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Abstract
The model-checking problem for Resource Agent
Logic is known to be undecidable. We review ex-
isting (un)decidability results and identify a signif-
icant fragment of the logic for which model check-
ing is decidable. We discuss aspects which makes
model checking decidable and prove undecidabil-
ity of two open fragments over a class of models in
which agents always have a choice of doing noth-
ing.

1 Introduction
There exist several formalisms that extend Alternating Time
Temporal Logic (ATL), [Alur et al., 2002] with reasoning
about resources available to agents and production and con-
sumption of resources by actions, see, for example, [Bulling
and Farwer, 2010; Alechina et al., 2010; Della Monica et al.,
2013; Alechina et al., 2014; Bulling and Goranko, 2013].
When the production of resources is allowed, the model-
checking problem for many of these logics is undecidable
[Bulling and Farwer, 2010; Bulling and Goranko, 2013]. Re-
cently, however, it was shown that some resource logics with
production of resources have a decidable model checking
problem [Alechina et al., 2014]. In this paper, we investigate
the reasons for decidability or undecidability of the model-
checking problem for resource logics. There is a quite be-
wildering variety of choices for the syntax and semantics of
resource logics, for example, the precise definition of when
a joint action is ‘affordable’ by a coalition of agents (can the
agents pool their resources, and can they use resources pro-
duced by the joint action to offset the costs involved in the
action). Many of these choices do not affect the decidability
or otherwise of the model-checking problem. In particular,
the decidability result of [Alechina et al., 2014] was proven
in the presence of two major restrictions called, using the no-
tion of [Bulling and Farwer, 2010], resource flat and propo-
nent restricted. The former assumes that agents are always
re-equipped with fresh resources when they reconsider their
strategies; the latter assumes that only the proponents act un-
der resource bounds. In addition to these restrictions, another
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choice in the semantics seems to be relevant for decidability.
This choice, which is also related to the finitary and infinitary
semantics of [Bulling and Farwer, 2010], stipulates whether
in every model, agents always have a choice of doing noth-
ing (executing an idle action) that produces and consumes
no resources [Alechina et al., 2014]. Apart from the tech-
nical convenience for model-checking (intuitively it implies
that any strategy to satisfy a next or until formula only needs
to ensure the relevant subformula becomes true after finitely
many steps, and after that the agents can always choose the
idle action which does not increase the ‘cost’ of the strategy),
this choice is motivated in [Alechina et al., 2010] by the prop-
erties of the logic, e.g., coalition monotonicity.

In this paper, we investigate the effects of various semantic
choices such as idle on the decidability of the model-checking
problem. First we show that the resource-flat as well as the
proponent-restricted fragment of resource agent logic remain
undecidable in the presence of idle actions. We then identify
and motivate a significant, non resource-flat fragment that has
a decidable model checking property in the presence of idle
actions, and is not decidable otherwise. It follows that idle
actions can make a difference for the decidability of model
checking with respect to the semantics considered in this pa-
per.

The paper is organised as follows. In Section 2 we intro-
duce our version of resource agent logic, its models and the
semantics. Afterwards, we put our setting in context with
existing work, discussing the main differences and the main
(un)decidability results. Based on this comparison we re-
view results shedding light into different semantic choices.
We give our first technical undecidability results and iden-
tify a new, non resource-flat fragment of resource agent logic.
Section 4 presents our second technical result: a decidabil-
ity result for the newly identified fragment. We conclude in
Section 5.

2 Resource Agent Logic
In this section we define the logic resource agent logic
RAL and resource-bounded models. We essentially fol-
low [Bulling and Farwer, 2010], combined with aspects
from [Alechina et al., 2014]. We point out the similarities
and differences in more detail in Section 3.1.

Syntax. The logic is defined over a set of agents Agt, a set
of resources types Res and a set of propositional symbols Π.
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An endowment (function) η : Agt × Res → N∞0 is used to
assign resources to agents; ηa(r) = η(a, r) is the number of
resources agent a has of resource type r. With En we denote
the set of all possible endowments. Resource types can rep-
resent, for example, money, fuel, and battery power. Special
minimal and maximal endowment functions are denoted by 0̄
and ∞̄, respectively. The former expresses that there are no
resources at all, whereas the latter equips all agents with an
infinite amounts of resources. The logic RAL is defined ac-
cording to the grammar of ATL [Alur et al., 2002] where two
types of cooperation modalities are available, the meaning of
which is explained below. RAL-formulae are defined by:

φ ::= p | ¬φ | φ ∧ φ | 〈〈A〉〉↓BXϕ | 〈〈A〉〉ηBXϕ | 〈〈A〉〉↓BϕUψ |
〈〈A〉〉ηBϕUψ | 〈〈A〉〉↓BGϕ | 〈〈A〉〉

η
BGϕ

where p ∈ Π is a proposition, A,B ⊆ Agt are sets of agents,
and η is an endowment. We also define 〈〈A〉〉↓ and 〈〈A〉〉η

as abbreviations for 〈〈A〉〉↓A and 〈〈A〉〉ηA, respectively. The
operators X, U, and G denote the standard temporal opera-
tors expressing that some property holds in the next point in
time, until some other property holds, and now and always in
the future, respectively. Both types of cooperation modality,
〈〈A〉〉↓B and 〈〈A〉〉ηB , assume that all agents in A ∪ B consume
and produce resources. The reading of 〈〈A〉〉ηBϕ is that agents
A have a strategy compatible with the endowment η to en-
force ϕ. The formula 〈〈A〉〉↓Bϕ reads similarly but the strategy
must be compatible with the resources currently available to
the agents. In both cases compatible means that the strategy
can be executed given the agents’ resources. For both modal-
ities it is necessary to keep track of resource production and
consumption during the execution of a strategy. The evalua-
tion of a modality 〈〈A〉〉ηB , however, (re-)equips all agents with
a fresh amount of resources: the current resource endowment
is overwritten by endowment η.

