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Abstract

In this paper, we attempt to study the bootstrap for a class of estimators of which Chernoff’s
estimator of the mode (1964) is a prototype. These estimators converge at the rate of the cube
root of n, a rate different from the usual one, and their limit distributions can be expressed
as functionals of Brownian motion with quadratic drift. We extend Kim and Pollard’s results
(1990) on functional central limit theorems for such an estimator to an analogous result for
triangular arrays of estimators. Our result serves to illustrate the strong conditions (which are
not necessarily true in general) in order for the bootstrap to work. Under such strong conditions
we construct a bootstrap in Chernoff’s problem. Our theoretical results are supported by a
small simulation study.

Keywords: Bootstrap, counterexample, cube root asymptotics, least median of squares,
confidence interval for the mode

Résumé

Dans cet article, nous étudions le bootstrap pour une classe d’estimateurs dont l’estimateur
du mode de Chernoff (1964) est un prototype. Ces estimateurs convergent à la vitesse racine
cubique de n, une vitesse différente de la vitesse habituelle, et la loi limite peut être exprimée
comme une fonctionnelle d’un mouvement Brownien avec une tendance quadratique. Nous
généralisons les résultats de Kim et Pollard (1990) sur les théorèmes limite centrale pour de
tels estimateurs à un résultat similaire pour une suite triangulaire d’estimateurs. Ce résultat
permet d’illustrer certaines conditions fortes (qui ne sont pas satisfaites en général) requises
pour que le bootstrap fonctionne pour de tels estimateurs. Sous des conditions assez fortes sur
la distribution des observations, nous construisons une version du bootstrap qui fonctionne pour
le problème de Chernoff. Nos résultats théoriques sont supportés par une étude de simulation.





1 Introduction

In many practical problems in statistics, it is relatively simple to construct estimators but much more diffi-
cult to construct confidence intervals and regions, even approximate ones, because of the intractable nature
of their finite sample and asymptotic distributions. The bootstrap has often been used with remarkable
success to construct approximate confidence intervals which asymptotically achieve the claimed coverage
probability. Theoretical accounts can be found in the books of Hall (1992), Efron and Tibshirani (1993)
and Shao and Tu (1995), as well as in references therein.

A class of estimators with particularly intractable asymptotic distributions are those estimators defined
as the value which minimizes (or maximizes) a given functional of the empirical distribution function. Kim
and Pollard (1990) showed that such estimators converge at the rate n−1/3 and their asymptotic distribution
is the distribution of the argument which minimizes (maximizes) a Gaussian process. Examples include the
shorth (Andrews et. al., 1972), an estimator of the location of a univariate distribution, a modal estimator
introduced by Chernoff (1964), an estimator of the optimal age of replacement in a nonparametric age
replacement policy of Arunkumar (1972) and the least median of squares of Rousseeuw (1984), a robust
regression estimator with a high breakdown. With such an asymptotic distribution, it is difficult to make
inferences based on these estimators. Efron and Tibshirani (1993) have used the bootstrap to estimate
the standard error of the coefficients of the least median of squares estimator, but they only illustrated
its use on a single data set. Léger and Cléroux (1992) have studied the behavior of the bootstrap for the
estimator of the cost of a nonparametric replacement policy. They showed that the bootstrap works for
this estimator of cost which has an asymptotic normal distribution and converges at the rate n−1/2. The
application of the bootstrap for the cost provides at the same time confidence intervals for the optimal age,
whose estimator converges at the rate n−1/3. In unpublished results for the research leading to that paper,
they empirically found that the bootstrap did not work in this case.

In this paper, we will show that the bootstrap does not work in general for such problems. The main
reason for this failure is the rate of convergence of the estimator. The estimator can be viewed as a
functional of the distribution function. The ordinary bootstrap consists of resampling from the empirical
distribution function, so that the value of the “parameter” in the bootstrap world is the functional of the
empirical distribution function which converges at the rate n−1/3. By using the method of proof of Beran
(1984) for bootstrap results, we can investigate the behavior of the bootstrap for other estimates of the
distribution of the observations. This allows us to show that the bootstrap can work if resampling is done
from a smooth distribution function such that the functional evaluated at this smooth distribution function
converges at a faster rate than n−1/3. We will show that in the case of Chernoff’s estimator, the bootstrap
can be made to work if we assume that the distribution of the observations is symmetric and unimodal
and that resampling is done from a smooth symmetric estimate of the distribution. This implies that
basic bootstrap confidence intervals based on inverting the bootstrap estimate of the distribution of θ̂ − θ
have asymptotically the right coverage. Interestingly, bootstrap percentile intervals based on resampling
from the same smooth symmetric estimate of the distribution of the observations are inconsistent. The
practical implication of these results is of course limited: if we know that the observations come from
a symmetric unimodal distribution, why should we ever want to construct a confidence interval for the
mode by using Chernoff’s modal estimator, which converges at the rate n−1/3, when we could construct
a confidence interval based on the sample median or the sample mean, which converge at the rate n−1/2.
Nevertheless, these results are interesting because they illustrate that the usual bootstrap cannot be used
on such estimators and they show exactly wherein lies the problem. Previous negative bootstrap results can
be found, for instance, in Shao and Tu (1995). They include statistics which are not sufficiently smooth,
such as the absolute value of the mean when the true mean is 0, or which converge faster then n−1/2 such
as the maximum order statistic or a function of the mean g(X̄) such that the derivative g′(µ) is 0. In
the last two examples, the rate of convergence is n−1. It is well known that the rate of convergence of
estimators influences the behavior of resampling methods, see e.g., Altman and Léger (1997). Examples
where the rate of convergence is slower than n−1/2 include kernel density estimation where it is typically
n−2/5, but for which the asymptotic distribution is normal. The bootstrap can work in this case, see e.g.,
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Léger and Romano (1990). Cube root estimators also converge slower than the typical estimators and their
asymptotic distribution is different from the normal. It is therefore interesting to study the behavior of
the bootstrap for this class of estimators.

