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ABSTRACT 

This paper examines a boundary layer flow over a continuously moving heated flat surface with velocity  U x  in a 

streaming flow with velocity  and with temperature dependent viscosity,  U x  T . The momentum and the en- 

ergy equations are coupled through the viscous dissipation term. The coupled boundary layer equations are transformed 

into a self-similar form using an appropriate similarity variable. An efficient numerical technique is used to solve the 

self-similar boundary layer equations. It is shown that at low enough values for the velocity ratio  , an increase in 

viscous dissipation enhances greatly the local heat transfer leading to temperature overshoots adjacent to the wall. The 

viscosity variation parameter is shown to have significant effects on the temperature dependent viscosity and the veloc-

ity and temperature distribution within the boundary layer. 
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1. Introduction 

Studies on heat and mass transfer in boundary layers over 

continuously moving or stretching surfaces have been in- 

creasing due to their wide variety of applications in 

manufacturing processes such as glass-fibre production, 

metal extrusion, materials-handling conveyors and paper 

production. 

One of the earliest studies on boundary-layer flow past 

moving surfaces was initiated by Sakiadis [1], who in- 

vestigated momentum transfer for a flow over a con- 

tinuously moving plate in quiescent fluid. The results of 

Sakiadis were later verified experimentally by Tsou et al. 

[2]. Over recent years studies of boundary layer past mo- 

ving or stretching surfaces in otherwise quiescent fluids 

included the work of Ali [3] who investigated similarity 

solutions for a thermal boundary layer over a power-law 

stretching surface with suction or injection; Elbashbeshy 

[4] who studied heat transfer over a stretching surface 

with suction or injection; Magyari and Keller [5] who 

studied similarity solutions for boundary layer flow over 

an exponentially stretching surface and Mureithi [6] who 

examined linear stability properties of a boundary layer 

flow over a moving surface in a streaming flow. 

Studies on free-stream effects on boundary-layer flows 

over moving or stretching surfaces included the work of 

Abdelhafez [7] and Chappidi and Gunnerson [8] who 

independently considered flows over moving surfaces in 

which both the surface and the free stream moved in the 

same direction. In their studies, they formulated two sets 

of boundary value problems for the cases U U   and 

U U  . Afzal [9] formulated a single set of equations 

using as reference velocity a composite velocity given by 

U U U  . Later Lin and Huang [10] used Afzal’s 

formulation to study momentum and heat transfer for a 

flow over a surface moving parallel or reversely to the 

free stream with temperature dependent viscosity. A 

study by Afzal [11] investigated momentum transfer on a 

power law stretching surface with free-stream pressure 

gradient. 

The current study investigates a boundary layer flow 

over a moving surface in a streaming flow with a tem- 

perature dependent dynamic viscosity, . The Ling 

and Dybbs [12] model for  is used in this study. 

 T
 T

In Section 2, we formulate the problem. In Section 3, 

boundary layer equations are reduced to the self-similar 

form. In Section 4, numerical solutions for the self-si- 

milar boundary layer equations are presented and dis- 

cussed and conclusions are drawn in Section 5. 
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2. Problem Formulation 

An incompressible flow past an infinite surface con- 

tinuously moving with velocity U  in a streaming flow 

with velocity  and with temperature dependent vis- 

cosity , is investigated. The fluid is of density 

U

 T  , 

thermal conductivity  and specific heat capacity  pc  

(at constant pressure). The boundary layer equations are 
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The boundary conditions for this flow are 
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    (2) 

for a flow over an impermeable surface  ,0 0v x  . 

The following temperature dependent viscosity model 

due to Ling and Dybbs [12] is used here: 
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where   is a constant,   is the constant reference 

viscosity in the absence of heating. The case 0   

corresponds to the constant viscosity situation.  

