

by the same argument as in (3.11), one has
∫

R2

|
[
Zα,

(
c2(u)− 1

)
Δ
]
v| · |∂tZαv| dx ≤ Cbε√

1 + t
E(t). (3.13)

Next we treat each term

∫

R2

|ZβF |·|∂tZαv| dx, |β|≤|α|, that is included in
∑

|α|≤4

∫

R2

|G|·

|∂tZαv| dx.
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(C) Treatment of

∫

R2

|ZβJI
a | · |∂tZαv| dx. In this case, one has

∫

R2

|ZβJI
a | · |∂tZαv| dx ≤ ‖ZβJa‖L2 ·

√
E(t). (3.14)

(D) Treatment of

∫

R2

|Zβ
(
(c2(u) − c2(uI

a))ΔuI
a

)
| · |∂tZαv| dx. Due to (3.9) and

Lemmas A.1 and A.2, a direct computation yields
∫

R2

|Zβ
(
(c2(u)− c2(uI

a))ΔuI
a

)
| · |∂tZαv| dx

≤Cb

∑

|β1|+|β2|=|β|

∫

R2

|Zβ1v| · |Zβ2ΔuI
a| · |∂tZαv| dx

≤Cb

∑

|β1|+|β2|=|β|
|β′

2|=|β2|+1

∫

R2

1

1 + |t− r| |Z
β1v| · |Zβ′

2∂uI
a| · |∂tZαv| dx

≤ Cbε√
1 + t

E(t).

(3.15)

(E) Treatment of

∫

R2

|Zβ
(
c(u)c′(u)|∇v|2

)
| · |∂tZαv| dx. Similarly to (D), one has

∫

R2

|Zβ
(
c(u)c′(u)|∇v|2

)
| · |∂tZαv|dx ≤ Cbε√

1 + t
E(t). (3.16)

(F) Treatment of

∫

R2

|Zβ
(
c(u)c′(u)∇v · ∇uI

a

)
| · |∂tZαv| dx. It follows from a direct

computation that
∫

R2

|Zβ
(
c(u)c′(u)∇v · ∇uI

a

)
| · |∂tZαv| dx

≤Cb

∑

|β1|+|β2|≤|β|
|Zβ1∂v| · |Zβ2∂uI

a| · |∂tZαv| dx

≤ Cbε√
1 + t

E(t).

(3.17)

(G) Treatment of

∫

R2

|Zβ
((
c(u)c′(u)− c(uI

a)c
′(uI

a)
)
|∇uI

a|2
)
| · |∂tZαv| dx. This case

is also similar to (D). In particular, one has
∫

R2

|Zβ
((
c(u)c′(u)− c(uI

a)c
′(uI

a)
)
|∇uI

a|2
)
| · |∂tZαv| dx ≤ Cbε√

1 + t
E(t). (3.18)

Substituting (3.12)–(3.18) into (3.8) yields

E′(t) ≤ Cbε√
1 + t

E(t) +
∑

|β|≤4

‖ZβJI
a‖L2

√
E(t).

Thus, by Lemmas 2.3 and A.3, one obtains

‖∂Zαv‖L2 ≤ Cbε
3
2 , |α| ≤ 4,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



234 LI JUN, INGO WITT, AND YIN HUICHENG

and further

‖Zα∂v‖L2 ≤ Cbε
3
2 , |α| ≤ 4. (3.19)

By (3.19) and the Klainerman-Sobolev inequality (see [10], [16]), one has

|Zκ∂v| ≤ Cbε
3
2 (1 + t)−

1
2 (1 + |t− r|)− 1

2 , |κ| ≤ 2, t ≤ T, (3.20)

which means that, for small ε,

|Zκ∂v| ≤ 1

2
ε(1 + t)−

1
2 (1 + |t− r|)− 1

2 , |κ| ≤ 2, t ≤ T.

This completes the proofs of (3.6) and (3.1). �

When c(u) = 1 + u2 +O(u3) in (1.1), then similarly to Lemma 3.1, one has

Lemma 3.2. Let c(u) = 1 + u2 + O(u3). Then, for sufficiently small ε and 0 ≤ τ =

ε2 ln(1 + t) ≤ b < ν0, (1.1) admits a C∞-solution u which satisfies the estimate

|Zκ∂(u− uII
a )| ≤ Cbε

3
2 | ln ε|(1 + t)−

1
2 (1 + |t− r|)− 1

2 , (3.21)

for all |κ| ≤ 2.

Proof. As in the proof of Lemma 3.1, we define the energy

E(t) =
1

2

∑

|α|≤4

∫

R2

(|∂tZαv|2 + c2(u)|∇Zαv|2) dx

and obtain

E′(t) ≤ Cbε
2

1 + t
E(t) +

∑

|β|≤4

Cb‖ZβJII
a ‖L2

√
E(t).

