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Abstract 

Because of its direct relation to the reliability or the safe performance of 
mechanical and structural systems subjected to random external disturbances, 
the bounding technique of the first excursion probability is studied. In particular, 
the lower bound of the. probability proposed previously by one of the present 
authors is improved. Numerical examples indicate that the improvement is 
significant. 

The present method of improvement requires the knowledge of the joint 
density function of the random process at two arbitrary instants. Other than 
this, the method is universal; it can apply to stationary or nonstationary, Gaussian 
or non-Gaussian processes. 

General expressions for lower and upper bounds are also derived in this study 
and their potential usefulness is pointed out. 
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On the Bound of First Excursion Probability 

1. Introduction 

In recent years, the first excursion probability or the 
first passage time probleiii in the area of random vibra- 
tion attracted considerable attention among engineers 
(Refs. 1-8) because of its direct relation to the reliability 
or the safe performance of mechanical and structural 
systems subjected to random external disturbances. 

In some of the previous studies, the response X ( t )  of 
a single-degree-of-freedom system consisting of a mass 
connected to a Kelvin or Voigt model is considered 
under a white noise input n(t): 

E(t) + 25 wo i ( t )  + w; X ( t )  = n( t )  (1) 

It is well known in this case that the response process 
and its time derivative are jointly Markovian and, hence, 

the Fokker-Planck equation) for the desired transition 
probability can be derived. Although the Kolmogorov 
equation undoubtedly provides certain useful informa- 
tion, the approach suffers from a rather serious limitation 
simply because the solution of the Kolmogorov equation 

tl.,. Vnl-#.,.rm---. -I._^ &I^^ /I,... uic ~ ~ u u i r v ~ u i u v  q u a u u i i  (iui cxaiiiplc, ii; thc f ~ z  =f 

associated with Eq. (1) under the initial and boundary 
conditions pertinent to the present first passage time 
problem is difficult to obtain and, in fact, has not been 
found as yet. Another limitation due to the restriction 
that the input be white is not a serious one, since the 
system in Eq. (1) is usually assumed to possess narrow- 
band characteristics. 

These limitations suggest a need for alternative 
methods by which additional information and, hopefully, 
results of practical importance can be obtained, not 
only for the (stationary) white noise input, but also 
for more general cases involving nonstationary and 
nonwhite inputs. 

In this respect, a bounding technique is presented 
in Ref. 6, where upper and lower bounds are derived 
for the (first excursion) probability Px (to; -a, p)  that 

will exit at least once from an interval [-a, p ]  during a 
specified period of time T = [0, to), with c1 > 0 and 
p > 0 (two-sided constant barrier problem). A possible 
use of this method in a practical problem is recently 
demonstrated in Ref. 7. 

t-p regnnnco nrnopcc -I:@) ( s t a t i ~ ~ a r y  c y  finfistati~hayv'~ 
J I  r--- r------ 
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This bounding technique is further advanced in Ref. 8 
so that the case can be dealt with, where at least one 
of the threshold values a and /3 is time dependent; 
a = a( t )  > 0 and/or p = p(t)  (two-sided time-dependent 
barrier problem). In the following discussion, the first 
excursion probability is written as P(T,; - it, p) for sim- 
plicity, whether a and p are functions of time as long as 
no confusion arises. 

The main purpose of this report is to present (in Sec- 
tions I1 and 111) a method to improve the lower bound 
of the first excursion probability proposed previously 
in Refs. 6 and 8. This improvement can apply to the 
problem with either constant or time-dependent barriers. 
Section IV of this report is devoted to derivation of some 
general expressions for upper and lower bounds to sug- 
gest possibilities of further improvement on the bounds, 

II. Improvement on lower Bounds 

The following technique of improving the lower bound 
is based on the methods by  P. Whittle (Ref. 9) and by 
S .  Gallot (Ref. 10). Consider the probability that the 
maximum of a set of random variables X I ,  X 2 ,  ..., X,, 
is less than p when 

and 

are given, where: P ( E )  is the probability of event E ,  
and P ( E ,  F )  is the probability of the joint occurrence 
of events E and F .  