In Section 2, we introduce the class of estimators studied by Kim and Pollard (1990) and give conditions
under which a bootstrap confidence interval may asymptotically have the claimed coverage. We also
indicate why, in general, the conditions will not be met. In Section 3, we consider the modal estimator
of Chernoff (1964) and present a bootstrap version which works provided that the distribution of the
original observations satisfy certain strong conditions, including symmetry. We show that this leads to
asymptotically valid basic bootstrap confidence intervals, following the terminology of Davison and Hinkley
(1997) (also known as the hybrid method in Hall, 1988, and Shao and Tu, 1995), but the coverage probability
of percentile intervals converges to 1 in this case. Section 4 presents some simulation results that investigate
the small sample behavior of bootstrap confidence intervals based on various estimates of the distribution of
the observations when it is normal. We only consider the one-sample problem here. Preliminary simulation
results for the least median of squares regression estimator seems to indicate a different behavior than in
the one-sample problem and require further research which will be presented elsewhere. A better behavior
for the bootstrap when applied to least squares regression estimators rather than the mean of a univariate
distribution has already been noted, see e.g., Hall (1992). An appendix contains the proofs of the results.

2 Bootstrap for cube root estimators

In this section, we study the asymptotic behavior of bootstrap versions of a class of estimators studied
by Kim and Pollard (1990) which converge at the rate n−1/3. Let X1, X2, . . . , Xn be independently and
identically distributed (i.i.d.) from the distribution P , with empirical distribution function (e.d.f.) P̂n.
The parameter of interest is

θ0(P ) = arg max
θ∈Θ

Pg( · , θ),

where {g( · , θ) : θ ∈ Θ} is a class of functions indexed by a subset Θ ∈ IRd. (We are following the linear
functional notation of Kim and Pollard, 1990, so that Pg( · , θ) means EP g(X, θ).) For instance, Chernoff
(1964) introduced an estimator of the mode of a unimodal distribution by letting g( · , θ) be the indicator
of an interval of length 2α centered at θ. The parameter θ0(P ) is estimated by θn(P̂n) which essentially
maximizes P̂ng( · , θ) as defined in part (i) of Condition 1. In many cases we use θn(P̂n) = θ0(P̂n).

Under conditions such as those of Condition 1 with Pn ≡ P , Kim and Pollard (1990) have shown that
the process n2/3[P̂ng( · , θ0(P )+tn−1/3)−Pg( · , θ0(P ))] converges in distribution to a Gaussian process Z(t)
with continuous sample paths, expected value −(1/2)t′V t and covariance kernel H, where V and H are
defined in parts (iv) and (v) of Condition 1. Moreover, n1/3(θn(P̂n)−θ0(P )) converges in distribution to the
random vector that maximizes Z. To study bootstrap estimators, it is necessary to prove a result analogous
to Kim and Pollard’s for a triangular array of distributions rather than just one. This is accomplished in
the main theorem of this paper under conditions on the problem that will unfortunately not often be met
in practice.

Let Kn(x, P ) be the distribution function of n1/3[θn(P̂n)− θ0(P )]. To apply the bootstrap to approx-
imate it, we need to estimate the unknown distribution P . Let P̃n be such an estimate based on the
sample X1, . . . , Xn. Examples will follow. The bootstrap estimate of Kn(x, P ) is Kn(x, P̃n). To compute
it, bootstrap samples X∗

1 , . . . , X∗
n i.i.d. from P̃n, with e.d.f. Q̂n, are generated. The bootstrap parameter

being estimated is θ0(P̃n) and its estimate is θn(Q̂n). The distribution function Kn(x, P̃n) is approximated
by the empirical distribution function of the values of n1/3(θn(Q̂n) − θ0(P̃n)) obtained by a Monte Carlo
simulation of B bootstrap samples.

The proof of the weak convergence of θn(P̂n) requires some smoothness of Pg( · , θ) in θ. This may not
be the case of the bootstrap distribution if P̃n is not smooth. Some simulations in Section 4 will support
this claim. So, smooth estimators P̃n such as kernel estimators, will usually be considered.

To make full use of the power of empirical process theory for maximal inequalities we define, for each
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R and n, the class of functions GR,n and its envelope GR,n as follows:

GR,n = {g( · , θ) : |θ − θ0(Pn)| ≤ R}, (1)
GR,n(x) = sup

GR,n

|g(x, θ)|. (2)

As in Kim and Pollard (1990), the class GR,n (near R > 0) must be assumed to be “uniformly manageable”
for the envelopes GR,n, a term coined by Pollard (1989) to distinguish the regularity conditions that he
uses from many similar ones in the empirical process literature. Consult these references for further details.

The next theorem states that bootstrap resampling from P̃n will be asymptotically consistent provided
the following conditions are satisfied.

Condition 1 Let {Pn} be a sequence of fixed distributions and P be another distribution. Let Q̂n be the
empirical distribution function of a sample of size n from Pn. We say that {Pn} satisfies Condition 1 if it
satisfies the following conditions.

Let {θn(Q̂n)} be a sequence of estimators for which
(i) Q̂ng( · , θn(Q̂n)) ≥ supθ∈Θ Q̂ng( · , θ)− oPn(n−2/3).
Suppose
(ii) θn(Q̂n) converges in Pn-probability to the unique θ0(P ) that maximizes Pg( · , θ);
(iii) θ0(P ) is an interior point of Θ.
The classes GR,n, for R near 0, must be uniformly manageable for the envelopes GR,n and satisfy
(iv) Png( · , θ) is three times differentiable with second derivative matrix −Vn(θ) and third derivative array
Rn(θ) such that Vn(θ0(Pn)) → V (θ0(P )) where −V (θ) is the second derivative matrix of Pg( · , θ) and
Rn(θ) is uniformly bounded in a neighborhood of θ0(P );
(v) Let hn(x, y) = n1/3Png( · , x)g( · , y) − n1/3Png( · , x)Png( · , y) and h(x, y) = n1/3Pg( · , x)g( · , y) −
n1/3Pg( · , x)Pg( · , y). Let

H(s, t) = lim
n→∞

h(θ0(P ) + sn−1/3, θ0(P ) + tn−1/3) (3)

= lim
n→∞

hn(θ0(Pn) + sn−1/3, θ0(Pn) + tn−1/3) (4)

exist for each s, t in IRd. Also for each t and each ε > 0

lim
n→∞

n1/3Png( · , θ0(Pn) + tn−1/3)2{|g( · , θ0(Pn) + tn−1/3)| > εn1/3} = 0;

(vi) ∃C1 < ∞ such that PnG2
R,n ≤ C1R for all R in a neighborhood of 0 and all n and for each ε > 0 there

is a K such that PnG2
R,n{GR,n > K} < εR for R near 0 and all n;

(vii) There is a C2 < ∞ such that for θ1 and θ2 near θ0(P ) Pn|g( · , θ1)− g( · , θ2)| ≤ C2|θ1 − θ2| for all n.