Due to Lemmas 2.6 and A.3, one then obtains (3.21) as in the proof of Lemma 3.1. �

Remark 3.1. Lemma 3.1 implies that lim
ε→0

ε
√

1 + Tε ≥ τ0 holds for the lifespan Tε of

solutions to (1.1) in the case c(u) = 1 + u+O(u2). Hence,

lim
ε→0

ε
√

Tε ≥ τ0. (3.22)

Similarly, Lemma 3.2 implies for the lifespan Tε of (1.1) in the case c(u) = 1 + u2 +

O(u3) that

lim
ε→0

ε2 lnTε ≥ ν0. (3.23)

4. The upper bound on the lifespan Tε. In this section, we establish the upper

bound on Tε. Some of our ideas are inspired by [9], [14], and [6]. Since, in contrast to

[9], [14], c(u) in (1.1) contains the solution u, and not the derivatives of u, our derivation

has to be more careful. Thanks to estimates of Zα(u−uI
a) and Zα(u−uII

a ) with |α| ≤ 2

in Lemmas 3.1 and 3.2, respectively, one observes that |Zα(u−uI
a)| ≤ Cbε

3
2 (1+ t)−

1
2 for

t ≤ b2

ε2 − 1 and |Zα(u−uII
a )| ≤ Cbε

3
2 | ln ε|(1+ t)−

1
2 for t ≤ e

b

ε2 − 1, respectively, near the

light cone. This will play a crucial role in the analysis later on.
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Set U = r
1
2 u. Because of the spherical symmetry of u, (1.1) can be written as

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2
tU − c2(u)∂2

rU =
1

4
r−

3
2 c2(u)u+ 2r−

1
2 c(u)c′(u)

(
∂rU − 1

2
r−

1
2 u

)2

,

U(0, r) = εr
1
2 u0,

∂tU(0, r) = εr
1
2u1.

(4.1)

Define the operators L1 and L2 by

L1 = ∂t + c(u)∂r, L2 = ∂t − c(u)∂r.

We also set

w1 = L2U = (∂t − c(u)∂r)U, w2 = L1U = (∂t + c(u)∂r)U,

which means ∂tU =
w2 + w1

2
and ∂rU =

w2 − w1

2c(u)
.

For

L1L2 = ∂2
t − c2(u)∂2

r − (L1c(u))∂r, L2L1 = ∂2
t − c2(u)∂2

r + (L2c(u))∂r,

one has

L1w1 =
1

2r
1
2 c(u)

c′(u)w2
1 +

c′(u)

4r
1
2 c(u)

(
3

r
1
2

c(u)u− 2w2

)
w1

+
1

4r
3
2

c2(u)u+
1

2r
3
2

c(u)c′(u)u2 − 3

4r
c′(u)uw2,

(4.2)

L2w2 =
1

2r
1
2 c(u)

c′(u)w2
2 −

c′(u)

4r
1
2 c(u)

(
3

r
1
2

c(u)u+ 2w1

)
w2

+
1

4r
3
2

c2(u)u+
1

2r
3
2

c(u)c′(u)u2 +
3

4r
c′(u)uw1.

(4.3)

Because ∂rc(u) = c′(u)∂ru =
c′(u)

2r
1
2 c(u)

(w2 − w1)−
1

2r
c′(u)u, one also has

L1w1 + w1∂rc(u) =
1

4r
c′(u)uw1 +

1

4r
3
2

c2(u)u+
1

2r
3
2

c(u)c′(u)u2 − 3

4r
c′(u)uw2,

L2w2 − w2∂rc(u) = − 1

4r
c′(u)uw2 +

1

4r
3
2

c2(u)u+
1

2r
3
2

c(u)c′(u)u2 +
3

4r
c′(u)uw1

and

d(|w1|(dr − cdt))

= sgnw1(L1w1 + w1∂rc) dt ∧ dr

= sgnw1

[
1

4r
c′(u)uw1 +

1

4r
3
2

c2(u)u+
1

2r
3
2

c(u)c′(u)u2 − 3

4r
c′(u)uw2

]
dt ∧ dr,

(4.4)

d(|w2|(dr + cdt))

= sgnw2(L2w2 − w2∂rc) dt ∧ dr

= sgnw2

[
− 1

4r
c′(u)uw2 +

1

4r
3
2

c2(u)u+
1

2r
3
2

c(u)c′(u)u2 +
3

4r
c′(u)uw1

]
dt ∧ dr.

(4.5)

We first deal with the case c(u) = 1 + u+O(u2).
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For c(u) = 1 + u + O(u2), one knows from Section 2 that, for ε
√
1 + Tb = b < τ0

with b > 0 a fixed constant, (1.1) has a C∞-solution for t ≤ Tb. Choose ε > 0 so small

that
1

ε
<

b2

ε2
− 1. Define the characteristic curve Γ±

λ by
dr

dt
= ±c(u(t, r)) and let it

pass through (λ, 0) in the (r, t)-plane. Let D be the domain that is bounded by Γ+
M ,

Γ+
ρ0−1, {t = 0}, and {t = Tb} (see Figure 1), where ρ0 is chosen in such a way that

F ′
0(ρ0) = min

σ≤M
F ′
0(σ). Obviously, Γ+

M is the straight line r = t+M .

One now has

Lemma 4.1. If (t, r), (t′, r′) ∈ Γ−
µ ∩ D (µ ∈ R) and (t, r) ∈ Γ+

λ , (t
′, r′) ∈ Γ+

λ′ , where

λ, λ′ ∈ [ρ0 − 1,M ], then

|t− t′| ≤ Cb. (4.6)

Proof. The equation r = r(t) for Γ+
λ is

⎧
⎨
⎩

dr(t)

dt
= c(u(t, r(t))) ≡ c(t),

r(0) = λ,

which yields

r(t)− λ =

∫ t

0

(c(s)− 1) ds+ t.
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Because

|c(t)− 1| ≤ C|u(t, r(t))| ≤ Cbε(1 + t)−
1
2 (1 + |t− r(t)|) 1

2 , 0 ≤ τ = ε
√
1 + t ≤ b < τ0,

one has

|r(t)− t| ≤ |λ|+ Cbε

∫ t

0

(1 + s)−
1
2 (1 + |s− r(s)|) 1

2 ds

≤ m0 + Cbε

∫ t

0

(1 + s)−
1
2 (1 + |s− r(s)|) 1

2 ds

≤ m0 + Cbε

∫ t

0

(1 + s)−
1
2 (1 + |s− r(s)|) ds,

(4.7)

where m0 = max{|ρ0 − 1|,M}.