Semantics. We define the models of RAL as in [Bulling
and Farwer, 2010]. Following [Alechina et al., 2014] we also
define a special case of these models in which agents have
an idle action in their repertoire which neither consumes nor
produces resources.

Definition 1 (RBM, iRBM). A resource-bounded model
(RBM) is given by M = (Agt, Q,Π, π, Act, d, o, Res, t)
where Agt = {1, . . . , k} is a set of agents; π : Q → ℘Π
is a valuation of propositions; Act is a finite set of actions;
and the function d : Agt × Q → ℘Act\{∅} indicates the
actions available to agent a ∈ Agt in state q ∈ Q. We
write da(q) instead of d(a, q), and use d(q) to denote the
set d1(q) × . . . × dk(q) of action profiles in state q. Simi-
larly, dA(q) denotes the action tuples available to A in q. o
is a serial transition function which maps each state q ∈ Q
and action profile α = 〈σ1, . . . , σk〉 ∈ d(q) (specifying a
move for each agent) to another state q′ = o(q, α). Finally,
the function t : Act × Res → Z models the resources con-
sumed and produced by actions. We define prod(σ, r) :=
max{0, t(σ, r)} (resp. cons(σ, r) := min{0, t(σ, r)}) as the
amount of resource r produced (resp. consumed) by action
σ. For α = 〈σ, . . . , σk〉, we use αA to denote the sub-tuple
consisting of the actions of agents A ⊆ Agt.

An RBM with idle actions, iRBM for short, is an RBM

M such that for all agents a, all states q, and all resource
types r in M, there is an action σ ∈ da(q) with t(σ, r) = 0.
We refer to this action (or to one of them if there is more than
one) as the idle action of a and denote it by idle.

A path λ ∈ Qω is an infinite sequence of states such that
there is a transition between two adjacent states. A resource-
extended path λ ∈ (Q × En)ω is an infinite sequence over
Q × En such that the restriction to states (the first compo-
nent), denoted by λ|Q, is a path in the underlying model.
The projection of λ to the second component of each ele-
ment in the sequence is denoted by λ|En. We define λ[i]
to be the i + 1-th state of λ, and λ[i,∞] to be the suffix
λ[i]λ[i + 1] . . .. A strategy for a coalition A ⊆ Agt is a
function sA : Q+ → ActA such that sA(λq) ∈ dA(q) for
λq ∈ Q+. Such a strategy gives rise to a set of (resource-
extended) paths that can emerge if agents follow their strate-
gies. A (η, sA, B)-path is a resource-extended path λ such
that for all i = 0, 1, . . . with λ[i] := (qi, η

i) there is an ac-
tion profile α ∈ d(λ|Q[i]) such that: (1) η0 = η (η describes
the initial resource distribution), (2) sA(λ|Q[0, i]) = αA (A
follow their strategy), (3) λ|Q[i + 1] = o(λ|Q[i], α) (transi-
tion according to α), (4) for all a ∈ A ∪ B and r ∈ Res:
ηia(r) ≥ cons(αa, r) (each agent has enough resources to
perform its action), (5) for all a ∈ A ∪ B and r ∈ Res:
ηi+1
a (r) = ηia(r) + prod(αa, r)− cons(αa, r) (resources are

updated). (6) for all a ∈ Agt \ (A ∪ B) and r ∈ Res:
ηi+1
a (r) = ηia(r) (resources remain unchanged for agents

not in A ∪ B). The (η,B)-outcome of a strategy sA in q,
out(q, η, sA, B), is defined as the set of all (η, sA, B)-paths
starting in q. Truth is defined over an RBM M, a state
q ∈ QM, and an endowment η. The semantics is given by
the satisfaction relation |= where the cases for propositions,
negation and conjunction are standard and omitted:

M, q, η |= 〈〈A〉〉↓Bϕ iff there is a strategy sA for A such that
for all λ ∈ out(q, η, sA, B), M, λ, η |= ϕ

M, q, η |= 〈〈A〉〉ζBϕ iff there is a strategy sA for A such that
for all λ ∈ out(q, ζ, sA, B), M, λ, ζ |= ϕ

M, λ, η |= Xϕ iff M, λ|Q[1], λ|En[1] |= ϕ

M, q, η |= ϕUψ iff there exists i with i ≥ 0 and
M, λ|Q[i], λ|En[i] |= ϕ and for all j with 0 ≤ j < i
M, λ|Q[j], λ|En[j] |= ψ

M, q, η |= Gϕ iff for all i ≥ 0, M, λ|Q[i], λ|En[i] |= ϕ

The model checking problem is stated as follows: does
M, q, η |= ϕ hold? When the context is clear, we simply
write q, η |= ϕ; if ϕ is only a propositional formula, we might
also ignore η.