Let P and n denote the column vector of P ,  and the 
matrix Pir ,  respectively. It can then be shown that the 
lower bounds for P (max Xj 2 p) are given as follows: 

i 

P ( m a x X , z p )  i > PTn-lPz L (4) 

where PT indicates the transpose of P, n-’ the inverse 
matrix of n, and 

(5 )  

The expression PT n-I P is the best lower bound within 
this approach. 

2 

Since, however, the direct application of Eq. (4) is 
limited to the case of the one-sided constant barrier 
problem, the definitions of P j  and Pjk are modified here 
so that the two-sided time-dependent first excursion 
probability can also be dealt with. 

Now, let E j  denote the event ( X j  < -a j )  U ( X j  > pj) 
with aj > 0 and pi > 0, where E U F  denotes the occur- 
rence of at least one of the events E and F; hence, E ,  
is the event that X j  takes a value outside the interval 
[ -nj ,pj] .  Define 

Pi  = P ( E j )  (6) 9 

(7) 

Then, in the same way in which Eq. (4) is derived (see 
Appendix), the probability 

P U E j  
(i:* 1 

that at least one of X I ,  X 2 ,  ..., X n  will take a value out- 
side its specified interval can be shown to have lower 
bounds PT 71-l P and ‘L: 

Equation (8) has the desired form that can be applied 
directly to the two-sided constant and/or time-dependent 
barrier problem as described below. 

If the first excursion probability is considered for 
random process X ( t )  with a set of barriers -a(t) and 
p(t)  and if X i  = X(t , ) ,  at = a(tj), and pj = p( t j )  with 
tj ET, then it follows that 

(9) 

and, hence, by virtue of Eq. (8): 

where, obviously al = a2 = = a, = a and B1 = B 2  

if a and p are not time dependent. - = P n  = P, - ... 

In the previous studies (Refs. 6 and 8), a lower bound 
for P ( to;  -a ,  p )  based on a single time-point t j  E T was 
obtained as P ( E j )  (henceforth referred to as “the lower 
bound based on a single point”). Evidently, P ( E l )  is, 
in general, a function of t j ;  therefore, the best lower 
bound based on a single point is the maximum possible 
value P ( E * )  of P ( E j )  that occurs at, say, tj = t* E T. 
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It is shown in the Appendix that the lower bound 
PT IT-' P given in Eq. (10) is superior to P (E*)  if one of 
tl, t,, ., t ,  is chosen to be t*. 

The knowledge of the joint density function f X j X k  
(x ,  y) of X j  and x k  is sufficient to compute PT n-l P or 
L, since 

and 

where f x j ( x )  is the density function of XI, which can be 
obtained as the marginal density of Xj from f x j X k  (x,y). 

It is iiilporiant to note that the computation of 
PT n-l P or L involves the joint density functions only 
up to the second order, although any number of time 
points t,, t2, * * e ,  t ,  can be considered. This fact makes 
the numerical computation for the improved bound 
manageable, since the evaluation of PT n-l P or L on a 
computer presents no difficulty. 

Some simplications can be achieved if one considers a 
stationary process X(t) with constant barriers. Evidently, 
in this case, P ,  = P ,  = = P,. If, furthermore, one 
chooses equally spaced time instants t,, t2, . . a ,  tn, then 

ii~pljjiiig t h t  those iiiexbcrs of par&! to d i a g ~ ~ ~ !  
are identical. Recalling the fact that n is symmetric and 
that the diagonal members of n are P k k  = P k ,  one can 
conclude from Eq. (13) that it is necessary to evaluate 
only n-1 joint probabilities given in Eq. (12a) to con- 
struct the matrix n numerically. 