Set f(t) = 1 +m0 + Cbε

∫ t

0

(1 + s)−
1
2 (1 + |s− r(s)|)ds. By (4.7), one then has

f ′(t) ≤ Cbε(1 + t)−
1
2 f(t), f(0) = 1 +m0.

This implies, for ε
√
1 + t ≤ b,

0 < f(t) ≤ (1 +m0)e
Cbε

√
1+t ≤ Cb

and

|r(t)− t| ≤ Cb.

Therefore,

|t+M − r(t)| ≤ Cb, (4.8)

which means that the horizontal width between Γ+
ρ0−1 and Γ+

M in D is finite.

On the other hand, the equation r̃ = r̃(t) for Γ−
µ is

⎧
⎨
⎩

dr̃(t)

dt
= −c(u(t, r̃(t))) ≡ −c̃(t),

r̃(0) = µ.

Let suppu ⊂ {(t, r) : r < t+M}; then |r̃(t) + t− µ| = 0 for t < t∗ and |r̃(t) + t− µ| ≤∫ t

t0

|c̃(s)+1|ds ≤ Cbε

∫ t

t∗

(1+s)−
1
2 (1+ |r̃(s)−s|) 1

2 ds for t ≥ t∗, where (t∗, t∗+M) denotes

the intersection of the curves Γ−
µ and Γ+

M .

Combining this with (4.8) yields

|r̃(t) + t− µ| ≤ Cbε
√
1 + t ≤ Cb.

Thus, if (t, r), (t′, r′) ∈ Γ−
µ ∩D (µ ∈ R) and (t, r) ∈ Γ+

λ , (t
′, r′) ∈ Γ+

λ′ , one then arrives

at

|t− t′| ≤ 1

2

(
|t+ r − µ|+ |t′ + r′ − µ|+ |t− r − λ|+ |t′ − r′ − λ′|+ |λ− λ′|

)
≤ Cb,

which finishes the proof of Lemma 4.1. �
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For t ≤ Tb, define

A(t) = sup
1/ε≤s≤t

∫

(s,r)∈D

|w1(s, r)| dr,

B(t) = sup
1/ε≤s≤t
(s,r)∈D

s
1
2 |u(s, r)|,

C(t) = sup
1/ε≤s≤t
(s,r)∈D

s|w2(s, r)|.

Then one obtains

Lemma 4.2. There exists a constant E > 0 such that, for small ε,

A

(
1

ε

)
≤ Eε

2
, B

(
1

ε

)
≤ Eε, C

(
1

ε

)
≤ E2ε2. (4.9)

Proof. Since w1 = r
1
2 ∂tu− c(u)r

1
2 ∂ru− 1

2r
− 1

2 c(u)u, for t ≤ b2

ε2 − 1, one has

|w1(t, r)| ≤ Cbε. (4.10)

Thus, it follows from (4.8) and (4.10) that
∫

( 1
ε
,r)∈D

|w1(s, r)| dr ≤ Cbε. (4.11)

Furthermore, because |u(t, r)| ≤ Cbε(1 + t)−
1
2 (1 + |t − r|) 1

2 for t ≤ b2

ε2 − 1 together

with (4.8), one has, for (1ε , r) ∈ D,

1

ε
1
2

∣∣∣∣u
(
1

ε
, r

)∣∣∣∣ ≤ Cbε. (4.12)

Note that

w2(t, r) = r
1
2 (∂tu+ c(u)∂ru) +

1

2
r−

1
2 c(u)u

= r
1
2
S +H

t+ r
u+ r

1
2 (c(u)− 1)∂ru+

1

2
r−

1
2 c(u)u,

which implies that |w2(t, r)| ≤ Cbε(1 + t)−
1
2 for (t, r) ∈ D and ε

√
1 + t ≤ b in view of

(3.9). Together with (4.3), this yields

|L2w2| ≤
Cbε

2

1 + t
. (4.13)

For w2(t, t+M) = 0 and (4.6), from (4.13) one then obtains

C

(
1

ε

)
≤ Cbε

2. (4.14)

Collecting (4.11), (4.12) and (4.14) completes the proof of (4.9), where E =

8(1 + Cb). �

Based on Lemma 4.2, we will use continuous induction to estimate the upper bound

on Tε when c(u) = 1 + u+O(u2). To this end, we assume that, for 0 ≤ t ≤ T ′ ≤ Tb,

A(t) ≤ Eε, B(t) ≤ 2Eε, C(t) ≤ 3E2ε2. (4.15)

We now establish
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Lemma 4.3. Under the hypothesis (4.15) and for ε sufficiently small, one has, for
1

ε
≤

t ≤ T ′,

A(t) ≤ 2

3
Eε, B(t) ≤ Eε, C(t) ≤ 5

2
E2ε2. (4.16)

Proof. First we estimate A(t). By (4.4) and Green’s formula, one has, for
1

ε
≤ t ≤ T ′,

∫

(t,r)∈D

|w1(t, r)| dr

≤
∫

(1/ε,r)∈D

|w1(1/ε, r)| dr +
∫∫

1/ε≤s≤t
(s,r)∈D

∣∣∣∣
1

4r
c′(u)uw1 +

1

4r
3
2

c2(u)u

+
1

2r
3
2

c′(u)c(u)u2 − 3

4r
c′(u)uw2

∣∣∣∣(s, r) dsdr

≤1

2
Eε+

∫∫

1/ε≤s≤t
(s,r)∈D

∣∣∣∣
1

4r
c′(u)uw1 +

1

4r
3
2

c2(u)u

+
1

2r
3
2

c′(u)c(u)u2 − 3

4r
c′(u)uw2

∣∣∣∣(s, r) dsdr.