Observe that the standard ATL modalities 〈〈A〉〉 can be de-
fined as 〈〈A〉〉∞̄

Agt
, so the logic is a proper extension of ATL.

Remark 1. We refer to the semantics introduced above as
infinitary semantics. In [Bulling and Farwer, 2010] the main
semantics also allows for finite (maximal) paths. We refer
to that semantics as finitary semantics. We note that both
semantics coincide over iRBMs, as is is always possible to
extend a path due to the idle actions.

Syntactic fragments. Following [Bulling and Farwer,
2010] we define two fragments of the logic. The resource-
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flat fragment, rfRAL, only allows cooperation modalities of
type 〈〈A〉〉ηB : agents are always (re-)equipped with a fresh set
of resources whenever they re-consider their strategies. The
proponent restricted fragment, prRAL, only allows coopera-
tion modalities of types 〈〈A〉〉↓ and 〈〈A〉〉η: only the propo-
nents are assumed to make use of resources. The fragment
combining both restrictions is denoted by rfprRAL.

3 The Quest for Decidability
We first discuss differences and similarities to the original re-
source agent logics. We present the main idea underlying
the undecidability of model-checking results from [Bulling
and Farwer, 2010] and investigate the reasons for the
(un)decidability. We present new undecidability results, and
motivate a new fragment of RAL.

3.1 Two Related Logics
The logic presented here is based on the resource bounded
logics of [Bulling and Farwer, 2010] and [Alechina et al.,
2014]. The authors of the former paper introduce a very gen-
eral framework. Several interesting special cases are identi-
fied, and the (un)decidability of their model checking prob-
lems investigated. In the interests of readability, we refer to
the setting of [Bulling and Farwer, 2010] by S1 and to that
of [Alechina et al., 2014] by S2. The language of RAL is
almost identical to the setting of S1, except that we do not
allow the release operator. Essentially, S2 corresponds to
the resource-flat and proponent-restricted fragment of RAL.
RBMs serve as models of S1, where S2 uses iRBMs.
There are negligible differences in how the production and
consumption of resources are handled. In S2 both are consid-
ered at the same time; here, actions first consume resources
and afterwards produce them. However this is just a mod-
elling issue. Most results of S1 are given in terms of the
finitary semantics (cf. Remark 1). Finally, in S1 agents be-
longing to the same group—either to the proponents or the
opponents—are allowed to share their resources, whereas in
our setting each agent has its own resource balance. This
change does not affect the (un)decidability results given here,
but eases the presentation.

3.2 Investigating the Boundary of (Un)Decidability
In [Bulling and Farwer, 2010] it was shown that many—
actually most—fragments of their resource agent logic are
undecidable. However, an interesting case remained open:
the resource-flat, proponent-restricted fragment. Just re-
cently, this open problem has been shown to be decidable
in [Alechina et al., 2014; Alechina et al., 2015]:
Observation 1. rfprRAL is decidable over iRBMs.

A natural question arises: Could we extend the decidabil-
ity to more expressive fragments? We first show that propo-
nent restrictedness is essential for decidability, including over
iRBMs.

The Non-Proponent Restricted Fragment
In [Bulling and Farwer, 2010] it was shown that model
checking formulae of type 〈〈1〉〉0̄

Agt
F halt is undecidable over

RBMs. However the decidability of this fragment was open

over iRBMs. In Theorem 1, we show that undecidability
continues to hold. Before we sketch the proof we present the
basic idea underlying the reductions of [Bulling and Farwer,
2010].

The undecidability of the model checking problems is
shown by reducing the halting problem for two counter ma-
chines (also called Minsky machines) [Hopcroft and Ullman,
1979]. A two-counter machine is essentially a pushdown au-
tomaton with two stacks. The stacks are represented as two
counters over natural numbers. Each of the two counters (1
and 2) can be incremented, decremented (if non-zero), and
tested for zero. The behaviour of such an automaton is speci-
fied by a transition relation (s, E1, E2)∆(s′, C1, C2) with the
following meaning: a transition from automaton state s to
s′ is enabled if counter i ∈ {1, 2} satisfies condition Ei ∈
{zero, non-zero} (with the obvious meaning). If the transi-
tion is taken the automaton changes its control state from s to
s′, and counter i is updated by adding Ci ∈ {−1, 0,+1}. It
is said that the automaton halts on empty input iff the halting
state of the automaton is reached by subsequently taking en-
abled transitions. The main idea of the reduction of the halt-
ing problem is to encode the transition table of the automaton
as an RBM. The two counters are simulated by two resource
types. The model consists of two agents: the simulator agent
1 and the spoiler agent 2. Agent 1 is supposed to select tran-
sitions of the automaton where agent 2 is used to ensure that
only enabled transitions are selected by agent 1. The basic
modelling of a single transitions (s, E1, E2)∆(s′, C1, C2) is
shown in Figure 1. The first action (E1, E2) of agent 1 is
used to (partially) check whether a transition of the automa-
ton is enabled. That is, if Ei = non-empty, agent 1 must
have a resource of type i to execute the action. If such an
action is taken, the system enters a “test state” sE1E2 . The
purpose of the test state is to check whether a transition with
Ei = empy is only selected by agent 1 if counter i is indeed
zero, i.e. ensures a correct simulation. Note that, in general,
nothing prevents agent 1 from executing such an action if it
has resources available, although it should only be executed
if no resources are available. Essentially, the problem is that
it is not possible to directly test for zero in the model.1 The
workaround proposed in [Bulling and Farwer, 2010] is to use
the spoiler agent 2 to perform the “zero test”. The idea is
that in test state sE1E2 , agent 2 must not be able to reach
the fail state qe. Reaching the fail state is only possible if
resources are available when there should not be any. This is
encoded by action tE1