3. Self-Similar Boundary Layer Equations 

The basic flow is rendered in non-dimensional form 

through setting 
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where  U x U U    is the reference velocity (Afzal  

et al. [9]),  , x y
 f

 is the boundary-layer similarity vari- 

able and   and     are the scaled free-stream 

velocity and temperature, respectively. The parameter 

xRe  is the local Reynolds number defined as  

x

Ux
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In non-dimensional form, the Lings-Dybbs model be- 

comes 

1
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where    is the dimensionless dynamic viscosity 

and  is the variable viscosity parameter. 

The case  is equivalent to the case 
T T  

0


0   corre- 

sponding to constant viscosity. 

From the equation of continuity we have 

 

Figure 1. Schematic diagram for the problem. 
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where the parameter   reduces to the pressure gradient 

parameter 
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We assume power-law variations in the free-stream 

velocity and wall velocity of the form  

 so that. 0 ,n

eU U x U U x   n

     0

n n

eU U x U x U U x Ax       

and 0 n   . The dimensionless similarity boundary- 

layer equations take the form 
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with boundary conditions 

     0 0, 0 1 , 0 1,

, 0 as ,
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where 

 
2

, ,
p e

p

c UU
Pr Ec

U U c T T 







 

  
 

.

1

 

The parameter  is the Prandtl number and  is 

the Eckert number. The flow is self-similar if one of the 

following is satisfied: 

Pr Ec

1. n = 0 for any Ec. 

2. Ec = 0 for any n (negligible viscous dissipation). 

remarks 

We have assumed that both the wall and the free 

stream move in the same direction so that 0   . The 

case when 0   is corresponds to a wall moving in an 

otherwise quiescent fluid  0U  , 1 
0

 corresponds 

to flow over a stationary wall  and U   1 2   is 

equivalent to U U   so that the wall and the free- 

stream move with the same speed. When 0 1 2  , 

the wall moves faster that the free-stream while the case 

when 1 2 1   corresponds to the free-stream moving 

faster than the wall. 

The surface shear stress and surface heat transfer are 
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represented using the local skin friction factor, fC , and 

the local Nusselt number, xNu , respectively defined as 

 
   1 2 1 2

2

0
, 0

1
f x x x

f
C Re Nu Re 




 
 

.  

4. Numerical Solution and Discussion of 

Results 

The coupled self-similar boundary layer Equations (3) 

and (4) together with the boundary conditions (5) are 

solved numerically using a shooting method coupled 

with the fourth-order Runge-Kutta scheme. 

The results presented here are for the cases when 

. Self-similar solutions were obtained for two 

cases. Case one is the flow viscous dissipation and 

. Case two corresponds to the case with 

0.72Pr 

0n  0n   but 

without viscous dissipation effects. 

Figures 2 and 3 show that the effect of varying the 

fluid viscosity variation parameter  on the temperature- 

dependent dynamic viscosity, 


   and the stream- 

wise velocity  f  , within the boundary layer. At any 

location within the boundary layer    decreases 

with increase in the viscosity parameter, . The boun- 

dary layer thickness is found to decrease with increase in 

. The parameter  is a measure of fluid viscosity vari- 

ation. 



 

The effect of varying viscous dissipation parameter, 

, and the velocity ratio Ec   on the temperature distri- 

bution in the boundary layer is shown in Figures 4 and 5. 

Figure 4 shows that for 0.1 

Ec

, increasing  results 

in temperature over-shoot near the wall, with peaks in 

creasing with increase in . Figure 5 illustrates the 

effect of varying the velocity ratio on the temperature 

distribution. For the case when , the results 

show that the temperature peaks are realized for 

Ec

0.5Ec 
0.3   

and the peaks amplitudes increase with decrease in  . 

 

 

Figure 2. Effects of viscosity variation parameter on the 

dynamic viscosity for  

0, 0.8, 0.5, 0.2,0.4,0.6,0.8,1.n Ec      

 

Figure 3. Effects of viscosity variation parameter on velo- 

city profiles for  

0.0, 0.8, 0.5, 0.2,0.4,0.6,0.8,1n Ec     . 