(4.17)

By the inductive hypothesis (4.15), one has |u(s, r)| ≤ 2Eεs−
1
2 for

1

ε
≤ s ≤ T ′ and

(s, r) ∈ D. Note also that c is near 1 for small ε and |r− s| ≤ Cb holds for s ≥ 1/ε. One

then has r ≥ s/2 and

∫∫

1/ε≤s≤t
(s,r)∈D

∣∣∣∣
1

4r
c′(u)uw1

∣∣∣∣ dsdr

≤
∫∫

1/ε≤s≤t
(s,r)∈D

2Eε

s
3
2

|w1|(s, r) dsdr

=2Eε

∫ t

1/ε

1

s
3
2

ds

∫

(s,r)∈D

|w1|(s, r) dr

≤ 4Eε
3
2A(t) ≤ 4E2ε

5
2 .

(4.18)

Similarly, one has

∫∫

1/ε≤s≤t
(s,r)∈D

∣∣∣∣
1

4r
3
2

c2(u)u

∣∣∣∣ dsdr ≤ 2Eε

∫∫

1/ε≤s≤t
(s,r)∈D

1

s2
dsdr ≤ CbEε2,

(4.19)

∫∫

1/ε≤s≤t
(s,r)∈D

∣∣∣∣
1

2r
3
2

c′(u)c(u)u2

∣∣∣∣ dsdr ≤ CbE
2ε2

∫∫

1/ε≤s≤t
(s,r)∈D

1

s
5
2

dsdr ≤ CbE
2ε

7
2 ,

(4.20)
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and
∫∫

1/ε≤s≤t
(s,r)∈D

∣∣∣∣
3

4r
c′(u)uw2

∣∣∣∣(s, r) dsdr ≤ CbE
2ε2

∫∫

1/ε≤s≤t
(s,r)∈D

1

s
5
2

dsdr ≤ CbE
2ε

7
2 . (4.21)

Substituting (4.18)–(4.21) into (4.17) yields

A(t) ≤ 1

2
Eε+ CbEε2 + CbE

2ε
7
2 ,

which implies A(t) ≤ 2
3Eε for sufficiently small ε.

Next we estimate B(t). Note that u satisfies the equation

L2u = L2(r
− 1

2U) = r−
1
2w1 +

1

2r
3
2

c(u)u. (4.22)

Integrate (4.22) along the characteristic curve Γ−
µ which insects Γ+

M at the point (t′, r′).

When t′ ≥ 1/ε, denote by D1 the domain bounded by Γ−
µ , the line {t = t′}, and Γ+

M .

Let Γ1, Γ2, and Γ3 be the faces of the boundary (see Figure 2). By (4.4), one then has
∫∫

(s,r)∈D1

sgnw1

[
1

4r
c′(u)uw1 +

1

4r
3
2

c2(u)u+
1

2r
3
2

c′(u)c(u)u2 − 3

4r
c′(u)uw2

]
(s, r) dsdr

=

(∫

Γ1

+

∫

Γ2

)
|w1|(dr − c dt),
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which implies

∫

Γ1

|w1|(dr − c ds)

≤
∫∫

(s,r)∈D1

∣∣∣∣
1

4r
c′(u)uw1 +

1

4r
3
2

c2(u)u+
1

2r
3
2

c′(u)c(u)u2 − 3

4r
c′(u)uw2

∣∣∣∣(s, r) dsdr

+

∫

Γ2

|w1|(dr − c dt)

≤
∫∫

1/ε≤s≤t
(s,r)∈D

∣∣∣∣
1

4r
c′(u)uw1 +

1

4r
3
2

c2(u)u+
1

2r
3
2

c′(u)c(u)u2

− 3

4r
c′(u)uw2

∣∣∣∣(s, r) dsdr +
∫

(t,r)∈D1

|w1(t, r)| dr

≤1

6
Eε+

2

3
Eε =

5

6
Eε,

the last inequality resulting the estimates (4.18)–(4.21). This yields

∫ t

t′

|w1(s, r̃(s))|
(r̃(s))

1
2

ds

≤
∫ t

t′

|w1(s, r̃(s))|
(r̃(t))

1
2

ds ≤ 2

t
1
2

∫ t

t′
|w1(s, r(s))| ds

=
2

t
1
2

∫

Γ1

|w1(s, r)|√
1 + c2

ds =
2

t
1
2

∫

Γ1

|w1|
2c
√
1 + c2

(dr − c ds)

≤ 5

6t
1
2

Eε.

(4.23)

Note also that r(s) ≥ s

2
≥ 1

2ε
. By (4.22), one then has

|u(t, r)| ≤
∫ t

t′

|w1(s, r̃(s))|
(r̃(s))

1
2

ds+

∫ t

t′

|cu|(s, r̃(s))
2(r̃(s))

3
2

ds

≤ 5

6t
1
2

Eε+ 3ε
3
2

∫ t

t′
|u(s, r(s))| ds.