E2
in the model. For example, if counter 1

should be empty, E1 = empty, the action tE1

E2
can only be ex-

ecuted if resources of type 1 are available. However, this also
requires that agent 2 correctly mirrors agent 1’s resource bal-
ance, i.e. 2 also simulates the counter values. This is achieved
by making the model turn-based. Once agent 1 has executed
an action (s′, C1, C2) an intermediate state is introduced in
which agent 2 has a single choice with the same effect on
the resources as agent 1’s previous action (dotted rectangle in
Fig. 1). Based on this encoding it is shown (using the finitary

1Testing for zero is a delicate property, the satisfaction of which
seems crucial for the undecidability of other formalisms, such as
Petri nets [Peterson, 1981].
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Figure 1: The reduction used wrt. RBMs is without dashed loops,
whereas for the reduction wrt. iRBMs (cf. Cor. 1) dashed loops
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Figure 2: The reduction used wrt. iRBMs for rfRAL.

semantics) that the automaton A halts on the empty input if,
and only if, M(A), qinit, 0̄ |= 〈〈{1}〉〉0̄{1,2}F halt where M(A)

is the RBM constructed from A. The state corresponding
to the automaton’s accepting state is labelled halt. In order
for the reduction to work over iRBMs the main difficulty is
the correct mirroring of 1’s resources by agent 2 in the pres-
ence of idle actions. The modified encoding of a transition
(s, E1, E2)∆(s′, C1, C2) is illustrated in Figure 2.

Theorem 1. Model checking rfRAL over the class of
iRBMs is undecidable, even for two agents and formulae
of type 〈〈1〉〉0̄{1,2}Fp.

Proof sketch. We argue that the automaton A halts on the
empty input iff M(A), qinit, 0̄ |= 〈〈1〉〉0̄{1,2}F halt, where M

is the encoding of the automaton following the idea shown
in Figure 2. First, we observe that the execution of an idle
action by agent 1 would immediately falsify the formula, as
state qe would be reached. Similarly, if agent 2 does idle and
agent 1 does not, the formula will be true. As we are look-
ing for a winning strategy of 1 against all strategies of 2 we
can neglect the cases where any of the agents performs the
idle action. Again, the encoding describes the modelling of
a transition (s, E1, E2)∆(s′, C1, C2). In this modelling the
simulation of agent 1’s resources by agent 2 is made explicit.
In states sC

′
1C

′
2

j , agent 2 can only perform the same action
(apart from the idle action) as the one selected by agent 1 in
state sE1E2 with the same resource consumption and produc-
tion. We briefly sketch the correctness of the reduction. (i)

A halts. Then, agent 1 simulates the transitions of the au-
tomaton’s accepting run. Agent 2 will never be able to reach
the fail state qe. Moreover, either agent 2’s resources cor-
rectly simulate 1’s resources, or agent 2 does the idle action.
In both cases either the halting state or the auxiliary halting
state qi, both labelled halt, are reached. The formula is true.
(ii) Let the formula be true. Agent 1 must have a strategy that
guarantees reaching a state labelled halt against all strategies
of 2, including 2’s strategy in which 2 never performs the
idle action. This strategy of 2 correctly mirrors 1’s resources
and ensures that 1’s strategy only selects enabled transitions.
Thus, the strategy of 1 encodes an accepting run of the au-
tomaton.

The Proponent Restricted Fragment
Theorem 1 shows that the restriction of resource-flatness is
not enough to obtain a decidable model checking property.
We turn to the proponent-restricted fragment. Below we
show, by adopting the undecidability proof of [Bulling and
Farwer, 2010] for prRAL to work over iRBM’s, that prRAL
is also undecidable over iRBMs. This is a negative result;
however, in contrast to Theorem 1, the formula used in the re-
duction is more complex, and leaves room for restricting the
temporal structure of the language. Indeed, this is the moti-
vation for the decidable fragment of prRAL that we introduce
in Section 3.3.

Corollary 1 (of [Bulling and Farwer, 2010]). Model check-
ing prRAL over the class of iRBMs is undecidable even in
the case of a single agent.

Proof sketch. The undecidability proof for prRAL over
RBMs of [Bulling and Farwer, 2010] essentially follows
the encoding shown in Figure 1. The difference is that
the second agent is removed (as well as the dotted box,
implementing the resource mirroring behaviour), and agent
1 itself is used to perform the “zero test”. This requires
a slightly more sophisticated formula: the automaton A
halts on the empty input if, and only if, M(A), qinit, 0̄ |=
〈〈{1}〉〉0̄((¬〈〈{1}〉〉↓X fail)U halt). The main idea is that in
test state sE1E2 , agent 1 must not be able to reach the fail
state qe, which is expressed by ¬〈〈{1}〉〉↓X fail. Now, in order
to extend the reduction to work over iRBMs, we add reflex-
ive loops (dashed in the figure) which represent agent 1’s idle
actions. It is easy to see that the reduction still works. The
agent would not be able to reach the halting state (labelled
halt) if it had taken an idle loop forever, nor would it help the
agent, in its role as opponent, to reach the fail state.

