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Abstract. Boosting is a powerful method for improving the predictive
accuracy of classifiers. The AdaBoost algorithm of Freund and Schapire
has been successfully applied to many domains [2,10,12] and the combina-
tion of AdaBoost with the C4.5 decision tree algorithm has been called
the best off-the-shelf learning algorithm in practice. Unfortunately, in
some applications, the number of decision trees required by AdaBoost
to achieve a reasonable accuracy is enormously large and hence is very
space consuming. This problem was first studied by Margineantu and
Dietterich [7], where they proposed an empirical method called Kappa
pruning to prune the boosting ensemble of decision trees. The Kappa
method did this without sacrificing too much accuracy. In this work-
in-progress we propose a potential improvement to the Kappa pruning
method and also study the boosting pruning problem from a theoreti-
cal perspective. We point out that the boosting pruning problem is in-
tractable even to approximate. Finally, we suggest a margin-based theo-
retical heuristic for this problem.

1 Introduction

Boosting is a method for combining classifiers to improve prediction accuracy.
The idea of boosting is to alter repeatedly the distribution on the training data
so that the learning algorithm is forced to focus on harder examples. A boost-
ing algorithm called AdaBoost (Freund and Schapire [1]) has been extensively
studied both theoretically and empirically. The algorithm is proven to be theo-
retically sound and shown to be empirically appealing because of its simplicity
and superior performance in many domains.

Many research have focused on boosting decision trees, notably using Quin-
lan’s C4.5 [9] as the tree induction algorithm. The AdaBoost-C4.5 combina-
tion has been called the best off-the-shelf learning algorithm in practice because
of its superior performance on many benchmark datasets [10,2]. Despite its good
performance, Margineantu and Dietterich [7] observed that, in some domains,
boosting needs to combine a large number of trees to lower the prediction error.
More specifically, they observed that in the letter dataset, AdaBoost requires
about 200 iterations of C4.5 to achieve a reasonable accuracy. So the final classi-
fier is a weighted ensemble of about 200 decision trees (each being a nontrivially
large tree). They asked if all 200 decision trees are necessary: is there a way of
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pruning some of these trees from the final ensemble without deteriorating the
performance.

Margineantu and Dietterich then proposed an interesting method of pruning
the boosting ensemble using a statistic called the Kappa measure (see [7] and
the references therein). Their heuristic idea is based on the assumption that
boosting works by building diversity in its ensemble. The Kappa statistic is a
measure of agreement between two classifiers. They create their pruned ensemble
by greedily selecting pairs of decision trees with very diverse behavior until
they reached the required pruning rate. Up to certain rates of pruning, the
performance of the pruned ensemble is quite close to the original ensemble. In
this paper we propose a slight modification to the Kappa method called weight
shifting. Viewing the pruning process as a clustering-like process, we shifted the
voting weights of pruned trees onto its unpruned neighbors. We conducted some
preliminary experiments and observed some encouraging although mixed results.

Next we study some theoretical aspects of the boosting pruning problem. We
show that the boosting pruning problem is NP-complete and is even hard to
approximate. Then we propose a pruning scheme that is margin-based. Recent
work by Schapire et al. [11] has shown that boosting achieves good generalization
error by maximizing the minimum margin on the training sample. We suggest
a theoretical heuristic derived using tools from the area of approximation algo-
rithms, where a trade-off between the margin and the size of the pruned boosting
ensemble is made explicit.

2 Boosting Decision Trees

Quinlan’s C4.5 algorithm is a well-studied method for inducing decision trees
from data (see [9]). It is a top-down method that continually splits the training
data using the best attribute under an entropic measure. Several works have
studied boosting decision trees by combining AdaBoost with C4.5 (includ-
ing [10,2]). We follow Quinlan’s boosting experiments [10] by making use of
C4.5’s ability to assign fractional weights to data items. This will be important
in how we do boosting.

The AdaBoost algorithm (Freund and Schapire [1]) works by repeatedly
calling the weak learning algorithm (in this case C4.5) on a newly reweighted
training data. The reweightings are done so as to focus the weak learner’s atten-
tion to examples where mistakes are still being made. This cycle repeats until
all training data are correctly classified.