By (4.6), one obtains

|u(t, r̃(t))| ≤ 5

6t
1
2

EεeCbε ≤ Eεt−
1
2 .

One has t ≤ t′ + |t− t′| ≤ 2/ε for t′ ≤ 1/ε. Thus, t
1
2 |u(t, r)| ≤ Eε for (t, r) ∈ D, and

B(t) ≤ Eε follows.

Finally, we estimate C(t). We rewrite (4.3) as

L2w2 = aw2 + b, (4.24)
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where

a =
1

2r
1
2 c(u)

c′(u)w2 −
c′(u)

4r
1
2 c(u)

(
3

r
1
2

c(u)u+ 2w1

)
,

b =
1

4r
3
2

c2(u)u+
1

2r
3
2

c(u)c′(u)u2 +
3

4
c′(u)uw1.

Integrating (4.24) along Γ−
µ as above, one obtains

|w2(t, r)| ≤
∫ t

t′
|aw2 + b|(s, r̃(s)) ds. (4.25)

Noting that t′ ≥ t − |t − t′| ≥ t − Cb, |w2(t, r)| ≤
3E2ε2

t
and using (4.6), (4.8), and

(4.23), by the choice of E = 8(1 + Cb) in Lemma 4.2, one arrives at

∫ t

t′
|b(s, r̃(s))| ds

≤
∫ t

t′

1

4(r̃(s))
3
2

|c2(u)u|(s, r̃(s)) ds+
∫ t

t′

1

2(r̃(s))
3
2

|c(u)c′(u)u2|(s, r̃(s)) ds

+

∫ t

t′

3

4r̃(s)
|c′(u)uw1|(s, r̃(s)) ds

≤ 1

3
CbEε2t−1 +

2E2ε2

t

∫ t

t′

1

s
3
2

ds+
5Eε

4t

∫ t

t′

|w1(s, r̃(s))|
(r̃(s))

1
2

ds

≤ 1

3
E2ε2t−1 +

1

2
E2ε2t−1 +

1

2
E2ε2t−1

≤ 5

3
E2ε2t−1,

(4.26)

and similarly

∫ t

t′
|aw2|(s, r(s)) ds ≤

2E2ε2

t

∫ t

t′
|a|(s, r̃(s)) ds ≤ CbE

3ε3

t
. (4.27)

Substituting (4.26) and (4.27) into (4.25) yields

|w2(t, r)| ≤
∫ t

t′
|aw2 + b|(s, r̃(s)) ds ≤ 5E2ε2

2t
,

which shows that C(t) ≤ 5E2ε2

2
. �

We will use Lemma A.4 to estimate the upper bound on the lifespan Tε when c(u) =

1 + u + O(u2) in (1.1), based on Lemmas 4.2 and 4.3. More specifically, we will show

that

lim
ε→0

ε
√

Tε ≤ − 1

2F ′
0(ρ0)

= τ0. (4.28)

It follows from (4.2) that on the characteristic curve Γ+
ρ0
, w1(t, r(t)) satisfies

dw1

dt
(t, r(t)) = L1w1 = a0(t)w

2
1 + a1(t)w1 + a2(t), (4.29)
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where

a0(t) =

(
1

2r
1
2 c(u)

c′(u)

)
(t, r(t)),

a1(t) =

(
c′(u)

4r
1
2 c(u)

(
3

r
1
2

c(u)u− 2w2

))
(t, r(t)),

a2(t) =

(
1

4r
3
2

c2(u)u+
1

2r
3
2

c(u)c′(u)u2 − 3

4r
c′(u)uw2

)
(t, r(t)).

By (4.15), one has, for
1

ε
≤ t ≤ Tb,

|a1| ≤
5Eε

t
3
2

, |a2| ≤
10Eε

3
2

t
3
2

,

which implies
∫ Tb

1/ε

|a1| ds ≤ 10Eε
3
2 ,

∫ Tb

1/ε

|a2| ds ≤ 20E2ε2. (4.30)

This also yields

K =

(∫ Tb

1/ε

|a2(t)| dt
)
exp

(∫ Tb

1/ε

|a1(t)| dt
)

= O(ε2). (4.31)

By the definition of uI
a in (2.14), one has that uI

a(1/ε) = εw0(1/ε) on Γ+
ρ0
. Moreover,

it follows from Lemma 3.1 that

|Zα(u− uI
a)| ≤ Cαbε

3
2 (1 + t)−

1
2 (1 + |t− r|)1/2.

On the other hand, by [10, Theorem 6.2.1], one has
∣∣∣∣∂

αZβ

(
uI
a(1/ε)−

(
ε

r
1
2

F0

)
(r(1/ε)− 1/ε)

)∣∣∣∣ ≤ Cαβε
3
2 .

Therefore,

w1(1/ε) = (r
1
2 ∂tu)(1/ε)−

[
c

(
u

2r
1
2

+ r
1
2 ∂ru

)]
(1/ε)

= (r
1
2 ∂tu

I
a)(1/ε)−

[
c

(
uI
a

2r
1
2

+ r
1
2 ∂ru

I
a

)]
(1/ε) + O(ε3/2)

= εF ′
0(r(1/ε)− 1/ε))(−c(1/ε)− 1) +O(ε3/2)

= −2εF ′
0(r(1/ε)− 1/ε)) +O(ε3/2).

Note that one has |r − t| ≤ C + |ρ0| and |u(t, r)| ≤ Cbε(1 + t)−
1
2 on Γ+

ρ0
. Hence,

|r(1/ε)− 1/ε− ρ0| ≤
∫ 1/ε

0

Cbε(1 + s)−
1
2 ds = Cbε

√
1 +

1

ε
.