J P l  TECHNICAL REPORT 32-7304 

The probability P j  can be found from the table of 
normal distribution, whereas, P j k  from (Ref. 11). It is 
pointed out, however, that if the threshold values a and p 
are large compared with the standard deviation, an 
asymptotic expression for P j k  is analytically available 
(Refs. 11 and 12) as well as the well-known asymptotic 
expression for P i .  Such asymptotic forms can conveniently 
be used when the numerical computations are to be done 
in the computer. 

111. Numerical Examples 

A. Example 1 : Stationary Process With Constant Barriers 

Consider Eq. (1) with oo = 2 rad/s and 4 = 0.02. Let 
a = p = 3ax, where U: = w So/(% a:) with So being the 
mean square spectral density of n(t). 

Since, in this case, X(t) is Gaussian, the Gaussian joint 
density function is used for F X j X k  (x,y) with the correlation 
coefficient p j k  

where 

The lower bounds for to = 1.0, 10, 100, and 1000 s are 
evaluated by dividing the interval [O,t,) into 10 (curve I 
of Fig. i j ,  100 (curve IIj, and io00 (curve 111) equal sub- 
intervals ( n  = 11,101, or 1001) in each case. For example, 
when to = 10 s and n = 11, tl = 0 s, t ,  = 1 s, . . e ,  t l l  = 10 s. 

-3.0 
-1.0 0 1.0 2.0 3.0 

LOG10 t, s 

Fig. 1. Improved lower bound (stationary response) 
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The result of computations is shown in Fig. 1, where 
the upper and lower bounds due to the previous method 
(Ref. 6) are also given. It is evident from the diagram 
that the significant improvement on the lower bound is 
achieved as the number (n) of the time points to be 
considered is increased from 1 (the lower bound based 
on a single time-point) to 10 (curve I), 100 (curve 11), and 
further to 1000 (curve 111), although the improvement 
with 1000 intervals over that with 100 intervals is 
observable only after t = 100 s. 

It should be mentioned that curve I11 (n  = 1000) is 
obtained using Eq. (5 )  only. However, it is pointed out 
that the differences observed in the numerical values of 
PT IT-1 P and L for n = 10 and 100 (curves I and 11) 
are insignificant. Hence, one will not lose much by using 
L for lower bound instead of PT n-I P, which requires an 
inversion of IT of order n. In the present example, where 
the process is stationary and the barriers are time 
independent, P j  and P j k  can be found on a computer 
using a subroutine for interpolation together with Ref. 11, 
and, hence, a large number of intervals, even as many 
as 1000, can be handled without any difficulty. 

In Fig. 1, 1-exp ( -2v,T) ,  an approximation some- 
times used for P (to; -a,a) (Ref. 13) is also plotted as 
curve IV where va is the rate of crossing of 'a by X ( t )  
with positive slope. 

8. Example 2: Nonstationary Process With 
Constant Barriers 

Consider Eq. (1) subjected to an input of f ( t )  instead 
of n(t): 

(15) 

where 

I/ ( t )  = (ed t  - e-bt)  H ( t )  ( b  > a > 0)  
(17) 

with H ( t )  being the unit step function and 

The response X ( t )  to f(t) is then 

x ( t )  = h i ( t - T ) f ( T ) d T  L: 
where 

h, ( t )  = e-cwot sin w l t  H ( t ) / ~  

with 

0 1  = w o ( 1  - 5')* 

The auto-covariance function of this process is 

r m  
E [X (t) x ($1 = 27r so 1-m $2 (-2)) h (t--2)) h (s--2)) d-2) 

W 

(22) 

or 

where E(*)  indicates the expected value; H , ( w ) ,  Hl(w) and 
~ ( c o )  are the Fourier transform of h,(t), h,(t), and J/'(t), 
respectively; and Ho(0)  and El(u) denote the complex 
conjugates of H , ( w )  and H , ( w ) ,  respectively. 