We introduce some notation before we describe the AdaBoost algorithm
formally. Let X be the example domain and let Y be the label domain. A labeled
sample S is a sequence of pairs (x, y) ∈ X × Y . We assume that S is drawn
according to some fixed but unknown distribution D over X and that the labels
satisfy y = f(x), for some unknown target function f . The training error of a
function h with respect to sample S is defined as εS(h) = 1

|S|
∑

(x,y)∈S[[h(x) �= y]],
where [[π]] is 1 if the statement π is true and 0 otherwise. The generalization
error of a function h is defined as εD(h) = Pr(x,y)∼D[h(x) �= y]. The AdaBoost
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Input: A training sample S = {(xi, yi) | 1 ≤ i ≤ m}, where xi ∈ X and yi ∈ Y .
Output: A classifier H : X → Y with small training error on S.

1. D1(xi) = 1/m, for all 1 ≤ i ≤ m.
2. for t = 1, 2, . . . , T do
3. call C4.5 on input S and Dt

4. get weak hypothesis ht : X → Y
5. εt =

Pm
i=1 Dt(i)[[ht(xi) �= yi]]

6. if εt ≥ 0.5 then set T = t− 1 and abort loop.
7. βt = εt/(1− εt).

8. reweight distribution: Dt+1(xi) = Dt(xi)β
[[ht(xi)=yi]]
t /Zt, where Zt is a normal-

ization constant.
9. end for
10. output H(x) = argmaxy∈Y

P
t:ht(x)=y ln(1/βt).

Fig. 1. The AdaBoost.C4.5 algorithm

algorithm is shown in Figure 1. In this paper we adopt Quinlan’s strategy of
boosting by reweighting [10] (instead of resampling [2]).

3 Kappa Pruning

The boosting pruning heuristic of Margineantu and Dietterich [7] proceeds as
follows. First we define the Kappa measure between two classifiers hi and hj ,
where hi, hj : X → Y . Consider the following |Y | × |Y | contingency table or
matrix M : for a, b ∈ Y , define Ma,b to be the fraction of examples x ∈ S
where hi(x) = a and hj(x) = b. LetΘ1 =

∑
a∈Y Ma,a andΘ2 =

∑
a∈Y Ma,∗M∗,a,

where Ma,∗ =
∑

b∈Y Ma,b and M∗,a =
∑

b∈Y Mb,a. The parameter Θ1 is a mea-
sure of PrS [hi = hj] and Θ2 is a measure of

∑
a∈Y PrS [hi = a] PrS [hj = a]. Then

the Kappa measure of agreement between hi and hj is defined as κ(hi, hj) =
Θ1−Θ2
1−Θ2

. A value of κ = 0 implies that Θ1 = Θ2 and the two classifiers are con-
sidered to be different (or independent). A value of κ = 1 implies that Θ1 = 1
which means total agreement between the two classifiers. It is possible for κ to
be negative although it was noted that this rarely occurs [7].

Using this distance measure, the Kappa pruning method [7] proceeds as fol-
lows. It computes all pairwise Kappa distances between the decision trees in
the boosting ensemble. After sorting these distance values, the algorithm greed-
ily includes the pairs of hypotheses that correspond to small Kappa distances.
This continues until a certain pruning rate is achieved. The resulting boosting
ensemble consists of all decision trees included from the greedy selection stage.
In effect, the Kappa pruning algorithm sets to zero all the voting weight of the
pruned decision trees (the α’s in the final hypothesis of AdaBoost).
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3.1 Weight Shifting

Here we propose an alternative heuristic for performing Kappa pruning based
on a weight shifting strategy. While Kappa pruning sets to zero the weights of all
pruned decision trees in the boosting ensemble, we propose the following variant:
transfer the voting weight of a pruned decision tree to the unpruned ones. This
strategy views the pruning process as a clustering process whereby a collection
of diverse classifiers are selected to represent the original ensemble. We adopt the
following soft assignment method of shifting the weight of a pruned hypothesis
onto the collection of unpruned ones: each unpruned hypothesis receives a frac-
tion of weight proportional to its similarity to the pruned hypothesis. So, in the
soft assignment, each pruned classifier computes the set of distances from itself
to the collection of unpruned classifiers. The pruned classifier then distributes
its voting weight using the distribution of distances (after normalization). More
weight is given to classifiers that are closer (similar or κ ∼ 1) to the pruned
classifier.