We now prove (4.28). By Lemma A.4 and (4.30) and (4.31), one has
(∫ Tb

1/ε

1

2(r(t))
1
2 c(u)

c′(u) dt

)
exp

(
−
∫ Tb

1/ε

|a1(t)| dt
)

< (w1(1/ε)−K)−1;
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that is,
(√

Tb −
√
1 +

1

ε

)
(1 +O(ε)) < (−2εF ′

0(ρ0) +O(ε3/2))−1 exp(5Eε2).

Thus,

lim
ε→0

ε
√

Tε ≤ − 1

2F ′
0(ρ0)

= τ0,

and (4.28) is proved.

Next we show that in the case c(u) = 1 + u2 +O(u2) in (1.1), the lifespan Tε satisfies

lim
ε→0

ε2 lnTε ≤ ν0 = − 1

2min
σ

{F0(σ)F ′
0(σ)}

. (4.32)

Although the proof is analogous to that of (4.28), for the readers’ convenience, we

provide the details.

Set T̃b = e
b

ε2 − 1, where 0 < b < ν0 is a fixed constant. As above, define Γ̃±
λ to be the

characteristic curve given by
dr

dt
= ±c(u(t, r)) and passing through the point (λ, 0). The

domain D̃ is bounded by Γ̃+
M , Γ̃+

ρ̃0−1, {t = 0}, and {t = T̃b}, where ρ̃0 is chosen so that

F0(ρ̃0)F
′
0(ρ̃0) = min

σ≤M
{F0(σ)F

′
0(σ)}.

Similarly to Lemma 4.1, one has

Lemma 4.4. If (t, r), (t′, r′) ∈ Γ̃−
ν ∩ D̃ (ν ∈ R) and (t, r) ∈ Γ̃+

λ , (t
′, r′) ∈ Γ̃+

λ′ , where

λ, λ′ ∈ [ρ̃0 − 1,M ], then

|t− t′| ≤ Cb. (4.33)

Proof. For λ ∈ [ρ̃0 − 1,M ], the equation r = r(t) of Γ̃+
λ is

⎧
⎨
⎩

dr(t)

dt
= c(u(t, r(t))) ≡ c(t),

r(0) = λ.

Because |c(t) − 1| ≤ Cb|u(t, r(t))|2 ≤ Cbε
2(1 + t)−1(1 + |r − r(t)|) for 0 < τ =

ε2 ln(1 + t) ≤ b < ν0, one has

|r(t)− t| ≤ |λ|+
∫ t

0

|c(u(s, r(s)))− 1| ds

≤ m0 + Cbε
2

∫ t

0

(1 + s)−1(1 + |r(s)− s|) ds,

which implies |r(t)− t| ≤ Cb for t ≤ T̃b. The proof of Lemma 4.4 then concludes by an

argument similar to that in the proof of Lemma 4.1. �

Define A(t), B(t), and C(t) as in Lemma 4.2. When c(u) = 1 + u2 + O(u3) in (1.1),

one obtains the paralleling Lemmas 4.2 and 4.3:

Lemma 4.5. There exists a positive constant E such that, for small ε,

(i)

A

(
1

ε

)
≤ Eε

2
, B

(
1

ε

)
≤ Eε, C

(
1

ε

)
≤ E2ε2. (4.34)
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(ii) If 0 ≤ t ≤ T̃b, then

A(t) ≤ Eε, B(t) ≤ 2Eε, C(t) ≤ 3E2ε2. (4.35)

Proof. Since the proof is analogous to those of Lemmas 4.2 and 4.3, it is omitted. �

Next we prove (4.32). It follows from (4.2) that along the characteristic curve Γ̃+
ρ̃0
,

w1(t, r(t)) satisfies
dw1

dt
(t, r(t)) = a0(t)w

2
1 + a1(t)w1 + a2(t), (4.36)

where a0(t), a1(t), and a2(t) are defined as in (4.29).

By (4.35), one has, for
1

ε
≤ t ≤ T̃b,

|a1| ≤
5Eε2

t2
, |a2| ≤

10Eε
3
2

t
3
2

,

which implies
∫ T̃b

1/ε

|a1| ds ≤ 10Eε3,

∫ T̃b

1/ε

|a2| ds ≤ 20E2ε2 (4.37)

and

K =

(∫ T̃b

1/ε

|a2(t)| dt
)
exp

(∫ T̃b

1/ε

|a1(t)| dt
)

= O(ε2). (4.38)

By the definition of uII
a in (2.31), one has that uII

a (1/ε) = εw0(1/ε) on Γ̃+
ρ̃0

holds true.

Moreover, it follows from Lemma 3.2 that

|Zα(u− uII
a )| ≤ Cαbε

3
2 | ln ε|(1 + t)−

1
2 (1 + |t− r|)1/2. (4.39)

On the other hand, by [10, Theorem 6.2.1] one has
∣∣∣∣∂

αZβ

(
uII
a (1/ε)−

(
ε

r
1
2

F0

)
(r(1/ε)− 1/ε)

)∣∣∣∣ ≤ Cαβε
3
2 .