The discussion on the significance and possible appli- 
cations of the nonstationary process X ( t ) ,  defined in 
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Eq. (19), was given in detail in Ref. 14; therefore, it is 
not repeated here, except for pointing out that X ( t )  can 
be interpreted as the output of the filter with the 
impulse response function h(t) to a nonstationary white 
noise q(t) n(t), or equivalently as the resulting process 
when q(t) n(t) is passed through two filters with the 
impulse response function ho(t) and h,(t). 

In Ref. 14, the first excursion probability P(o0; -a,a) 
for this process was estimated as a function of a with 
the aid of the Monte Carlo technique; also, its upper 
and lower bounds were obtained using the method 
proposed previously (see Fig. 2). The use of this non- 
stationary process X(t) is made here so that one can 
demonstrate, on the basis of numerical comparison, the 
significant improvement that the present method can 
produce. 

* 

' 

Numerical values for the parameters involved to obtain 
Fig. 2 are as follows: a = 0.25/s, b = O.S/s, O b  = 12.3/s, 
pb = 3.86/s, o0 = 31.4/s, and [ = 0.05 and So  = 7.19 X lo4 
in.*/ss. The lower bounds PT n-' P for P( - o0 ; - a,a) are 
evaluated for a = 0.1, 0.2, and 0.3 in. with the following 
equally spaced time points: 

(1) For a = 0.1 in., t, = 0.6 s, t, = 1.2 s ,  . * 0 ,  t lS = 9.0 s. 

(2) Fora=0.2in. , t l=1.2s , t ,  =1 .8s ,* . . , t l l=7 .2s .  

(3) For a = 0.3 in., t, = 2.1 s, t, = 2.4 s, - e . ,  tlo = 4.8 s. 

These points are chosen arbitrarily, except for assuring 
that one of the points coincides with t* = 3.0 s at which 
the standard deviation takes a maximum value (see Fig. 1 
of Ref. 14). 

0 

0 .. -1 
P 
6- - 
CL 

(3 
0 -2 
-I 

9 

ILOWER BOUNq IN REF. 7 

-3 
0 0.1 0.2 0.3 0.4 

a, in. 

Fig. 2. Improved lower bound (nonstationary response) 

To evaluate P i k ,  the auto-covariance function of X(t) 
has to be known first. For this purpose, Eq. (23) is used, 
because an efficient numerical method of double Fourier 
inversion has been developed (Ref. 15) and the computer 
program is available. Numerical results indicate again 
that the difference between PT n-l P and L is insignificant. 

The result is shown as curve I in Fig. 2. Here again, 
the improvement of lower bound is significant. 

IV. General Expressions for Bounds 

A. lower Bounds 

Consider a set of time points t,, t,, *.., t,, E T .  It can 
be shown that 

where E;  denotes the complement of Ei and P( E;, E;,  e )  

E",,, E,)  denotes the probability of the joint occurrence 
of E;,  E; ,  e . . ,  E:-,, and E,,. Hence, the right-hand side of 
Eq. (29) is a lower bound of the first excursion proba- 
bility involving a set of time points tl, t,, ..., t,. 

If f.y,x, ... xk (x,, x2, ..., xk) denotes the joint density 
function of XI, X , ,  . . ., X k ,  then 

and so forth. 

The lower bound developed in Ref. 6 is a special case 
of the general expression in Eq. (29) with n = 1 and 
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tl = t*. The difficulties are quite evident here. Even if 
the process considered is Gaussian, the probabilities on 
the right-hand side of Eq. (29) are not given in closed 
form; hence, they have to be evaluated numerically 
(except for the first two, for which numerical tables are 
available). 

I n  general, these joint probabilities cannot be 
expressed in closed form while numerical work needed 
to evaluate the third term (in the right-hand side of 
Eq. 29) on will become significantly heavy, if the accuracy 
is demanded. However, the estimation of the order of 
magnitude for these joint probabilities, which is often 
quite useful, does not seem extremely difficult. In this 
connection, note that the domain of integration is rec- 
tangular and that disregarding a certain part of the 
domain of integration still produces a lower bound. 
Evidently, use of the Monte Carlo technique may be 
possible. However, it should be pointed out that simula- 
tions of an arbitrary, particularly non-Gaussian, random 
process is not always possible and that the number of 
member functions to be simulated becomes prohibitively 
large as the values of a and p increase much beyond 
the standard deviation of the process. 