We conjecture that the weight shifting process helps produce a more faithful
final ensemble, especially when the pruning rate is high. We conducted some pre-
liminary experiments on the effectiveness of Kappa pruning with weight shifting
using soft assignment. We report our findings in the next section.

3.2 Experiments

The real-world datasets that we used in our experiments were obtained from the
University of California at Irvine (UCI) Machine Learning Repository [8]. Some
information about the datasets are given in Table 1.

Table 1. UCI datasets

examples attributes
name train test classes disc cont missing

auto 205 0 7 11 15 yes
crx 490 200 2 9 6 yes
letter 20000 0 26 0 16 none
monk1 124 432 2 6 0 none
monk2 169 432 2 6 0 none
promoter 106 0 2 57 0 none
soybean 316 0 19 35 0 yes
waveform 5000 0 3 0 21 no

In Table 2 we report a 10-fold cross validation estimate of the generalization
error for plain C4.5, AdaBoost and C4.5 with no pruning, and AdaBoost
and C4.5 with the two pruning options. We have used the conservative choice of
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using 30 boosting iterations1. Plots of these comparisons are omitted from this
abstract due to lack of space.

The basic Kappa pruning algorithm is denoted kp and the weight-shifted
version is denoted ws. The pruning rates that we used are 0.9, 0.8, 0.7, 0.6, 0.5.
Here a pruning rate of α means that we eliminate at least 1− α fraction of the
ensemble. So a pruning rate of 0.9 eliminates 10% of the ensemble.

We focused on some UCI datasets where boosting (with 30 rounds) showed
a definite improvement upon C4.5 alone. The datasets we used are auto, crx,
letter, monk1, monk2, promoter, soybean, and waveform. We will seek those
pruning rates where error rates are still lower than the case without pruning.
Our future plans include making comparisons between ensembles of the same
size (obtained with and without pruning).

Table 2. 10x-val comparison of C4.5, AdaBoost, Kappa, and weight shifting

C4.5 AdaBoost .9 .8 .7 .6 .5
name pruned T=30 kp ws kp ws kp ws kp ws kp ws

auto 22.4 17.4 18.4 18.4 19.4 19.4 19.4 18.9 21.9 20.9 22.4 22.4
crx 16.5 13.5 13.0 13.2 13.3 13.6 13.2 13.0 12.9 12.3 13.6 13.6
letter 12.22 4.43 4.5 4.51 4.69 4.66 5.0 4.96 5.45 5.47 5.91 5.86
monk1 3.8 0.0 25.5 24.9 25.5 25.5 25.5 25.5 25.5 25.5 26.0 25.5
monk2 33.6 32.1 31.6 31.6 32.6 32.6 32.8 32.4 31.9 32.3 32.4 31.4
promoter 25.0 21.0 21.0 21.0 22.0 22.0 23.0 24.0 28.0 27.0 31.0 27.0
soybean 7.2 5.46 5.7 5.9 5.7 5.7 5.6 5.6 5.9 5.9 6.5 6.6
waveform 25.28 19.50 19.50 19.50 19.64 19.62 20.3 20.26 20.54 20.42 21.82 21.74

The comparison on the datasets auto, crx, letter, and waveform showed
that weight shifting could help improve the Kappa method in certain pruning
rates (mainly for aggressive rates). However, the performance of both methods
on letter is too similar and hence the improvement is perhaps too negligible.
We would like to see if an increased number of boosting iterations might improve
this situation.