Therefore,

w1(1/ε) = (r
1
2 ∂tu)(1/ε)−

(
c

(
u

2r
1
2

+ r
1
2 ∂ru

))
(1/ε)

= (r
1
2 ∂tu

II
a )(1/ε)−

(
c

(
uII
a

2r
1
2

+ r
1
2 ∂ru

II
a

))
(1/ε) +O(ε3/2)

= εF ′
0(r(1/ε)− 1/ε)(−c(1/ε)− 1) +O(ε3/2| ln ε|)

= −2εF ′
0(r(1/ε)− 1/ε) +O(ε3/2| ln ε|).

Note that |r − t| ≤ C + |ρ̃0| and |u(t, r)| ≤ Cbε(1 + t)−
1
2 on Γ̃+

ρ̃0
. Hence,

|r(1/ε)− 1/ε− ρ̃0| ≤
∫ 1/ε

0

Cbε
2(1 + s)−1ds = Cbε

2| ln ε|.

Thus one has

w1

(
1

ε

)
= −2εF ′

0(ρ̃0) +O(ε3/2| ln ε|). (4.40)

For later reference, we now provide properties of u when restricted to Γ̃+
ρ̃0
.
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By the definition of uII
a in (2.31), one has, for t ≥ 1

ε
,

uII
a (t, x) = ε

(
χ(εt)w0(t, x) + (1− χ(εt))r−1/2F0(ρ̃0)

)
on Γ̃+

ρ̃0
. (4.41)

Moreover, it follows from [10, Lemma 6.2.1] that

|∂αZβ(w0(t, x)− r−1/2F0(ρ̃0))| ≤ Cαβε
1
2 (1 + t)−1 on Γ̃+

ρ̃0
. (4.42)

Substituting (4.42) into (4.41) yields, for t ≥ 1

ε
,

uII
a = εr−1/2F0(ρ̃0) +O(ε

3
2 )(1 + t)−1 on Γ̃+

ρ̃0
.

Together with (4.39), this implies, for t ≥ 1

ε
,

u = εr−1/2F0(ρ0) +O(ε
3
2 )| ln ε|(1 + t)−

1
2 +O(ε

3
2 )(1 + t)−1 on Γ̃+

ρ̃0
. (4.43)

Relying on the preparations above, we now prove (4.32).

As F0(ρ̃0)F
′
0(ρ̃0) < 0, without loss of generality we can assume that F0(ρ̃0) < 0 and

F ′
0(ρ̃0) > 0. One then has, for t ≥ 1

ε
,

w1

(
1

ε

)
< 0 and a0(t) =

2u+O(u2)

2(r(t))1/2c(u)
< 0 on Γ̃+

ρ0
.

Consider the equation for w̃1 = −w1. It follows from (4.36) that on the characteristic

curve Γ̃+
ρ̃0
, for t >

1

ε
,

dw̃1

dt
(t, r(t)) = −a0(t)(w̃1)

2 + a1(t)w̃1 − a2(t),

where w̃1(
1
ε ) > 0. By Lemma A.4, one has

(
−
∫ T̃b

1/ε

1

2(r(t))
1
2 c(u)

c′(u) dt

)
exp

(
−
∫ T̃b

1/ε

|a1(t)| dt
)

< (w̃1(1/ε)−K)−1.

From this, together with (4.37), (4.38), (4.40), (4.43), and c′(u) = 2u + O(u2), one

arrives at

εF0(ρ̃0)(ln T̃b − ln(1/ε))(1 +O(ε)) < (−2εF ′
0(ρ̃0) + O(ε3/2| ln ε|))−1 exp(10Eε2),

which implies

lim
ε→0

ε2 lnTε ≤ − 1

2F0(ρ̃0)F ′
0(ρ̃0)

= ν0.

Consequently, (4.32) is proved.

Proof of Theorem 1.1. Under the assumptions of Theorem 1.1, it follows from (3.22),

(3.23), (4.28), and (4.32) that the lifespan Tε satisfies

lim
ε→0

ε
√
Tε = τ0 when c(u) = 1 + u+ O(u2)

and

lim
ε→0

ε2 lnTε = ν0 when c(u) = 1 + u2 +O(u3).

Thus, we have completed the proof of Theorem 1.1. �
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Appendix A. Some useful lemmas.

Lemma A.1. (i) For φ(t, r) ∈ C1,

|∂φ| ≤ 2

1 + |t− r|
∑

|β|=1

|Zβφ|. (A.1)

(ii) Klainerman fields have the following expressions in (τ, σ) coordinates:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t = −∂σ +
ε

2
√
1 + t

∂τ ,

∂r = ∂σ,

S = σ∂σ +
εt

2
√
1 + t

∂τ ,

H = −σ∂σ +
εr

2
√
1 + t

∂τ .

Proof. (i) For ∂t =
tS − rH

t2 − r2
and ∂r =

tH − rS

t2 − r2
,

(1 + |t− r|)(|∂tφ|+ |∂rφ|) ≤ 2(|Sφ|+ |Hφ|+ |∂tφ|+ |∂rφ|),

and (A.1) is proved.

(ii) This follows from a direct computation. �

Lemma A.2. If f(t, x) ∈ C1(R+ × R
2) depends only on (t, r) and suppf ⊆ {(t, x) : r ≤

M + t}, then

‖(1 + |t− r|)−1f‖L2 ≤ C‖∂rf‖L2 .

Remark A.1. In the case of x ∈ R
3, Lemma A.2 has been proved in [19].

Proof. Since suppf ⊆ {r ≤ M + t},

f(t, r) = −
∫ M+t

r

∂rf(t, s) ds.