3.3 A Decidable Fragment of RAL
Following the observation made in the previous section, we
define a proponent-restricted but not resource-flat fragment
of RAL that has a decidable model checking property. Let
us first introduce the positive fragment of RAL as the set of
all RAL-formulae where no cooperation modality is under the
scope of a negation symbol, and let the U-restricted fragment
of RAL restrict the use of the until operator U such that the
formulae ϕ1 on the left-hand-side of ϕ1Uϕ2 is purely propo-
sitional.
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Definition 2 (The fragment prRALr). The logic prRALr is
defined as the proponent-restricted, positive and U-restricted
fragment of RAL.

The prRALr-fragment allows us to express properties of
coalitions of agents which re-consider their strategies with-
out being re-equiped with fresh resources. An example of
a property expressible in prRALr (but not in a resource-
flat fragment) is, for example, “given their initial battery
charge, rescue robots A can safely get to a position from
which they can perform rescue while in visual contact with
the base”. Formally, this can be specified by the formula
〈〈A〉〉ηinit(safeU(〈〈A〉〉↓(visualU rescue))). Intuitively, this re-
flects the constraint that the robots cannot recharge their bat-
teries after reaching the position where they can perform res-
cue while in visual contact with the base. Another example
is given by the formula 〈〈1, 2〉〉ηinitF(rob∧ 〈〈1〉〉↓F escape) ex-
pressing that the coalition {1, 2} can cooperate to eventually
rob a bank and then agent 1 can ensure to escape on its own
using only its remaining resources.

Before we show the decidability of prRALr over iRBMs
in the next section, we make the following observation which
follows from [Bulling and Farwer, 2010, Theorem 6]:
Observation 2. Model checking prRALr over RBMs is un-
decidable.

4 Model-checking prRALr

In this section we introduce a model-checking algorithm for
prRALr and prove its correctness. In what follows, we assume
that the function atl(φ) that returns the formula where each
〈〈A〉〉↓ and 〈〈A〉〉ζ in φ is replaced by 〈〈A〉〉.
Theorem 2. The model-checking problem for prRALr over
iRBMs is decidable.

To prove decidability, we give an algorithm which requires
as input M, q, η, φ and returns true or false. We prove ter-
mination and correctness of the algorithm in Lemmas 1 and
2 below. Given φ, we produce a set of subformulas of φ,
Sub(φ), in the usual way, except that 〈〈A〉〉↓ and 〈〈A〉〉ζ modal-
ities are replaced by standard ATL modalities 〈〈A〉〉. Sub(φ) is
ordered in increasing order of complexity. Note that if a state
s is not annotated with the standard ATL modality 〈〈A〉〉, then
it cannot satisfy 〈〈A〉〉↓ or 〈〈A〉〉ζ . Algorithm 1 simply labels
the subformulas of φ using the standard ATL labelling algo-
rithm [Alur et al., 2002]. It then calls the function STRATEGY
to label states with φ. (Note that we do not label states with
subformulas of φ involving 〈〈A〉〉↓ or 〈〈A〉〉ζ modalities as in
[Alechina et al., 2014].)

Algorithm 1 Labelling φ

procedure LABEL(M, φ, η)
for φ′ ∈ Sub(φ) do

[φ′]M ← { q | q ∈ Q ∧ ATL-LABEL(M, φ′)}
[φ]M ← { q | q ∈ Q ∧ STRATEGY(node0(q, η), φ)}

STRATEGY proceeds by depth-first and-or search, process-
ing each coalition modality in turn starting from the out-
ermost modality. Each temporal operator is handled by a

Algorithm 2 Strategy

function STRATEGY(n, φ)
case φ is propositional

return s(n) |= φ

case φ = ψ1 ∧ ψ2

return STRATEGY(node0(s(n), e(n)), ψ1) ∧
STRATEGY(node0(s(n), e(n)), ψ2)

case φ = ψ1 ∨ ψ2

return STRATEGY(node0(s(n), e(n)), ψ1) ∨
STRATEGY(node0(s(n), e(n)), ψ2)

case φ = 〈〈A〉〉↓Xψ
return X-STRATEGY(node0(s(n), e(n)), φ)

case φ = 〈〈A〉〉ζXψ
return X-STRATEGY(node0(s(n), ζ), φ)

case φ = 〈〈A〉〉↓ψ1Uψ2

return U-STRATEGY(node0(s(n), e(n)), φ)

case φ = 〈〈A〉〉ζψ1Uψ2

return U-STRATEGY(node0(s(n), ζ), φ)

case φ = 〈〈A〉〉↓Gφ
return G-STRATEGY(node0(s(n), e(n)), φ)

case φ = 〈〈A〉〉ζGφ
return G-STRATEGY(node0(s(n), ζ), φ)