Theorem 1 If {P̃n} satisfies Condition 1 with probability 1, then

sup
x
|Kn(x, P )−Kn(x, P̃n)| → 0, with probability 1.

If Θ ∈ IR1 so that the problem is one-dimensional, a 1 − 2α basic bootstrap confidence interval for
θ0(P ) would be given by

[θn(P̂n)− n−1/3K−1
n (1− α, P̃n), θn(P̂n)− n−1/3K−1

n (α, P̃n)]. (5)

If Theorem 1 is valid, then the coverage probability of this confidence interval converges to 1−2α as n →∞
as a consequence of Theorem 1 of Beran (1984). Unfortunately, Condition 1 is unlikely to be satisfied in
general. The main problem is in part (v) with the convergence of hn(θ0(Pn) + sn−1/3, θ0(Pn) + tn−1/3) to
H(s, t) (equation 4), the covariance kernel of the Gaussian process Z(t) introduced at the beginning of the
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section. Consider a fixed sequence of distributions {Pn}. Provided that hn is sufficiently smooth in x and
y,

n1/3hn(θ0(Pn) + sn−1/3, θ0(Pn) + tn−1/3) = n1/3hn(θ0(P ) + sn−1/3, θ0(P ) + tn−1/3)

+n1/3(θ0(Pn)− θ0(P ))
[
∂hn

∂x
(θ0(P ) + sn−1/3, θ0(P ) + tn−1/3)

+
∂hn

∂y
(θ0(P ) + sn−1/3, θ0(P ) + tn−1/3)

]
+ O(n1/3(θ0(Pn)− θ0(P ))2). (6)

Usually, in statistical estimation problems, hn(x, y) = h(x, y) + O(n−1/2). Provided that the extra
terms in (6) are negligible, it may be possible that

lim
n→∞

n1/3hn(θ0(P ) + sn−1/3, θ0(P ) + tn−1/3) = lim
n→∞

n1/3h(θ0(P ) + sn−1/3, θ0(P ) + tn−1/3) = H(s, t),

so that (4) would be valid. Here this will not happen in general since for our problems θ0(Pn) = θ0(P ) +
O(n−1/3). If this is the case, the extra terms in (6) will not be negligible leading to a random covariance
kernel. For instance θ(P̂n)− θ0(P ) is of order OP (n−1/3) when P̂n is the empirical distribution function of
a sample of size n from P . So it seems necessary to have θ0(Pn) = θ0(P ) + o(n−1/3).

In the next section, we present an estimator for which if P is symmetric, we can find estimates P̃n

such that θ(P̃n)− θ0(P ) = OP (n−1/2) so that Theorem 1 is applicable and resampling from P̃n leads to a
consistent bootstrap procedure.

3 Chernoff’s Modal Estimator

Chernoff (1964) introduced an estimator of the mode of a unidimensional distribution as follows. Let α be
a fixed value and let θ̂ be the value of θ which maximizes P̂n[θ−α, θ +α] where P̂n is the e.d.f. of a sample
of size n from P , and P̂n[a, b] is the probability that an observation from P̂n lies in the interval [a, b]. The
parameter being estimated is the value θ which maximizes P [θ − α, θ + α].

Using the notation of the previous section let

g(x, θ) = I[θ − α ≤ x ≤ θ + α]− I[θ0(P )− α ≤ x ≤ θ0(P ) + α]. (7)

Chernoff’s estimator is θn(P̂n) = θ0(P̂n) where θ0(P ) = arg maxθ∈Θ Pg( · , θ). Note that the second indicator
function in (7) ensures that g( · , θ0(P )) ≡ 0 and by adding a constant independent of θ to Pg( · , θ) it does
not change the value θ which maximizes it.

Suppose that P is symmetric with respect to θ0. If θ1 maximizes Pg( · , θ), then by symmetry 2θ0 − θ1

also maximizes this criterion. It is easy to see that if P is symmetric and unimodal, then θ0(P ) is the point
of symmetry. If more than one value maximizes the criterion, then the distribution may have many modes,
each with the same value of the density or it may have a flat peak (such as the uniform distribution). In
all of these cases, it may be reasonable to define θ0(P ) as the mean of all these values. This again leads
to θ0(P ) = θ0, the point of symmetry. This becomes crucial since if resampling is done from a symmetric
estimate of P , say P̃n, then θ0(P̃n) is its point of symmetry. By choosing to symmetrize P̃n with respect
to an estimate such as the mean or the median, then θ0(P̃n)− θ0(P ) = OP (n−1/2) rather than OP (n−1/3).

Let K be a distribution function symmetric about 0, and let

P̃n,λ(x) =
1
2n

[
n∑

i=1

K

(
x−Xi

λ

)
+

n∑
i=1

K

(
x + Xi − 2θ̂

λ

)]
,

where θ̂ is the median of the sample. Note that P̃n,λ is a smooth symmetric kernel estimate of P and so
θ0(P̃n,λ) = θ̂ which converges at the rate n−1/2.
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Theorem 2 Let P satisfy the following conditions:
(P1) P is symmetric with respect to θ0(P );
(P2) sup{Pg( · , θ) : |θ − θ0(P )| > δ} < Pg( · , θ0(P )) for each δ > 0;
(P3) P has a uniformly continuous second derivative and P (3) is uniformly bounded.

Suppose also that the following conditions on k, the derivative of K, and its bandwidth λ are satisfied:
(K1) k is symmetric with respect to 0 with

∫
k(x) dx = 1,

∫
xk(x) dx = 0, and

∫
x2k(x) dx < ∞;

(K2) k(r) is uniformly continuous (with modulus of continuity wk,r) and of bounded variation for r = 0, 1,
where k(r) is the rth derivative of k;
(K3)

∫
k(r)(x) dx < ∞ and k(r)(x) → 0 as |x| → ∞ for r = 0, 1;

(K4)
∫
|x log |x||1/2 |dk(r)(x)| < ∞, for r = 0, 1;

(K5) Letting ξr(u) = {wk,r}1/2,
∫ 1
0 {log(1/u)}1/2 dξr(u) < ∞ for r = 0, 1

(K6) λ → 0, (nλ)−1 log n → 0 and (nλ3)−1 log(1/λ) → 0 as n →∞.
Then

sup
x
|Kn(x, P )−Kn(x, P̃n,λ)| → 0, with probability 1,

where Kn(x, P ) is the distribution function of n1/3(θ0(P̂n) − θ0(P )) and θ0(P̂n) is Chernoff’s modal esti-
mator.