It follows that

|f(t, r)|2 ≤
(∫ M+t

r

|∂rf(t, s)|2(1 + |t− s|)1/2 ds
)∫ M+t

r

(1 + |t− s|)−1/2 ds

≤ C

(∫ M+t

r

|∂rf(t, s)|2(1 + |t− s|)1/2ds
)
(1 + |t− r|)1/2.
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Thus,

∫ M+t

0

(1 + |t− r|)−2|f(t, r)|2r dr

≤ C

∫ M+t

0

(∫ M+t

r

|∂rf(t, s)|2(1 + |t− s|)1/2 ds
)
(1 + |t− r|)−3/2r dr

≤ C

∫ M+t

0

|∂rf(t, s)|2(1 + |t− s|)1/2 ds
∫ s

0

(1 + |t− r|)−3/2r dr

≤ C

∫ M+t

0

|∂rf(t, s)|2(1 + |t− s|)1/2s ds
∫ s

0

(1 + |t− r|)−3/2 dr

≤ C

∫ M+t

0

|∂rf(t, s)|2s ds,

and Lemma A.2 is proved. �

Lemma A.3 (Generalized Gronwall inequality). Let f ∈ C1[0,∞), g, h ∈ C[0,∞) be

nonnegative and let

df2(t)

dt
≤ f(t)g(t) + h(t)f2(t).

Then

f(t) ≤
(
f(0) +

1

2

∫ t

0

g(s)ds

)
exp

(
1

2

∫ t

0

h(s)ds

)
.

Lemma A.4 ([10, Lemma 1.3.2]). Let w be a solution in [0, T ] to the ordinary differential

equation

dw

dt
= a0(t)w

2 + a1(t)w + a2(t)

with aj continuous and a0 ≥ 0. Let

K =

(∫ T

0

|a2(t)| dt
)
exp

(∫ T

0

|a1(t)| dt
)
.

Then (∫ T

0

a0(t) dt

)
exp

(
−
∫ T

0

|a1(t)| dt
)

< (w(0)−K)−1

provided that w(0) > K.

Lemma A.5 (Blowup of smooth solution to problem (2.37)). The smooth solution to

(2.37) blows up in finite time if F0(σ) �≡ 0.

Proof. Assume that (2.37) admits a global smooth solution. Due to (F ′
0)

2(M) =

(F ′
0)

2(−∞) = 0 and (F ′
0)

2 �≡ 0, one has

F ′
0(σ)F

′′
0 (σ) =

(
1

2
(F ′

0)(σ)

)′
< 0 on some interval I ⊂ (−∞,M).

Without loss of generality, we can assume F ′
0(σ) < 0 and F ′′

0 (σ) > 0 on I.
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Let Σ = {(τ, σ(τ, l)) : τ ≥ 0, l ∈ I}, where σ(τ, l) stands for the characteristics of

(2.37) emanating from the point (l, 0); i.e., σ(τ, l) satisfies
⎧
⎨
⎩

dσ(τ, l)

dτ
= G2(τ, σ(τ, l)),

σ(0, l) = l.
(A.2)

Set Q(τ, l) = (∂σG)(τ, σ(τ, l)) and G(τ, l) = G(τ, σ(τ, l)). It follows from the equation

in (2.37) that

Q(τ, l) =
F ′
0(l)

1 + F ′
0(l)

∫ τ

0
G(t, l) dt

(A.3)

and

(∂σQ)(τ, σ(τ, l))∂lσ(τ, l) =
F ′′
0 (l)− (F ′

0)
2(l)

∫ τ

0
Q(t, l)∂lσ(t, l) dt

(1 + F ′
0(l)

∫ τ

0
G(t, l) dt)2

.

Therefore,

Q < 0 and ∂σQ > 0 in Σ. (A.4)

Choose li ∈ I (i = 0, 1, 2) such that l0 < l1 < l2 and denote Ej =

∫ lj+1

lj

(F ′
0)

2(l) dl for

j = 0, 1. It follows from the conservation of energy for problem (2.37) and (A.4) that,

for j = 0, 1,

0 < Ej =

∫ σ(τ,lj+1)

σ(τ,lj)

Q2(τ, s) ds

≤ (−Q(τ, lj))

∫ σ(τ,lj+1)

σ(τ,lj)

(−Q)(τ, s) ds = −Q(τ, lj)
(
G(τ, lj)−G(τ, lj+1)

)
,

which yields

G(τ, lj)−G(τ, lj+1) ≥ − Ej

Q(τ, lj)
, j = 0, 1. (A.5)

By (A.2), one has that σ(τ, l) < M holds for l ∈ I and all τ . Therefore,

2∑

i=0

∫ ∞

0

G2(τ, li) dτ ≤ 3M +

2∑

i=0

|li|,

which implies that there exists a sequence {τk} ⊂ [0,∞) with τk → ∞ as k → ∞ such

that

G(τk, li) → 0 as k → ∞ for i = 0, 1, 2. (A.6)

It then follows from (A.5) and (A.6) that

Q(τk, lj) → −∞ as k → ∞ for j = 0, 1. (A.7)

On the other hand, by (A.4), one has
∫ τk

0

G(t, l0)dt >

∫ τk

0

G(t, l1)dt.

Together with (A.4) and (A.7), this yields as k → ∞

− 1

F ′
0(l0)

≥ − 1

F ′
0(l1)
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and F ′
0(l1) ≤ F ′

0(l0). The latter, however, contradicts the fact that F ′
0(l0) < F ′

0(l1) holds

due to F ′′
0 (σ) > 0 in I and l0 < l1.

Thus, the proof of Lemma A.5 has been completed. �
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