Furthermore, pruning seemed to cause erratic behavior in the monk datasets.
We are not sure if this is caused by the special form of the monk datasets or a
subtle error in our experiment. In monk1, pruning caused a marked increase in
the error rate. In monk2, the improvement of weight shifting is a bit erratic after
pruning showed an encouraging promise at low pruning rates. Both methods of
pruning also do not seem to work well on promoter and soybean (although in
the former case, weight shifting was better than Kappa on high pruning rates).

1 We plan to run further experiments using higher number of boosting iterations (e.g.,
Margineantu and Dietterich [7] used 50 iterations in their experiments).



On the Boosting Pruning Problem 409

4 The Abstract Boosting Pruning Problem

In this section we turn to theoretical considerations of the boosting pruning
problem. A boosting ensemble H is a collection of hypotheses h : X → {−1,+1}
from a known class C of classifiers (for instance, decision trees) where each h
has an associated weight α ∈ R. So let H = {〈αi, hi〉 | 1 ≤ i ≤ T } be a boosting
ensemble of size T . We identify the ensemble H with the function H(x) =
sgn (

∑m
i=1 αihi(x)), where sgn(x) = +1 if x ≥ 0 and sgn(x) = −1 otherwise. We

also identify any subset A of H with the function HA(x) = sgn
(∑

i∈A αihi(x)
)
.

We will first make the assumption that minimizing training error leads to
the minimization of generalization error (or true error). Under this assumption,
we formalize the boosting pruning problem as follows. Assume that the example
domain X and the label domain Y are fixed.

Ensemble Pruning
input: A boosting ensemble H = {〈αi, hi〉 | 1 ≤ i ≤ T }, where, for
each i = 1, 2, . . . , T , αi ∈ R and hi : X → {−1,+1}, and a sample set
S = {〈xi, yi〉 ∈ X × Y | 1 ≤ i ≤ m}.
output: A subset A of H minimizing the training error of HA(x) on S.

For simplicity, we consider an associated problem called Matrix Cover. Asso-
ciate with each boosting set of T hypotheses and each sample set of m points,
a matrix M of size T × m where Mi,j = −1 if hi(xj) = yj , and Mi,j = −1
if hi(xj) �= yj . Assume that M satisfies the positive column-sum property, i.e.,
for all j ∈ [m], ∑T

i=1Mi,j > 0. This last property means that the boosting en-
semble associated with the T rows ofM is perfect on the m training points. The
question now is to find the smallest subset of the rows of M so that the positive
column-sum property is maintained.

Matrix Cover
input: An integral matrix M of size T ×m such that, for all j ∈ [m],∑T

i=1Mi,j > 0.
output: A minimal subset A of the rows of M such that, i.e., for all
j ∈ [m], ∑i∈AMi,j > 0.

Claim. Matrix Cover is NP-complete.

Proof. Reduction from Set Cover (see [3]). ��
Given the NP-completeness of Matrix Cover, it is natural to ask for the next
best solution: an approximation algorithm. For α > 0, we say that an algo-
rithm is an approximation algorithm for Matrix Cover if for any input M to
Matrix Cover it outputs a subsetB so that |B| ≤ αOPT (M), whereOPT (M)
is the value of the optimal solution. A very strong hardness result can be proven
about approximating Matrix Cover.

Claim. Matrix Cover is unapproximable to within nε, ε > 0, unless P = NP .

Proof. Reduction using the Minimum PB 0-1 Programming (see [6]). ��
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4.1 A Margin-Based Heuristic

Although Matrix Cover is highly intractable to approximate, we suggest in
this section a theoretical heuristic for the boosting pruning problem. Note that
Matrix Cover imposes the condition that the resulting final hypothesis must
have zero error on the training data. Implicitly, the performance of the boost-
ing hypothesis is measured in terms of the number of mistakes. A recent work
by Schapire et al. [11] has shown that an alternative measure called margin
is a better indicator of the generalization error (or true error) of the boosting
hypothesis.

Let us assume now that we have a binary prediction problem, where Y =
{−1,+1}, but that each weak hypothesis can use confidence-rated predictions
(as in Schapire and Singer’s work [12]), i.e., h : X → R. Here the sign of h reflects
its prediction while its magnitude reflects its confidence in that prediction. Note
that the final boosting hypothesis (before thresholding) is H(x) =

∑
i αihi(x).