This theorem implies that basic bootstrap confidence intervals based on Chernoff’s estimator will
asymptotically have the claimed coverage probability as stated in the following corollary.

Corollary 1 Consider the basic bootstrap 1 − 2α two-sided confidence interval computed from bootstrap
samples generated from P̃n,λ given by

[θ0(P̂n)− n−1/3K−1
n (1− α, P̃n,λ), θ0(P̂n)− n−1/3K−1

n (α, P̃n,λ)]. (8)

Under the conditions of Theorem 2, the coverage probability of this interval converges to the nominal level
1− 2α.

Proof: The proof follows immediately from Theorem 1 of Beran (1984).

Remark: In typical problems where the asymptotic distribution of the estimator is normal, whenever the
basic bootstrap confidence interval is asymptotically valid, so is the percentile interval. In this problem,
the interval is given by the αth and (1− α)th quantiles of the bootstrap distribution of the values θ0(Q̂n),
where Q̂n is the empirical distribution function of the bootstrap sample distributed according to P̃n,λ. This
interval can also be written as

[θ0(P̃n,λ) + n−1/3K−1
n (α, P̃n,λ), θ0(P̃n,λ) + n−1/3K−1

n (1− α, P̃n,λ)]. (9)

Note that the interval is centered at θ0(P̃n,λ), not θ0(P̂n). The coverage probability of the percentile interval
is

Prob{−K−1
n (1− α, P̃n,λ) ≤ n1/3(θ0(P̃n,λ)− θ0(P )) ≤ −K−1

n (α, P̃n,λ)}
= Prob{−n1/6K−1

n (1− α, P̃n,λ) ≤ n1/2(θ0(P̃n,λ)− θ0(P )) ≤ −n1/6K−1
n (α, P̃n,λ)},

which converges to 1 since the middle term is OP (1), while the left and right terms in the probability
statement converge to −∞ and ∞, respectively. Note that P̃n,λ was used as the estimator of P precisely
because θ0(P̃n,λ) is

√
n-consistent.

To prove Theorem 2, we will consider P and a fixed sequence {Pn} satisfying Condition 2, show that
Condition 1 is then satisfied for {Pn} and finally show that {P̃n,λ} satisfy Condition 2 with probability 1.
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Condition 2 We say that the fixed sequence {Pn} and P satisfy Condition 2 if P satisfies the conditions
of Theorem 2 and if:
(i) sup |P (r)

n (x) − P (r)(x)| → 0 for r = 0, 1, 2, where P
(r)
n and P (r) are the rth derivative of Pn and P ,

respectively;
(ii) θ0(Pn) = θ0(P ) + o(n1/3)

Lemma 1 Let the sequence {Pn} and P satisfy Condition 2. For g( · , θ) as defined in (7), {Pn} and P
satisfy Condition 1.

Proof: We verify that each part of Condition 1 is satisfied. By definition of θn(Q̂n) = θ0(Q̂n), so that part
(i) is automatically satisfied.

Since the function Pg( · , θ) has a clean maximum at θ0(P ) by condition (P2), to get the consistency
of (ii), it is sufficient to show that Q̂ng( · , θ) converges in probability to Pg( · , θ), uniformly in θ. Because
the function g is a difference of indicator functions, it is sufficient to show that

sup
x
|Q̂n(x)− P (x)| → 0, in probability,

where Q̂n(x) and P (x) are the distribution functions of Q̂n and P evaluated at x. Now

sup
x
|Q̂n(x)− P (x)| ≤ sup

x
|Q̂n(x)− Pn(x)|+ sup

x
|Pn(x)− P (x)|

→ 0, a.e.

the first term because of the Maximal Inequality (Theorem 3), and the second by assumption (i) of Con-
dition 2.

Part (iii) is clearly satisfied by the symmetry of P . The uniform manageability of the classes of functions
GR,n is immediate from Pollard (1989).

Assumption (i) of Condition 2, along with the assumption of a bounded third derivative for P (As-
sumption P3) ensures that part (iv) is satisfied.

The first half of part (v) requires more care since the products of indicator functions involved depend
on the actual location of θ0(Pn) and θ0(P ). We begin with equation (3). We treat one case in detail.
Without loss of generality s < t and suppose that 0 < s < t.

lim
n→∞

n1/3Pg( · , θ0(P ) + sn−1/3)g( · , θ0(P ) + tn−1/3)

= lim
n→∞

n1/3P

[[
I{θ0(P ) + sn−1/3 − α ≤ X ≤ θ0(P ) + sn−1/3 + α}

−I{θ0(P )− α ≤ X ≤ θ0(P ) + α}
][

I{θ0(P ) + tn−1/3 − α ≤ X ≤ θ0(P ) + tn−1/3 + α}

−I{θ0(P )− α ≤ X ≤ θ0(P ) + α}
]]

= lim
n→∞

n1/3P

[
I{θ0(P ) + tn−1/3 − α ≤ X ≤ θ0(P ) + sn−1/3 + α}

−I{θ0(P ) + sn−1/3 − α ≤ X ≤ θ0(P ) + α} − I{θ0(P ) + tn−1/3 − α ≤ X ≤ θ0(P ) + α}

+I{θ0(P )− α ≤ X ≤ θ0(P ) + α}

]

= lim
n→∞

n1/3

[
P (θ0(P ) + sn−1/3 + α)− P (θ0(P ) + α)

+P (θ0(P ) + sn−1/3 − α)− P (θ0(P )− α)

]
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= lim
n→∞

n1/3

[
sn−1/3p(θ0(P ) + α) + sn−1/3p(θ0(P )− α) + o(n−1/3)

]

= s

[
p(θ0(P ) + α) + p(θ0(P )− α)

]
,

by a Taylor series expansion of P (x) where p(x) is the density at x. The second term in h involves