separate function: X-STRATEGY for Xψ, U-STRATEGY for
ψ1Uψ2, and G-STRATEGY for Gψ. We record information
about the state of the search in a search tree of nodes. A node
is a structure which consists of a state of M, the resources
available to the agentsA in that state (if any), and a finite path
of nodes leading to this node from the root node. Edges in the
tree correspond to joint actions by all agents. Note that the re-
sources available to the agents in a state on a path constrain
the edges from the corresponding node to be those actions
α where for all proponent agents a, cons(α) is less than or
equal to the available resources of agent a. We compare vec-
tors of resources in a usual way, for example ζa ≥ cons(αa)
stands for ζa(r) ≥ cons(αa, r) for all resources r. For an
action tuple σ by A ⊆ Agt, we write cons(σ) to refer to the
tuple (cons(σa))a∈A. For each node n in the tree, we have a
function s(n) which returns its state, p(n) which returns the
nodes on the path and e(n) which returns the resource avail-
ability for all agents as a result of following p(n). The func-
tion node0(s, η) returns the root node, i.e., a node n0 such
that s(n0) = s, p(n0) = [ ] and e(n0) = η. The function
node(n, s′, α,A, ∗) where A ⊆ Agt is the current set of pro-
ponents and ∗ ∈ {↓, ζ} returns a node n′ where s(n′) = s′,
p(n′) = [p(n) · n] and

ea(n′) =

{
ζa if ∗ = ζ
ea(n) if ∗ =↓ and a 6∈ A
ea(n)+prod(α)−cons(α) if ∗ =↓ and a ∈ A

X-STRATEGY for 〈〈A〉〉↓Xψ and 〈〈A〉〉ζXψ formulas is
shown in Algorithm 3 and is straightforward. After checking
if the search should be terminated with false, we simply check
if there is an action byA that is possible given current endow-
ment, and where in all outcome states A has a strategy for ψ.
G-STRATEGY for 〈〈A〉〉↓Gφ and 〈〈A〉〉ζGφ formulas is shown

1498



Algorithm 3 X strategy (both types of modalities)

function X-STRATEGY(n, 〈〈A〉〉∗Xψ)
if s(n) 6|= atl(〈〈A〉〉∗Xψ) then

return false

ActA← {σ ∈ dA(s(n)) | cons(σ) ≤ eA(n)}
for σ ∈ ActA do

Act = {α ∈ d(s(n)) | αA = σ}
strat ← true
for α ∈ Act do

s′ ← out(s(n), α)
strat ← strat ∧

STRATEGY(node(n, s′, α,A, ∗), ψ)

if strat then
return true

return false

in Algorithm 5. Again we check if the search should be ter-
minated with false, either because the standard ATL modal-
ity doesn’t hold, or because the current path terminates in a
resource consuming cycle, or if the current endowment re-
sults in φ being false. We then check the path for productive
loops, and update the endowment if we find one. arb de-
notes an arbitrary finite value that can be decremented, i.e.,
where arb − k < arb (unlike for infinity). e(n)(a, r) = arb
indicates that the path p(n) terminates in a ‘productive loop’,
which can be traversed multiple times to generate an arbitrary
amount of resource r for agent a.2 If the current path termi-
nates in a nondecreasing loop, we return true. Otherwise we
continue the search for a nondecreasing loop. U-STRATEGY
for 〈〈A〉〉↓ψ1Uψ2 and 〈〈A〉〉ζψ1Uψ2 formulas is shown in Al-
gorithm 4, and is similar to G-STRATEGY. First U-STRATEGY
checks whether false should be returned because the ATL ver-
sion of the formula is false, or the current path has an unpro-
ductive loop. We then check the path for productive loops,
and update the endowment if we find one. If the ATL version
of ψ2 is true, we try to find a strategy to enforce ψ2), and if
we are successful U-STRATEGY returns true. Otherwise the
search continues, because the node where STRATEGY(n, ψ2)
returns true may be found later on the path. Note that if all
resources are updated to arb and a repeated call to STRAT-
EGY(n, ψ2) returns false, the algorithm will return false be-
cause of the first check for unproductive loops.

Lemma 1. Algorithm 2 terminates.

Proof. (sketch). The proof is by induction on the length of
the formula. Calls for propositional formulas clearly termi-
nate. For the inductive step, we need to show that a call for
any connective terminates provided calls for lower complex-
ity formulas terminate. Conjunction and disjunction are obvi-
ous. X-STRATEGY makes a recursive call to a STRATEGY of a
smaller complexity formula after one step. For U-STRATEGY
and G-STRATEGY, the recursion calls are infinite iff endow-
ments (considered as a vector of size |Agt|× |Res|) are never
comparable. However, it can be shown that they are always

2In what follows, we denote by arbA : A × Res → {∞, arb}
an arb or infinite endowment for agents in A ⊆ Agt.

Algorithm 4 U strategy

function U-STRATEGY(n, 〈〈A〉〉∗ψ1Uψ2)
if s(n) 6|= atl(〈〈A〉〉∗ψ1Uψ2) then

return false

if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ eA(n′) ≥ eA(n)) then
return false

for (a, r) ∈ {a ∈ A, r ∈ Res | ∃n′ ∈ p(n) :
s(n′) = s(n) ∧ eA(n′) ≤ eA(n) ∧
e(n′)(a, r) < e(n)(a, r)} do

e(n)(a, r)← arb

if s(n) |= atl(ψ2) then
strat ← STRATEGY(n, ψ2)

if strat then
return true

else
ActA← {σ ∈ dA(s(n)) | cons(σ) ≤ eA(n)}
for σ ∈ ActA do

Act = {α ∈ d(s(n)) | αA = σ}
strat ← true
for α ∈ Act do

s′ ← out(s(n), α)
strat ← strat ∧

U-STRATEGY(node(n, s′, α,A, ∗),
〈〈A〉〉∗ψ1Uψ2)

if strat then
return true

return false

Algorithm 5 G strategy

function G-STRATEGY(n, 〈〈A〉〉∗Gψ)
if s(n) 6|= 〈〈A〉〉∗Gψ then

return false

if ∃n′ ∈ p(n) : s(n′) = s(n)∧(∀r : er(n
′) ≥ er(n))∧

(∃j : ej(n
′) > ej(n)) or ¬STRATEGY(n, ψ) then

return false

for (a, r) ∈ {a ∈ A, r ∈ Res | ∃n′ ∈ p(n) :
s(n′) = s(n) ∧ eA(n′) ≤ eA(n) ∧
e(n′)(a, r) < e(n)(a, r)} do

e(n)(a, r)← arb

if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ eA(n′) ≤ eA(n)) then
return true