 

 

Figure 4. Effects of varying Ec

0.1,n E

 on temperature distribu- 

tion for 0.0, 0.1, 0.1,0.3,0.5c     . 

 

 

Figure 5. Effects of viscosity variation on the temperature 

distribution profiles for  

0.0, 0.1, 0.1,0.2,0.3, 0.5n Ec     . 
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The skin-friction is presented as a function of  in 

Figures 6 and 7. These figures show the effect of varying 



  on the local skin friction coefficient for the case when 

0.5 1   and 0 0.5  . For the case when  

0.5 1  , the local skin friction coefficient is positive 

and hence the fluid exerts a dragging force on the wall. 

For this case, increasing  results in increase in the skin 

friction coefficient. For the case when 


0 0.5  , the 

local skin friction coefficient is negative, which is an 

indication that the wall drags the fluid. Also, increasing 

 results in a decrease in the skin friction. 
In Figure 8, the effect of varying   on local Nusselt 

number is shown as a function of   for the cases 

when 0.5 1  . The results show that the heat transfer 

coefficient decreases with increase in   and increases 

with increase in . 
The results shown in Figure 9 are interesting. It is 

shown that for 0 0.3  , the local Nusselt number is 

 

 

Figure 6. The skin friction coefficient against   for the 

case when 0.0, 0.5, 0.6,0.7,0.8,0.9n Ec    . 

 

 

Figure 7. The skin friction coefficient against   for the 

case when 0, 0.5, 0.15,0.2,0.3n Ec   . 

 

Figure 8. The heat transfer coefficient against  for the 

case when 


0, 0.5, 0.6,0.7,0.8,0.9n Ec    . 

 

 

Figure 9. The heat transfer coefficient against  for the 

case when 


0, 0.5, 0.15,0.2,0.25,0.3n Ec    . 

 

negative, changing sign to positive for 0.3  . This 

explains the results observed in Figure 7 where tem- 

perature over-shoot were observed adjacent to the wall. 

These results show that for low enough values for  , 

the heat transfer from wall to the fluid is greatly en- 

hanced resulting in temperature over-shoots adjacent to 

the wall. 

The effect of varying  on the velocity and tempera- 

ture distribution within the boundary layer is presented in 

Figures 10 and 11 for the case when wall is moving 

faster than the free-stream. The results show that velocity 

boundary layer thickness decreases with increase  and 

that the temperature peaks decrease with increase in . 

This shows that the increasing  results in a decrease in 

heat transfer from the wall to the fluid. 








5. Conclusions 

A self-similar boundary layer flow has been presented  
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Figure 10. Effects of varying  on the velocity distribution 
 f   for 0.0, 0.2, 0.5n Ec    and . 0,0.3,0.6 

 

 

Figure 11. Effects of varying  on the temperature distri- 

bution 


    for n = 0.0, ξ = 0.2, Ec = 0.5 and  = 0, 0.3, 

0.6. 



 

for a flow over a continuously moving heated surface in 

a fluid with temperature dependent viscosity. The self- 

similar equations were solved numerically and the results 

are presented in graphs. 

In this study the effects of varying the viscosity vari- 

ation  and the velocity ratio    are investigated for 

the case when the surface moves in the same direction as 

the free-stream. 

For low enough values for the velocity ratio ξ, the lo- 

cal heat transfer is found to be negative, indicating the 

heat transfer from the wall to the fluid is greatly en- 

hanced near the wall as the Eckert number increases. 

This is seen in the temperature distribution profiles where 

temperature peaks are observed adjacent to the wall. 

For the case when the wall moves faster than the fluid, 

the skin friction coefficient is negative, indicating that 

wall drags the fluid. The reverse occurs for the case when 

0.5 1   where the skin friction is positive and hence 

the free-stream exerts a dragging force on the boundary 

layer. 
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