Pg( · , θ0(P ) + sn−1/3) = P

[
I{θ0(P ) + sn−1/3 − α ≤ X ≤ θ0(P ) + sn−1/3 + α}

− I{θ0(P )− α ≤ X ≤ θ0(P ) + α}

]

=

[
P (θ0(P ) + sn−1/3 + α)− P (θ0(P ) + sn−1/3 − α)

− P (θ0(P ) + α) + P (θ0(P )− α)

]

=

[
sn−1/3p(θ0(P ) + α) + sn−1/3p(θ0(P )− α) + o(n−1/3)

]

Hence

lim
n→∞

n1/3

[
Pg( · , θ0(P ) + sn−1/3)Pg( · , θ0(P ) + tn−1/3)

]

= lim
n→∞

[[
s[p(θ0(P ) + α)− p(θ0(P )− α)] + o(1)

]
[
tn−1/3[p(θ0(P ) + α)− p(θ0(P )− α)] + o(n−1/3)

]]
= 0.

Note that this is true irrespective of the value of s and t.
Similar simple computations for the cases s < t < 0 and s < 0 < t leads to

H(s, t) =

 min(|s|, |t|)

[
p(θ0(P ) + α) + p(θ0(P )− α)

]
, if st > 0

0, if st ≤ 0
(10)

Let us show that the limit in equation (4) is the same. There are three cases: θ0(P ) < θ0(Pn)+ sn−1/3,
θ0(Pn) + sn−1/3 ≤ θ0(P ) ≤ θ0(Pn) + tn−1/3, or θ0(Pn) + tn−1/3 ≤ θ0(P ). We treat the first case in detail.

lim
n→∞

n1/3Png( · , θ0(Pn) + sn−1/3)g( · , θ0(Pn) + tn−1/3)

= lim
n→∞

n1/3Pn

[
I{θ0(Pn) + tn−1/3 − α ≤ X ≤ θ0(Pn) + sn−1/3 + α}

−I{θ0(Pn) + sn−1/3 − α ≤ X ≤ θ0(P ) + α} − I{θ0(Pn) + tn−1/3 − α ≤ X ≤ θ0(P ) + α}

+I{θ0(P )− α ≤ X ≤ θ0(P ) + α}

]
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= lim
n→∞

n1/3

[
Pn(θ0(Pn) + sn−1/3 + α)− Pn(θ0(Pn) + tn−1/3 − α)

−Pn(θ0(P ) + α) + Pn(θ0(Pn) + sn−1/3 − α)− Pn(θ0(P ) + α) + Pn(θ0(Pn) + tn−1/3 − α)

+Pn(θ0(P ) + α)− Pn(θ0(P )− α)

]

= lim
n→∞

n1/3

[
Pn(θ0(Pn) + sn−1/3 + α)− Pn(θ0(P ) + α)

+Pn(θ0(Pn) + sn−1/3 − α)− Pn(θ0(P )− α)

]
.

The second case is 0, while the third case is

lim
n→∞

n1/3Png( · , θ0(Pn) + sn−1/3)g( · , θ0(Pn) + tn−1/3)

= lim
n→∞

n1/3

[
Pn(θ0(P ) + α)− Pn(θ0(Pn) + tn−1/3 + α)

+Pn(θ0(P )− α)− Pn(θ0(Pn) + tn−1/3 − α)

]
Now the second term in hn is

Png( · , θ0(Pn) + sn−1/3) = Pn

[
I{θ0(Pn) + sn−1/3 − α ≤ X ≤ θ0(Pn) + sn−1/3 + α}

− I{θ0(P )− α ≤ X ≤ θ0(P ) + α}

]

=

[
Pn(θ0(Pn) + sn−1/3 + α)− Pn(θ0(Pn) + sn−1/3 − α)

− Pn(θ0(P ) + α) + Pn(θ0(P )− α)

]
.

With assumptions (i) and (ii) of Condition 2, using a Taylor series expansion of Pn(x), we have that
n1/3(θ0(Pn)− θ0(P )) → 0 and so

lim
n→∞

n1/3

[
Pn(θ0(Pn) + sn−1/3 + α)− Pn(θ0(Pn) + sn−1/3 − α)

− Pn(θ0(P ) + α) + Pn(θ0(P )− α)

][
Pn(θ0(Pn) + tn−1/3 + α)− Pn(θ0(Pn) + tn−1/3 − α)

− Pn(θ0(P ) + α) + Pn(θ0(P )− α)

]

= lim
n→∞

n1/3

[{
θ0(Pn)− θ0(P ) + sn−1/3

}{
pn(θ0(P ) + α)− pn(θ0(P )− α) + o(n−1/3)

}]
[{

θ0(Pn)− θ0(P ) + tn−1/3
}{

pn(θ0(P ) + α)− pn(θ0(P )− α) + o(n−1/3)
}]

= 0.
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So we only need to take care of the first term in hn when we take the limit. Using the previous results,
assumptions (i) and (ii) of Condition 2, and a Taylor series expansion of Pn(x), we have the required
convergence of hn(s, t) to H(s, t).

The second half of part (v) is immediate since |g( · , θ0(P ) + tn−1/3)| ≤ 1 so that the probability of the
event that the absolute value being larger than εn1/3 becomes 0 for n large enough.

Consider part (vi). Since we are interested in the case when R is small, we can assume that R < (1/2)α.
If |θ0(P )− θ0(Pn)| < R then the envelope is

GR,n(x) =


1, if θ0(Pn)−R− α ≤ x ≤ θ0(Pn) + R− α,

or θ0(Pn)−R + α ≤ x ≤ θ0(Pn) + R + α,
0, otherwise

If |θ0(P )− θ(Pn)| > R, and θ0(P ) > θ(Pn) then

GR,n(x) =


1, if θ0(Pn)−R− α ≤ x ≤ θ0(P )− α,

or θ0(Pn)−R + α ≤ x ≤ θ0(P ) + α,
0, otherwise

The other case is dealt similarly. In all cases,

PnG2
R,n = O(R + |θ0(P )− θ0(Pn)|).

provided that the density of Pn is bounded above by a constant and that this bound holds for all n, which
is the case by assumption (i) of Condition 2 and condition (P3), thus taking care of the first half of part
(vi). For the second half, take any K > 1. Part (vii) is immediate by taking a Taylor series expansion of
Pn using the bound on the densities mentioned above. This completes the proof of this lemma.