ActA← {σ ∈ dA(s(n)) | cons(σ) ≤ eA(n)}
for σ ∈ ActA do

Act = {α ∈ d(s(n)) | αA = σ}
strat ← true
for α ∈ Act do

s′ ← out(s(n), α)
strat ← strat ∧

G-STRATEGY(node(n, s′, α,A, ∗), 〈〈A〉〉∗Gψ)

if strat then
return true

return false
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going to become comparable after finitely many steps, us-
ing the technique in [Alechina et al., 2014] or [Reisig, 1985,
p.70].

Lemma 2. Algorithm 2 is correct, that is, STRATEGY(n, φ)
returns true iff s(n), e(n) |= φ.

Proof. (sketch). The proof is by induction on the modal
depth of the formula. The base case (propositional for-
mulas) is immediate. For the inductive step, we assume
that the lemma holds for modal depth k, and show it for
modal depth k + 1. The proof of the inductive step is
by cases on the main connective of φ. The most diffi-
cult case is when φ = 〈〈A〉〉↓ψ′Uψ. We need to show
that U-STRATEGY(node0(s(n), e(n)), φ) returns true iff iff
s(n), e(n) |= 〈〈A〉〉↓ψ′Uψ.
(⇒) : Let T denote the search tree rooted at n0 =
node0(s, η) when U-STRATEGY(node0(q, η), φ) returns true.
Each node n in T is additionally annotated with the ac-
tual 3 endowment e′(n) : Agt × Res → Z ∪ {∞} where
(e′(n0))i = ηi+

∑
n′∈p(n) t(ai(n

′)). Let sT denote the strat-
egy for A where for each node n ∈ T with p(n) = n1 . . . n
sT (s(n1) . . . s(n)) = (a(n))A for all n ∈ T and n1 . . . n =
p(n). Note that, (e′(n))i(r) can be negative for r and i which
means sT is not a valid strategy. Then, there must be nodes
n′, n′′ ∈ p(n) such that (e(n′))r(i) = arb because of en-
dowment in n′′. Let n′ = stopr(n) and n′′ = startr(n). Let
T (n) denote the subtree of T starting from n. For a resource
r, if there is a node n with (e′(n))i(r) < 0 for some i we
extend T such that (e′(n))i(r) ≥ 0 by repeating the branch
between startr(n) and endr(n) finitely many times.
Case 1: n is the only node in T (startr(n)) with
(e′(n))r(a) < 0 as depicted by Figure 3a.
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r (n)n

n

n

n
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Figure 3: n is only node with (e′(n))r(a) < 0 in T (startr(n))

Assume that the path from startr(n) to endr(n) increases
r by g. Then, it is necessary to repeat this path d |(e

′(n))r(a)|
g e

times, as depicted in Figure 3b.
Case 2: n is not the only node in T (startr(n)) with
(e′(n))r(a) < 0. Other nodes n′ are either in the sub-
tree T (stopr(n)) (as depicted by Figures 4a) or in the sub-
tree of T (startr(n)) but not T (stopr(n)) (as depicted by
Figures 4b). Without loss of generality, we assume that
startr(n) is the ancestor of startr(n′) for any of such n′.

Again, assume that the path from startr(n) to endr(n)
increases r by g. Then, it is necessary to repeat this path k =

d |(e
′(n))r(a)|
g e times, as depicted in Figure 5a. Note that this

repetition will also repeat nodes n′ which are in the subtree of

3i.e., not containing arb.
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Figure 4: T (startr(n)) also have n′ with (e′(n′))r(a) < 0.

T (startr(n)) but not T (stopr(n)) and have (e′(n′))r(a) <
0 as n′1, . . . , n

′
k depicted in Figure 5b.
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Figure 5: Repeating T (startr(n)).

Let T1 be the obtained tree. Then, the number of nodes n′′
in T1(nk−1) with (e′(n′′))i(r) < 0 is strictly less than that
in T (startr(n)). Therefore, we can reapply the above con-
struction to obtain a tree T2 where all nodes n′′ in T2(nk−1)
have (e′(n′′))i(r) ≥ 0. These include node n′ as depicted
in Figure 5a and n′k as depicted in Figure 5b. Then, we
further apply step by step the above construction for nodes
n′k−1, . . . , n