The margin of H on the example (x, y) ∈ X × {−1,+1} is defined as m(x) =
yH(x). A positive margin on an example means that H predicts correctly on
that example and the magnitude of the margin reflects the magnitude of its
correctness. Schapire et al [11] proved that a a hypothesis with large positive
margin on all training examples is a hypothesis with low generalization error.

Using margin theory, we suggest a different heuristic to Ensemble Pruning.
In defining the matrix in our Matrix Cover instance, let Mi,j = yjhi(xj) be
the margin of the i-th hypothesis hi on the j-th example (xj , yj). Now the j-th
column-sum of M is the margin of H on the j-th example (xj , yj).

Matrix Cover
input: A positive constant θ > 0 and a real-valued matrix M of size
T ×m such that, for all j ∈ [m], ∑T

i=1Mi,j > θ.
output: A minimal subset A of the rows ofM such that, for all j ∈ [m],∑

i∈AMi,j > θ.

We now attempt to design a heuristic for this new Matrix Cover problem.
Borrowing some ideas from the approximation algorithms literature [4], here is a
well-known approach using mathematical programming: (a) express the problem
as an integer program; (b) relax the integer program as a linear program and
solve it using a polynomial-time algorithm; (c) (randomly) round the linear
programming solution to get an integral solution. The integer program (IP)
associated with Matrix Cover is given as: minimize

∑T
i=1 zi subject to∑T

i=1mi,jzi ≥ θ, for j ∈ [m], and zi ∈ {0, 1}, for i ∈ [T ]. The linear programming
relaxation (LP) is obtained by letting zi ∈ [0, 1], for i ∈ [T ].

Letting Z ∈ [0, 1]T be the optimal LP solution and Z∗ ∈ {0, 1}T be the
optimal IP solution. Denote the value of the optimal solutions by z =

∑
i Zi

and z∗ =
∑

i Z
∗
i , respectively. Note that z is a lower bound to z

∗. We apply a
method called randomized rounding to obtain an integral solution from the LP
solution. Given Z, let Ẑ be the integral solution as follows: for each i, let Ẑi = 1,
with probability Zi, and Ẑi = 0, with probability 1−Zi. Note that the expected
value of this integral solution equals to the value of the LP solution: E[Ẑ] =
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E[
∑

i Ẑi] =
∑

i Zi = Z. Moreover, the constraints are satisfied on average: for
all j, E[

∑
i mi,jẐi] > θ. Using standard large deviation inequalities [5], we claim

that Ẑ is concentrated near Z and that the constraints are somewhat satisfied.
More specifically, Pr[|∑i Ẑi −

∑
i Zi| ≥ c

√
T ] ≤ 1/4, whenever c > 0.6, and

Pr[(∃j)(∑imi,jẐi ≤ αθ)] ≤ 1/4, by a judicious choice of dependence between α
and θ. Note that α represents a slackness parameter on the constraints whereas
θ is related to the margin of the boosting ensemble.

So with non-negligible probability, a semi-feasible solution is obtained and Ẑ
will be within an additive factor of O(√T ) from the optimal LP solution. This
approach allows us to trade optimality (smallness of the boosting ensemble) with
feasiblity (goodness of its margin).

5 Conclusion and Future Work

In this paper we revisited the boosting pruning problem [7]. We proposed a
minor modification of the powerful Kappa pruning method and reported some
preliminary observations of our weight-shifting variant. We plan to conduct fur-
ther and more extensive experiments on this problem. In addition, we have also
considered the boosting pruning problem theoretically, proving that the prob-
lem is highly intractable, even to approximate. Using ideas from approximation
algorithms, we proposed a theoretical heuristic. This heuristic differs from the
Kappa method in that it is driven by margin considerations (instead of discrete
error). This approach allows one to trade the size of the boosting ensemble and
the margin of the ensemble. We plan to carry out experimental work on this
margin-based algorithm.
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