We now need to show that the sequence of random distribution functions {P̃n,λ} satisfies Condition 2
with probability 1.

Lemma 2 Let P and K satisfy the conditions of Theorem 2. Then with probability 1, the sequence {P̃n,λ}
satisfies Condition 2.

Proof: Let

P̂n,λ(x) =
1
n

n∑
i=1

K

(
x−Xi

λ

)
be the smooth (non symmetric) kernel distribution function estimate of P . Then using Theorems A and
C of Silverman (1978), we have that sup |P̂ (r)

n,λ(x) − P (r)(x)| → 0 a.s. for r = 1, 2. The case r = 0 is an
immediate consequence of Theorem 1 of Shorack and Wellner (1986, pp. 765). Now we need to show that
these conditions are satisfied by the symmetric distribution functions P̃n,λ. We will treat the case r = 1
in detail and the other two will follow using similar arguments based on the symmetry of the distribution.
Let p̃n,λ(x) and p̂n,λ(x) be the derivatives of P̃n,λ(x) and P̂n,λ(x) respectively. Then, since k is symmetric
about 0,

p̃n,λ(x) =
1
2
[p̂n,λ(x) + p̂n,λ(2θ̂n − x)],

where θ̂n is the center of symmetry of p̃n,λ. Let P be symmetric about θ, hence

sup
x
|p̃n,λ(x)− p(x)| = sup

x
|p̃n,λ(θ + x)− p(θ + x)|

=
1
2

sup
x
|p̂n,λ(θ + x)− p(θ + x) + p̂n,λ(2θ̂n − θ − x)− p(θ + x)|

≤ 1
2

sup
x
|p̂n,λ(θ + x)− p(θ + x)|

+
1
2

sup
x
|p̂n,λ(2θ̂n − θ − x)− p(θ − x)|,

9



by symmetry of p with respect to θ.
The first term goes to 0 by Silverman (1978) whereas the second term is bounded by

sup
x
|p̂n,λ(2θ̂n − θ − x)− p(θ − x)| = sup

x
|p̂n,λ(θ − x) + Sn(2θ̂n − θ − x, θ − x)− p(θ − x)|

≤ sup
x
|p̂n,λ(θ − x)− p(θ − x)|

+sup
x
|Sn(2θ̂n − θ − x, θ − x)|,

where Sn( · , · ) is the remainder in the Taylor series expansion. Both terms go to 0, the first by Silverman
(1978), and the second since supx |p̂′n,λ(x)−p′(x)| → 0 a.e., and the sup is less than this sup times |2θ̂n−2θ|
which also goes to 0 a.e.

Since P̃n,λ is symmetric with respect to the median of the sample, then θ0(P̃n,λ) is the median and
so n1/2(θ0(P̃n,λ)− θ0(P )) converges weakly to a normal distribution so that part (ii) is also satisfied with
probability 1.

4 Simulation

The theory of the previous section shows that basic bootstrap confidence intervals based on Chernoff’s
modal estimator have a coverage probability that converges to the claimed level when the sample size
increases provided that resampling is done from a smooth symmetric distribution. Moreover, the theory
suggests that bootstrapping will not work if the resampling distribution is asymmetric. Also, the theoretical
developments require some smoothness. In a small simulation study, we have tried to see to what extent
are these findings valid for a small sample size.

For each bootstrap method, we have generated 1,000 samples of size 10 from a standard Gaussian
distribution. For each data set, we computed an 80% basic bootstrap two-sided confidence interval based
on 1,000 bootstrap samples, as well as the corresponding 10% and 90% (left) one-sided confidence intervals.
Throughout the simulation, the size of the half-window, the parameter α, was arbitrarily set at 0.17. We
considered five different bootstrap resampling schemes for a total of seven different bootstrap methods. The
corresponding estimates of the distribution function are: 1) the empirical distribution function (ordinary
bootstrap), 2) the symmetrized empirical distribution function (i.e., the empirical distribution function of
X1, . . . , Xn, 2θ̂ − X1, . . . , 2θ̂ − Xn, where θ̂ is the median of the sample), 3) the smooth kernel estimate
based on bandwidth 0.1 and 0.4, 4) the smooth symmetric kernel estimate based on the same bandwidths,
and 5) a parametric bootstrap where the mean and the variance of the normal distribution are estimated by
the mean and (unbiased) variance of the sample. With 1,000 simulated samples, the Monte Carlo standard
errors in the estimates are 0.009 and 0.013 when we assume that the true probabilities are 0.1 and 0.8,
respectively. Table 1 contains the results.

We see from these results that using a smooth symmetric distribution as an estimate of a symmetric
distribution does indeed lead to confidence intervals with coverage probabilities close to the nominal level
even with only 10 observations. The case of a smooth symmetric kernel estimate with bandwidth .4
is remarkable while the parametric bootstrap (which is also smooth and symmetric) and the smooth
symmetric kernel estimate with bandwidth .1 also give estimators with reasonable coverage. We can also
notice that symmetry alone is not sufficient, but seems much more important than smoothness, as was
argued in the theoretical section. There is no doubt that the ordinary bootstrap does not work at all.

5 Appendix

In this appendix, we prove Theorem 1. The results in this section are basically a triangular version of
the results in Kim and Pollard (1990). So we have tried to keep their notation and their structure of
results as much as possible. In most cases, the generalization to a triangular array is straightforward, but
some require suitable modifications. Thus for completeness we have stated all results and proofs. The
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Table 1: Coverage probabilities one-sided and two-sided basic bootstrap confidence intervals for Chernoff’s
modal estimator for different bootstrap methods when the half-window is 0.17. The estimated probabilities
are based on 1,000 samples of size 10. Each bootstrap confidence interval is based on 1,000 bootstrap
observations. The samples are made up of 10 standard normal observations.

Bootstrap method 10% one-sided CI 90% one-sided CI 80% two-sided CI
Ordinary 0.250 0.716 0.466
Symmetric 0.147 0.859 0.712
Smooth, λ = .1 0.253 0.767 0.514
Smooth, λ = .4 0.181 0.820 0.639
Smooth symmetric, λ = .1 0.127 0.877 0.750
Smooth symmetric, λ = .4 0.092 0.907 0.815
Parametric 0.117 0.881 0.764

corresponding result of Kim and Pollard (1990) is mentioned in parentheses, e.g., KP 3.1 refers to their
result 3.1. The first result is a maximal inequality over a class of functions.