′
1 and n′ in Figure 5b. Finally, we obtain a tree

T3 where all nodes n′′ have (e′(n′′))i(r) ≥ 0. This construc-
tion can be repeated for other resources r′ 6= r and agents
i′ 6= i. Finally, we obtain a tree T4 where for all nodes n in
T4, (e′(n))i(r) ≥ 0 for all r and i.
(⇐) : As q, η |= 〈〈A〉〉↓ψ′Uψ, there exists a strategy sA
such that for all λ ∈ out(q, η, sA, A) : ∃ 0 ≤ iλ < |λ| :
λ|Q[iλ] |= ψ and ∀ 0 ≤ j < iλ : λ|Q[j], λ|En[j] |=
ψ′. Let T = (V,E) be the tree induced by all runs
λ[0, iλ] for λ ∈ out(q, η, sA, A), i.e., V = {λ[0, i] |
λ ∈ out(q, η, sA, A), i ≤ iλ} and E = {(λ[0, i], λ′[0, i +
1]) | λ, λ′ ∈ out(s, η, sA, A), λ[0, i] = λ′[0, i], i < iλ}.
We shall cut T into a search tree which shows that U-
STRATEGY(node0(q, η), φ) returns true. Note that T must be
finite and each edge in E corresponds to a join action of all
agents.

Initially, let T0 = T , then Tl+1 is constructed from Tl as
follows.

• If there is a node λ[0, i] in Tl such that ∃0 ≤ j < k ≤
i : λ|Q[j] = λ|Q[k] ∧ λ|En[j] ≥ λ|En[k], then Tl+1 is
constructed from Tl by replacing the subtree Tl[λ[j]] by
Tl[λ[k]].

• If there is a node λ[0, i] such that (λ|En[i])A = arbA,
then Tl+1 is constructed from Tl by replacing the subtree
Tl[λ[i]] by the only node λ[i].

• If there is a node λ[0, i] in Tl such that ∃0 ≤ j < k ≤ i :
λ|Q[j] = λ|Q[k]∧λ|En[j] ≤ λ|En[k]∧λ|En[j] 6= λ|En[k],
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then Tl+1 is constructed from Tl by replacing the endow-
ment η′ of all nodes (q′, η′′) in the subtree Tl[λ[k]] by η′′
where

η′′a(r) =

{
η′a(r) if (λ|En[j])a(r) = λ|En[k]a(r)

arb if (λ|En[j])a(r) < λ|En[k]a(r)

• Otherwise, Tl+1 = Tl, i.e., no more change.
The construction stops when Tl+1 = Tl. Let the resulting
tree Tl+1 = T ′. For each node λ[0, i] in T ′, we define a node
nλ[0,i] where: s(nλ[0,i]) = λ|Q[i], p(nλ[0,i]) = λ|Q[0, i − 1]
and e(nλ[0,i]) = λ|En[i]. In the following, we show by induc-
tion on the length of T ′(λ[0, i]) that U-STRATEGY(nλ[0,i], φ)
returns true.
Base case: Assume that λ[0, i] is a leaf of T ′, then it is ei-
ther a leaf from T or an internal node from T that has an
arbA endowment for agents inA by the second cut. Then, the
condition of the first if statement in U-STRATEGY(nλ[0,i], φ)
is false, since λ|Q[i] |= ψ in the former case and λ|Q[i] |=
〈〈A〉〉ψ′Uψ in the latter case. The condition in the second if
statement is also false since otherwise T ′ can be cut further.
Similarly, the conditions of the third and fourth if statements
are true; therefore, U-STRATEGY(nλ[0,i], φ) returns true.
Induction step: Assume that λ[0, i] is not a leaf of T ′.
Then the condition of the first if statement is false, since
q |= 〈〈A〉〉ψ′Uψ. The condition of the second if state-
ment is also false, since otherwise T ′ can be cut further.
The condition of the third or fourth if statement is false
since otherwise λ[0, i] must have been a leaf of T ′. There-
fore, the algorithm must enter the second for loop. For
α = sA(λ|Q[0, i]) ∈ DA(λ[i]) we have that, for every
s′ ∈ out(λ|Q[i], α) with n′ = node(nλ[0,i], s

′, α,A, ↓), there
must be λ′[0, i+ 1] in T ′ such that n′ = nλ′[0,i+1]. By the in-
duction hypothesis, U-STRATEGY(nλ′[0,i+1], φ) returns true.
Thus, U-STRATEGY(nλ[0,i], φ) also returns true.

Obviously, U-STRATEGY(node0(q, η), φ) returns true
since nλ[0] = node0(q, η) for any λ[0, i] in T ′.

The above proof can be adapted to the case φ =
〈〈A〉〉ζψ′Uψ by exchanging the role of η and ζ. Finally, for
the case φ = 〈〈A〉〉∗Gψ, we can also apply the above proof
strategy. In particular, if G-STRATEGY(node0(q, η), φ) re-
turns true, we construct a strategy from the search tree T
where each leaf n of T determines a subtree T (n′) where
s(n′) = s(n) and eA(n′) ≤ eA(n) by the third if state-
ment. Then, we can replace all leaves n with T (n′) re-
peatedly and end up with an infinite tree T ′ which induces
a strategy sT ′ to satisfy φ. Conversely, if q, η |= φ, then
φ is satisfied by some strategy sA, and we can cut the tree
of computations by sA into a search tree which shows that
G-STRATEGY(node0(q, η), φ) returns true.

5 Conclusion
In this paper we investigated the boundary of (un)decidable
of logics for verifying resource bounded systems. We proved
two undecidability results and identified a significant frag-
ment of Resource Agent Logic with a decidable model check-
ing property. From these results it also follows that the rather
natural property on models — that agents can always decide
to do nothing — can make model checking decidable.
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