With a slight modification, the technique used in 
Ref. 8 leads to 

P ( E ; ,  E ; ,  * e - ,  E",  C, D) = vn (to) dt 

n-fold 

(35) 

where 

fx, x 2  * * x, so io ( X l ,  xz . . ., X", x o ,  2 0 )  

The advantage of the lower bound developed in Sec- 
tion I1 is now clear; it considers a set of time points 
tl, t z ,  ..., tn E T without involving the integration of joint 
density functions of more than two events. 

is the joint. density function of X(tl), X(tz), a * * ,  X(tn), 
x(to), and X(to) with the dot indicating the time deriva- 
tive, &, = (to). Evidently, Eq. (36) and, 
therefore, Eq. (35) depend not only on to, but also on t,, 

(to), and Bo = 

B. Upper Bounds 
t:!, * * * )  t,. 

The upper bound developed previously is essentially Since it can be shown that 
based on the following inequality: 

P (to + dt; - a, p) = P (to; - a, P)  + P (A, D) 
p (A, D) < p (C, D) (33) 

< P (to; - a, P )  + P ( E t ,  E,",  e . . ,  E : ,  C, D) 

(37) 
where A is the event that X ( t )  is confined within the 
barriers with t E T ,  C is the event that -ao= -a(to) 
< X ( t o )  < p(to) - B o ,  and D is the event that X(t) will 
cross the barriers in (to, to + dt) .  it follows that 

For the same reasoning for which Eq. (33) is obtained, 
one can derive: 

where Po is the probability that X(t) takes a value out- 
side the interval [ - a(O), p(O)] at t = 0; thus Po = 

(34) p {V) < - a w l  + p { X ( O )  > P(0)l. 

Equation (34) indicates that P ( E ; ,  E ; ,  . e . ,  E;,  , C, D) When n = 0, ",(t) defined in Eq. (35) is nothing but 
the expected rate of crossing the barriers at time t ,  and is an improved upper bound of P (A, D) over P (C, D). 
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Eq. (38) indicates the same upper bound as developed 
in Ref. 8. 

The same difficulty as encountered in the preceding 
discussion on the lower bound also exists here. A straight- 
forward attempt to integrate Eqs.(35) and (36) indicates 
that, even dealing with a Gaussian process and even 
considering only one extra point (n = l), no closed form 
expression is obtained for Y l ( t ) .  To be more precise, 
the expression contains an integral involving the error 
function. 

f (  

Nevertheless, the general upper bound derived in 
Eq. (38) with v,(t) is of considerable value, because it 

numerical evaluation of the upper bound for n = 1 since 
then the bound can be obtained by performing a double 
integration (existence of an efficient subroutine computer 
program for the error function is justifiably assumed). 

8 L provides a foothold for future study and it permits 

It seems worthwhile, therefore, to further pursue a 
possibility of finding a practical way of utilizing the 
method discussed above. 

V. Conclusion 

The lower bound of the first excursion probability 
proposed previously by one of the present authors has 
been improved on the basis of the recent work by 
S .  Gallot (Ref. 10). The present method requires the 
knowledge of the joint density function of the random 
process at two arbitrary instants. Other than this, the 
method is universal; it can apply to stationary or non- 
stationary, Gaussian or non-Gaussian processes. 

Numerical examples (Figs. 1 and 2) indicate that the 
improvement is significant for the work involved and 
that the difference between the upper and lower bounds 
has been narrowed considerably, in particular for the 
example involving the nonstationary process (Fig. 2). 

JPL TECHNICAL REPORT 32-1304 7 