Theorem 3 Maximal Inequality (KP 3.1)
Let F be a manageable class of functions with an envelope F , for which PnF 2 < ∞, for all n. Suppose that
0 ∈ F . Then there exists a function J , not depending on n, such that
(i)

√
nIPn sup

F
|Q̂nf − Pnf | ≤ IPn

√
Q̂nF 2J(sup

F
Q̂nf2/Q̂nF 2)

≤ J(1)
√

PnF 2

(ii)

nIPn sup
F
|Q̂nf − Pnf |2 ≤ IPn Q̂nF 2J2(sup

F
Q̂nf2/Q̂nF 2)

≤ J2(1)
√

PnF 2

The function J is continuous and increasing, with J(0) = 0 and J(1) < ∞.

This result is proved in Pollard (1989) for a fixed distribution P . But since the inequality is true for
all n and all P satisfying the condition stated, we immediately have this generalization. The next lemma
establishes an OPn(n−1/3) rate of convergence for θn(Q̂n).

Lemma 3 (KP Lemma 4.1)
Suppose that the first half of part (vi) of Condition 1 is satisfied. Then for each ε > 0, there exist random
variables {Mn} of order OPn(1) such that

|Q̂ng( · , θ)− Png( · , θ)| ≤ ε|θ − θ0(Pn)|2 + n−2/3M2
n

for |θ − θ0(Pn)| ≤ R0, where R0 is the value defining the neighborhood in the above condition.

Proof: For ease of notation suppose that R0 = ∞. Define Mn(ω) as the infimum (possibly +∞) of these
values for which the asserted inequality holds. Define A(n, j) to be the set of those θ ∈ Θ for which

(j − 1)n−1/3 ≤ |θ − θ0(Pn)| < jn−1/3.
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Then for m constant,

IPn{Mn > m} ≤ IPn{∃θ : n2/3|Q̂ng( · , θ)− Png( · , θ)| > ε|θ − θ0(Pn)|2 + n−2/3m2}

≤
∞∑

j=1

IPn{∃θ ∈ A(n, j) : n2/3|Q̂ng( · , θ)− Png( · , θ)| > ε(j − 1)2 + m2}.

Using Markov’s inequality, the jth summand is bounded by

n4/3IPn sup
|θ−θ0(Pn)|<jn−1/3

|Q̂ng( · , θ)− Png( · , θ)|2

[ε(j − 1)2 + m2]2
.

By part (ii) of the maximal inequality, the assumption about PnG2
R,n, and the assumption that {GR,n : R ≤

R0, n ≥ 1} is uniformly manageable, there is a constant C ′ such that the numerator of the last expression
is less than n4/3(n−1C ′jn−1/3). Hence the sum is suitably small for all n by choosing m large enough.

Corollary 2 (KP Corollary 4.2)
Suppose that parts (i), (ii), (iv), and (vi) of Condition 1 are satisfied. Then

θn(Q̂n) = θ0(Pn) + OPn(n−1/3).

Proof: By part (i),
Q̂ng( · , θn(Q̂n)) > Q̂ng( · , θ0(Pn))−OPn(n−2/3).

Using a Taylor series expansion of Png( · , θ), the fact that θ0(Pn) maximizes Png( · , θ) so that its first
derivative at θ0(Pn) is 0 and its second derivative matrix −Vn(θ0(Pn)) is negative definite, the convergence
of Vn(θ0(Pn)) to V (θ0(P )), and the fact that the third order derivatives are bounded, there exists C > 0
and ε > 0 such that for |θ − θ0(Pn)| < C

Png( · , θ)− Png( · , θ0(Pn)) ≤ −2ε|θ − θ0(Pn)|2.

See e.g., the Corollary of Section 4.1 and Lemma 1 of Section 4.2 of Marsden and Tromba (1976). Then

0 = Q̂ng( · , θ0(Pn))− Q̂ng( · , θ0(Pn))
< Q̂ng( · , θn(Q̂n))− Q̂ng( · , θ0(Pn)) + OPn(n−2/3), by part (i)
≤ Png( · , θn(Q̂n))− Png( · , θ0(Pn)) + ε|θn(Q̂n)− θ0(Pn)|2 + 2n−2/3M2

n + OPn(n−2/3)
using Lemma 3 twice

≤ −2ε|θn(Q̂n)− θ0(Pn)|2 + ε|θn(Q̂n)− θ0(Pn)|2 + 2n−2/3M2
n + OPn(n−2/3)

= −ε|θn(Q̂n)− θ0(Pn)|2 + 2n−2/3M2
n + OPn(n−2/3).

This implies that θn(Q̂n) = θ0(Pn) + OPn(n−1/3) ending the proof.

Let

Zn(t) =

{
n2/3

[
Q̂ng( · , θ0(Pn) + tn−1/3)− Png( · , θ0(Pn))

]
, if θ0(Pn) + tn−1/3 ∈ Θ

0, otherwise
(11)

and the corresponding centered process

Wn(t) =
{

Zn(t)− n2/3
[
Png( · , θ0(Pn) + tn−1/3)− Png( · , θ0(Pn))

]
, if θ0(Pn) + tn−1/3 ∈ Θ

0, otherwise
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Lemma 4 (KP Lemma 4.5)
Suppose that parts (iii), (iv), and (v) of Condition 1 are satisfied. Then the finite-dimensional projections
of the process Zn converge in distribution. The limit distributions correspond to the finite-dimensional
projections of a process

Z(t) = −(1/2)t′V t + W (t)

where −V is the second derivative matrix of Pg( · , θ) at θ0(P ) and W is a centered Gaussian process with
covariance kernel H defined in part (v).

Proof: With fixed t, and by assuming that θ0(Pn) → θ0(P ), part (iii) ensures that θ0(Pn)+ tn−1/3 belongs
to Θ for n large enough. When that happens

Wn(t) =
n∑

i=1

n−1/3[g(ξi, θ0(Pn) + tn−1/3)− Png( · , θ0(Pn) + tn−1/3)].

Part (iv) implies that

n2/3[Png( · , θ0(Pn) + tn−1/3)− Png( · , θ0(Pn)] → −(1/2)t′V t

as n →∞ which contributes the quadratic trend to the limit process for Zn.
Now

cov(Wn(s),Wn(t)) = n1/3Png( · , θ0(Pn) + sn−1/3)g( · , θ0(Pn) + tn−1/3)
−n1/3Png( · , θ0(Pn) + sn−1/3)Png( · , θ0(Pn) + tn−1/3)

→ H(s, t)

by part (v). The second half of part (v) implies the Lindeberg condition.

Lemma 5 (KP Lemma 4.6)
Suppose that the classes GR,n are uniformly manageable for R near 0 for the envelopes GR,n. Suppose

also that parts (vi) and (vii) of Condition 1 are satisfied. Then the processes {Wn} satisfy the stochastic
equicontinuity condition (ii) of Theorem 2.3 of Kim and Pollard (1990).

Proof: Let M > 0 be fixed and let {δn} be a sequence of positive numbers converging to 0. Define F(n)
to be the class of all differences g( · , θ0(Pn)+ t1n

−1/3)−g( · , θ0(Pn)+ t2n
−1/3) with max(|t1|, |t2|) ≤ M and

|t1 − t2| ≤ δn. The class has envelope Fn = 2GR(n),n where R(n) = Mn−1/3. It is good enough to prove,
for every such {δn} and M , that

n2/3IPn sup
F(n)

|Q̂nf − Pnf | = o(1)

Define Xn = n1/3Q̂nF 2
n and Yn = supF(n) Q̂nf2. Then the uniform manageability of GR,n and the

Maximal Inequality provide a single increasing function J( · ) such that

n2/3IPn sup
F(n)

|Q̂nf − Pnf | ≤ IPn

√
XnJ(n1/3Yn/Xn)

for n large enough. Notice how the n2/3 splits into an n1/2 required by the maximal inequality and an
n1/6, which is absorbed into the definition of

√
Xn. Split according to whether Xn ≤ ε or not, using the

fact that n1/3Yn ≤ Xn and invoking the Cauchy-Schwarz inequality for the contribution from {Xn > ε},
to bound the last expected value by

√
εJ(1) +

√
IPnXn

√
IPnJ2(min(1, n1/3Yn/ε)).
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Part (vi) ensures that IPnXn = n1/3PnF 2
n = O(1). It therefore suffices to show that Yn = oPn(n−1/3).

We will establish the stronger result, IPnYn = o(n−1/3) by splitting each f into two pieces, according to
whether Fn is bigger or smaller than some constant K:

IPn sup
F(n)

Q̂nf2 ≤ IPn sup
F(n)

Q̂nf2{Fn > K}+ KIPn sup
F(n)

Q̂n|f |

≤ IPnQ̂nF 2
n{Fn > K}+ K sup

F(n)
Pn|f |+ KIPn sup

F(n)

∣∣∣Q̂n|f | − Pn|f |
∣∣∣ .

Of these three bounding terms: The first can be made less than εn−1/3 by choosing K large enough,
according to (vi); with K fixed, the second is of order O(n−1/3δn), by virtue of (vii) and the definition of
F(n); the third is less than Kn−1/2J(1)

√
PnF 2

n = O(n−2/3) by virtue of the maximal inequality applied
to the uniformly manageable classes {|f | : f ∈ F(n)} with envelopes Fn. The result follows.

Theorem 4 (KP Theorem 4.7) Under the conditions of Lemmas 4 and 5, the processes {Zn} defined by
(11) converge in distribution to the process

Z(t) = −(1/2)t′V t + W (t),

where −V is the second derivative matrix of Pg( · , θ) at θ0(P ) and W is a centered Gaussian process with
continuous sample paths and covariance kernel

H(s, t) = lim
α→∞

αPg( · , θ0(P ) + s/α)g( · , θ0(P ) + t/α).

Proof: Lemma 5 established stochastic equicontinuity for the {Wn} processes. Addition of the expected
value n2/3[Png( · , θ0(Pn) + tn−1/3) − Png( · , θ0(Pn))] does not disturb this property. Thus {Zn} satisfies
the two conditions of Theorem 2.3 of Kim and Pollard (1990) for convergence in distribution of stochastic
processes with paths in Bloc(IRd); the process Z has the asserted limit distribution.

Theorem 5 (KP Theorem 1.1)
Let {Pn} and P satisfy Condition 1. Then the process n2/3[Q̂ng( · , θ0(Pn) + tn−1/3)− Png( · , θ0(Pn)] con-
verges in distribution to a Gaussian process Z(t) with continuous sample paths, expected value −(1/2)t′V t
and covariance kernel H.

If V is positive definite and if Z has nondegenerate increments, then n1/3(θn(Q̂n)− θ0(Pn)) converges
in distribution to the (almost surely unique) random vector that maximizes Z.

Proof: The conditions of Lemma 3 are satisfied; its Corollary 2, with parts (i) and (iii), give the OPn(n−1/3)
rate of convergence for θn(Q̂n). Parts (iii) to (vii) are the conditions of Lemmas 4 and 5, so Theorem 4
gives the convergence in distribution of Zn to Z.

The kernel H necessarily has the rescaling property (2.4) of Kim and Pollard (1990). Together with
the positive definiteness of V and the nondegeneracy of the increments of Z, this implies (Lemmas 2.5 and
2.6 of Kim and Pollard, 1990) that Z has all its samples paths in Cmax(IRd). Theorem 2.7 of Kim and
Pollard (1990), applied to tn = n1/3(θn(Q̂n)− θ0(Pn)), completes the argument.

Proof of Theorem 1: If {Pn} satisfies Condition 1, then Theorem 5 implies

sup
x
|Kn(x, Pn)−K∞(x, P )| → 0,

where K∞(x, P ) is the distribution function of the asymptotic distribution of n1/3(θn(Q̂n)−θ0(P )) described
in Theorem 5, where Q̂n if the e.d.f. of a sample of size n from P . The continuity of the asymptotic
distribution (e.g., Groeneboom, 1989) implies the uniform convergence. Likewise for Pn ≡ P , we have

sup
x
|Kn(x, P )−K∞(x, P )| → 0.
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Hence,
sup

x
|Kn(x, Pn)−Kn(x, P )| → 0.

Given that {P̃n} satisfies Condition 1 with probability 1, the result is immediate.
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